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An unceasing problem of our prevailing society is the fair division of goods. The problem of proportional
cake cutting focuses on dividing a heterogeneous and divisible resource, the cake, among n players who
value pieces according to their own measure function. The goal is to assign each player a not necessarily
connected part of the cake that the player evaluates at least as much as her proportional share.

In this article, we investigate the problem of proportional division with unequal shares, where each player
is entitled to receive a predetermined portion of the cake. Our main contribution is threefold. First we present
a protocol for integer demands, which delivers a proportional solution in fewer queries than all known proto-
cols. By giving a matching lower bound, we then show that our protocol is asymptotically the fastest possible.
Finally, we turn to irrational demands and solve the proportional cake cutting problem by reducing it to the
same problem with integer demands only. All results remain valid in a highly general cake cutting model,
which can be of independent interest.
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1 INTRODUCTION

In cake cutting problems, the cake symbolizes a heterogeneous and divisible resource that shall
be distributed among n players. Each player has her own measure function, which determines
the value of any part of the cake for her. The aim of proportional cake cutting is to allocate each
player a piece that is worth at least as much as her proportional share, evaluated with her measure
function [35]. The measure functions are not known to the protocol.
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The efficiency of a fair division protocol can be measured by the number of queries. In the
standard Robertson-Webb model [30], two kinds of queries are allowed. The first one is the cut
query, in which a player is asked to mark the cake at a distance from a given starting point so that
the piece between these two is worth a given value to her. The second one is the eval query, in
which a player is asked to evaluate a given piece according to her measure function.

If shares are meant to be equal for all players, then the proportional share is defined as 1
n

of
the whole cake. In the unequal shares version of the problem (also called cake cutting with entitle-
ments), proportional share is defined as a player-specific demand, summing up to the value of the
cake over all players. The aim of this article is to determine the query complexity of proportional
cake cutting in the case of unequal shares. Robertson and Webb [30] write in their seminal book
“Nothing approaching general theory of optimal number of cuts for unequal shares division has
been given to date. This problem may prove to be very difficult.” Instead of the number of physical
cuts, we now settle the issue for the number of queries, which is the standard measure of efficiency
for cake cutting protocols.

1.1 Related Work

Equal shares. Possibly the most famous cake cutting protocol belongs to the class of Divide and
Conquer algorithms. Cut and Choose is a two-player equal-shares protocol that guarantees pro-
portional shares. It already appeared in the Old Testament, where Abraham divided Canaan into
two equally valuable parts and his nephew Lot chose for himself the one he valued more. The first
n-player variant of this protocol is attributed to Banach and Knaster [35] and it requires O

(
n2

)
cut and eval queries. Other methods include the continuous (but discretizable) Dubins-Spanier
protocol [15] and the Even-Paz protocol [18]. The latter authors show that their method requires
O (n logn) queries at most. The complexity of proportional cake cutting has been studied in a set-
ting where a circle instead of an interval represents the cake [3, 6], and also for higher dimensional
cakes, where cuts are tailored to fit the shape of the cake [4, 22, 23, 33].

Unequal shares. The problem of proportional cake cutting with unequal shares is first men-
tioned by Steinhaus [35]. Motivated by dividing a leftover cake, Robertson and Webb [30] de-
fine the problem formally and offer a range of solutions for two players. More precisely, they list
cloning players, using Ramsey partitions [27] and most importantly, the Cut Near-Halves proto-
col [30]. The last method computes a fair solution for two players with integer demands d1 and
d2 in 2�log2 (d1 + d2)� queries. Robertson and Webb also show how any two-player protocol can
be generalized to n players in a recursive manner. The number of physical cuts Cut Near-Halves
makes for two players can be beaten for certain demands, as Robertson and Webb [30] also note.
For some demands, Carney [10] and Lohr [25] design such protocols utilizing number-theoretic
approaches. Proportional allocation with unequal shares is also discussed in the context of indi-
visible items instead of a cake [1, 19].

Irrational demands. The case of irrational demands in the unequal shares case is interest-
ing from the theoretical point of view, but beyond this, solving it might be necessary, because
other protocols might generate instances with irrational demands. For example, in the maximum-
efficient envy-free allocation problem with two players and piecewise linear measure functions,
any optimal solution must be specified using irrational numbers, as Cohler et al. [12] show. Bar-
banel [2] studies the case of cutting the cake in an irrational ratio between n players and presents
a protocol that constructs a proportional division. Shishido and Zeng [34] solve the same problem
with the objective of minimizing the number of resulting pieces. Their protocol is simpler than
that of Barbanel [2].

Lower bounds. The drive toward establishing lower bounds on the complexity of cake cutting
protocols is coeval with the cake cutting literature itself [35]. For proportional cake cutting with
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equal shares, Even and Paz [18] conjectured that their protocol is the best possible, while Robert-
son and Webb explicitly write that “they would place their money against finding a substantial
improvement on then log2 n bound.” After approximately 20 years of no breakthrough in the topic,
Magdon-Ismail et al. [26] showed that any protocol must make Ω(n logn) comparisons—but this
was no bound on the number of queries. Essentially simultaneously, Woeginger and Sgall [36]
came up with the lower bound Ω(n logn) on the number of queries for the case where contiguous
pieces are allocated to each player. Not much later, this condition was dropped by Edmonds and
Pruhs [16] who completed the query complexity analysis of proportional cake cutting with equal
shares by presenting a lower bound of Ω(n logn). Brams et al. [7] study the minimum number of
physical cuts in the case of unequal shares and proved that n − 1 cuts might not suffice—in other
words, they show that in some instances, no proportional allocation exists with contiguous pieces.
Crew et al. [13] and Segal-Halevi [31] improve this lower bound and show that at least 2n − 2 cuts
may be necessary, and 3n − 4 cuts are always sufficient. However, no lower bound on the number
of queries has been known in the case of unequal shares.

Generalizations in higher dimensions. There are two sets of multiple-dimensional gener-
alizations of the proportional cake cutting problem. The first group focuses on the existence of a
proportional division, without any constructive proof. The existence can be shown easily using
Lyapunov’s theorem, as stated by Dubins and Spanier [15]. Berliant et al. [5] investigate the exis-
tence of envy-free divisions. Dall’Aglio [14] considers the case of equal shares and defines a dual
optimization problem that allows one to compute a proportional solution by minimizing convex
functions over a finite dimensional simplex. Complexity issues are not discussed in these papers;
in fact, queries are not even mentioned in them.

The second group of multiple-dimensional generalizations considers problems where certain
geometric parameters are imposed on the cake or the pieces (see Barbanel et al. [3], Beck [4],
Brams et al. [6], Hill [22], Iyer and Huhns [23], Segal-Halevi et al. [33]). Also, some of these have
special extra requirements on the output, such as contiguousness or envy-freeness. These works
demonstrate the interest in various problems in multi-dimensional cake cutting, for which we
define a very general framework.

1.2 Our Contribution

We provide formal definitions in Section 2 and present the query analysis of the fastest known
protocol for the n-player proportional cake cutting problem with total demand D ≥ n in Section 3.
Readers familiar with proportional cake cutting might consider skipping these two sections. In
Section 4, we focus on our protocol for the problem, which is our main contribution in this article.
The idea is that we recursively render the players in two batches so that these batches can simulate
two players who aim to cut the cake into two approximately equal halves. Our protocol requires
only 2 (n − 1) · �log2 D� queries. Other known protocols reach D · �log2 D� and n(n − 1) · �log2 D�
queries, thus ours is the fastest procedure that derives a proportional division for the n-player cake
cutting problem with unequal shares. Moreover, our protocol also works on a highly general cake
(introduced in Section 5), extending the traditional notion of the cake to any finite dimension.

