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Abstract
We investigate the maximum-entropy model Bn,m,p for random n-vertex, m-edge multi-hypergraphs
with expected edge size pn. We show that the expected size of the minimization min(Bn,m,p),
i.e., the number of inclusion-wise minimal edges of Bn,m,p, undergoes a phase transition with
respect to m. If m is at most 1/(1 − p)(1−p)n, then E[ |min(Bn,m,p)| ] is of order Θ(m), while
for m ≥ 1/(1 − p)(1−p+ε)n for any ε > 0, it is Θ(2(H(α)+(1−α) log2 p)n/

√
n). Here, H denotes the

binary entropy function and α = −(log1−pm)/n. The result implies that the maximum expected
number of minimal edges over all m is Θ((1 + p)n/

√
n). Our structural findings have algorithmic

implications for minimizing an input hypergraph. This has applications in the profiling of relational
databases as well as for the Orthogonal Vectors problem studied in fine-grained complexity. We make
several technical contributions that are of independent interest in probability. First, we improve the
Chernoff–Hoeffding theorem on the tail of the binomial distribution. In detail, we show that for a
binomial variable Y ∼ Bin(n, p) and any 0 < x < p, it holds that P[Y ≤ xn] = Θ(2−D(x ‖ p)n/

√
n),

where D is the binary Kullback–Leibler divergence between Bernoulli distributions. We give explicit
upper and lower bounds on the constants hidden in the big-O notation that hold for all n. Secondly,
we establish the fact that the probability of a set of cardinality i being minimal after m i.i.d.
maximum-entropy trials exhibits a sharp threshold behavior at i∗ = n+ log1−pm.
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1 Introduction

A plethora of work has been dedicated to the analysis of random graphs. Random hypergraphs,
however, received much less attention. For many types of data, hypergraphs provide a much
more natural model. This is especially true if the data has a hierarchical structure or reflects
interactions between groups of entities. In non-uniform hypergraphs, where edges can have
different numbers of vertices, a phenomenon occurs that is unknown to graphs: an edge may
be contained in another, with multiple edges even forming chains of inclusion. We are often
only interested in the endpoints of those chains, namely, the collections of inclusion-wise
minimal or maximal edges. This is the minimization or maximization of the hypergraph.
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21:2 The Minimization of Random Hypergraphs

We investigate the maximum-entropy model Bn,m,p for random multi-hypergraphs with n
vertices and m edges and expected edge size pn for some constant sampling probability p. In
other words, out of all probability distributions on hypergraphs with expected edge size pn,
Bn,m,p is the one of maximum entropy.2 This is equivalent to sampling m independent edges
by adding any vertex v ∈ [n] independently with probability p (see Section 2 for details). We
are interested in the expected size of the minimization/maximization of Bn,m,p, that is, the
expected number of minimal/maximal edges. Most of our results are phrased in terms of the
minimization, but replacing the probability p with 1− p immediately transfers them to the
maximization. We show that the size of the minimization undergoes a phase transition with
respect to m with the point of transition at m = 1/(1− p)(1−p)n. While the number of edges
is still small, a constant fraction of them is minimal and the minimization grows linearly in
the total sample sizes. For m beyond the transition, we can instead characterize the size of
the minimization in terms of the entropy function of log1−pm, see Theorem 1.2 for a precise
statement. This characterization shows that the minimality ratio goes down dramatically
when m increases. It also allows us to prove that the maximum expected number of minimal
edges over all m is of order Θ((1 + p)n/

√
n). These results draw from another, more hidden,

threshold behavior. The probability of a set to be minimal in the hypergraph Bn,m,p depends
only on its cardinality i and we show that this probability falls sharply from almost 1 to
almost 0 at i∗ = n+ log1−pm.

The main tool in our analysis is the Chernoff–Hoeffding theorem bounding the tail of the
binomial distribution via the Kullback–Leibler divergence from information theory. However,
the existing inequalities are not sharp enough to derive tight statements on the expected size
of the minimization. So far, there is a gap of order

√
n between the best-known upper and

lower estimates. In this work, we improve these bounds such that they match up to constant
factors. We give an explicit interval for the constants involved that holds for all positive
integers n making the result useful also in a non-asymptotic setting.

Our structural findings have algorithmic implications for the computation of the mini-
mization min(H) from an input hypergraph H. We discuss two examples in the context of
fine-grained complexity as well as data profiling. There are reasons to believe that there
exists no minimization algorithm running in time m2−ε·poly(n) for any ε > 0 on m-edge,
n-vertex hypergraphs. The reason is as follows: The Sperner Family problem is to de-
cide whether H comprises two edges such that one is contained in the other, i.e., whether
|min(H)| < |H|. It is equivalent under subquadratic reductions to the more prominent
Orthogonal Vectors problem [14, 25]. Hence, a truly subquadratic algorithm would falsify the
Orthogonal Vectors Conjecture3 and in turn the Strong Exponential Time Hypothesis [52].
Partitioning the edges by the number of vertices and processing them in order of increasing
cardinality gives an algorithm running in O(mn |min(H)|+ mn), which is O(m2n) in the
worst case. However, when looking at the average-case complexity for Bn,m,p, we get a run
time of O(mnE[ |min(Bn,m,p)| ] +mn). Our main result therefore shows that the algorithm
is subquadratic for all m beyond the phase transition, and even linear for m ≥ 1/(1− p)n.

There is also a connection to the profiling of relational databases. Data scientists
regularly need to compile and output a comprehensive list of metadata, like unique column
combinations, functional dependencies, or, more general, denial constraints, cp. [1]. These
multi-column dependencies can all be described as the minimal hitting sets of certain
hypergraphs created from comparing pairs of rows in the database and recording the sets

2 The notation Bn,m,p is mnemonic of the binomial distribution emerging in the sampling process.
3 Precisely, we mean the Orthogonal Vectors Conjecture for moderate dimensions, see [25].
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of attributes in which they differ [24, 11, 10, 40]. Computing these difference sets one by
one generates an incoming stream of seemingly random subsets. Filtering the inclusion-wise
minimal ones from this stream does not affect the solution, but reduces the number of sets
to store and the complexity of the resulting hitting set instance. Minimizing the input
is therefore a standard preprocessing technique in data profiling. It has been observed in
practice that the minimal sets make up only a small fraction of the whole input [45]. Usually
there are fewer minimal difference sets than rows in the database, let alone pairs thereof [11].
The upper bounds given in the Theorems 1 and 2 provide a way to explain this phenomenon.
We show that only a few edges can be expected to be minimal, their number may even shrink
as the database grows, provided that the number of rows is large enough compared to the
number of columns. The respective lower bounds can further be seen as the smallest amount
of data any dependency enumeration algorithm needs to hold in memory.

Related Work. Erdős–Rényi graphs Gn,m [23] and Gilbert graphs Gn,p [27] are arguably the
most-discussed random graph models in the literature. We refer the reader to the monograph
by Bollobás [12] for an overview. A majority of the work on these models concentrates on
various phase transitions with respect to the number of edges m or the sample probability p,
respectively. This intensive treatment is fueled by the appealing property that Erdős–Rényi
graphs are “maximally random” in that they do not assume anything but the number of
vertices and edges. More formally, among all probability distributions on graphs with n

vertices and m edges, Gn,m is the unique distribution of maximum entropy. The same holds
for Gn,p under the constraint that the expected number of edges is p

(
n
2
)
, see [2].

