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Abstract15

The VertexCover problem is proven to be computationally hard in different ways: It is NP-16

complete to find an optimal solution and even NP-hard to find an approximation with reasonable17

factors. In contrast, recent experiments suggest that on many real-world networks the run time18

to solve VertexCover is way smaller than even the best known FPT-approaches can explain.19

Similarly, greedy algorithms deliver very good approximations to the optimal solution in practice.20

We link these observations to two properties that are observed in many real-world networks,21

namely a heterogeneous degree distribution and high clustering. To formalize these properties22

and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on23

hyperbolic random graphs, which have become increasingly popular for modeling real-world networks.24

In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be25

solved in polynomial time, with high probability.26

The proof relies on interesting structural properties of hyperbolic random graphs. Since these27

predictions of the model are interesting in their own right, we conducted experiments on real-world28

networks showing that these properties are also observed in practice. When utilizing the same29

structural properties in an adaptive greedy algorithm, further experiments suggest that this leads to30

even better approximations than the standard greedy approach on real instances.31
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1 Introduction36

VertexCover is a fundamental NP-complete graph problem. For a given undirected37

graph G on n vertices the goal is to find the smallest vertex subset S, such that each edge38

in G is incident to at least one vertex in S. Since, by definition, there can be no edge between39

two vertices outside of S, these remaining vertices form an independent set. Therefore, one40

can easily derive a maximal independent set from a minimal vertex cover and vice versa.41

Due to its NP-completeness there is probably no polynomial time algorithm for solving42

VertexCover. The best known algorithm for IndependentSet runs in 1.996n poly(n) [22].43

To analyze the complexity of VertexCover on a finer scale, several parameterized solutions44

have been proposed. One can determine whether a graph G has a vertex cover of size k by45

applying a branch-and-reduce algorithm. The idea is to build a search tree by recursively46

considering two possible extensions of the current vertex cover (branching), until a vertex47

cover is found or the size of the current cover exceeds k. Each branching step is followed by a48

reduce step in which reduction rules are applied to make the considered graph smaller. This49

branch-and-reduce technique yields a simple O(2k poly(n)) algorithm, where the exponential50

portion comes from the branching. The best known FPT algorithm runs in O(1.2738k + kn)51

time [7], and unless ETH fails, there can be no 2o(
√
k) poly(n) algorithm [8].52

While these FPT approaches promise relatively small running times if the considered53

network has a small vertex cover, the cover is large for many real-world networks. Nevertheless,54

it was recently observed that applying a branch-and-reduce technique on real instances is very55

efficient [2]. Some of the considered networks had millions of vertices, yet an optimal solution56

(also containing millions of vertices) was computed within seconds. Most instances were solved57

so quickly since the expensive branching was not necessary at all. In fact, the application of58

the reduction rules alone already yielded an optimal solution. Most notably, applying the59

dominance reduction rule, which eliminates vertices whose neighborhood contains a vertex60

together with its neighborhood, reduces the graph to a very small remainder on which the61

branching, if necessary, can be done quickly. We trace the effectiveness of the dominance rule62

back to two properties that are often observed in real-world networks: a heterogeneous degree63

distribution (the network contains many vertices of small degree and few vertices of high64

degree) and high clustering (the neighbors of a vertex are likely to be neighbors themselves).65

We formalize these key properties using hyperbolic random graphs to analyze the perform-66

ance of the dominance rule. Introduced by Krioukov et al. [17], hyperbolic random graphs67

are obtained by randomly distributing nodes in the hyperbolic plane and connecting any two68

that are geometrically close. The resulting graphs feature a power-law degree distribution69

and high clustering [14, 17] (the two desired properties) which can be tuned using parameters70

of the model. Additionally, the generated networks have a small diameter [13]. All of these71

properties have been observed in many real-world networks such as the internet, social net-72

works, as well as biological networks like protein-protein interaction networks. Furthermore,73

Boguná, Papadopoulos, and Krioukov showed that the internet can be embedded into the74

hyperbolic plane such that routing packages between network participants greedily works75

very well [5], indicating that this network naturally fits into the hyperbolic space.76

By making use of the underlying geometry, we show that VertexCover can be solved77

in polynomial time on hyperbolic random graphs, with high probability. This is done by78

showing that the dominance reduction rule reduces a hyperbolic random graph to a remainder79

with small pathwidth on which VertexCover can then be solved efficiently. We note that,80

while our analysis makes use of the underlying hyperbolic geometry, the algorithm itself is81

oblivious to it. Our analysis provides an explanation for why VertexCover can be solved82
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efficiently on practical instances. Besides the running time itself the model predicts certain83

structural properties that also point us to an adapted greedy algorithm that achieves better84

approximation ratios while still being very efficient. We conducted experiments indicating85

that these predictions (concerning the structural properties and improved approximation)86

actually match the real world for a significant fraction of networks.87

2 Preliminaries88

Let G = (V,E) be an undirected graph. We denote the number of vertices in G with n. The89

neighborhood of a vertex v is defined as N(v) = {w ∈ V | {v, w} ∈ E} and the size of the90

neighborhood, called the degree of v, is denoted by deg(v). For a subset S ⊆ V , we use G[S]91

to denote the induced subgraph of G obtained by removing all vertices in V \S. Furthermore,92

we use the shorthand notation G≤d to denote G[{v ∈ V | deg(v) ≤ d}].93

The Hyperbolic Plane. After choosing a designated origin O in the two-dimensional hyper-94

bolic plane, together with a reference ray starting at O, a point p is uniquely identified by its95

radius r(p), denoting the hyperbolic distance to O, and its angle (or angular coordinate) ϕ(p),96

denoting the angular distance between the reference ray and the line through p and O. The97

hyperbolic distance between two points p and q is given by98

dist(p, q) = acosh(cosh(r(p)) cosh(r(q))− sinh(r(p)) sinh(r(q)) cos(∆ϕ(ϕ(p), ϕ(q)))),99
100

where cosh(x) = (ex + e−x)/2, sinh(x) = (ex − e−x)/2 (both growing as ex/2± o(1)), and101