We complement our positive result by showing a lower bound of Ω (n · logD) on the query
complexity of the problem in Section 6. Our proof generalizes, but does not rely on, the lower
bound proof given by Edmonds and Pruhs [16] for the problem of proportional division with equal
shares. Moreover, our lower bound remains valid in the generalized cake cutting and query model,
allowing a considerably more powerful notion of a query even on the usual, [0, 1] interval cake.

In Section 7, we turn to irrational demands and solve the proportional cake cutting problem by
reducing it to the same problem with integer demands only. By doing so, we provide a novel and
simple approach to the problem. Moreover, our method works in the generalized query model as
well.
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2 PRELIMINARIES

We begin with formally defining our input. Our setting includes a set of players of cardinality
n, denoted by {P1, P2, . . . , Pn }, and a heterogeneous and divisible good, which we refer to as the
cake and project to the unit interval [0, 1]. Each player Pi has a non-negative, absolutely contin-
uous measure function μi that is defined on Lebesgue-measurable sets. We remark that absolute
continuity implies that every zero-measure set has value 0 according to μi as well. In particular,
μi ((a,b)) = μi ([a,b]) for any interval [a,b] ⊆ [0, 1]. Besides measure functions, each player Pi has
a demand di ∈ Z+, representing that Pi is entitled to receive di/

∑n
j=1 dj ∈]0, 1[ part of the whole

cake. The value of the whole cake is identical for all players; in particular, it is the sum of all
demands:

∀1 ≤ i ≤ n μi ([0, 1]) = D =
n∑

j=1

dj .

We remark that an equivalent formulation is also used sometimes, where the demands are rational
numbers that sum up to 1, the value of the full cake. Such an input can be transformed into the
above form simply by multiplying all demands by the least common denominator of all demands.
As opposed to this, if demands are allowed to be irrational numbers, then no ratio-preserving
transformation might be able to transform them to integers. That is why the case of irrational
demands is treated separately.

The cake [0, 1] will be partitioned into subintervals in the form [x ,y), 0 ≤ x ≤ y ≤ 1. A finite
union of such subintervals forms a piece Xi allocated to player Pi . We would like to stress that a
piece is not necessarily connected.

Definition 2.1. A set {Xi }1≤i≤n of pieces is a division of the cake [0, 1] if
⋃

1≤i≤n Xi = [0, 1] and
Xi ∩ X j = ∅ for all i � j. We call division {Xi }1≤i≤n proportional if μi (Xi ) ≥ di for all 1 ≤ i ≤ n.

In words, proportionality means that each player receives a piece with which her demand is sat-
isfied. We do not consider Pareto optimality or alternative fairness notions such as envy-freeness
in this article.

We now turn to defining the measure of efficiency of a cake cutting protocol. We assume that
1 ≤ i ≤ n, x ,y ∈ [0, 1], and 0 ≤ α ≤ 1. Oddly enough, the Robertson-Webb query model was not
formalized explicitly by Robertson and Webb first, but by Woeginger and Sgall [36], who attribute
it to the earlier two. In their query model, a protocol can ask agents the following two types of
queries.

—Cut query (Pi ,α ) returns the leftmost point x so that μi ([0,x]) = α . In this operation, x
becomes a so-called cut point.

—Eval query (Pi ,x ) returns μi ([0,x]). Here, x must be a cut point.

Notice that this definition implies that choosing sides, sorting marks, or calculating any other
parameter than the value of a piece are not counted as queries and thus they do not influence the
efficiency of a protocol. Our protocols do not abuse the model by performing a large number of
such operations. We also remark that the “leftmost point” criterion in the cut query can be omitted
if the measure μi is not only absolutely continuous with respect to the Lebesgue measure, but it
is equivalent to it—meaning that the Lebesgue measure is also absolutely continuous with respect
to μi .

Definition 2.2. The number of queries in a protocol is the number of eval and cut queries until
termination. We denote the number of queries for an n-player protocol with total demand D by
T (n,D).
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The query definition of Woeginger and Sgall is the strictest of the type Robertson-Webb. We
now outline three options to extend the notion of a query, all of which have been used in earlier
papers [16, 18, 30, 36] and are also referred to as Robertson-Webb queries.

(1) The query definition of Edmonds and Pruhs. There is a slightly different and stronger
formalization of the core idea, given by Edmonds and Pruhs [16] and also used by Pro-
caccia [28, 29]. The crucial difference is that they allow both cut and eval queries to start
from an arbitrary point in the cake.
—Cut query (Pi ,x ,α ) returns the leftmost point y so that μi ([x ,y]) = α or an error mes-

sage if no such y exists.
—Eval query (Pi ,x ,y) returns μi ([x ,y]).

These queries can be simulated as trivial concatenations of the queries defined by Woeg-
inger and Sgall. To pin down the starting point x of a cut query (Pi ,x ,α ), we introduce the
cut point x with the help of a dummy player’s Lebesgue-measure, ask Pi to evaluate the
piece [0,x], and then we cut query with value α ′ = α + μi ([0,x]). Similarly, to generate an
eval query (Pi ,x ,y), one only needs to artificially generate the two cut points x and y and
then ask two eval queries of the Woeginger-Sgall model, (Pi ,x ) and (Pi ,y). We remark
that such a concatenation of Woeginger-Sgall queries reveals more information than the
single query in the model of Edmonds and Pruhs.

(2) Proportional cut query. The term proportional cut query stands for n-player Cut queries
of the sort “Pi cuts the piece [x ,y] in ratio a : b,” where a,b are integers. As Woeginger
and Sgall also note it, two eval queries and one cut query with ratio α = a

a+b
· μi ([x ,y])

are sufficient to execute such an operation if x ,y are cut points, otherwise five queries
suffice. Notice that the eval queries are only used by Pi when she calculates α , and their
output does not need to be revealed to any other player or even to the protocol.

(3) Reindexing. When working with recursive protocols, it is especially useful to be able to
reindex a piece [x ,y] so that it represents the interval [0, 1] for Pi . Any further cut and eval
query on [x ,y] can also be substituted by at most five queries on the whole cake. Similarly
as above, there is no need to reveal the result of the necessary eval queries addressed to a
player.

These workarounds ensure that protocols require asymptotically the same number of queries
in both model formulations, even if reindexing and proportional queries are allowed. We opted
for utilizing all three extensions of the Woeginger-Sgall query model in our upper bound proofs,
because the least restrictive model allows the clearest proofs. Regarding our lower bound proof, it
holds even if we allow a highly general query model including all of the above extensions, which
we define in Section 5.2.

3 KNOWN PROTOCOLS

To provide a base for comparison, we sketch the known protocols for proportional cake cutting
with unequal shares and bound their query complexity.

The most naive approach to the case of unequal shares is the cloning technique, where each
player Pi with demand di is substituted by di players with unit demands. In this way, a D-player
equal shares cake cutting problem is generated, which can be solved in O (D logD) queries [18].