The intuition of being maximally random is captured by the Shannon entropy, which
is the central concept in information theory [18, 50]. A discrete stochastic system that
can be described by the probability distribution (pi)i has a (binary) entropy of H((pi)i) =
−
∑
i pi log2 pi. The self-information of a single state with probability p is − log2 p, the

entropy is thus the expected information of the whole system. It is a measure of surprisal or
how “spread out” the distribution is. Originally stemming from thermodynamics [39], the
versatility of this definition is key to the successful application of information theory to fields
as diverse as cryptography [15], machine learning [28], quantum computing [44], and of course
network analysis [43], to name only a few topics close to computer science. The principle of
maximum entropy states that out of an ensemble of probability distributions that all describe
the observed phenomena equally well, the one of maximum entropy is to be preferred in
order to minimize any outside bias. The principle is usually attributed to Jaynes [37, 32, 33].
In the context of random graphs, it is mainly used to define so-called null models [53]. One
fixes certain graph statistics to mimic those of an observed network and then chooses the
maximum-entropy distribution that meets these constraints. By comparing the original
network with a “typical graph” drawn from the null model, one can infer whether other
observed properties are correlated with the constraints. This method was made rigorous
by Park and Newman [46] building on earlier work in general statistics. Prescribing the
exact or expected number of edges leads to the Gn,m or Gn,p distributions, respectively. The
configuration model fixes the whole degree sequence [13], and in the soft configuration model
the degrees hold at least in expectation [8, 26].

Many early attempts to transfer the concept of null models to hypergraphs were only
indirect in that they studied hypergraphs via their clique-expansion [42] or as bipartite
graphs [48]. This is unsatisfactory since these projections alter relevant observables, like node
degrees or the number of triangles. Only recently, Chodrow generalized the configuration
model directly to multi-hypergraphs [16]. There also seems to be not much literature on

ESA 2020
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hypergraph models that can be cast into the maximum-entropy framework without being
intentionally designed as such. A notable early exception is the work by Schmidt-Pruzan and
Shamir [49]. They fixed the exact/expected edge sequence such that the largest edge has
cardinality O(logn) and showed a “double jump” phase transition in the size of the largest
connected component. Most of the recent literature on random hypergraphs concentrates on
the k-uniform model where every edge has exactly k vertices [34, 5, 6] or, equivalently, on
random binary matrices with k 1s per column [17]. In our model, we do not prescribe the
exact cardinalities of the edges and neither do we bound their maximum size, instead we
only require that the expected edge size is pn.

Probably closest to our work is a string of articles by Demetrovics et al. [20] as well as
Katona [35, 36]. They investigated random databases and connected the Rényi entropy of
order 2 of the logarithmic number of rows with the probability that certain unique column
combinations or functional dependencies hold. In contrast, we connect the Shannon entropy
of the logarithmic number of pairs of rows with the expected number of minimal difference
sets. Unique column combinations and functional dependencies are dual to the difference
sets of record pairs, one are the minimal hitting sets of the other [1, 9]. Also, the Shannon
entropy is the same as the Rényi entropy of order 1 [18]. In this sense, we complement the
result by Demetrovics et al. by showing that the duality also pertains to the order of entropy.

The analysis of random (hyper-)graphs naturally uses tools from combinatorics and
probability theory. Conversely, it has always helped to advance the fields by sharpening those
tools [7, 12, 31]. In this work, we improve the bounds of the Chernoff–Hoeffding theorem [30]
on the tail of the binomial distribution. We use an observation by Klar [38] on the relation
between the distribution function and the probability mass function. There were some refined
inequalities known before. By Cramér’s theorem [19], Chernoff–Hoeffding is asymptotically
tight up to subexponential factors. The gap was subsequently reduced to order O(

√
n),

cp. [3], we close it down to a constant. There also exist some comparatively tight bounds
based on the normal limit of the binomial distribution, contributions by Prokhorov [47] and
Slud [51] founded major lines of research. However, we avoid this approach since the normal
approximation cannot be expressed in terms of elementary functions. Also, it tends to place
unnecessary restrictions on the success probability p when deriving non-asymptotic results.

Outline. Next, we introduce the hypergraph model and state our results in full detail. We
review some notation in Section 3. Section 4 is dedicated to the Chernoff–Hoeffding theorem.
Section 5 adds further technical contributions, including the sharp threshold of minimal sets
at a certain cardinality. The main theorem is proven in Section 6. Section 7 discusses the
phase transition and concludes the work.

2 Model and Main Theorem

Fix a probability p and positive integers n and m. The random multi-hypergraph Bn,m,p is
defined by independently sampling m (not necessarily distinct) subsets of [n]. Each set is
generated by including a vertex v ∈ [n] with probability p independently of all other choices.

We quickly argue that this is indeed the maximum-entropy model. Besides the size of the
universe n and the number of edges m, the only other constraint is the expected edge size pn.
The independence bound on the entropy reads as follows: Let X1 to Xm be random variables
with joint distribution PX1,...,Xm

and marginal distributions PXj
. Then, their entropies

observe the inequality H(PX1,...,Xm) ≤
∑m
j=1 H(PXj ), equality holds if and only if the Xj

are independent, see [18]. This suggests that we should choose the edges independently if we
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Figure 1 Illustration of Theorem 1 showing the expected size of the minimization of a random
hypergraph depending on the number of edges m (a) and on α (b). As α grows logarithmically in
m, (b) shows the same plot as (a) but with both axes being logarithmic.

want to maximize the entropy and the same is true for the vertices inside an edge. Finally,
the fact that setting the sampling probability to be equal for all vertices indeed maximizes
the entropy under a given mean set size was proven by Harremoës [29].

We are interested in the expected number of inclusion-wise minimal sets in Bn,m,p, denoted
by E[ |min(Bn,m,p)| ]. We describe the asymptotic behavior of this expectation with respect
to n. In more detail, we view m = m(n) as a function of n assuming integer values and bound
the univariate asymptotics of E[ |min(Bn,m,p)| ] in n for different choices ofm. The probability
p is considered to be a constant throughout. We show that the size of the minimization can
be described precisely in terms of p and the Shannon entropy of the logarithm of m.

We let H(x) = H((x, 1− x)) denote the binary entropy function and define the quantity
α = log 1

(1−p)n
m = −(log1−pm)/n. The quantity α is well-defined for all 0 < p < 1 and

n, m ≥ 1. It is always non-negative and asymptotically of order Θ((logm)/n). If p and n
are fixed, choosing a value for α determines m since we can rewrite m as 1/(1− p)αn.

I Theorem 1. Let p be a probability, and n, m be two positive integers. If p = 0 or p = 1,
then |min(Bn,m,p)| = 1 holds deterministically. For 0 < p < 1, the following statements hold.
1. If m ≤ 1/(1− p)(1−p)n, then E[ |min(Bn,m,p)| ] = Θ(m).
2. For any two ε, ε′ > 0 and all m such that 1/(1− p)(1−p+ε)n ≤ m ≤ 1/(1− p)(1−ε′)n, i.e.,

all α such that 1− p+ ε ≤ α ≤ 1− ε′, we have

E[ |min(Bn,m,p)| ] = Θ
(

2(H(α)+(1−α) log2 p)n
/√

n
)

= Θ
((

p1−α

(1− α)1−α αα

)n/√
n

)
;

3. If m = 1/(1− p)n+ω(logn), then 1 ≤ E[ |min(Bn,m,p)| ] = 1 + o(1).

The bounds in the distinct cases are very different in nature. They are visualized in
Figure 1 showing the expectation both as a function of the number of trials m and of α. To
distinguish the behavior also in writing, we use the term linear regime if m is between 1
and 1/(1− p)(1−p)n, corresponding to 0 ≤ α ≤ 1− p, likewise, we refer to m being between
1/(1− p)(1−p)n and 1/(1− p)n, i.e., 1− p ≤ α ≤ 1, as the information-theoretic regime.

