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Abstract. We investigate learning collections of languages from texts
by an inductive inference machine with access to the current datum and
a bounded memory in form of states. Such a bounded memory states
(BMS) learner is considered successful in case it eventually settles on a
correct hypothesis while exploiting only �nitely many di�erent states.
We give the complete map of all pairwise relations for an established col-
lection of criteria of successfull learning. Most prominently, we show that
non-U-shapedness is not restrictive, while conservativeness and (strong)
monotonicity are. Some results carry over from iterative learning by a
general lemma showing that, for a wealth of restrictions (the semantic

restrictions), iterative and bounded memory states learning are equiv-
alent. We also give an example of a non-semantic restriction (strongly
non-U-shapedness) where the two settings di�er.

1 Introduction

We are interested in the problem of algorithmically learning a description for a
formal language (a computably enumerable subset of the set of natural numbers)
when presented successively all and only the elements of that language; this is
sometimes called inductive inference, a branch of (algorithmic) learning theory.
For example, a learnerM might be presented more and more even numbers. After
each new number, M outputs a description for a language as its conjecture. The
learner M might decide to output a program for the set of all multiples of 4, as
long as all numbers presented are divisible by 4. Later, when M sees an even
number not divisible by 4, it might change this guess to a program for the set
of all multiples of 2.

Many criteria for deciding whether a learnerM is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave
a �rst, simple learning criterion, TxtEx-learning1, where a learner is successful
i�, on every text for L (listing of all and only the elements of L) it eventually
stops changing its conjectures, and its �nal conjecture is a correct description
for the input sequence. Trivially, each single, describable language L has a suit-
able constant function as an TxtEx-learner (this learner constantly outputs a
description for L). Thus, we are interested in analyzing for which classes of lan-
guages L there is a single learner M learning each member of L. Sometimes,

1 Txt stands for learning from a text of positive examples; Ex stands for explanatory.
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this framework is called language learning in the limit and has been studied
extensively. For an overview see for example, the textbook [JORS99].

One major criticism of the model suggested by Gold is its excessive use of
memory, see for example [CM08]: for each new hypothesis the entire history of
past data is available. Iterative learning is the most common variant of learning
in the limit which addresses memory constraints: the memory of the learner on
past data is just its current hypothesis. Due to the padding lemma [JORS99], this
memory is not necessarily void, but only �nitely many data can be memorized
in the hypothesis. There is a comprehensive body of work on iterative learning,
see, e.g., [CK10,CM08,JKMS16,JMZ13,JORS99].

Another way of modelling restricted memory learning is to grant the learner
access to not their current hypothesis, but a state which can be used in the
computation of the next hypothesis (and next state). This was introduced in
[CCJS07] and called bounded memory states (BMS) learning. It is a reasonable
assumption to have a countable reservoir of states. Assuming a computable enu-
meration of these states, we use natural numbers to refer to them. Note that
allowing arbitrary use of all natural numbers as states would e�ectively allow a
learner to store all seen data in the state, thus giving the same mode as Gold's
original setting. Probably the minimal way to restrict the use of states is to de-
mand for successful learning that a learner must stop using new states eventually
(but may still traverse among the �nitely many states produced so far, and may
use in�nitely many states on data for a non-target language). It was claimed
that this setting is equivalent to iterative learning [CCJS07, Remark 38] (this
restriction is called ClassBMS there, we refer to it by TxtBMS�Ex). However,
this was only remarked for the plain setting of explanatory learning; for further
restrictions, the setting is completely unknown, only for explicit constant state
bounds a few scattered results are known, see [CCJS07,CK13].

In this paper, we consider a wealth of restrictions, described in detail in
Section 2 (after an introduction to the general notation of this paper). Following
the approach of giving maps of pairwise relations suggested in [KS16], we give
a complete map in Figure 1. We note that this map is the same as the map for
iterative learning given in [JKMS16], but partially for di�erent reasons.

In Lemma 31 we show that, for many restrictions (the so-called semantic
restrictions, where only the semantics of hypotheses are restricted) the learning
setting with bounded memory states is equivalent to learning iteratively. This
proves and generalizes the aforementioned remark in [CCJS07] to a wide class
of restrictions.

However, if restrictions are not semantic, then iterative and bounded mem-
ory states learning can di�er. We show this concretely for strongly non-U-shaped
learning in Theorem 45. Inspired by cognitive science research [SS82], [MPU�92]
a semantic version of this requirement was de�ned in [BCM�08] and later the
syntactic variant was introduced in [CM11]. Both requirements have been exten-
sively studied, see [CC13] for a survey and moreover [CK13], [CK16], [KSS17].
The proof combines the techniques for showing that strong non-U-shapedness
restricts iterative learning, as proved in [CK13, Theorem 5.7], and that not every
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class strongly monotonically learnable by an iterative learner is strongly non-U-
shapedly learnable by an iterative learner, see [JKMS16, Theorem 5]. Moreover,
it relies on showing that state decisiveness can be assumed in Lemma 41.