∆ϕ(p, q) = π−|π−|ϕ(p)−ϕ(q)|| denotes the angular distance between p and q. If not stated102

otherwise, we assume that computations on angles are performed modulo 2π.103

We use Bp(r) to denote a disk of radius r centered at p, i.e., the set of points with104

hyperbolic distance at most r to p. Such a disk has an area of 2π(cosh(r)−1) and circumference105

2π sinh(r). Thus, the area and the circumference of a disk in the hyperbolic plane grow106

exponentially with its radius. In contrast, this growth is polynomial in Euclidean space.107

Therefore, representing hyperbolic shapes in the Euclidean geometry results in a distortion.108

In the native representation, used in our figures, circles can appear teardrop-shaped (see109

Figure 1).110

Hyperbolic Random Graphs. Hyperbolic random graphs are obtained by distributing n111

points uniformly at random within the disk BO(R) and connecting any two of them if112

and only if their hyperbolic distance is at most R. The disk radius R (which matches the113

connection threshold) is defined as R = 2 log(8n/(πκ̄)), where κ̄ is a constant describing114

the desired average degree of the generated network. The coordinates for the vertices are115

drawn as follows. For vertex v the angular coordinate, denoted by ϕ(v), is drawn uniformly116

at random from [0, 2π] and the radius of v, denoted by r(v), is sampled according to the117

probability density function118

f(r) = 1
2π

α sinh(αr)
cosh(αR)− 1 = α

2π e
−α(R−r)(1 + Θ(e−αR − e−2αr)), (1)119

120

for r ∈ [0, R]. For r > R, f(r) = 0. The constant α ∈ (1/2, 1) is used to tune the power-law121

exponent β = 2α + 1 of the degree distribution of the generated network. Note that we122

obtain power-law exponents β ∈ (2, 3). Exponents outside of this range are atypical for123

hyperbolic random graphs. On the one hand, for β < 2 the average degree of the generated124

networks are divergent. On the other hand, for β > 3 hyperbolic random graphs degenerate:125

STACS 2020
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They decompose into smaller components, none having a size linear in n. The obtained126

graphs have logarithmic tree width [4], meaning the VertexCover problem can be solved127

efficiently in that case.128

The probability for a given vertex to lie in a certain area A of the disk is given by its129

probability measure µ(A) =
∫
A
f(r)dr. The hyperbolic distance between two vertices u and130

v increases with increasing angular distance between them. The maximum angular distance131

such that they are still connected by an edge is bounded by [14, Lemma 6]132

θ(r(u), r(v)) = arccos
(

cosh(r(u)) cosh(r(v))− cosh(R)
sinh(r(u)) sinh(r(v))

)
133

= 2e(R−r(u)−r(v))/2(1 + Θ(eR−r(u)−r(v))). (2)134
135

Interval Graphs and Circular Arc Graphs. In an interval graph each vertex v is identified136

with an interval on the real line and two vertices are adjacent if and only if their intervals137

intersect. The interval width of an interval graph G, denoted by iw(G), is its maximum138

clique size, i.e., the maximum number of intervals that intersect in one point. For any139

graph the interval width is defined as the minimum interval width over all of its interval140

supergraphs. Circular arc graphs are a superclass of interval graphs, where each vertex is141

identified with a subinterval of the circle called circular arc or simply arc. The interval width142

of a circular arc graph G is at most twice the size of its maximum clique, since one obtains143

an interval supergraph of G by mapping the circular arcs into the interval [0, 2π] on the real144

line and replacing all intervals that were split by this mapping with the whole interval [0, 2π].145

Consequently, for any graph G, if k denotes the minimum over the maximum clique number146

of all circular arc supergraphs G′ of G, then the interval width of G is at most 2k.147

Treewidth and Pathwidth. A tree decomposition of a graph G is a tree T where each tree148

node represents a subset of the vertices of G called bag, and the following requirements have149

to be satisfied: Each vertex in G is contained in at least one bag, all bags containing a150

given vertex in G form a connected subtree of T , and for each edge in G, there exists a bag151

containing both endpoints. The width of a tree decomposition is the size of its largest bag152

minus one. The treewidth of G is the minimum width over all tree decompositions of G. The153

path decomposition of a graph is defined analogously to the tree decomposition, with the154

constraint that the tree has to be a path. Additionally, as for the treewidth, the pathwidth155

of a graph G, denoted by pw(G), is the minimum width over all path decompositions of G.156

Clearly the pathwidth is an upper bound on the treewidth. It is known that for any graph G157

and any k ≥ 0, the interval width of G is at most k + 1 if and only if its pathwidth is at158

most k [8, Theorem 7.14]. Consequently, if k′ is the maximum clique size of a circular arc159

supergraph of G, then 2k′ − 1 is an upper bound on the pathwidth of G.160

Probabilities. Since we are analyzing a random graph model, our results are of probabilistic161

nature. To obtain meaningful statements, we show that they hold with high probability (for162

short whp.), i.e., with probability 1−O(n−1). The following Chernoff bound is a useful tool163

for showing that certain events occur with high probability.164

I Theorem 1 (Chernoff Bound [11, A.1]). Let X1, . . . , Xn be independent random variables165

with Xi ∈ {0, 1} and let X be their sum. Let f(n) = Ω(log(n)). If f(n) is an upper bound166

for E[X], then for each constant c there exists a constant c′ such that X ≤ c′f(n) holds with167

probability 1−O(n−c).168
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3 Vertex Cover on Hyperbolic Random Graphs169