As Robertson and Webb [30] point out, any two-player protocol can be generalized to an n-
player protocol. They list two, two-player protocols, Cut Near-Halves and the Ramsey Partition
Algorithm [27], and also remark that for two players, Cut Near-Halves is always at least as efficient
as the Ramsey Partition Algorithm. Therefore, we restrict ourselves to analyzing the complexity
of the n-player Cut Near-Halves protocol.
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Cut Near-Halves is a simple procedure, in which the cake of value D is repeatedly cut in ap-
proximately half by players P1 and P2 with demands d1 ≤ d2 as follows. P1 cuts the cake into two
near-halves, more precisely, in ratio � D

2  : �D
2 �. Then, P2 picks a piece that she values at least as

much as P1. This piece is awarded to P2 and her claim is reduced accordingly, by the respective
near-half value of the cake. In the next round, the same is repeated on the remaining part of the
cake, and so on, until d1 or d2 is reduced to zero. Notice that the cutter is always the player with
the smaller current demand, and thus this role might be swapped from round to round.

The recursive n-player protocol of Robertson and Webb runs as follows. We assume that k − 1 <
n players, P1, P2, . . . , Pk−1, have already divided the whole cake of value D = d1 + d2 + . . . + dn in
ratiod1 : d2 : . . . : dk−1. The next player Pk then challenges each of the firstk − 1 players separately

to redistribute the piece already assigned to them. In these rounds, Pk claims dk

d1+d2+...+dk−1
part of

each piece. This results in a division of the whole cake of value D in ratio d1 : d2 : . . . : dk . This
generates k − 1 rounds of the Cut Near-Halves protocol, each with two players. Notice that this
protocol tends to assign a highly fractured piece of cake to every player.

The following theorem summarizes the results known about the complexity of the two-player
and n-player versions of the Cut Near-Halves protocol.

Theorem 3.1 (Robertson and Webb [30]). The two-player Cut Near-Halves protocol with de-
mands d1,d2 requiresT (2) = 2�log2 (d1 + d2)� queries at most. The recursive n-player version is finite.

Here we give an estimate for the number of queries of the recursive protocol.

Theorem 3.2. The number of queries in the recursive n-player Cut Near-Halves protocol is at most

T (n,D) =
n−1∑
i=1

[
2i ·

⌈
log2

( i+1∑
j=1

dj

)⌉]
≤ n(n − 1) · �logD� .

Proof. The first round consists of players P1 and P2 sharing the cake using 2�log2 (d1 + d2)�
queries. The second round then has two, two-player runs, each of them requiring

2�log2 (d1 + d2 + d3)� queries. In general, the ith round terminates after i · 2�log2

(∑i+1
j=1 dj

)
�

queries at most. The number of rounds is n − 1. Now we add up the total number of queries.
n−1∑
i=1

[
2i ·

⌈
log2

( i+1∑
j=1

dj

)⌉]
≤

n−1∑
i=1

[
2i ·

⌈
log2

( n∑
j=1

dj

)⌉]
=

n−1∑
i=1

[
2i ·

⌈
log2 D

⌉]
= n(n − 1) · �logD� �

The following example proves that the calculated bound can indeed be reached asymptotically
in instances with an arbitrary number of players.

Example 3.3. The estimation for the query number in Theorem 3.2 is asymptotically sharp if⌈
log2

(∑i+1
j=1 dj

)⌉
=

⌈
log2 D

⌉
holds for at least a fixed portion of all 1 ≤ i ≤ n − 1, say, for the third

of them. This is easy to reach if n is a sufficiently large power of 2 and all but one player have
demand 1, while there is another player with demand 2. Notice that this holds for every order
for the agents. If one sticks to a decreasing order of demand when indexing the players, then not
only asymptotic, but also strict equality can be achieved by setting d1 much larger than all other
demands.

4 OUR PROTOCOL

In this section, we present a simple and elegant protocol that beats all three above mentioned
protocols (cloning, Ramsey partitions, Cut Near-Halves) in query number. Our main idea is that
we recursively render the players in two batches so that these batches can simulate two players
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Fig. 1. The steps performed by our protocol on Example 4.1. The colored thick intervals are the pieces already
allocated to the player in their label. The ratio players cut the current cake can be seen in the framed labels.

who aim to cut the cake into two approximately equal halves. For now, we work with the standard
cake and query model defined in Section 2. Later, in Section 5.3, we will show how our protocol
can be extended to a more general cake. We remind the reader that cutting near-halves means to
cut in ratio � D

2  : �D
2 �.

To ease the notation, we assume that the players are indexed so that when they mark the near-
half of the cake, the marks appear in an increasing order from 1 to n. In the subsequent rounds,
we reindex the players to keep this property intact. Based on these marks, we choose “the middle
player” Pj , this being the player whose demand reaches the near-half of the cake when summing
up the demands in the order of marks from left to right. This player cuts the cake and each player
is ordered to the piece her own mark falls to. The middle player Pj is cloned if necessary so that
she can play on both pieces. The protocol is then repeated on both generated subinstances, with
adjusted demands. In the subproblem, the players’ demands are according to the ratios listed in
the pseudocode. The base case of the recursion is a subproblem with one player only, in which
case she is allocated the piece.

Proportional division with unequal shares:

Each player marks the near-half of the cake X .
Sort the players according to their marks.
Calculate the smallest index j such that � D

2  ≤
∑j

i=1 di =: m.
Cut the cake in two along Pj ’s mark.
Define two instances of the same problem and solve them recursively.

(1) Players P1, P2, . . . , Pj share piece X1 on the left. Demands are set to
d1,d2 . . . ,dj−1,dj −m + � D

2 , while measure functions are set to μi ·
� D

2 /μi (X1), for all 1 ≤ i ≤ j.
(2) Players Pj , Pj+1, . . . , Pn share piece X2 = X \ X1 on the right. Demands

are set to m − � D
2 ,dj+1,dj+2, . . . ,dn , while measure functions are set to

μi · �D
2 �/μi (X2), for all j ≤ i ≤ n.

Example 4.1. We present our protocol on an example with n = 3. Every step of the protocol is
depicted in Figure 1 . Let d1 = 1,d2 = 3,d3 = 1.
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Row 1: Since D = 5 is odd, all players mark the near-half of the cake in ratio 2:3. The cake is
then cut at P2’s mark, since d1 < � D

2 , but d1 + d2 ≥ � D
2 .

Row 2: The first subinstance will consist of players P1 and P2, both with demand 1, whereas
the second subinstance will have the second copy of player P2 alongside P3 with de-
mands 2 and 1, respectively. In the first instance, both players mark half of the cake
and the one who marked it closer to 0 will receive the leftmost piece, while the other
player is allocated the remaining piece. The players in the second instance mark the
cake in ratio 1 : 2. Suppose that the player demanding more marks it closer to 0. The
leftmost piece is then allocated to her.

Row 3: The two players in the second subinstance play further: they share the remaining
piece in ratio 1 : 1. The player with the mark on the left will be allocated the piece on
the left, while the other players takes the remainder of the piece.

Row 4: The whole cake is divided proportionally.

These rounds require 3 + 2 + 2 + 2 = 9 proportional cut queries and no eval query.

Theorem 4.2. Our “Protocol for proportional division with unequal shares” terminates with a pro-
portional division.

Proof. We need to show that the base case with one player only in a generated subinstance
is indeed always reached in a finite number of rounds. Observe that each subinstance has strictly
less demand for its players together than its parent instance had. Since all demands are positive
integers, after sufficiently many instance divisions, the subinstances must reduce to the base case
instance.