The remainder of Section 4 completes the map given in Figure 1 for the case
of syntactic restrictions (since these do not carry over from the setting of itera-
tive learning). All syntactic learning requirements are closely related to strongly
locking learners. The fundamental concept of a locking sequence was introduced
by [BB75]. For a similar purpose than ours [JKMS16] introduced strongly lock-
ing learners. We generalize their construction for certain syntactically restricted
iterative learners from a strongly locking iterative learner. Finally, we obtain
that all non-semantic learning restrictions also coincide for BMS�-learning.

2 Learners, Success Criteria and other Terminology

As far as possible, we follow [JORS99] on the learning theoretic side and [Odi99]
for computability theory. We recall the most essential notation and de�nitions.

We let N denote the natural numbers including 0. For a function f we write
dompfq for its domain and ranpfq for its range.

Further, X ω denotes the �nite sequences over the set X and Xω stands for
the countably in�nite sequences over X. For every σ P X ω and t ¤ |σ|, t P N,
we let σrts :� tps, σpsqq | s   tu denote the restriction of σ to t. Moreover, for
sequences σ, τ P X ω their concatenation is denoted by σaτ . Finally, we write
lastpσq for the last element of σ , σp|σ| � 1q, and σ� for the initial segment of σ
without lastpσq, i.e. σr|σ| � 1s. Clearly, σ � σ�alastpσq.

For a �nite set D � N and a �nite sequence σ P X ω, we denote by xDy and
xσy a canonical index for D or σ, respectively. Further, we �x a Gödel pairing
function x., .y with two arguments.

If we deal with (a subset of) a cartesian product or Gödel pairs, we are going
to refer to the projection functions to the �rst or second coordinate by pr1 and
pr2, respectively.

Let L � N. We interpret every n P N as a code for a word. If L is recursively
enumerable, we call L a language.

We �x a programming system ϕ as introduced in [RC94]. Brie�y, in the ϕ-
system, for a natural number p, we denote by ϕp the partial computable function
with program code p. We call p an index for Wp de�ned as dompϕpq.

In reference to a Blum complexity measure Φp, for all p, t P N, we denote by
W t

p �Wp the recursive set of all natural numbers less or equal to t, on which the
machine executing p halts in at most t steps, i.e. W t

p � tx | x ¤ t ^ Φppxq ¤ tu.
Moreover, the well-known s-m-n theorem gives �nite and in�nite recursion theo-
rems, see [Cas94], [Odi99]. We will refer to Case's Operator Recursion Theorem
ORT in its 1-1-form, [Cas74].

Throughout the paper, we let Σ � N Y t#u be the input alphabet with
n P N interpreted as code for a word in the language and # interpreted as pause
symbol, i.e. no new information. Further, let Ω � NYt?u be the output alphabet
with p P N interpreted as ϕ-index and ? as no hypothesis or repetition of the last
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hypothesis, if existent. A function with range Ω is called a hypothesis generating
function.

A learner is a (partial) computable function M : dompMq � Σ ω Ñ Ω. The
set of all total computable functions M : Σ ω Ñ Ω is denoted by R.

Let f P Σ ωYΣω, then the content of f , de�ned as contentpfq :� ranpfqzt#u,
is the set of all natural numbers, about which f gives some positive information.
TxtpLq :� tT P Σω | contentpT q � Lu denotes set of all texts for L.

De�nition 21 Let M be a learner. M is an iterative learner or It-learner, for
short M P It, if there is a computable (partial) hypothesis generating function

hM : Ω �Σ Ñ Ω such that M � h;M where h;M is de�ned on �nite sequences by

h;M pεq � ?; h;M pσ
axq � hM ph

;
M pσq, xq.

De�nition 22 Let M be a learner. M is a bounded memory states learner or
BMS-learner, for shortM P BMS, if there are a computable (partial) hypothesis
generating function hM : N�Σ Ñ Ω and a computable (partial) state transition
function sM : N �Σ Ñ N such that domphM q � dompsM q and M � h�M where
h�M and s�M are de�ned on �nite sequences by

s�M pεq � 0; h�M pσ
axq � hM ps

�
M pσq, xq; s�M pσ

axq � sM ps
�
M pσq, xq.

We now clarify what we mean by succesful learning.

De�nition 23 Let M be a learner and L a collection of languages.