Reduction rules are often applied as a preprocessing step, before using a brute force search170

or branching in a search tree. They simplify the input by removing parts that are easy to171

solve. For example, an isolated vertex does not cover any edges and can thus never be part172

of a minimum vertex cover. Consequently, in a preprocessing step all isolated vertices can be173

removed, which leads to a reduced input size without impeding the search for a minimum.174

The dominance reduction rule was previously defined for the IndependentSet prob-175

lem [12], and later used for VertexCover in the experiments by Akiba and Iwata [2].176

Formally, vertex u dominates a neighbor v ∈ N(u) if (N(v) \ {u}) ⊆ N(u), i.e., all neighbors177

of v are also neighbors of u. We say u is dominant if it dominates at least one vertex. The178

dominance rule states that u can be added to the vertex cover (and afterwards removed179

from the graph), without impeding the search for a minimum vertex cover. To see that this180

is correct, assume that u dominates v and let S be a minimum vertex cover that does not181

contain u. Since S has to cover all edges, it contains all neighbors of u. These neighbors182

include v and all of v’s neighbors, since u dominates v. Therefore, removing v from S leaves183

only the edge {u, v} uncovered which can be fixed by adding u instead. The resulting vertex184

cover has the same size as S. When searching for a minimum vertex cover of G, it is thus185

safe to assume that u is part of the solution and to reduce the search to G[V \ {u}].186

In the remainder of this section, we study the effectiveness of the dominance reduction187

rule on hyperbolic random graphs and conclude that VertexCover can be solved efficiently188

on these graphs. Our results are summarized in the following main theorem.189

I Theorem 2. Let G be a hyperbolic random graph on n vertices. Then the VertexCover190

problem on G can be solved in poly(n) time, with high probability.191

The proof of Theorem 2 consists of two parts that make use of the underlying hyperbolic192

geometry. In the first part, we show that applying the dominance reduction rule, removes193

all vertices in the inner part of the hyperbolic disk, with high probability. We note that194

this is independent of the order in which the reduction rule is applied, as dominant vertices195

remain dominant after removing other dominant vertices. In the second part, we consider the196

induced subgraph containing the remaining vertices near the boundary of the disk. We prove197

that this subgraph has a small pathwidth, by showing that there is a circular arc supergraph198

with a small interval width. Consequently, a tree decomposition of this subgraph can be199

computed efficiently. Finally, we obtain a polynomial time algorithm for VertexCover by200

first applying the reduction rules and afterwards solving VertexCover on the remaining201

subgraph using the tree decomposition of small width.202

3.1 Dominance on Hyperbolic Random Graphs203

Recall that a hyperbolic random graph is obtained by distributing n vertices in a hyperbolic204

disk BO(R) and that any two are connected if their distance is at most R. Consequently,205

one can imagine the neighborhood of a vertex u as another disk Bu(R). Vertex u dominates206

another vertex v if its neighborhood disk completely contains that of v (both constrained207

to BO(R)), as depicted in Figure 1 left. We define the dominance area D(u) of u to be208

the area containing all such vertices v. That is, D(u) = {p ∈ BO(R) | Bp(R) ∩ BO(R) ⊆209

Bu(R) ∩BO(R)}. The result is illustrated in Figure 1 right. We note that it is sufficient for210

a vertex v to lie in D(u) in order to be dominated by u, however, it is not necessary.211

Given the radius r(u) of vertex u we can now compute the probability that u dominates212

another vertex, i.e., the probability that at least one vertex lies in D(u), by determining213

STACS 2020
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u
vO

Bu(R)

Bv(R)

R u
vO

R

D(u)

δ(r(u), r(v))

Figure 1 Left: Vertex u dominates vertex v, as Bv(R)∩BO(R) (light gray) is completely contained
in Bu(R) ∩BO(R) (gray). Right: All vertices that lie in D(u) are dominated by u.

the measure µ(D(u)). To this end, we first define δ(r(u), r(v)) to be the maximum angular214

distance between two nodes u and v such that v lies in D(u).215

I Lemma 3. Let u, v be vertices with r(u) ≤ r(v). Then, v ∈ D(u) if ∆ϕ(u, v) is at most216

δ(r(u), r(v)) = 2(e−r(u)/2 − e−r(v)/2) + Θ(e−3/2r(u))−Θ(e−3/2r(v)).217

Proof. Without loss of generality we assume that ϕ(u) = 0. For now assume that ϕ(v) = ϕ(u).218

Since r(v) ≥ r(u) we know that the intersections of the boundaries of Bv(R) with BO(R) lie219

between those of Bu(R) with BO(R), as is depicted in Figure 2. Now let iu denote one of220

these intersections for Bu(R) and BO(R), and let iv denote the intersection for Bv(R) and221

BO(R) that is on the same side of the ray through O and u as iu. It is easy to see that the222

maximum angular distance between u and v such that Bv(R) ∩BO(R) is contained within223

Bu(R) ∩BO(R) is given by the angular distance between iu and iv. Therefore, v lies in the224

domination area of u if ∆ϕ(u, v) ≤ ∆ϕ(iu, iv).225

Recall that θ(r(p), r(q)) denotes the maximum angular distance such that dist(p, q) ≤ R,226

as defined in Equation (2). Since iu and iv have radius R and hyperbolic distance R to u227

and v, respectively, we know that their angular coordinates are θ(r(u), R) and θ(r(v), R),228

respectively. Consequently, the angular distance between iu and iv is given by229