ESA 2020



21:6 The Minimization of Random Hypergraphs

All asymptotic estimates in Theorem 1 are at least tight up to constants, the third
statement is even tight up to lower-order terms. The constants hidden in the big-O-notation
are universal in the sense that they do not depend on m or n, and also not on α describing
the relation between the former two. However, they may depend on the probability p and,
in case of Statement 2, on the particular choices for ε and ε′. We note that the bounds for
the information-theoretic regime have two gaps at m = 1/(1− p)(1−p)n and m = 1/(1− p)n.
These gaps can be made arbitrarily small: Let c = 1/(1 − p), then Statement 2 holds if
m ≤ (c− γ)n for any constant γ > 0 and Statement 3 takes over at m ≥ (c+ δ(n))n, where
δ(n) is a function converging to 0 as n increases.

From the main theorem, we derive bounds on the maximum expectation over all m.

I Theorem 2. If p = 0 or p = 1, then maxm≥1 |min(Bn,m,p)| = 1. For 0 < p < 1, we have
maxm≥1 E[ |min(Bn,m,p)| ] = Θ((1 + p)n/

√
n), attained at m = 1/(1− p)

n
1+p .

3 Preliminaries and Notation

Multi-Hypergraphs. A hypergraph on [n] = {1, . . . , n} is a set of subsets H⊆P([n]), called
the (hyper-)edges. If H is a multiset instead, we have a multi-hypergraph. We do not allow
multiple copies of the same vertex in one edge. The minimization of a hypergraph H is the
collection of its inclusion-wise minimal edges, min(H) = {E ∈ H | ∀E′ ∈ H : E′ ⊆ E ⇒ E′ =
E}. We extend this notion to multi-hypergraphs by requiring that whenever a minimal edge
has multiple copies, only one of them is included in the minimization. This way min(H) is
always a mere hypergraph (a set). For a multi-hypergraph H, we use |H| to denote the total
number of edges counting multiplicities, and ‖H‖ for the number of distinct edges, i.e., the
cardinality of the support of H. Evidently, we have |min(H)| ≤ ‖H‖ ≤ |H|.

Information Theory. We intend the expressions 0 · loga 0 and 0 · loga( 0
0 ) to all mean 0 for

any positive real base a > 0. Note that this convention also implies 00 = a0 loga 0 = 1 and
( 0

0 )0 = 1. We use ldx for the binary (base-2) logarithm of x. The (binary) entropy function H
is defined for all probabilities x as H(x) = −x ldx−(1−x) ld(1−x). It describes the Shannon
entropy or, equivalently, the Rényi entropy of order 1, of the Bernoulli distribution with
parameter x. In the notation of the previous sections, H(x) = H((x, 1− x)). Evidently, the
entropy function is symmetric around 1/2 with H(x) = H(1− x). On the open unit interval,
H is positive and differentiable with derivative d

dx H(x) = ld
( 1−x

x

)
. This is the negative

(binary) logit function, also dubbed log-odds in statistics. H is strictly concave and has its
maximum at 1/2 with value H(1/2) = 1. The perplexity of x is 2H(x) = 1/(xx (1− x)1−x).
We utilize it to estimate binomial coefficients. The bounds are well-known in the literature [18].

I Lemma 3. Let n be a positive integer and 0 < x < 1 such that xn is an integer, then
2H(x)n/

√
8nx(1− x) ≤

(
n
xn

)
≤ 2H(x)n/

√
πnx(1− x).

Let (pi)i and (qi)i be two distributions on the same state space such that (pi)i is absolutely
continuous with respect to (qi)i, i.e., qi = 0 implies pi = 0 for all i. The (binary) Kullback–
Leibler divergence4 from (qi)i to (pi)i is given by D((pi)i ‖ (qi)i) = −

∑
i pi ld( qi

pi
). It is the

expected information loss when assuming that the distribution is (qi)i while the system
actually follows (pi)i. The divergence is a premetric in that it is non-negative and 0 iff the
distributions are the same. However, it is neither symmetric nor does it observe the triangle

4 The divergence is sometimes also called relative entropy, we avoid this term due to ambiguities, cf. [18].
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inequality. In this work, we only need the divergence between Bernoulli distributions. For
any two probabilities x, y, the divergence between two Bernoulli distributions with respective
parameters x and y is D(x ‖ y) = D((x, 1−x) ‖ (y, 1−y)) = −x ld

(
y
x

)
−(1−x) ld

(
1−y
1−x

)
. The

function D(x ‖ y) is convex in both x and y, attains its minimum 0 for x = y, and observes
D(x ‖ y) = D(1− x ‖ 1− y). We often use the derived quantity 2−D(x ‖ y) =

(
y
x

)x ( 1−y
1−x

)1−x
.

Polynomials of Probabilities.

I Lemma 4. Let n be a non-negative integer and x a probability, then it holds that
e−nx

(
1− nx2) ≤ (1− x)n ≤ e−nx.

I Lemma 5 (Lemma 10 in [4]). Let n be a non-negative integer and x a probability, then
nx/(1 + nx) ≤ 1− (1− x)n ≤ nx.

I Lemma 6. Consider a random experiment with outcomes A, B, and C, where P[B] > 0.
In a series of m i.i.d. trials, let Aj denote the event that the outcome of the j-th trial is A,
same with B. Then, we have P[∀j ≤ m : ¬Aj | ∃k ≤ m : Bk ] ≤ P[∀j ≤ m : ¬Aj | Bm ].

4 The Chernoff–Hoeffding Theorem

In this section, we tighten the Chernoff–Hoeffding theorem bounding the tail of the binomial
distribution. The result will later help us with the random hypergraphs, but more importantly
it provides a powerful tool of general interest in probability theory. Fix a positive integer
n and probabilities x and p. Recall that the Kullback–Leibler divergence between the
respective Bernoulli distributions is D(x ‖ p) = −x ld

(
p
x

)
− (1− x) ld

(
1−p
1−x

)
. The Chernoff–

Hoeffding theorem [30, 22] employs the divergence to bound the probability that a binomially
distributed random variable Y ∼ Bin(n, p) deviates from its expected value E[Y ] = pn. If

x ≤ p, then P[Y ≤ xn] ≤ 2−D(x ‖ p)n =
(
p
x

)xn ( 1−p
1−x

)(1−x)n
. Similarly, if p ≤ x, we have

P[Y ≥xn] ≤ 2−D(x ‖ p)n. Several weaker but more practical inequalities have been inferred
from this, summarized as Chernoff bounds [41, 21]. We sharpen these inequalities by a√
n-factor for all but the extreme values of x. While the upper bound of Chernoff–Hoeffding

holds for all probabilities x, there are some lower bounds known for P[Y ≤ xn] if the product
xn is an integer, c.f. the textbook by Ash [3, Lemma 4.7.2]. We use a proposition by Klar [38]
to improve the upper bound such that it matches the lower one up to constants. We then
extend both bounds to the general case of arbitrary products xn.