1. Let L P L be a language and T P TxtpLq a text for L presented to M .
(a) We call h � phtqtPN P Ω

ω, where ht :�MpT rtsq for all t P N, the learning
sequence of M on T .

(b) M learns L from T in the limit, for short M Ex-learns L from T or
ExpM,T q, if there exists t0 P N such that Wht0

� contentpT q and @t ¥
t0 p ht � ? ñ ht � ht0 q.

2. M learns L in the limit, for short M Ex-learns L, if ExpM,T q for every
L P L and every T P TxtpLq.

De�nition 24 Let L be a collection of languages. L is learnable in the limit or
Ex-learnable, if there exists a learner M that Ex-learns L.

In our investigations, the most important additional requirement on a suc-
cessful learning process for a BMS-learner is to use �nitely many states only, as
stated in the following de�nition.

De�nition 25 Let M be a BMS-learner and T P Txt. We say that M uses
�nitely many memory states on T , for short BMS�pM,T q, if t s�M pT rtsq | t P N u
is �nite.

Let L be a language. M is said to BMS�Ex-learn L, if BMS�ExpM,T q for
every text T P TxtpLq.
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In [CCJS07, Rem. 38] it is claimed that BMS�-learners and iterative learners
are equally powerful on texts. This also follows from our more general Lemma 31.

We list the most common additional requirements regarding the learning
sequence, which may tag a learning process just like BMS� above. For this we
�rst recall the notion of consistency of a sequence with a set. For f P Σ ω YΣω

and A � Σ we say f is consistent with A if and only if contentpfq � A.
The listed properties of the learning sequence have been at the center of

di�erent investigations. Studying how they relate to one another did begin in
[KP16], [KS16], [JKMS16] and [AKS18].

De�nition 26 Let M be a learner, T P Txt and h � phtqtPN P Ω
ω the learning

sequence of M on T , i.e. ht �MpT rtsq for all t P N. We write

1. ConspT rts,Wht
q, if tT psq | s   tuzt#u �Wht

.
2. ConspM,T q ([Ang80]), if M is consistent on T , i.e., for all t holds

ConspT rts,Wht
q.

3. ConvpM,T q ([Ang80]), if M is conservative on T , i.e., for all s, t with s ¤ t
holds ConspT rts,Whs

q ñ hs � ht.
4. DecpM,T q ([OSW82]), if M is decisive on T , i.e., for all r, s, t with r ¤

s ¤ t holds Whr �Wht ñ Whr �Whs .
5. CautpM,T q ([OSW86]), if M is cautious on T , i.e., for all s, t with s ¤ t

holds  Wht
�Whs

.
6. WMonpM,T q ([Jan91],[Wie91]), if M is weakly monotonic on T , i.e., for

all s, t with s ¤ t holds ConspT rts,Whsq ñ Whs �Wht .
7. MonpM,T q ([Jan91],[Wie91]), if M is monotonic on T , i.e., for all s, t with

s ¤ t holds Whs
X contentpT q �Wht

X contentpT q.
8. SMonpM,T q ([Jan91],[Wie91]), if M is strongly monotonic on T , i.e., for

all s, t with s ¤ t holds Whs �Wht .
9. NUpM,T q ([BCM�08]), if M is non-U-shaped on T , i.e., for all r, s, t with

r ¤ s ¤ t holds Whr
�Wht

� contentpT q ñ Whr
�Whs

.
10. SNUpM,T q ([CM11]), if M is strongly non-U-shaped on T , i.e., for all

r, s, t with r ¤ s ¤ t holds Whr �Wht � contentpT q ñ hr � hs.
11. SDecpM,T q ([KP16]), if M is strongly decisive on T , i.e., for all r, s, t with

r ¤ s ¤ t holds Whr
�Wht

ñ hr � hs.
12. WbpM,T q ([KS16]), ifM is witness-based on T , i.e., for all r, t such that for

some s with r   s ¤ t holds hr � hs holds contentpT rssq X pWht
zWhr

q � ∅.

It is easy to see that ConvpM,T q implies SNUpM,T q and WMonpM,T q;
SDecpM,T q implies DecpM,T q and SNUpM,T q; SMonpM,T q implies all of
CautpM,T q, DecpM,T q,MonpM,T q, WMonpM,T q and �nally DecpM,T q,
WMonpM,T q and SNUpM,T q imply NUpM,T q. Figure 1 includes the result-
ing backbone with arrows indicating the aforementioned implications. Further,
WbpM,T q implies ConvpM,T q, SDecpM,T q and CautpM,T q.