δ(r(u), r(v)) = θ(r(u), R)− θ(r(v), R)230

= 2(e−r(u)/2 − e−r(v)/2) + Θ(e−3/2r(u))−Θ(e−3/2r(v)). J231
232

Using Lemma 3 we can now compute the probability for a given vertex to lie in233

the dominance area of u. We note that this probability grows roughly like 2/πe−r(u)/2,234

which is a constant fraction of the measure of the neighborhood disk of u which grows as235

2α/((α− 1/2)π)e−r(u)/2 [14, Lemma 3.2]. Consequently, the expected number of nodes that236

u dominates is a constant fraction of the expected number of its neighbors.237

I Lemma 4. Let u be a node with radius r(u) ≥ R/2. The probability for a given node to238

lie in D(u) is given by239

µ(D(u)) = 2
π
e−r(u)/2(1−Θ(e−α(R−r(u))))±O(1/n).240

241
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O u v

iu iv

R

δ(r(u), r(v))

Figure 2 Vertex u dominates vertex v, with r(u) ≤ r(v), if ∆ϕ(u, v) ≤ ∆ϕ(iu, iv).

Proof. The probability for a given vertex v to lie in D(u) is obtained by integrating the242

probability density (given by Equation (1)) over D(u).243

µ(D(u)) = 2
∫ R

r(u)

∫ δ(r(u),r)

0
f(r) dϕdr244

= 2
∫ R

r(u)

(
2(e−r(u)/2 − e−r/2) + Θ(e−3/2r(u))−Θ(e−3/2r)

)
245

· α2π e
−α(R−r)(1 + Θ(e−αR − e−2αr)) dr246

247

Since r(u) ≥ R/2 and r ∈ [r(u), R] we have Θ(e−3/2r(u)) − Θ(e−3/2r) = ±O(e−3/4R) and248

(1 + Θ(e−αR − e−2αr)) = (1 + Θ(e−αR)). Due to the linearity of integration, constant factors249

within the integrand can be moved out of the integral, which yields250

µ(D(u)) = α

π
e−αR(1 + Θ(e−αR))

∫ R

r(u)

(
2(e−r(u)/2 − e−r/2)±O(e−3/4R)

)
· eαr dr251

= 2α
π
e−r(u)/2e−αR(1 + Θ(e−αR))

∫ R

r(u)
eαrdr252

− 2α
π
e−αR(1 + Θ(e−αR))

∫ R

r(u)
e(α−1/2)rdr ±O

(
e−(3/4+α)R

∫ R

r(u)
eαrdr

)
.253

254

The remaining integrals can be computed easily and we obtain255

µ(D(u)) = 2
π
e−r(u)/2(1 + Θ(e−αR))(1− e−α(R−r(u)))256

− 2α
(α− 1/2)π e

−R/2(1 + Θ(e−αR))(1− e−(α−1/2)(R−r(u)))257

±O
(
e−3/4R(1− e−α(R−r(u)))

)
.258

259

As e−R/2 = Θ(n−1) and e−3/4R = Θ(n−3/2), simplifying the error terms yields the claim. J260

The following lemma shows that, with high probability, all vertices that are not too close261

to the boundary of the disk dominate at least one vertex with high probability.262

I Lemma 5. Let G be a hyperbolic random graph with average degree κ̄. Then there is a263

constant c > 4/κ̄, such that all vertices u with r(u) ≤ ρ = R − 2 log log(nc) are dominant,264

with high probability.265

STACS 2020
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Proof. Vertex u is dominant if at least one vertex lies in D(u). To show this for any u with266

r(u) ≤ ρ, it suffices to show it for r(u) = ρ, since D(u) increases with decreasing radius. To267

determine the probability that at least one vertex lies in D(u), we use Lemma 4 and obtain268

µ(D(u)) = 2
π
e−ρ/2(1−Θ(e−α(R−ρ)))±O(1/n)269

= 2
π
e−R/2+log log(nc)(1−Θ(e−2α log log(nc)))±O(1/n).270

271

By substituting R = 2 log(8n/(πκ̄)), we obtain µ(D(u)) = κ̄/(4n)(c log(n)(1− o(1))±O(1)).272

The probability of at least one node falling into the D(u) is now given by273

Pr[{v ∈ D(u)} 6= ∅] = 1− (1− µ(D(u)))n ≥ 1− e−nµ(D(u)) = 1−Θ(n−cκ̄/4(1−o(1))).274
275

Consequently, for large enough n we can choose c > 4/κ̄ such that the probability of a vertex276

at radius ρ being dominant is at least 1−Θ(n−2), allowing us to apply union bound. J277

I Corollary 6. Let G be a hyperbolic random graph and c > 4/κ̄. With high probability, all278

vertices with radius at most ρ = R− 2 log log(nc) are removed by the dominance rule.279

By Corollary 6 the dominance rule removes all vertices of radius at most ρ. Consequently,280

all remaining vertices have radius at least ρ. We refer to this part of the disk as outer band.281