We provide detailed calculations for the first subinstance only, because analogous calcula-
tions can easily be obtained for the second subinstance. First we observe that dj −m + �D/2 =
�D/2 −∑j−1

1 di is positive by the definition of j. Now we have to ensure that the subinstance is
generated in such a manner that all players evaluate the full cakeX1 of the first subinstance equally
and to the sum of all their demands. In the case of the first subinstance, the sum of demands is∑j

i=1 di −m + � D
2  = �

D
2 . This needs to be the measure of the cake X1 for all players. To achieve

this, μ1, μ2, . . . , μ j need to be adjusted. Each μi will become in this subinstance

μi1 = μi ·
� D

2 
μi (X1)

.

If Pi , 1 ≤ i < j, receives a piece of worth di according to μi1, then in the original instance, it is of
worth

di ·
μi (X1)

� D
2 
≥ di ,

because μi (X1) ≥ μ j (X1) = � D
2 , due to the cutting rule in our protocol. With this we have shown

that every player appearing only in the first subinstance is guaranteed to gain her proportional
share. An analogous proof works for players Pj+1, Pj+2, . . . , Pn . The last step is to show that Pj

collects her proportional share from the two subinstances.
The only player whose measure function certainly need not be adjusted is Pj . It is because

μ j (X1) = � D
2 , thus μ j1 = μ j ·

� D
2 

μ j (X1 ) = μ j . Therefore, if Pj receives her proportional share dj −m +
� D

2  and m − � D
2  in the two subinstances, then in the original instance her piece is worth dj at

least. �

Having shown its correctness, we now present our estimation for the number of queries our
protocol needs.
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Theorem 4.3. For any 2 ≤ n and n < D, the number of queries in our n-player protocol on a cake
of total value D is T (n,D) ≤ 2(n − 1) · �log2 D�.

Proof. If n = 2, then our protocol simulates the Cut Near-Halves protocol—except that it uses
cut queries exclusively—and according to Theorem 3.1 it requires 2�log2 D� queries at most. This
matches the formula stated in Theorem 4.3. From this we prove by induction. For n > 2, the fol-
lowing recursion formula corresponds to our rules.

T (n,D) = n + max
1≤i≤n

{
T (i, �D

2
) +T (n − i + 1, �D

2
�)

}

We now substitute our formula into the right side of this expression.

n + max
1≤i≤n

{
T (i, �D

2
) +T (n − i + 1, �D

2
�)

}
=

n + max
1≤i≤n

{
2(i − 1)�log2 �

D

2
� + 2(n − i )�log2 �

D

2
��

}
≤ (∗)

n + max
1≤i≤n

{
2(i − 1) (�log2 D� − 1) + 2(n − i ) (�log2 D� − 1)

}
=

n + 2(n − 1) (�log2 D� − 1) =

−n + 2 + 2(n − 1)�log2 D� ≤
2(n − 1) · �log2 D� = T (n,D).

The inequality marked by (∗) is trivially correct if D is even. For odd D, we rely on the fact that
log2 D cannot be an integer.

�log2 �
D

2
 � ≤ �log2 �

D

2
� � = �log2

D + 1

2
� = �log2 (D + 1) − log2 2� = �log2 (D + 1)� − 1 = �log2 D � − 1 �

With a query number of O (n logD), our protocol is more efficient than all known protocols. On
the other hand, our protocol is not truthful if players maximize their utility instead of just car-
ing about receiving their proportional share. Take the two-player equal shares case with nonzero
measure functions on any nonzero measure interval. If the player whose mark is at the left knows
the measure function of the other player, she can easily manipulate the outcome by marking the
half of the cake just before the mark of the other player. As a result, her piece will be larger than
what she receives if she reports the truth, unless their measure functions are special. This is not
a shortcoming of our protocol, but rather of the problem itself: none of the classic protocols are
strategyproof [8, 11, 24]; moreover, it is also known that no protocol producing a proportional
division can have this property [9].

We will now point out an essential difference in fairness when comparing to the fastest known
protocol before our result, then-player Cut Near-Halves. Our protocol treats players equally, while
the n-player Cut Near-Halves does not. Equal treatment of players is a clear advantage if one
considers the perception of fairness from the point of view of a player.

Remark 1. In the “Protocol for proportional division with unequal shares”

—each player answers the exact same queries as the other players in the same round and same
subinstance; and

—no player is asked to disclose the outcome of an eval query.

Proof. In any subinstance, our protocol asks each player to answer the same proportional cut
query, namely cutting the current cake to near-halves. Eval queries in these proportional queries
are only utilized as technical workarounds to determine the value of the piece that plays the cake
in the current subinstance. Their result is never revealed to any other player or even the protocol
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29:10 Á. Cseh and T. Fleiner

itself. The only outcome of the proportional cut query is a mark at the near-half of the current cake.
Moreover, there is no difference in the role of the players when queries are asked, and no player
is doomed to receive her exact share, like the cutter in Cut-and-Choose. If we consider Cut-Near-
Halves, being the cutter in the first round is the most undesired role, followed by being a cutter in
the second round, and so on. Our protocol forgoes this differentiation between the players, since
it addresses the same queries to each player in a round, and the cake will be cut at the mark of the
player whose demand happens to reach � D

2  when the demands are summed up in order of the
marks on the cake. �

The n-player Cut Near-Halves protocol fails to satisfy both of the above points. It addresses both
eval and cut queries to players and treats players differently based on which type of query they got.
In the two-player version of Cut Near-Halves, only one player marks the cake and the other player
uses an eval query to choose a side. This enables the second player to have a chance for a piece
strictly better than half of the cake, while the first player is only entitled for her exact proportional
share and has no chance to receive more than that. Besides this, the player who is asked to evaluate
a piece might easily speculate that she was offered the piece because the other player cut it off the
cake—and thus gain information about the measure function of the other player.

However, the remark is true for the Even-Paz protocol for proportional division with equal
shares, which can be utilized in our problem through the cloning technique. As mentioned in Sec-
tion 3, it needs O (D logD) proportional cut queries. The more efficient n-player Cut Near-Halves
protocol only needs O (n2 logD) queries, but it treats players differently. Our protocol adheres to
the equal treatment of players principle and beats both protocols in efficiency.

5 GENERALIZATIONS

In this section, we introduce a far generalization of cake cutting, where the cake is a measurable
set in arbitrary finite dimension and cuts are defined by a monotone function. At the end of the
section, we prove that even in the generalized setting, O (n logD) queries suffice to construct a
proportional division.

5.1 A General Cake Definition

Our players remain {P1, P2, . . . , Pn } with demands di ∈ Z+, but the cake is now a Lebesgue-
measurable subset X of Rk such that 0 < λ(X ) < ∞. Each player Pi has a non-negative, absolutely
continuous measure function μi defined on the Lebesgue-measurable subsets of X . An important
consequence of this property is that for everyZ ⊆ X , μi (Z ) = 0 if λ(Z ) = 0. The value of the whole
cake is identical for all players; in particular, it is the sum of all demands:

∀1 ≤ i ≤ n μi (X ) = D =
n∑

j=1

dj .

A measurable subset Y of the cake X is called a piece. The volume of a piece Y is the value λ(Y )
taken by the Lebesgue-measure on Y . The cake X will be partitioned into pieces X1, . . . ,Xn .

Definition 5.1. A set {Xi }1≤i≤n of pieces is a division of X if
⋃

1≤i≤n Xi = X and Xi ∩ X j = ∅
holds for all i � j. We call division {Xi }1≤i≤n proportional if μi (Xi ) ≥ di holds for all 1 ≤ i ≤ n.