In order to characterize what successful learning means, these predicates
may be combined with the explanatory convergence criterion. For this, we let
∆ :� tCaut,Conv,Dec,SDec,WMon,Mon,SMon, NU,SNU,T u denote
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the set of admissible learning restrictions, with T standing for no restriction.
Further, a learning success criterion is a predicate being the intersection of the
convergence criterion Ex with arbitrarily many admissible learning restrictions.
This means that the sequence of hypotheses has to converge and in addition has
the desired properties. Therefore, the collection of all learning success criteria is
t
�n

i�0 δiXEx | n P N,@i ¤ npδi P ∆qu. Note that plain explanatory convergence
is a learning success criterion by letting n � 0 and δ0 � T.

We refer to all δ P tCaut,Cons,Dec,Mon,SMon,WMon,NU,Tu also
as semantic learning restrictions, as they do not require the learner to settle on
exactly one hypothesis. More formally, if texts T1, T2 are such that for all t P N
holds WMpT1rtsq �WMpT2rtsq, then δpM,T1q and δpM,T2q are equivalent.

In order to state observations about how two ways of de�ning learning success
relate to each other, the learning power of the di�erent settings is encapsulated in
notions rαTxtβs. A collection of languages L is in rαTxtβs, if there is a learner
with property α that β-learns L. We do not use separators in the notation to stay
consistent with established notation in the �eld that was inspired by [JORS99].
Whenever β includes BMS� it is understood that we are only considering BMS-
learners.

The proofs of Lemmata 31 and 41 employ the following property of learning
requirements and learning success criteria, that applies to all such considered in
this paper.

De�nition 27 Denote the set of all unbounded and non-decreasing functions by
S, i.e., S :� t s : NÑ N | @x P N Dt P N : sptq ¥ x and @t P N : spt� 1q ¥ sptq u.
Then every s P S is a so called simulating function.

A predicate β on pairs of learners and texts allows for simulation on equiv-
alent text, if for all simulating functions s P S, all texts T, T 1 P Txt and all
learners M,M 1 holds: Whenever we have contentpT 1rtsq � contentpT rsptqsq and
M 1pT 1rtsq �MpT rsptqsq for all t P N, from βpM,T q we can conclude βpM 1, T 1q.

Intuitively, as long as the learner M 1 conjectures h1t � hsptq �MpT rsptqsq at
time t and has, in form of T 1rts, the same data available as was used by M for
this hypothesis, M 1 on T 1 is considered to be a simulation of M on T .

It is easy to see that all learning success criteria considered in this paper
allow for simulation on equivalent text.

3 Relations between Semantic Learning Requirements

The following lemma formally establishes the equal learning power of iterative
and BMS�-learning for all learning success criteria but Conv, SDec and SNU.
We are going to prove in Section 4 that this is not true for these three non-
semantic additional requirements.

Lemma 31 Let δ allow for simulation on equivalent text.

1. We have rTxtBMS�δExs � rItTxtδExs.
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2. If δ is semantic then rTxtBMS�δExs � rItTxtδExs.

While 1 and ��� in 2 are easy to verify by using the hypotheses as states,
the other inclusion in 2 is more challenging. The iterative learner constructed
from the BMS-learner M uses the hypotheses of M on an equivalent text and
additionally pads a subgraph of the translation diagram of M to it.

With Lemma 31 the following results transfer from learning with iterative
learners and it remains to investigate the relations to and between the non-
semantic requirements Conv,SDec and SNU.

Theorem 32 1. rTxtBMS�NUExs � rTxtBMS�Exs
2. rTxtBMS�DecExs � rTxtBMS�WMonExs � rTxtBMS�CautExs �
rTxtBMS�Exs

3. rTxtBMS�MonExs � rTxtBMS�Exs
4. rTxtBMS�SMonExs � rTxtBMS�MonExs

Proof. The respective results for iterative learners can be found in [CM08, The-
orem 2], [JKMS16, Theorem 10], [JKMS16, Theorem 3] and [JKMS16, Theo-
rem 2].

4 Relations to and between Syntactic Learning

Requirements

The following lemma establishes that we may assumeBMS�-learners to never go
back to withdrawn states. This is essential in almost all of the following proofs.
It can also be used to simplify the proof of Lemma 31.

Lemma 41 Let β be a learning success criterion allowing for simulation on
equivalent text and L P rTxtBMS�βs. Then there is a BMS-learner N such
that N never returns to a withdrawn state and BMS�β-learns L from texts.

With the latter result we can show that strongly monotonically BMS�-
learnability does not imply strongly non-U-shapedly BMS�-learnability.