More precisely, the outer band is defined as BO(R) \ BO(ρ). It remains to show that the282

pathwidth of the subgraph induced by the vertices in the outer band is small.283

3.2 Pathwidth in the Outer Band284

In the following, we use Gr = (Vr, Er) to denote the induced subgraph of G that contains all285

vertices with radius at least r. To show that the pathwidth of Gρ (the induced subgraph in286

the outer band) is small, we first show that there is a circular arc supergraph GSρ of Gρ with287

a small maximum clique. We use GS to denote a circular arc supergraph of a hyperbolic288

random graph G, which is obtained by assigning each vertex v an angular interval Iv on289

the circle, such that the intervals of two adjacent vertices intersect. More precisely, for a290

vertex v, we set Iv = [ϕ(v)− θ(r(v), r(v)), ϕ(v) + θ(r(v), r(v))]. Intuitively, this means that291

the interval of a vertex contains a superset of all its neighbors that have a larger radius, as292

can be seen in Figure 3 left. The following lemma shows that GS is actually a supergraph293

of G.294

I Lemma 7. Let G = (V,E) be a hyperbolic random graph. Then GS is a supergraph of G.295

Proof. Let {u, v} ∈ E be any edge in G. To show that GS is a supergraph of G we need296

to show that u and v are also adjacent in GS , i.e., Iu ∩ Iv 6= ∅. Without loss of generality297

assume r(u) ≤ r(v). Since u and v are adjacent in G, the hyperbolic distance between them298

is at most R. It follows, that their angular distance ∆ϕ(u, v) is bounded by θ(r(u), r(v)).299

Since θ(r(u), r(v)) ≤ θ(r(u), r(u)) for r(u) ≤ r(v), we have ∆ϕ(u, v) ≤ θ(r(u), r(u)). As Iu300

extends by θ(r(u), r(u)) from ϕ(u) in both directions, it follows that ϕ(v) ∈ Iu. J301

It is easy to see that, after removing a vertex from G and GS , GS is still a supergraph302

of G. Consequently, GSρ is a supergraph of Gρ. It remains to show that GSρ has a small303

maximum clique number, which is given by the maximum number of arcs that intersect at304

any angle. To this end, we first compute the number of arcs that intersect a given angle305

which we set to 0 without loss of generality. Let Ar denote the area of the disk containing all306

vertices v with radius r(v) ≥ r whose interval Iv intersects 0, as illustrated in Figure 3 right.307

The following lemma describes the probability for a given vertex to lie in Ar.308
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O r

v
Iv

R/2

R
AR/2

Ar

Figure 3 Left: The circular arcs representing the neighborhood of a vertex. For vertex v the area
containing the whole neighborhood of v, as well as the circular arc Iv are drawn in the same color.
Right: The area that contains the vertices whose arcs intersect angle 0. Area Ar contains all such
vertices with radius at least r. Vertex v lies on the boundary of Ar and its interval Iv extends to 0.

I Lemma 8. Let G be a hyperbolic random graph and let r ≥ R/2. The probability for a309

given vertex to lie in Ar is bounded by310

µ(Ar) ≤
2α

(1− α)π e
−(α−1/2)R−(1−α)r ·

(
1 + Θ(e−αR + e−(2r−R) − e−(1−α)(R−r))

)
.311

312

Proof. We obtain the measure of Ar by integrating the probability density function over Ar.313

Following the definition of Iv for a vertex v, we can conclude that Ar includes all vertices v314

with radius r(v) ≥ r whose angular distance to 0 is at most θ(r(v), r(v)). We obtain315

µ(Ar) =
∫ R

r

2
∫ θ(x,x)

0
f(x) dϕdx316

= 2
∫ R

r

2e(R−2x)/2(1±Θ(eR−2x)) · α2π e
−α(R−x)(1 + Θ(e−αR − e−2αx)) dx.317

318

As before, we can conclude that (1 + Θ(e−αR − e−2αr)) = (1 + Θ(e−αR)), since r ≥ R/2. By319

moving constant factors out of the integral, the expression can be simplified to320

µ(Ar) ≤
2α
π
e−(α−1/2)R(1 + Θ(e−αR))

∫ R

r

e−(1−α)x(1 + Θ(eR−2x)) dx.321

322

We split the sum in the integral and deal with the two resulting integrals separately.323

µ(Ar) ≤
2α
π
e−(α−1/2)R(1 + Θ(e−αR))

(∫ R

r

e−(1−α)x dx+ Θ
(∫ R

r

e−(1−α)x+R−2x dx
))

324

= 2α
π
e−(α−1/2)R(1 + Θ(e−αR))325

·

(
1

1− αe
−(1−α)r(1− e−(1−α)(R−r)) + Θ

(
eRe−(3−α)r(1− e−(3−α)(R−r))

))
.326

327

By placing 1/(1− α)e−(1−α)r outside of the brackets we obtain328

µ(Ar) ≤
2α

(1− α)π e
−(α−1/2)R−(1−α)r(1 + Θ(e−αR))329

·

(
(1− e−(1−α)(R−r)) + Θ

(
eR−2r(1− e−(3−α)(R−r))

))
.330

331

Simplifying the remaining error terms then yields the claim. J332
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We can now bound the maximum clique number in GSρ and thus its interval width iw(GSρ ).333

I Theorem 9. Let G be a hyperbolic random graph and r ≥ R/2. Then there exists a334

constant c such that, whp., iw(GSr ) = O(log(n)) if r ≥ R− 1
(1−α) log log(nc), and otherwise335

iw(GSr ) ≤ 4α
(1− α)πne

−(α−1/2)R−(1−α)r
(

1 + Θ(e−αR + e−(2r−R) − e−(1−α)(R−r))
)
.336

337

Proof. We start by determining the expected number of arcs that intersect at a given angle,338

which can be done by computing the expected number of vertices in Ar, using Lemma 8:339