We will show in Section 5.3 that a proportional division always exists.

5.2 A Stronger Query Definition

The more general cake clearly requires a more powerful query notion. Cut and eval queries are
defined on an arbitrary piece (i.e., measurable subset) I ⊆ X . Beyond this, each cut query specifies
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a value α ∈ R+ and a mapping f : [0, λ(I )]→ 2I (representing a moving knife) such that f (x ) ⊆
f (y) and λ( f (x )) = x holds for every 0 ≤ x ≤ y ≤ λ(I ). This function f (x ) is essentially identical
to the “knife function” from [32], except that we do not assume S-continuity, a notion defined
in [32]. Instead, we show that it is always possible to make a cut at α for any chosen 0 ≤ α ≤ μ (I ).

Lemma 5.2. If μ : 2I → R≥0 is an absolutely continuous measure defined on the Lebesgue-
measurable set I , and f : [0, λ(I )]→ 2I is a mapping with f (x ) ⊆ f (y) and λ( f (x )) = x for every
0 ≤ x ≤ y ≤ λ(I ), then for any α with 0 ≤ α ≤ μ (I ) there exists a t ∈ [0, 1] such that μ ( f (t )) = α .

Proof. Define X := {x : μ ( f (x )) ≤ α }, Y := {y : μ ( f (y)) ≥ α } and let L :=
⋃{ f (x ) : x ∈ X },

U :=
⋂{ f (y) : y ∈ Y }. Note that the union and intersection defining L and U , respectively, can

be taken as countable (e.g., by monotone sequences converging to supX and inf Y , respectively),
as f is monotone in x . Thus, L and U are measurable. Finally, A := U \ L. From X ∪ Y = [0, 1]
follows that supX = inf Y . Let t denote this common value. Due to the monotonicity of f ,

μ (L) = μ
����
∞⋃

n= � 1
t �

f
(
t − 1

n

)	

� = lim
n→∞

μ
(
f

(
t − 1

n

))
≤ α ,

and μ (U ) ≥ α follows similarly. As A ⊆ f (t + ε ) \ f (t − ε ), we know that λ(A) ≤ λ( f (t + ε )) −
λ( f (t − ε )) = 2ε holds for any ε > 0. Hence, λ(A) = 0 and by the absolute continuity of μ,
0 = μ (A) = μ (U ) − μ (L) follows. Consequently, α ≥ μ (L) = μ (U ) ≥ α , hence, μ ( f (t )) = α as we
claimed. �

Note that as μ ( f (x )) is a monotone function of x , Lemma 5.2 also implies that μ ( f (x )) is con-
tinuous in x . We now turn to defining the two queries in our generalized model.

—Eval query (Pi , I ) returns μi (I ).
—Cut query (Pi , I , f ,α ) returns the smallest x ≤ λ(I ) with μi ( f (x )) = α or an error message

if such an x does not exist.

As queries involve an arbitrary measurable subset I of X , our generalized queries automatically
cover the generalization of the previously discussed Edmonds-Pruhs queries, proportional queries,
and reindexing. If we restrict our attention to the usual unit interval cake [0, 1], generalized queries
open up a number of new possibilities for a query, as Example 5.3 shows.

Example 5.3. On the unit interval cake the following rules qualify as generalized queries.

—Evaluate an arbitrary measurable set.
—Cut a piece of value α surrounding a point x so that x is the midpoint of the cut piece.
—For disjoint finite sets A and B, cut a piece Z of value α such that Z contains the ε-

neighborhood of A and avoids the ε-neighborhood of B for a maximum ε .
—Determine x such that the union of intervals [0,x], [ 1

n
, 1

n
+ x], . . . , [ n−1

n
, n−1

n
+ x] is of

value α .

The new notions also allow us to define cuts on a cake in higher dimensions.

Example 5.4. Defined on the generalized cakeX ⊆ Rk , the following rules qualify as generalized
queries.

—Evaluate an arbitrary measurable set.
—Cut a piece of value α of piece I so that the cut is parallel to a given hyperplane.
—Multiple cut queries on the same piece I ⊂ R2: one player always cuts I along a horizontal

line, the other player cuts the same piece along a vertical line. The two players have different
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29:12 Á. Cseh and T. Fleiner

f (x ) functions in this example; the first one has a horizontal “knife” that is moved from top
to bottom (or the other way around), while the second player has a vertical “knife” that is
moved from left to right (or the other way around).

5.3 The Existence of a Proportional Division

Our protocol “Proportional division with unequal shares” in Section 4 extends to the above de-
scribed general setting and hence proves that a proportional division always exists.

Theorem 5.5. For any 2 ≤ n < D and for any function f : [0, λ(I )]→ 2I with f (x ) ⊆ f (y) and
λ( f (x )) = x for every 0 ≤ x ≤ y ≤ λ(I ), the number of generalized queries in our n-player protocol
on the generalized cake of total value D is T (n,D) ≤ 2(n − 1) · �log2 D�.

Proof. The proof of Theorem 3.1 carries over without essential changes, thus we only discuss
the differences here. First, we observe that proportional queries in ratio a : b can still be substi-
tuted by a constant number of eval and cut queries. In the generalized model, proportional query
(Pi , I , f ,a,b) returns x ≤ λ(I ) such that b · μi ( f (x )) = a · μi (I \ f (x )). Similarly as before, Pi first
measures I by a single eval query and then uses the cut query (Pi , I , f ,α ) with α = a

a+b
· μi (I ). In

the first round of our generalized protocol, all players are asked to cut the cake X in near-halves
using the same f function. Then Pj is calculated, just as in the simpler version, and we cut X into
the two near-halves according to Pj ’s f -cut and clone Pj if necessary. Due to the monotonicity of
f , this sorts each player to a piece she values at least as much as the full demand on all players
sorted to that piece. Subsequent rounds are played in the same manner.

The query number for n = 2 follows from the fact that each of the two players are asked a pro-
portional cut query in every round until recursively halving �D

2 � reaches 1, which means �log2 D�
queries in total. The recursion formula remains intact in the generalized model, and thus the query
number T (n,D) = 2(n − 1)�log2 D� too. �

We remark that the existence of a proportional division heavily relies on the fact that μi is
a measure, and that the monotone function f can be chosen uniformly for all agents. In other
papers for multidimensional cake cutting, these are not always assumed. For example, Segal-Halevi
et al. [33] study the problem of fair two-dimensional division wherein the allotted pieces must be of
some restricted two-dimensional geometric shapes, particularly squares and fat rectangles. Their
impossibility results do not contradict our Theorem 5.5, because their μi functions are not even
additive.

6 THE LOWER BOUND

In this section, we prove our lower bound on the number of queries any deterministic protocol
needs to make when solving the proportional cake cutting problem with unequal shares. This result
is valid in two relevant settings: (1) on the [0, 1] cake with Robertson-Webb or with generalized
queries and (2) on the general cake and queries introduced in Section 5.

The lower bound proof is presented in two steps. In Section 6.1, we define a single-player cake
cutting problem where the goal is to identify a piece of small volume and positive value for the sole
player. For this problem, we design an adversary strategy and specify the minimum volume of the
identified piece as a function of the number of queries asked. In Section 6.2, we turn to the problem
of proportional cake cutting with unequal shares. We show that in order to allocate each player
a piece of positive value, at least Ω(n logD) queries must be addressed to the players—otherwise
the allocated pieces overlap.
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Fig. 2. The crumble partition after two queries in Example 6.1. The first and third pictures illustrate the two
queries, while the second and fourth pictures illustrate the generated crumbles.