I Theorem 7. Let n be a positive integer, x and p two probabilities with 0 < p < 1, and
Y ∼ Bin(n, p) a binomial random variable.

1. If 1/n ≤ x < p, then (1−p)
√
x

2e
√

2 (1−x)
· 2−D(x ‖ p) n

√
n

≤ P[Y ≤ xn] ≤
√

1−x
(p−x)

√
πx
· 2−D(x ‖ p) n

√
n

.

2. If p < x ≤ 1− 1/n, then p
√

1−x
2e
√

2x ·
2−D(x ‖ p) n
√
n

≤ P[Y ≥ xn] ≤
√
x

(x−p)
√
π (1−x)

· 2−D(x ‖ p) n
√
n

.

Proof sketch. The second statement of the theorem is implied by the first one by applying
it to the complementary variable Y ∼ Bin(n, 1− p). Let x ≤ p be a probability. We mainly
confine ourselves here to the case that the product xn is integral and show that then we get

1√
8x(1−x)

· 2−D(x ‖ p) n
√
n

≤ P[Y ≤ xn] ≤ p
√

1−x
(p−x)

√
πx
· 2−D(x ‖ p) n

√
n

.
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21:8 The Minimization of Random Hypergraphs

Lemma 3 provides the following error bounds for the probability mass function of Y :
1/
√

8nx(1− x) ≤ P[Y = xn]/(2H(x)n · pxn(1 − p)(1−x)n) ≤ 1/
√
πnx(1− x). We further

have 2H(x)n · pxn(1 − p)(1−x)n = 2−D(x ‖ p)n. This proves the first part that P[Y ≤ xn] ≥
P[Y = xn] ≥ 2−D(x ‖ p)n/

√
8nx(1− x) holds.

A result by Klar [38, Proposition 1(c)] states that the ratio P[Y ≤ xn]/P[Y = xn] is at
most fn,xn(p) = p (1− xn

n+1 )/(p− xn
n+1 ). The partial discrete derivative of fn,xn with respect

to n, that is, ∆n(fn,xn)(p) = fn+1,x(n+1)(p)− fn,xn(p) can be shown to be positive whenever
x < p. Thus fn,xn(p) converges from below to p(1−x)/(p−x) as n increases. Combined with
the error bounds this is P[Y ≤ xn] ≤ p (1−x)

p−x ·
1√

πnx(1−x)
·2−D(x ‖ p)n = p

√
1−x

(p−x)
√
πx
· 2−D(x ‖ p) n

√
n

.
Transferring the improvements also to non-integral products xn is not straightforward. A

careful analysis of the monotonicity of the entropy function H as well as that of the divergence
D reveals that this transition weakens the upper bound only by a additional factor of 1/p
and the lower bound by x(1− p)/e, independently of n. J

We showed that for all values x strictly between 0 and p, the Chernoff–Hoeffding theorem
can be asymptotically improved to P[Y ≤ xn] = Θ(2−D(x ‖ p)n/

√
n). However, the constants

hidden in the big-O notation diverge at the boundaries. This caveat cannot be healed, there
is no way to extend the improvement also to x = 0 or p. Simply put, the original formulation
of the theorem is tight. First, pn is not only the mean but also the median of the binomial
distribution, whence P[Y ≤ pn] ≥ 1/2 is constant and not of order O(2−D(p ‖ p)n/

√
n) =

O(1/
√
n). Secondly, the initial bound P[Y ≤ 0] = (1− p)n = 2−D(0 ‖ p)n even is exact.

5 Distinct Sets and Minimality

We now return to the main topic of this work, which is determining the expected size
of the minimization min(Bn,m,p) of the maximum-entropy multi-hypergraph Bn,m,p. The
sampling probabilities p = 0 or p = 1 are trivial, we thus assume 0 < p < 1 in this work
unless explicitly stated otherwise. Every subset of [n] then has a non-vanishing chance to
be sampled. Such a set is minimal for Bn,m,p iff it is generated in one of the trials and no
proper subset ever occurs. Both of these aspects influence the chance of minimality, but
their impact varies depending on the cardinality of the set in question. The number of
vertices per edge is heavily concentrated around pn and the more vertices there are in an
edge, the less likely it is minimal. Intuitively, almost no sets with very low cardinalities are
sampled, but if so, they are often included in min(Bn,m,p). There are plenty of edges with a
medium number of vertices and there is a good chance they are minimal. Finally, sets of
very high cardinality rarely occur and usually they are then dominated by smaller ones. This
disparity is exacerbated by a large number of trials. Boosting m increases the probability
that also sets of cardinality a bit further away from pn are sampled, at the same time the
process generates more duplicates of sets that occurred before. More importantly though,
the likelihood of a larger set being minimal is even smaller with many trials. Eventually, the
last effect outweighs all others, creating a situation in which the only minimal edge is empty.

We start making this intuition rigorous by giving preliminary bounds on the number of
minimal edges as a first step towards the proof of Theorem 1. The results are binomial sums
of polynomials of probabilities, depending on which factors we choose, we get an upper or
a lower bound. The estimates are already tight up to constants but are rather unwieldy.
They will serve as the basis for our further analysis. Let Dn,p denote the maximum-entropy
distribution on the power set P([n]) provided that EX∼Dn,p [ |X| ] = pn, meaning each vertex
is included independently with probability p.
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I Lemma 8. Let 0 < p < 1 be a probability, n, m positive integers, and let Xj ∼ Dn,p
denote the outcome of the j-th independent trial. For any integer i with 0 ≤ i ≤ n,
define sn,p(i,m) = P[∃j ≤ m : Xj = [i] ] and wn,p(i,m) = P[∀j ≤ m : ¬(Xj ( [i]) ] to
be the respective probabilities5 that some trial produces the set [i] and no trial produces a
proper subset of [i]. Then, we have sn,p(i,m) = 1 − (1 − pi(1 − p)n−i)m and wn,p(i,m) =(

1− (1− p)n−i(1− pi)
)m

. Furthermore, the following statements hold.

1. E[ |min(Bn,m,p)| ] ≥
∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m).

2. E[ |min(Bn,m,p)| ] ≤
∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m− 1).

3. E[ |min(Bn,m,p)| ] ≤ 1 + 1
p

∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m).

Proof sketch. The formula for wn,p(i,m) = P[∀j ≤ m : ¬(Xj ( [i]) ] can be seen as follows.
The random set Xj ∼ Dn,p is a subset of [i] iff it does not contain an element of [n]\[i], which
happens with probability (1− p)n−i. Conditioned on being any subset, Xj is a proper subset
if it is missing at least one element of [i], having conditional probability 1− pi.