E[|{v ∈ Ar}|] ≤
2α

(1− α)πne
−(α−1/2)R−(1−α)r(1 + Θ(e−αR + e−(2r−R) − e−(1−α)(R−r))).340

341

It remains to show that this bound holds with high probability at every angle. To this342

end, we make use of a Chernoff bound (Theorem 1), by first showing that the bound on343

E[|{v ∈ Ar}|] is Ω(log(n)). We start with the case where r < R− 1
1−α log log(nc).344

E[|{v ∈ Ar}|] <
2α

(1− α)πne
−(α−1/2)R−(1−α)(R−1/(1−α) log log(nc))

345

·
(

1 + Θ(e−αR + e−(2(R−1/(1−α) log log(nc))−R)
346

− e−(1−α)(R−(R−1/(1−α) log log(nc))))
)

347

= 2α
(1− α)πne

−R/2+log log(nc))
348

·
(

1 + Θ(e−αR + e−(R−2/(1−α) log log(nc)) − e− log log(nc))
)

349
350

Substituting R = 2 log(8n/(πκ̄)) we obtain351

E[|{v ∈ Ar}|] <
ακ̄c

4(1− α) log(n)(1 + o(1)).352

353

Thus, for all radii smaller than R − 1
(1−α) log log(nc), the resulting upper bound is lower354

bounded by Ω(log(n)), which lets us apply Theorem 1. Moreover, as E[|{v ∈ Ar}|] decreases355

with increasing r, O(log(n)) is a pessimistic but valid upper bound for the case r ≥ R −356

1
(1−α) log log(nc). Thus, we can also apply Theorem 1 to this case, when using the pessimistic357

O(log(n)) bound.358

By Theorem 1, we can choose c such that in both cases the bound holds with probability359

1−O(n−c′) for any c′ at a given angle. In order to see that this also holds at every angle,360

note that it suffices to show that it holds at all arc endings as the number of intersecting361

arcs does not change in between arc endings. Since there are exactly 2n arc endings, we can362

apply union bound and obtain that the bound holds with probability 1−O(n−c′+1) for any363

c′ at every angle. Since our bound on E[|{v ∈ Ar}|] is an upper bound on the maximum364

clique size of GSr , it follows that the interval width of GSr is at most twice as large, as argued365

in Section 2. J366

Since the interval width of a circular arc supergraph of G is an upper bound on the367

pathwidth of G [8, Theorem 7.14], we immediately obtain the following corollary.368

I Corollary 10. Let G be a hyperbolic random graph and let Gρ be the subgraph obtained by369

removing all vertices with radius at most ρ = R− 2 log log(nc). Then, pw(Gρ) = O(log(n)).370
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We are now ready to prove our main theorem, which we restate for the sake of readability.371

I Theorem 2. Let G be a hyperbolic random graph on n vertices. Then the VertexCover372

problem in G can be solved in poly(n) time, with high probability.373

Proof. Consider the following algorithm that finds the minimum vertex cover of G. We374

start with an empty vertex cover S. Initially, all dominant vertices are added to S, which375

is correct due to the dominance rule. By Lemma 5, this includes all vertices of radius at376

most ρ = R− 2 log log(nc), for some constant c, with high probability. Obviously, finding all377

vertices that are dominant can be done in poly(n) time. It remains to determine a vertex378

cover of Gρ. By Corollary 10, the pathwidth of Gρ is O(log(n)), with high probability. Since379

the pathwidth is an upper bound on the treewidth, we can find a tree decomposition of Gρ380

and solve the VertexCover problem in Gρ in poly(n) time [8, Theorems 7.18 and 7.14]. J381

Moreover, linking the radius of a vertex in Theorem 9 with its expected degree leads382

to the following corollary, which is interesting in its own right. It links the pathwidth to383

the degree d in the graph G≤d. Recall that G≤d denotes the subgraph of G induced by the384

vertices of degree at most d.385

I Corollary 11. Let G be a hyperbolic random graph and let d ≤
√
n. Then, with high386

probability, pw(G≤d) = O(d2−2α + log(n)).387

Proof. Consider the radius r = R−2 log(εd) for some constant ε > 0, and the graph Gr which388

is obtained by removing all vertices of radius at most r. By substituting R = 2 log(8n/(πκ̄))389

and using [14, Lemma 3.2] we can compute the expected degree of a vertex with radius r as390

E[deg(v) | r(v) = r] = 2α
(α− 1/2)πne

−r/2(1±O(e−(α−1/2)r)) = ακ̄ε

4(α− 1/2)d(1± o(1)).391

392

First assume that d ≥ log(n)1/(2−2α). We handle the other case later. Since d ∈ Ω(log(n))393

we can choose ε large enough to apply Theorem 1 and conclude that this holds with high394

probability. Furthermore, since a smaller radius implies a larger degree, we know that, with395

high probability, all nodes v with radius at most r, have396

deg(v) ≥ ακ̄ε

4(α− 1/2)d(1± o(1)).397

398

For large enough n we can choose ε such that, with high probability, Gr is a supergraph of G≤d.399

To prove the claim, it remains to bound the pathwidth of Gr. If r > R−1/(1−α) log log(nc),400

we can apply the first part of Theorem 9 to obtain iw(GSr ) = O(log(n)). Otherwise, we use401

part two to conclude that the interval width of Gr is at most402

iw(GSr ) ≤ 4α
(1− α)πne

−(α−1/2)R−(1−α)r
(

1 + Θ(e−αR + e−(2r−R) − e−(1−α)(R−r))
)

403

= ακ̄ε2−2α

(2− 2α)d
2−2α

(
1 + Θ(n−2α + ((εd)2/n)2 − (εd)−(2−2α))