6.1 The Single-Player Problem

We define our single-player problem on a generalized cake of valueD, a player P , and her unknown
measure function μ. The aim is to identify a piece of positive value according to μ by asking queries
from P . The answers to these queries come from an adversary strategy we design. We would like
to point out that the single-player thin-rich game of Edmonds and Pruhs [16] defined on the unit
interval cake has a different goal. There, the player needs to receive a piece that has value not less
than 1 and width at most 2. Moreover, their proof for then-player problem is restricted to instances
with n = 2 · 3�, � ∈ Z+, whereas ours is valid for any n ∈ Z+.

In our single-player problem, a set of queries reveals information on the value of some pieces
of the cake. Each generalized eval query (P , I ) partitions the cake into two pieces; I and X \ I . An
executed cut query (P , I , f ,α ) with output x partitions the cake into three; f (x ), I \ f (x ) andX \ I .
To each step of a protocol, we define the currently smallest building blocks of the cake, which we
call crumbles. Two points of X belong to the same crumble if and only if they are in the same
partition in all queries asked so far. At start, the only crumble is the cake itself and every new
query can break an existing crumble into more crumbles. More precisely, q queries can generate
3q crumbles at most. Crumbles at any stage of the protocol partition the entire cake. The exact
value of a crumble is not necessarily known to the protocol and no real subset of a crumble can
have a revealed value. As a matter of fact, the exact same information is known about the value of
any subset of a crumble.

Example 6.1. In Figure 2 , we illustrate an example for crumbles on the unit interval cake after
two queries.

Row 1: The upper picture depicts a cut query defined on the thick green interval I . It gen-
erates a piece of value α so that it contains the ε-neighborhood of points A1,A2,A3

for maximum ε . This piece is marked by the two red intervals within the thick green
region in the figure.

Row 2: The cut query generates three crumbles: the two red intervals formC1, the remainder
of the thick green I is C2, while X \ I , the black segments outside of the thick green
interval, form C3. Each crumble is colored and also labeled in the second picture.

Row 3: The second query evaluates the thick blue piece I in the third picture.
Row 4: The second query cuts the existing crumbles into six crumbles in total, as depicted

in the bottom picture. These six crumbles are generated from the intersecting and
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non-intersecting parts of the previous three crumbles with the thick blue I set of the
second query. The first index in a crumble label indicates the previous crumble it
belonged to.

We now proceed to construct an adversary strategy that bounds the volume of any crumble C
with μ (C ) > 0. Our adversary can actually reveal more information than asked; we allow her to
disclose the value of each crumble in the cake. When a query is asked, the answer is determined
based on the parameters of the query and the current set of crumbles, which we denote by C.
Together with the answer to the query, the adversary also specifies the new set of crumbles Cnew

together with μ (Cnew ) for eachCnew ∈ Cnew . In the next query, this Cnew will serve as the current
set of crumblesC. The adversary answers the queries in accordance with the following rules, which
are also stated in a pseudocode “Adversary strategy” below.

—eval query (C, I )
This query changes the structure of the crumble set C in such a way that each crumble
C ∈ C is split into exactly two new crumblesC ∩ I andC \ I , either of which might be empty
(lines 1 and 2). If the part inside the crumble is at least as large as the other part, then the
adversary assigns the full value of C to C ∩ I (lines 3–5). Otherwise, the outer part C \ I
will get the entire value (lines 6–8). The answer to the eval query is the total value of new
crumbles that lie in I (line 11).

—cut query (C, I , f ,α )
Each cut query is executed in two rounds. In the first round (lines 12–22), we define new
crumbles C \ I (line 13) and intermediate crumbles C ∩ I (line 14) for all crumbles C ∈ C. If
λ(C ∩ I ) ≥ 2/3 · λ(C ), thenC ∩ I inherits the entire value ofC (lines 15–17), otherwiseC \ I
carries all the value of C (lines 18–20). The new crumbles C \ I are set aside until the next
query arrives, while the intermediate crumbles C ∩ I will be the crumbles of the second
round (lines 23–45).
If the total value of these intermediate crumbles is less than α , then an error message is
returned indicating that I is not large enough to be cut off a piece of value α (lines 23 and
24). Otherwise, for each intermediate crumble Cint

i , we define the value xi for which f (xi )
halvesCint

i in volume (lines 26–28). Such an xi value must exist, due to Lemma 5.2. We then
reorder the indices of intermediate crumbles according to these xi values (line 29). Now we
find the index k for which

∑k−1
i=1 μ (Cint

i ) < α ≤ ∑k
i=1 μ (Cint

i ).

The set of new crumbles will now be completed by adding sets
{
Cint

i ∩ f (xk )
}

and{
Cint

i \ f (xk )
}

to it (lines 31 and 32). The value of these new crumbles is specified depend-

ing on the index i of Cint
i . If i < k , then the crumble in f (xk ) inherits the full value of the

intermediate crumble (lines 34–36). If i > k , then the crumble outside of f (xk ) inherits the
value of the intermediate crumble (lines 37–39). Finally, for i = k , the crumble inside f (xk )
receives all of α that has not been assigned to new crumbles inside f (xk ) with a smaller in-
dex (line 41). After this, the crumble outside of f (xk ) gets the remainder of μ (Cint

k
) (line 42).

At last, the protocol returns x = xk (line 44).

Once all queries have been answered according to the above rules, the player is allocated a
piece Z ⊆ X . The adversary specifies μ (Z ) as the total value of those crumbles that are subsets
of Z .

Having described and demonstrated our adversary strategy, we now turn to proving our key
lemma on the volume of pieces that carry a positive value.

Lemma 6.2. After q queries in the single-player problem, the volume of any piece with positive

value is at least D
3q .
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ALGORITHM 1: Adversary strategy

Eval qery (C, I )
Initialize Cnew = C

1 for ∀C ∈ C do

2 Cnew ← Cnew ∪ {C ∩ I } ∪
{C \ I }

3 if λ(C ∩ I ) ≥ 1
2λ(C ) then

4 μ (C ∩ I ) ← μ (C )

5 μ (C \ I ) ← 0

6 else

7 μ (C ∩ I ) ← 0

8 μ (C \ I ) ← μ (C )

9 end

10 end

11 return
∑

Cnew ∈Cnew ,Cnew ⊆I μ (Cnew )

Cut qery (C, I , f ,α )
Initialize Cnew = C, Cint = ∅

12 for ∀C ∈ C do

13 Cnew ← Cnew ∪ {C \ I }
14 Cint ← Cint ∪ {C ∩ I }
15 if λ(C ∩ I ) ≥ 2

3λ(C ) then

16 μ (C ∩ I ) ← μ (C )

17 μ (C \ I ) ← 0

18 else

19 μ (C ∩ I ) ← 0

20 μ (C \ I ) ← μ (C )

21 end

22 end

23 if
∑

C int ∈Cint μ (Cint ) < α then

24 return error

25 else

26 for ∀Cint
i ∈ Cint do

27 find xi ∈ R so that λ(Cint ∩ f (xi )) = 1
2λ(Cint

i )

28 end

29 reorder [i] in Cint
i so that x1 ≤ x2 ≤ . . .