Regarding the main statements, a set S ⊆ [n] is in min(Bn,m,p) iff it is sampled in one of
the m trials and no proper subset is sampled. The probability for both events depends only on
the cardinality |S|: E[ |min(Bn,m,p)| ] =

∑
S⊆[n] P[∃k ≤ m : Xk = S∧∀j ≤ m : ¬(Xj ( S) ] =∑n

i=0
(
n
i

)
· P[∃k ≤ m : Xk = [i] ] · P[∀j ≤ m : ¬(Xj ( [i]) | ∃k ≤ m : Xk = [i] ]. Generating

any other set than [i] in a single trial has probability 1− pi(1− p)n−i, over the independent
trials we thus get sn,p(i,m) = P[∃j ≤ m : Xj = [i] ] = 1− (1− pi(1− p)n−i)m

The last factor P[∀j ≤ m : ¬(Xj ( [i]) | ∃k ≤ m : Xk = [i] ] in each term describes the
likelihood that the set [i] is minimal, conditioned on it being sampled at all. Conditioning
on at least one trial producing [i] itself only increases the chances of never sampling a proper
subset, which gives Statement 1. To prove Statement 2, we apply Lemma 6. Statement 3
follows from the ratio between wn,p(i,m) and wn,p(i,m − 1) being the probability that a
non-subset of [i] is sampled in a single trial. J

The part that all three bounds of Lemma 8 have in common describes the expected
number of distinct sets in Bn,m,p. Recall that we use ‖H‖ to denote the number of distinct
sets of some multi-hypergraph H. That means, we have E[‖Bn,m,p‖ ] =

∑n
i=0
(
n
i

)
sn,p(i,m).

We weighted the terms of this sum by wn,p(i,m) or wn,p(i,m−1), respectively. In the
following, we analyze the two parts separately, starting with the weighting factors wn,p. They
are of interest beyond their application to random multi-hypergraphs. Consider m trials
according to the maximum-entropy distribution Dn,p on subsets of [n] with expected set
size pn. The quantity wn,p(i,m) is, by definition, the probability that any fixed subset of
cardinality i survives as minimal after all trials. Equivalently, 1−wn,p(i,m) is the probability
of any proper subset being sampled. We prove next that the weighting factors are in fact
threshold functions falling abruptly from almost 1 to almost 0 as i increases from 0 to n, the
position of the transition depends on n, m, and p. Recall that α abbreviates −(log1−pm)/n.
Lemma 9 below establishes a sharp threshold at i∗ = n+ log1−pm = (1− α)n. Note that
i∗ is always at most n since log1−pm is non-positive. The definition ensures the equality
m = 1/(1− p)n−i∗ = 1/(1− p)αn. For increasing m, the threshold gets smaller relative to n.
Once m grows beyond 1/(1− p)n, i.e., α > 1, the quantity i∗ can no longer be interpreted as
a cardinality as it becomes negative. Later, in Lemma 12, we will see that m being this large
is in fact irrelevant for the minimization.

5 The notation sn,p refers the set being sampled; these probabilities are then weighted by the factors wn,p.
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I Lemma 9. Let 0 < p < 1 be a probability, and n, m positive integers, then wn,p(0,m) = 1,
and wn,p(n,m) = pnm. Now let i = i(n) with 0 < i < n be a function taking integer values.
1. We have exp(−m(1− p)n−i) · (1−m(1− p)2(n−i)) ≤ wn,p(i,m) ≤ exp(−m(1− p)n−i+1).
In particular, the following statements hold.6

2. If i = n+ log1−pm+ ω(1), then limn→∞ wn,p(i,m) = 0.
3. If i = n+ log1−pm− ω(1), then limn→∞ wn,p(i,m) = 1.
4. If i = n+ log1−pm±Θ(1), then wn,p(i,m) = Θ(1).

Proof. Suppose 0 < i < n, we estimate wn,p(i,m) using mainly Lemma 4. This yields
wn,p(i,m) = (1−(1−p)n−i(1−pi))m ≤ (1−(1−p)n−i(1−p))m ≤ exp

(
−m(1−p)n−i ·(1−p)

)
.

Since 1− p is constant, the limit behavior is entirely determined by the product m(1− p)n−i.
If i = n+ log1−pm+ ω(1), then m(1− p)n−i = m(1− p)n−n−(log1−p m)−ω(1) = (1− p)−ω(1)

diverges and thus the weighting factor wn,p(i,m) converges to 0. Conversely, from 1− pi ≤ 1
we get that wn,p(i,m) ≥ (1− (1− p)n−i)m ≥ exp

(
−m(1− p)n−i

)
· (1−m(1− p)2(n−i)). If

i = n+ log1−pm−ω(1), both m(1− p)n−i = (1− p)ω(1) and m(1− p)2(n−i) = (1− p)ω(1)/m

tend to 0, implying limn→∞ wn,p(i,m) = 1.
Finally, if the cardinality i is around the threshold i∗ = n+ log1−pm, the limit may not

exist. We show that wn,p(i,m) is still bounded away from 0. Suppose i = n+log1−pm±Θ(1);
in particular, the difference i∗ − i is bounded for all n. If m is constant w.r.t. n, so is
wn,p(i,m) ≥ (1 − (1 − p)n−i)m ≥ pm. Here, we used the assumption i < n. Finally, if m
diverges, then n− i = log1−pm∓Θ(1) = ω(1) diverges with it. Together with the fact that
m(1− p)n−i = (1− p)i∗−i holds by the definition of i∗, we get that wn,p(i,m) is bounded
since wn,p(i,m) ≥ exp

(
− (1− p)i∗−i

)
· (1− (1− p)(i∗−i)+(n−i)) = Ω(1). J

After we have shown the existence of a sharp threshold for the weighting factors, we now
treat the number of distinct sets ‖Bn,m,p‖ in the multi-hypergraph. This is a natural upper
bound for the size of the minimization. In turn, a trivial cap for the number of distinct sets
is the total number of sets |Bn,m,p| = m. When starting the sampling, many different sets
are generated and ‖Bn,m,p‖ is indeed close to m. As the number of trials increases though,
duplicates occur in the sample and the two quantities grow apart.

To discuss this in more detail, we introduce some notation. For a pair of integers `, u
with 0 ≤ ` ≤ u ≤ n, let ‖Bn,m,p(`, u)‖ denote the number of distinct sampled sets whose
cardinality is between ` and u, including. This is also at most as large as the total number
of samples in that range. It thus makes sense to expect an upper bound in terms of the
binomial distribution. We confirm this below and further prove that there is also a lower
bound of the same flavor.

I Lemma 10. Let 0 < p < 1 be a probability, n, m positive integers, and Y ∼ Bin(n, p)
a binomially distributed random variable with parameters n and p. Let `, u be integers
such that 0 ≤ ` ≤ u ≤ n and define p = max`≤i≤u {pi(1 − p)n−i }. Then, p is equal to
p`(1− p)n−` if p ≤ 1/2; otherwise, we have p = pu(1− p)n−u. Further, the expected number
of distinct sets in Bn,m,p with cardinality between ` and u observes m

1+mp · P[` ≤ Y ≤ u ] ≤
E[‖Bn,m,p(`, u)‖ ] ≤ m · P[` ≤ Y ≤ u ].

6 We understand ω(1) as the class of all non-negative unbounded functions of n. In particular, the classes
n+ log1−pm+ ω(1) and n+ log1−pm− ω(1) are disjoint.
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6 Proof of the Main Theorem

We prove the main results on the expected size of the minimization of the hypergraph Bn,m,p
in this section with the help of the tools above. The key observation is that the minimization
is dominated by the sets with cardinalities around the threshold i∗ = n+ log1−pm.

6.1 The Lower Bound
We prove the main results, Theorem 1, with the help of the tools above. The key observation
is that the minimization is dominated by the sets with cardinalities around the threshold
i∗ = n+ log1−pm of the weighting factors. We will see that the distinct edges make up a
constant fraction of Bn,m,p as long asm is at most 1/(1−p)(1−p)n. In turn, a constant fraction
of those distinct edges are indeed minimal. However, the linear growth of E[ |min(Bn,m,p)| ]
cannot be maintained for a larger sample size. We prove that once m is so large that the
threshold i∗ is below pn, the ratio of minimal edges decreases significantly. The minimization
then enters a regime governed by the entropy of α = −(log1−pm)/n.