)
= O(d2−2α).404

405

As argued in Section 2 the interval width of a graph is an upper bound on the pathwidth.406

For d < log(n)1/(2−2α) (which we excluded above), considerG≤d′ for d′ = log(n)1/(2−2α) >407

d. As we already proved the corollary for d′, we obtain pw(G≤d′) = O(d′2−2α + log(n)) =408

O(log(n)). As G≤d is a subgraph of G≤d′ , the same bound holds for G≤d. J409
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4 Discussion410

Our results show that a heterogeneous degree distribution as well as high clustering make411

the dominance rule very effective. This matches the behavior for real-world networks, which412

typically exhibit these two properties. However, our analysis actually makes more specific413

predictions: (I) vertices with sufficiently high degree usually have at least one neighbor they414

dominate and can thus safely be included in the vertex cover; and (II) the graph remaining415

after deleting the high degree vertices has simple structure, i.e., small pathwidth.416

To see whether this matches the real world, we run experiments on 59 networks from417

several network datasets [1, 3, 18, 19, 20]. Although the focus of this paper is the theoretical418

analysis on hyperbolic random graphs, we briefly report on our experimental results; see419

Table 1 in Appendix A. Out of the 59 instances, we can solve VertexCover for 47 networks420

in reasonable time. We refer to these instances as easy, while the remaining 12 are called421

hard. Note that our theoretical analysis aims at explaining why the easy instances are easy.422

Recall from Lemma 5 that all vertices with radius at most R− 2 log log(n4/κ̄) probably423

dominate, which corresponds to an expected degree of α/(α− 1/2) · logn. For more than half424

of the 59 networks, more than 78 % of the vertices above this degree were in fact dominant.425

For more than a quarter of the networks, more than 96 % were dominant. Restricted to the426

47 easy instances, these number increase to 82 % and 99 %, respectively.427

Experiments concerning the pathwidth of the resulting graph are much more difficult, due428

to the lack of efficient tools. Therefore, we used the tool by Tamaki et al. [21] to heuristically429

compute upper bounds on the treewidth instead. As in our analysis, we only removed vertices430

that dominate in the original graph instead of applying the reduction rule exhaustively. On431

the resulting subgraphs, the treewidth heuristic ran with a 15 min timeout. The resulting432

treewidth is at most 50 for 44 % of the networks, at most 15 for 34 %, and at most 5 for 25 %.433

Restricted to easy instances, the values increase to 55 %, 43 %, and 32 %, respectively.434

Hyperbolic random graphs are of course an idealized representation of real-world networks.435

However, these experiments indicate that the predictions derived from the model match the436

real world, at least for a significant fraction of networks.437

Approximation. Concerning approximation algorithms for VertexCover, there is a similar438

theory-practice gap as for exact solutions. In theory, there is a simple 2-approximation and439

the best known polynomial time approximation reduces the factor to 2−Θ(log(n)−1/2) [15].440

However, it is NP-hard to approximate VertexCover within a factor of 1.3606 [10], and441

presumably it is even NP-hard to approximate within a factor of 2 − ε for all ε > 0 [16].442

Moreover, the greedy strategy that iteratively adds the vertex with maximum degree to the443

vertex cover and deletes it, is only a logn approximation. However, on scale-free networks444

this strategy performs exceptionally well with approximation ratios very close to 1 [9].445

Our results for hyperbolic random graphs at least partially explain this good approximation446

ratio. Lemma 5 states that, with high probability, we do not make any mistake by taking all447

vertices below a certain radius ρ, which corresponds to vertices of at least logarithmic degree.448

The same computation for larger values of ρ does no longer give such strong guarantees.449

However, it still gives bounds on the probability for making a mistake. In fact, this error450

probability is sub-constant as long as the corresponding expected degree is super-constant.451

Although this is not a formal argument, it still explains to a degree why greedy works so452

well on networks with a heterogeneous degree distribution and high clustering. Moreover, it453

indicates how the greedy algorithm should be adapted to obtain even better approximation454

ratios: As the probability to make a mistake grows with growing radius and thus with455
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shrinking vertex degree, the majority of mistakes are done when all vertices have already low456

degree. However, for hyperbolic random graphs, the subgraphs induced by vertices below a457

certain constant degree decompose into small components for n→∞. It thus seems to be458

a good idea to run the greedy algorithm only until all remaining vertices have low degree,459

say k. The remaining small connected components of maximum-degree k can then be solved460

with brute force. In the following we call the resulting algorithm k-adaptive greedy.461

We ran experiments on the 47 easy real networks mentioned above (for the hard instances,462

we cannot measure approximation ratios). For these networks, we compare the normal463

greedy algorithm with 2- and 4-adaptive greedy. Note that 2-adaptive greedy is special, as464

VertexCover can be solved efficiently on graphs with maximum degree 2 (no brute-forcing465

is necessary). For 4-adaptive greedy, the size of the largest connected component is relevant.466

The median approximation ratio for greedy over all 47 networks is 1.008. This goes down467

to 1.005 for 2-adaptive and to 1.002 for 4-adaptive greedy. Thus, the number of too many468

selected vertices goes down by a factor of 1.6 and 4, respectively. As mentioned above, the469

size of the largest connected component is relevant for 4-adaptive greedy. For 49 % of the470

networks, this was below 100 (which is still a reasonable size for a brute-force algorithm).471

Restricted to these networks, normal greedy has a median approximation ratio of 1.004,472

while 4-adaptive again improves by a factor of 4 to 1.001. Moreover, the number of networks473

for which we actually obtain the optimal solution increases from 4 to 7.474
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A Experimental Data530