30 find k ∈ Z so that
∑k−1

i=1 μ (Cint
i ) < α ≤ ∑k

i=1 μ (Cint
i )

31 for ∀Cint
i ∈ Cint do

32 Cnew ← Cnew ∪
{
Cint

i ∩ f (xk )
}
∪
{
Cint

i \ f (xk )
}

33 end

34 if i < k then

35 μ (Cint
i ∩ f (xk )) ← μ (Cint

i )

36 μ (Cint
i \ f (xk )) ← 0

37 else if i > k then

38 μ (Cint
i ∩ f (xk )) ← 0

39 μ (Cint
i \ f (xk )) ← μ (Cint

i )

40 else

41 μ (Cint
k
∩ f (xk )) ← α −∑k−1

i=1 μ (Cint
i )

42 μ (Cint
k
\ f (xk )) ← μ (Cint

k
) +

∑k−1
i=1 μ (Cint

i ) − α
43 end

44 return xk

45 end

Proof. Due to the last rule on μ (Z ) of the adversary strategy, the volume of any piece with
positive value is bounded from below by the volume of any crumble with positive value. We will
now argue that eval and cut queries assign positive value to crumbles whose volume is at least a
third of the volume of the previous crumble.

At the very beginning of the protocol, for q = 0, the only crumble is X itself, with volume D
30 .

Eval queries assign positive value to crumbles that are at least as large as half of the previous
crumble they belonged to prior to the query. If a new crumble with positive value was created in
the first round of a cut query, then its volume was at least one-third of a previous crumble (lines 13
and 20). Otherwise, the new crumble with positive value was an intermediate crumbleCint

i in the
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second round. The first round of our protocol assigns positive value to an intermediate crumble
only if it was at least two-thirds of the old crumble in the input of the cut query (lines 14 and 15).
This round will now cutCint

i into two new crumbles (line 32). If i � k , then the larger of these will
inherit the value of the intermediate crumble (lines 35 and 39). Otherwise, if i = k , thenCint

i is cut
into exact halves (lines 41 and 42). All in all, new crumbles that are assigned a positive value in
the second round are of volume at least half of two-thirds of the volume of the original crumble
in the input of the query. �

6.2 The n-Player Problem

We now place our single-player problem into the framework of the original problem. The instance
we construct has c1n players whose demand sums up to c2n, where c1 ≤ c2 are arbitrary constants
between 0 and 1. We call these players humble, because their total demand is modest compared to
the number of them. The remaining (1 − c1)n players share a piece of worthD − c2n. These players
are greedy, because their total demand is large. The simplest such instance is where n − 1 humble
players have demand 1, and the only greedy player has demand D − (n − 1). We fix the measure
function of every greedy player to be the Lebesgue-measure, and so the value of the cake equals
the volume of it. This enforces humble players to share a piece of volume c2n among themselves.
Lemma 6.2 guarantees that after qi queries addressed to the humble player Pi , the volume of any
piece carrying positive value for Pi is at least D

3qi
. We now sum up the volume of the pieces allocated

to humble players in any proportional division.

c1n∑
i=1

D

3qi
≤ c2n

We divide both sides by c1nD.

1

c1n

c1n∑
i=1

3−qi ≤ c2

c1D

For the left side of this inequality, we use the well known inequality for the arithmetic and geo-
metric means of non-negative numbers.

c1n

√
3−

∑c1n

i1
qi ≤ c2

c1D

Taking the logarithm of both sides leads to the following:

1

c1n
���−

c1n∑
i1

qi
	
� ≤ log3

c2

c1
− log3 D.

With this, we have arrived at a lower bound on the number of queries.

c1n∑
i1

qi ≥ c1n

(
log3 D + log3

c1

c2

)
∼ Ω(n log3 D)

This proves that one needs Ω(n logD) queries to derive a proportional division for the humble
players in the instance. Moreover, if c1 and c2 are known, a more accurate bound can be determined
using our formula c1n

(
log3 D − log3 c2 + log3 c1

)
. This suggests that the problem becomes harder

to solve if the c1n humble players vastly outnumber the greedy players. In the c1n = n − 1 case we
mentioned earlier, the query number is at least (n − 1) log3 D.

We can now conclude our theorem on the lower bound.
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Theorem 6.3. To construct a proportional division in an n-player unequal shares cake cutting
problem with demands summing up to D one needs Ω(n logD) queries.

This bound asymptotically matches the complexity of our “Protocol for proportional division
with unequal shares.” As we described in Section 2, there are various notions widely accepted as
Robertson-Webb queries, and thus, an analysis on the exact number of queries exclusively depends
on the allowances one makes on the query model.

7 IRRATIONAL DEMANDS

In this section, we consider the case when some demands are irrational numbers. Apart from this,
our setting is exactly the same as before. The termination of our protocol in Section 4 is guaranteed
by the fact that each generated subinstance has integer demands that sum up to the initial D for all
subinstances of the same round. After sufficiently many instance divisions, the subinstances must
reduce to base case instances, for no demand can go below 1, the smallest integer. Such a lower
bound would not exist if the protocol is started with irrational demands.

Even though two direct protocols have been presented for the problem of proportional cake
cutting with irrational demands [2, 34], we feel that our protocol sheds new light on the topic.

The complexity of all known protocols for irrational shares, including ours, falls into the same
category: finite but unbounded. Another common feature of all three protocols is that they utilize
disagreement between agents; more precisely, a piece of the cake that is evaluated differently by
two players. Barbanel [2] assumes that the measures are not identical for all players, and that
we are given a witness of the disagreement of some two measures in the input. After solving the
two-player case, the recursive method for n players is referred to, in which the nth player shares
each of the n − 1 pieces the other players have already obtained. Shishido and Zeng [34] present a
protocol that is claimed to be simpler than the one of Barbanel [2], and it forgoes the assumption
on a disagreement given in the input—instead, they produce one. First they present a two-player
protocol, in which P2 marks the cake at her proportional share, and if P1 agrees, then the cake is
cut, otherwise a disagreement is found. The authors then refer to the usual recursive method to the
case of n players. The two-player case with disagreement—given or calculated—is solved similarly
in both papers. Let μ2 (X ) − μ1 (X ) > 0 on some piece X for which μ2 (X ) = d1. It is shown that P2

is able to mark a large number of overlapping intervals on the cake that are all worth d1 for her,
so that at least one out of these is evaluated by P1 to d1 at least.

These procedures are cumbersome compared to our protocol, which in each round either re-
duces the problem to one with rational demands or decreases the number of players. Moreover,
our method works on our generalized cake and query model.

Our way of utilizing disagreement is as follows. Let us choose an arbitrary piece A ⊆ X such
that μi (A) > 0 for all players Pi . If the players share A and X \A in two separate instances, both
in their original ratio d1 : d2 : . . . : dn , then the two proportional divisions will give a proportional
d1 : d2 : . . . : dn division of X itself. Assume now that μi (A) < μ j (A) for some players Pi and Pj ,
and some piece A ⊆ X . When generating the two subinstances on A and X \A, we reduce di on A
to 0 and increase it in return on X \A and swap the roles for dj , increasing it on A and decreasing
it on X \A. The first generated instance thus has n − 1 players with irrational demands, while the
second instance has n players with irrational demands. We will show in Lemma 7.2 that if we set
the right new demands in these instances, the two proportional divisions deliver a proportional
division of X . The key point we prove in Lemma 7.3, which states that the demands in the second
subinstance sum up to slightly below all players’ evaluation of X \A. Redistributing the slack as
extra demand among players gives us the chance to round the demands up to rational numbers in
the second subinstance and keep proportionality in the original instance. Iteratively breaking up
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the instances into an instance with fewer players and an instance with rational demands leads to
a set of instances with rational demands only.