The next lemma shows both lower bounds of Theorem 1 together. The information-
theoretic one is slightly more general than what was stated in Theorem 1.2 in that it pertains
to all m between 1/(1− p)(1−p)n and 1/(1− p)(1−ε′)n. Let H denote the entropy function.

I Lemma 11 (Theorem 1.1 and the lower bound of Theorem 1.2). Let 0 < p < 1. If
m ≤ 1/(1 − p)(1−p)n, then E[ |min(Bn,m,p)| ] = Θ(m). For any ε′ > 0 and m such that
1/(1 − p)(1−p)n ≤ m ≤ 1/(1 − p)(1−ε′)n, corresponding to 1 − p ≤ α ≤ 1 − ε′, we have
E[ |min(Bn,m,p)| ] = Ω

(
2(H(α)+(1−α) ld p)n /

√
n
)
.

Proof sketch. The sought expectation is at least as large as the number of distinct sets up to
some cardinality i that are minimal after m trials for arbitrary values of i. As an ansatz, we
choose this to be the threshold i∗ = n+log1−pm. Lemmas 8 and 10 together then imply that
E[ |min(Bn,m,p)| ] ≥ (m/(1 +mp)) · P[Y ≤ i∗] · wn,p(i∗,m). It can be shown via Lemma 10
that the denominator 1 +mp is at most 2 as long as m ≤ 1/(1− p)n. Lemma 9.1 shows that
there exists a universal constant δ > 0 (again for all m ≤ 1/(1− p)n) such that w(i∗,m) ≥ δ.

The bounds in the two regimes differ in the way the product m · P[Y ≤ i∗] is estimated.
If m ≤ 1/(1 − p)(1−p)n, then i∗ ≥ pn is at least as large as the median of Y , whence
m · P[Y ≤ i∗] ≥ m/2. This gives the lower bound in the linear regime. In the information-
theoretic regime, we use the rewrite m = 1/(1− p)αn. Suppose first that there are constants
ε, ε′ > 0 such that 1 − p + ε ≤ α ≤ 1 − ε′ holds. These are exactly the prerequisites of
Theorem 1.2. We apply the improved lower bound of the Chernoff–Hoeffding theorem,
Theorem 7.1. Let D denote the Kullback–Leibler divergence. There exists a positive constant
C > 0–independent of n and m but possibly dependent on p, ε, and ε′–such that

m · P[Y ≤ i∗] = m · P[Y ≤ (1− α)n] ≥ m · C 2−D(1−α ‖ p)n
√
n

= 1
(1− p)αn ·

C√
n

(
p

1− α

)(1−α)n(1− p
α

)αn
= C√

n
·
(

p1−α

(1− α)1−ααα

)n
.

The latter expression equals C ·2(H(α)+(1−α) ld p)n/
√
n. Finally, if m(1−p)(1−p)n converges to

1 from above, i.e., α↘ 1−p, then the result follows from a direct application of Lemma 3. J
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6.2 The Upper Bound
The upper bound draws from the same core observations as the lower one: the threshold
position of the weighting factors wn,p and the proportion of distinct sets in the sample.
First, we show that once m is more than a polynomial factor larger than 1/(1 − p)n, the
minimization essentially consists of a single edge, the empty set. Lemma 13 then proves our
claim that the information-theoretic lower bound is tight beyond the phase transition.

I Lemma 12 (Theorem 1.3). If m = 1/(1− p)n+ω(logn), then E[ |min(Bn,m,p)| ] = 1 + o(1).

I Lemma 13 (Upper bound of Theorem 1.2). Let 0 < p < 1 be a probability, ε, ε′ > 0 positive
reals, and n, m positive integers such that m is between 1/(1−p)(1−p+ε)n and 1/(1−p)(1−ε′)n,
i.e., 1− p+ ε ≤ α ≤ 1− ε′. Then, we have E[ |min(Bn,m,p)| ] = O

(
2(H(α)+(1−α) ld p)n/

√
n
)
.

Proof sketch. We get E[ |min(Bn,m,p)| ] ≤
∑n
i=0
(
n
i

)
(1− (1− pi(1− p)n−i)m) ·wn,p(i,m− 1)

from Lemma 8.2. The idea of this proof is to split the sum at the threshold i∗ = (1− α)n
and handle the two parts separately. Let Y ∼ Bin(n, p) be a binomial variable. Lemma 10
shows for the first part that

∑i∗

i=0
(
n
i

)
(1− (1−pi(1−p)n−i)m) ·wn,p(i,m−1) ≤ m ·P[Y ≤ i∗].

The new Chernoff–Hoeffding theorem (Theorem 7.1) gives a constant C ′ = C ′(p, ε, ε′) with

m · P[Y ≤ i∗] = m · P[Y ≤ (1− α)n] ≤ m · C ′ 2
−D(1−α ‖ p)n
√
n

= O
(

2(H(α)+(1−α) ld p)n
√
n

)
.

The lemma follows from the second part of the sum being at most a constant factor larger
than the first one. This is shown using the assumption α ≤ 1− ε′ and the weighting factors
wn,p(i,m) going doubly exponentially to 0 if i crosses the threshold i∗, see Lemma 9.1. J

7 Conclusion

We examined the expected number of minimal edges of the maximum-entropy multi-
hypergraph model with expected edge size pn. We discovered a phase transition with
respect to the total number of edges at m = 1/(1 − p)(1−p)n. Now that we have tight
upper and lower bounds in place, we can discuss the transition in full detail. For small
m, E[ |min(Bn,m,p)| ] is linear in m. Beyond that point, the minimization instead follows
2(H(α)+(1−α) ld p)n/

√
n with α = −(log1−pm)/n. In the information-theoretic regime the size

of the minimization is decoupled from the number of edges. It continues to grow initially,
but now sublinearly in m and only until m = 1/(1− p)

n
1+p . From there on, the size of the

minimization decays rapidly although the total number of trials increases. Once m exceeds
1/(1− p)n, the minimization collapses under the sheer likelihood of sampling the empty set.

We gain additional insights by contrasting the results in the two regimes (ignoring constant
factors here). The ratio between the two bounds at m = 1/(1− p)αn for any 0 ≤ α ≤ 1 is
((2(H(α) + (1−α) ld p)n)/

√
n)/m = (2−D(1−α ‖ p)n)/

√
n. This is exponentially small in n when

α lies strictly between 0 and 1 − p. Therefore, the information-theoretic lower bound of
Theorem 1.2 also pertains to the linear regime, but is unnecessarily loose there. If the number
of trials m is close to 1/(1− p)(1−p)n, the two bounds coincide, up to a factor of

√
n, since

the divergence vanishes at 1− α = p. This overlap is indicated in Figure 1b by dashed lines.
Finally, for α beyond 1− p the relative share of minimal edges becomes exponentially small.