Table 1 (continuing on the next page) shows the raw data of our experiments for which we531

reported aggregate values in the discussion in Section 4. The percentage of dominant vertices532

among those with high degree (over α/(α − 1/2) · logn) is rounded to whole percentages.533

The approximation ratios are rounded to three decimal digits. Treewidth −1 indicates that534

remaining graph after removing all dominant vertices contained no edge.535

Table 1 The resulting raw data of our experiments. The columns are: (network) the network
name; (easy) whether or not the network is easy; (dom)the percentage of dominant nodes among
those of degree above the threshold α/(α− 1/2) · logn; (tw)an upper bound for the treewidth of
the remaining graph after deleting dominant nodes; (greedy) the approximation ratio of greedy;
(2-ad) of 2-adaptive greedy; (4-ad) of 4-adaptive greedy; (comp) the size of the largest component
that remains after the greedy phase of 4-adaptive greedy.

network easy dom tw greedy 2-ad 4-ad comp

advogato 3 51 % 314 1.011 1.009 1.005 863
airlines 3 28 % 23 1.000 1.000 1.000 75
as-22july06 3 100 % 3 1.002 1.001 1.001 46
as-caida20071105 3 100 % 3 1.002 1.001 1.000 35
as-skitter 7 47 % 969794
as20000102 3 100 % 2 1.003 1.001 1.001 18
bio-CE-HT 3 100 % 3 1.015 1.009 1.000 225
bio-CE-LC 3 100 % 2 1.003 1.003 1.003 39
bio-DM-HT 3 50 % 13 1.017 1.014 1.004 319
bio-yeast-protein-inter 3 100 % 4 1.013 1.006 1.002 147
bn-fly-drosophila-medulla-1 3 72 % 38 1.018 1.013 1.009 142
bn-mouse-kasthuri-graph-v4 3 100 % 1 1.006 1.000 1.000 12
ca-AstroPh 3 94 % 6 1.003 1.002 1.001 123
ca-cit-HepPh 3 84 % 151 1.003 1.003 1.002 533
ca-CondMat 3 99 % 4 1.003 1.002 1.001 53
ca-GrQc 3 99 % 2 1.004 1.002 1.001 44
ca-HepTh 3 95 % 13 1.005 1.004 1.001 174
cfinder-google 7 66 % 82
cit-HepTh 7 13 % 19737
citeseer 7 46 % 182372
com-amazon 3 93 % 2756 1.011 1.006 1.002 16209
com-dblp 3 100 % 7 1.002 1.001 1.000 69
cpan-authors 3 100 % 2 1.009 1.009 1.009 17
digg-friends 3 58 % 1649 1.008 1.006 1.004 179
ego-facebook 3 100 % -1 1.000 1.000 1.000 3
ego-gplus 3 100 % 1 1.000 1.000 1.000 5
email-Enron 3 85 % 41 1.003 1.002 1.001 141
EuroSiS 3 56 % 34 1.020 1.018 1.010 274
facebook-wosn-links 7 27 % 36694
flixster 7 73 % 122
hyves 3 98 % 1653 1.008 1.008 1.008 42
livemocha 3 4 % 24380 1.017 1.013 1.006 25300
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Table 1 The resulting raw data of our experiments. The columns are: (network) the network
name; (easy) whether or not the network is easy; (dom)the percentage of dominant nodes among
those of degree above the threshold α/(α− 1/2) · logn; (tw)an upper bound for the treewidth of
the remaining graph after deleting dominant nodes; (greedy) the approximation ratio of greedy;
(2-ad) of 2-adaptive greedy; (4-ad) of 4-adaptive greedy; (comp) the size of the largest component
that remains after the greedy phase of 4-adaptive greedy.

network easy dom tw greedy 2-ad 4-ad comp

loc-brightkite-edges 3 76 % 619 1.014 1.009 1.004 4658
loc-gowalla-edges 7 64 % 3991
moreno-names 3 94 % 3 1.006 1.004 1.002 34
moreno-propro 3 100 % 4 1.014 1.006 1.002 153
munmun-twitter-social 3 57 % 12 1.000 1.000 1.000 5
OClinks 3 36 % 202 1.017 1.015 1.005 498
p2p-Gnutella04 3 42 % 1352 1.019 1.017 1.016 970
p2p-Gnutella05 3 40 % 1075 1.014 1.013 1.013 447
p2p-Gnutella06 3 40 % 1142 1.023 1.022 1.021 820
p2p-Gnutella08 3 47 % 414 1.008 1.008 1.008 45
p2p-Gnutella09 3 47 % 419 1.005 1.005 1.005 63
p2p-Gnutella24 3 81 % 525 1.006 1.005 1.005 70
p2p-Gnutella25 3 79 % 464 1.006 1.005 1.005 77
p2p-Gnutella30 3 79 % 604 1.005 1.005 1.004 62
p2p-Gnutella31 3 80 % 732 1.011 1.010 1.010 65
petster-carnivore 3 79 % 149312 1.008 1.007 1.004 9238
petster-friendship-cat 7 12 % 14929
petster-friendship-dog 7 15 % 340634
petster-friendship-hamster 7 23 % 135
soc-Epinions1 3 82 % 238 1.006 1.003 1.001 228
US-Air 3 67 % 4 1.013 1.000 1.000 23
web-Google 7 84 % 103939
wiki-Vote 3 44 % 384 1.054 1.052 1.050 726
wordnet-words 3 95 % 28 1.004 1.003 1.002 59
YeastS 3 70 % 39 1.013 1.012 1.005 244
youtube-links 3 86 % 1239 1.008 1.004 1.001 570
youtube-u-growth 7 90 % 59358
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