We now describe our protocol in detail. Without loss of generality, we can assume that d1 ≤
d2 ≤ . . . ≤ dn . As a first step, P1 answers the cut query with x = d1 and I = X . We denote the piece
in f (d1) byA and ask all players to evaluateA. Let Pj be one of the players whose evaluation is the
highest. Notice that μ j (A) ≥ d1, because μ1 (A) = d1. We distinguish two cases from here, which
are also summarized in the framed description below.

(1) If μ j (A) = d1, then μi (A) ≤ d1 for all players. We allocate A to P1 and continue with an
instance I1 with n − 1 players having the same demands as before. The measure functions
need to be normalized to D−d1

D−μi (A) · μi for all i � 1 so that all players of I1 evaluate X \A
to D − d1.

(2) Otherwise, μ j (A) = d1 + ε , where ε > 0. We generate instances I2a and I2b .
(a) In the first instanceI2a , the cake isA, P1’s demand is 0, Pj ’s demand isdj + d1, while all

other players keep their original di demand. In order to make all players evaluate the
full cake to the sum of their demands D, measure functions are modified to D

μi (A) · μi .

(b) In the second instance I2b , the cake is X \A, P1’s demand is d1 +
d2

1
D−d1

, Pj ’s demand is

dj − d1 (d1+ε )
D−(d1+ε ) , while the original di demands are kept for all other players. In order to

make all players evaluate the full cake to D, we set D
D−μi (A) · μi .

Proportional division with irrational demands:

P1 marks d1 → A. All players evaluate A. Pj has the highest evaluation.

If μ j (A) = d1, then allocate A to P1 and
continue with n − 1 players on I1.

Otherwise, μ j (A) = d1 + ε . Define two
instances I2a and I2b . While I2a has n − 1
players, demands in I2b sum up to below
D and thus can be rationalized.

I1 I2a I2b

cake X \A A X \A
d1 0 0 d1 +

d2
1

D−d1

dj dj dj + d1 dj − d1 (d1+ε )
D−(d1+ε )

di di di di

μi
D−d1

D−μi (A) μi
D

μi (A) μi
D

D−μi (A) μi

The upcoming three lemmas justify our instance transformations to I1, I2a , and I2b .

Lemma 7.1. A proportional division in I1 extends to a proportional division in the original problem
once P1’s allocated piece A is added to it.

Proof. Clearly P1 is satisfied with A, since μ1 (A) = d1. In any proportional division in I1, every

player Pi , i � 1 is guaranteed to receive a piece that is worth at least D−μi (A)
D−d1

· di ≥ di for her in
the original instance. �

Lemma 7.2. If each player receives her demanded share in I2a and I2b , then the union of these
pieces gives a proportional division in the original problem.

Proof. We calculate the share of each player for the case when each player receives a piece
satisfying her demand in I2a and I2b .

• d1: 0 + (d1 +
d2

1
D−d1

) · D−d1
D
= d1

• dj : (dj + d1) · d1+ε
D
+ (dj − d1 ·(d1+ε )

D−(d1+ε ) ) · D−(d1+ε )
D

= dj

• di , i � {1, j}: di · d1+ε
D
+ di · D−(d1+ε )

D
= di �
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Lemma 7.3. By slightly increasing all demands, I2b can be transformed into an instance of propor-
tional cake cutting with rational demands.

Proof. The key observation here is that there is a slack in the demands, meaning that demands
in I2b sum up to strictly below D, which is the evaluation of all players of the full cake X \A. The
sum of the demands is the following.

d1 +
d2

1

D − d1
+ dj −

d1 · (d1 + ε )

D − (d1 + ε )
+

∑
i�{1, j }

di =

n∑
i=1

di +
d2

1

D − d1
− d1 · (d1 + ε )

D − (d1 + ε )
< D

The inequality above follows from the fact that
d2

1
D−d1

< d1 (d1+ε )
D−(d1+ε ) for all ε > 0.

The slack can be distributed as extra demand among all players so that all demands are rational.
An implementation of this could be that we round up the irrational demands at a sufficiently
insignificant digit. �

Theorem 7.4. Any instance of the proportional cake cutting problem with n players and irrational
demands can be transformed into at most n − 1 proportional cake cutting problems with rational
demands and thus can be solved using a finite number of queries.

Proof. We prove this theorem by induction. For n = 2, we need to show that the problem with
irrational demands can be reduced to at most one proportional cake cutting problem with rational
demands. For two players, our protocol proceeds as follows. First, P1 marks a pieceX that is worth
d1 for her. Now we ask P2 to evaluate X . If μ2 (X ) ≤ d1, then P1 is allocated X and P2 is satisfied
with I \ X , because μ2 (I \ X ) ≥ d2. Otherwise, if μ2 (X ) = d1 + ε for some ε > 0, then P2 is allocated

X and the two players share I \ X with demands d1 +
d2

1
d2

and d2 − d1 (d1+ε )
d2−ε

. These demands ensure
a proportional share to both players, as we show in Lemma 7.2. Moreover, applying Lemma 7.3
to two players proves that they sum up to strictly below d1 + d2 and thus can be rounded up to
rational numbers, which gives us the single two-player problem that must be solved in order to
derive a proportional division for the original problem.

Assume now that an n − 1-player proportional cake cutting problem with irrational demands
can be solved by transforming it into n − 2 proportional cake cutting problems with rational de-
mands. If we are given an n-player proportional cake cutting problem with irrational demands,
our “Proportional division with irrational demands” protocol transforms it into either I1 or into a
problem with two instances, I2a and I2b . Solving either of those problems will lead to a propor-
tional division in the original n-player problem, as Lemmas 7.1 and 7.2 show. The first instance is
an n − 1 player proportional cake cutting problem with irrational demands, which can be solved
via n − 2 proportional cake cutting problems with rational demands by our assumption. The same
is true for I2a . As of I2b , Lemma 7.3 proves that its demands can be rounded up to rational num-
bers. Even in the worst case, when our protocol generates I2a and I2b in every recursive step, it
ends up constructing n − 1 instances with rational demands. �

Just as our earlier protocol, this protocol is also not strategyproof. Players in this protocol play
distinct roles; for example, it is crucial to start with P1, who has the smallest demand. We would
like to emphasize that even though we have transformed any proportional cake cutting problem
with irrational demands into a set of problems with rational demands, we did not show any upper
bound on its query complexity. When the problems with rational demands are created, D might
grow arbitrarily large, which hugely affects the query number.

Open questions. Deciding whether there is a bounded protocol for irrational demands might be
the most intriguing question left open by this article. To construct a bounded protocol, one would
need to bound the number of queries in n and at least one other measure corresponding to D in
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our setting. Another possible research direction leads to the topic of chore division, where players
share “bads” instead of goods [17, 21]. A division is proportional if no player Pi receives a piece
that is worth more than di . Our protocol from Section 4 carries over to this problem variant with
minimal modifications, namely that we need to allocate each player to the subinstance where her
mark is not present. We do not see a similarly simple argument to save the validity of our lower
bound from Section 6. For the proportional chore division problem with equal shares, Farhadi and
Hajiaghayi [20] prove the same bound as the corresponding cake cutting problem has. They design
a dual measure function for each player, based on which function the adversary strategy is defined.
We conjecture that combining their approach with ours can lead to an Ω(n logD) lower bound for
the proportional chore division problem with unequal shares.
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