The Chernoff–Hoeffding theorem played an integral role in verifying these results. We
tightened the tail bounds on the binomial distribution and provided explicit upper and
lower bounds on the constants involved. We are convinced that this sharpened tool can help
researchers in all of probability beyond the scope of this paper.
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There is more work needed for the upper and lower bounds in the information-theoretic
regime. Currently, α has to be bounded away from from 1 − p and 1 for the bounds to
be tight. For α ↘ 1 − p the lower bound goes to Ω(2(H(1−p)+p ld p)n/

√
n) = Ω(m/

√
n).

Here, we profit from the hidden constant not depending on α. In actuality though, the
minimization at m = 1/(1 − p)(1−p)n has size Θ(m), so the share of minimal edges in the
sample moves from order 1/

√
n to a constant. The speed of this shift depends on how fast

α = 1− p+ o(1) converges. The situation for α↗ 1 is different as in this parameter range
there is a huge disparity between the number of minimal edges |min(Bn,m,p)| and the number
of distinct edges ||Bn,m,p||. Thus, the expected size of the minimization is not completely
captured by the binomial distribution and additional tools are needed for tight estimates.
An immediate extension of our work would therefore be to pinpoint the exact behavior of
the minimization at the two transitions points. Another interesting question in light of the
original motivation of random databases is to allow different sample probabilities per vertex
as well as dependencies between the elements. To fit the maximum-entropy setting, this
would require the model to incorporate additional constraints.

References
1 Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. Data Profiling.

Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael, CA,
USA, 2018. doi:10.2200/S00878ED1V01Y201810DTM052.

2 Kartik Anand and Ginestra Bianconi. Entropy Measures for Networks: Toward an Information
Theory of Complex Topologies. Physical Review E, 80:045102, 2009. doi:10.1103/PhysRevE.
80.045102.

3 Robert B. Ash. Information Theory. Dover Books on Mathematics. Dover Publications,
Mineola, NY, USA, 1990. Reprint of the Interscience Publishers 1965 edition.

4 Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Black-box Complexity of Parallel
Search with Distributed Populations. In Proceedings of the 2015 Conference on Foundations
of Genetic Algorithms (FOGA), pages 3–15, 2015. doi:10.1145/2725494.2725504.

5 Michael Behrisch, Amin Coja-Oghlan, and Mihyun Kang. The Order of the Giant Component
of Random Hypergraphs. Random Structures and Algorithms, 36:149–184, 2010. doi:10.
1002/rsa.v36:2.

6 Michael Behrisch, Amin Coja-Oghlan, and Mihyun Kang. Local Limit Theorems for the Giant
Component of Random Hypergraphs. Combinatorics, Probability and Computing, 23:331––366,
2014. doi:10.1017/S0963548314000017.

7 Claude Berge. Hypergraphs - Combinatorics of Finite Sets, volume 45 of North-Holland
Mathematical Library. North-Holland, Amsterdam, Netherlands, 1989.

8 Ginestra Bianconi. The Entropy of Randomized Network Ensembles. Europhysics Letters,
81:28005, 2007. doi:10.1209/0295-5075/81/28005.

9 Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. The Parameterized Complexity
of Dependency Detection in Relational Databases. In Proceedings of the 11th International
Symposium on Parameterized and Exact Computation (IPEC), pages 6:1–6:13, 2016. doi:
10.4230/LIPIcs.IPEC.2016.6.

10 Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. Efficient Denial Constraint Discovery
with Hydra. Proceedings of the VLDB Endowment, 11:311–323, 2017. doi:10.14778/3157794.
3157800.

11 Thomas Bläsius, Tobias Friedrich, Julius Lischeid, Kitty Meeks, and Martin Schirneck. Effi-
ciently Enumerating Hitting Sets of Hypergraphs Arising in Data Profiling. In Proceedings of
the 21st Meeting on Algorithm Engineering and Experiments (ALENEX), pages 130–143, 2019.
doi:10.1137/1.9781611975499.11.

12 Béla Bollobás. Random Graphs. Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, UK, 2 edition, 2001. doi:10.1017/CBO9780511814068.

ESA 2020

https://doi.org/10.2200/S00878ED1V01Y201810DTM052
https://doi.org/10.1103/PhysRevE.80.045102
https://doi.org/10.1103/PhysRevE.80.045102
https://doi.org/10.1145/2725494.2725504
https://doi.org/10.1002/rsa.v36:2
https://doi.org/10.1002/rsa.v36:2
https://doi.org/10.1017/S0963548314000017
https://doi.org/10.1209/0295-5075/81/28005
https://doi.org/10.4230/LIPIcs.IPEC.2016.6
https://doi.org/10.4230/LIPIcs.IPEC.2016.6
https://doi.org/10.14778/3157794.3157800
https://doi.org/10.14778/3157794.3157800
https://doi.org/10.1137/1.9781611975499.11
https://doi.org/10.1017/CBO9780511814068


21:14 The Minimization of Random Hypergraphs

13 Béla Bollobás. A Probabilistic Proof of an Asymptotic Formula for the Number of
Labelled Regular Graphs. European Journal of Combinatorics, 1:311–316, 1980. doi:
10.1016/S0195-6698(80)80030-8.

14 Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the Square: On the Complexity
of Some Quadratic-time Solvable Problems. Electronic Notes in Theoretical Computer Science,
322:51–67, 2016. doi:10.1016/j.entcs.2016.03.005.

15 Aiden A. Bruen and Mario A. Forcinito. Cryptography, Information Theory, and Error-
Correction: A Handbook for the 21st Century. Wiley-Interscience, New York, NY, USA, 2004.
doi:10.1002/9781118033296.

16 Philip Samuel Chodrow. Configuration Models of Random Hypergraphs. ArXiv e-prints, 2019.
arXiv:1902.09302.

17 Colin Cooper, Alan M. Frieze, and Wesley Pegden. On the Rank of a Random Binary Matrix.
Electronic Journal of Combinatorics, 26:P4.12, 2019. doi:10.37236/8092.

18 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications and Signal Processing. Wiley-Interscience, New York, NY, USA, 2nd
edition, 2006.

19 Harald Cramér. Sur un nouveau théorème-limite de la théorie des probabilités. In Actualités
scientifiques et industrielles, volume 763, pages 5–23, 1938. Colloque consacré à la théorie des
probabilités. (On a New Limit Theorem in Probability.) In French.

20 J. Demetrovics, Gyula O. H. Katona, D. Miklos, O. Seleznjev, and B. Thalheim. Asymptotic
Properties of Keys and Functional Dependencies in Random Databases. Theoretical Computer
Science, 190:151–166, 1998. doi:10.1016/S0304-3975(97)00089-3.

21 Benajmin Doerr. Probabilistic Tools for the Analysis of Randomized Optimization Heuristics. In
Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary Computation, chapter 1.
Springer International, Basel, Switzerland, 2020. doi:10.1007/978-3-030-29414-4.

22 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, New York, NY, USA, 2009.

23 Paul Erdős and Alfréd Rényi. On Random Graphs I. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

24 Vincent Froese, René van Bevern, Rolf Niedermeier, and Manuel Sorge. Exploiting Hidden
Structure in Selecting Dimensions That Distinguish Vectors. Journal of Computer and System
Sciences, 82:521–535, 2016. doi:10.1016/j.jcss.2015.11.011.

25 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
First-Order Properties on Sparse Structures With Algorithmic Applications. Transactions on
Algorithms, 15:23:1–23:35, 2018. doi:10.1145/3196275.

26 Diego Garlaschelli and Maria I. Loffredo. Maximum Likelihood: Extracting Unbiased Informa-
tion from Complex Networks. Physical Review E, 78:015101, 2008. doi:10.1103/PhysRevE.
78.015101.

27 Edgar N. Gilbert. Random Graphs. Annals of Mathematical Statistics, 30:1141–1144, 1959.
doi:10.1214/aoms/1177706098.

28 Yves Grandvalet and Yoshua Bengio. Entropy Regularization. In Olivier Chapelle, Bernhard
Schölkopf, and Alexander Zien, editors, Semi-Supervised Learning, chapter 9. MIT Press,
Cambridge, MA, USA, 2006. doi:10.7551/mitpress/9780262033589.001.0001.

29 Peter Harremoës. Binomial and Poisson Distributions as Maximum Entropy Distributions.
Transactions on Information Theory, 47:2039–2041, 2001. doi:10.1109/18.930936.

30 Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal
of the American Statistical Association, 58:13–30, 1963.

31 Remco van der Hofstad. Random Graphs and Complex Networks, volume 1 of Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,
UK, 2016. doi:10.1017/9781316779422.

32 Edwin Thompson Jaynes. Information Theory and Statistical Mechanics. Phyical Review
Series II, 106:620–630, 1957. doi:10.1103/PhysRev.106.620.

33 Edwin Thompson Jaynes. Information Theory and Statistical Mechanics II. Phyical Review
Series II, 108:171–190, 1957. doi:10.1103/PhysRev.108.171.

https://doi.org/10.1016/S0195-6698(80)80030-8
https://doi.org/10.1016/S0195-6698(80)80030-8
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.1002/9781118033296
http://arxiv.org/abs/1902.09302
https://doi.org/10.37236/8092
https://doi.org/10.1016/S0304-3975(97)00089-3
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1016/j.jcss.2015.11.011
https://doi.org/10.1145/3196275
https://doi.org/10.1103/PhysRevE.78.015101
https://doi.org/10.1103/PhysRevE.78.015101
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.7551/mitpress/9780262033589.001.0001
https://doi.org/10.1109/18.930936
https://doi.org/10.1017/9781316779422
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171


T. Bläsius, T. Friedrich, and M. Schirneck 21:15

34 Michał Karoński and Tomasz Łuczak. The Phase Transition in a Random Hypergraph. Journal
of Computational and Applied Mathematics, 142:125–135, 2002. doi:10.1016/S0377-0427(01)
00464-2.

35 Gyula O. H. Katona. Random Databases with Correlated Data. In Antje Düsterhöft,
Meike Klettke, and Klaus-Dieter Schewe, editors, Conceptual Modelling and Its Theoretical
Foundations: Essays Dedicated to Bernhard Thalheim on the Occasion of His 60th Birthday,
pages 29–35. Springer, Berlin and Heidelberg, Germany, 2012. Festschrift. doi:10.1007/
978-3-642-28279-9_4.

36 Gyula O. H. Katona. Testing Functional Connection Between Two Random Variables. In
Albert N. Shiryaev, S. R. S. Varadhan, and Ernst L. Presman, editors, Prokhorov and
Contemporary Probability Theory, pages 335–348. Springer, Berlin and Heidelberg, Germany,
2013. Festschrift. doi:10.1007/978-3-642-33549-5_20.

37 Hiremagalur Krishnaswamy Kesavan. Jaynes’ Maximum Entropy Principle. In Christodoulos A.
Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization, pages 1779–1782.
Springer, Boston, MA, USA, 2009. doi:10.1007/978-0-387-74759-0_312.

38 Bernhard Klar. Bounds on Tail Probabilities of Discrete Distributions. Probability in the
Engineering and Informational Sciences, 14:161–171, 2000.

39 Elliott H. Lieb and Jakob Yngvason. The Physics and Mathematics of the Second Law of
Thermodynamics. Physics Reports, 310:1–96, 1999. doi:10.1016/S0370-1573(98)00082-9.

40 Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. Approximate Denial
Constraints. CoRR, abs/2005.08540, 2020. Arxiv preprint. To apprear in PVLDB 13. arXiv:
2005.08540.

41 Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press,
New York, NY, USA, 2nd edition, 2017.

42 Mark E. J. Newman. Scientific Collaboration Networks. I. Network Construction and Funda-
mental Results. Physical Review E, 64:016131, 2001. doi:10.1103/PhysRevE.64.016131.

43 Mark E. J. Newman. Networks: An Introduction. Oxford University Press, New York, NY,
USA, 2010. doi:10.1093/acprof:oso/9780199206650.001.0001.

44 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, Cambridge, UK, 2010. doi:10.1017/
CBO9780511976667.

45 Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph,
Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional Dependency Discovery:
An Experimental Evaluation of Seven Algorithms. Proceedings of the VLDB Endowment,
8:1082–1093, 2015. doi:10.14778/2794367.2794377.

46 Juyong Park and Mark E. J. Newman. The Statistical Mechanics of Networks. Physical
Review E, 70:066117, 2004. doi:10.1103/PhysRevE.70.066117.

47 Yuri Vasilyevich Prokhorov. Asymptotic Behavior of the Binomial Distribution. Uspekhi
Matematicheskikh Nauk, 8:135–142, 1953. In Russian.

48 Fabio Saracco, Riccardo Di Clemente, Andrea Gabrielli, and Tiziano Squartini. Randomizing
Bipartite Networks: The Case of the World Trade Web. Scientific Reports, 5:10595, 2015.
doi:10.1038/srep10595.

49 Jeanette Schmidt-Pruzan and Eli Shamir. Component Structure in the Evolution of Random
Hypergraphs. Combinatorica, 5:81–94, 1985. doi:10.1007/BF02579445.

50 Claude Elwood Shannon. A Mathematical Theory of Communication. The Bell System
Technical Journal, 27:379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.

51 Eric V. Slud. Distribution Inequalities for the Binomial Law. The Annals of Probability,
5:404–412, 1977. URL: https://projecteuclid.org/euclid.aop/1176995801.

52 Ryan Williams. A New Algorithm for Optimal 2-Constraint Satisfaction and Its Implications.
Theoretical Computer Science, 348:357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

53 Katharina Anna Zweig. Network Analysis Literacy: A Practical Approach to the Analysis
of Networks. Lecture Notes in Social Networks. Springer, Vienna, Austria, 2014. doi:
10.1007/978-3-7091-0741-6.

ESA 2020

https://doi.org/10.1016/S0377-0427(01)00464-2
https://doi.org/10.1016/S0377-0427(01)00464-2
https://doi.org/10.1007/978-3-642-28279-9_4
https://doi.org/10.1007/978-3-642-28279-9_4
https://doi.org/10.1007/978-3-642-33549-5_20
https://doi.org/10.1007/978-0-387-74759-0_312
https://doi.org/10.1016/S0370-1573(98)00082-9
http://arxiv.org/abs/2005.08540
http://arxiv.org/abs/2005.08540
https://doi.org/10.1103/PhysRevE.64.016131
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.14778/2794367.2794377
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1038/srep10595
https://doi.org/10.1007/BF02579445
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://projecteuclid.org/euclid.aop/1176995801
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1007/978-3-7091-0741-6
https://doi.org/10.1007/978-3-7091-0741-6

	Introduction
	Model and Main Theorem
	Preliminaries and Notation
	The Chernoff–Hoeffding Theorem
	Distinct Sets and Minimality
	Proof of the Main Theorem
	The Lower Bound
	The Upper Bound

	Conclusion