Theorem 42 rTxtBMS�SMonExs � rTxtBMS�SNUExs

In the proof a self-learning BMS-learner M is de�ned and with a tailored
ORT-argument there can not be a BMS-learner strongly non-U-shapedly learn-
ing all languages that M learns strongly monotonically.

For inferring the relations between the syntactic learning requirements SNU,
SDec andConv, we refer toWb. All these criteria are closely related to strongly
locking learners. The learnability of every language L by a learnerM is witnessed
by a sequence σ, consistent with L, such that Mpσq is an index for L and no
extension of σ consistent with L will lead to a mind-change ofM . Such a sequence
σ is called (sink-)locking sequence for M on L. A learnerM acts strongly locking
on a language L, if for every text T for L there is an initial segment σ of T that
is a locking sequence for M on L.
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The proof of the following theorem generalizes the construction of a conser-
vative and strongly decisive iterative learner from a strongly locking iterative
learner in [JKMS16, Theorem 8]. With it we obtain in the Corollary thereafter,
that all non-semantic learning restrictions coincide.

Theorem 43 Let L be a set of languages BMS�Ex-learned by a strongly locking
BMS-learner. Then L P rTxtBMS�WbExs.

The construction of the witness-based learner proceeds in two steps. First,
we construct a learner BMS�-learning L locally conservatively, as de�ned in
[JLZ07], requiring the last datum to violate consistency with the former hypoth-
esis. Second, from the aforementioned locally conservative learner, we obtain a
new learner that BMS�Ex-learns L in a witness-based fashion. We will do this
by keeping track of all data having caused a mind-change so far. More concretely,
we alter the text by excluding mind-change data causing another mind-change
and make sure that the witness for the mind-change is contained in all future
hypotheses.

With the latter theorem it is straightforward to observe that in theBMS�Ex-
setting conservative, strongly decisive and strongly non-U-shaped Ex-learning
are equivalent.

Corollary 44 For all γ, δ P tConv,SDec,SNUu holds rTxtBMS�γExs �
rTxtBMS�δExs.

By [JKMS16, Theorem 2] and Lemma 31 we obtain rTxtBMS�ConvExs �
rTxtBMS�SMonExs. From this we conclude with Theorem 42 and Corol-
lary 44 that rTxtBMS�ConvExs K rTxtBMS�SMonExs.

Similarly, with [JKMS16, Theorem 3] and Lemma 31 rTxtBMS�ConvExs �
rTxtBMS�MonExs. As rTxtBMS�MonExs � rTxtBMS�SNUExs by The-
orem 42, with Corollary 44 rTxtBMS�ConvExs K rTxtBMS�MonExs.

Because Theorem 42 also reproves rTxtBMS�SNUExs � rTxtBMS�Exs,
�rst observed in [CK13, Th. 3.10], we completed the map for BMS�Ex-learning
from texts.

As the relations equal the ones for It-learning, naturally the question arises,
whether a result similar to Lemma 31 can be observed for the syntactic learning
criteria. In the following we show that this is not the case.

Theorem 45 rItTxtSNUExs � rTxtBMS�SNUExs

Proof. By Lemma 31 we have rItTxtSNUExs � rTxtBMS�SNUExs.
We consider the BMS-learner M initialized with state xx ?, 0y, x∅yy and hM

and sM for every xe, ξy P Ω, D � N �nite and x P Σ de�ned by:

sM pxxe, ξy, xDyy, xq �

$'''&
'''%
xxe, ξy, xDyy, if x P D Y t#u _

pr1pϕxpxe, ξyqÓ q � e;

xϕxpxe, ξyq, xD Y txuyy, else if pr1pϕxpxe, ξyqÓ q � e;

Ò, otherwise.
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hM pxxe, ξy, xDyy, xq �

$'''&
'''%
e, if x P D Y t#u _

pr1pϕxpxe, ξyqÓ q � e;

pr1pϕxpxe, ξyq q, else if pr1pϕxpxe, ξyqÓ q � e;

Ò, otherwise.

Additionally to the last hypothesis as well as exactly the data that already lead
to a mind-change ofM , some parameter ξ is stored, indicating whether a further
mind-change may cause a syntactic U -shape.

Let L � TxtBMS�SNUExpMq. We will show that there is no iterative
learner ItTxtSNUEx-learning L. Assume N is an iterative learner with hy-
pothesis generating function hN and L � ItTxtExpNq.

We obtain L P LzItTxtSNUExpNq by applying 1-1 ORT [Cas74] referring
to the Σ1-predicates MC and NoMC, expressing that N does (not) perform a
mind-change on a text built from parameters a, b P R. More speci�cally, the
predicates state that N does converge and (not) make a mind-change when
observing σ P Σ ω after having observed arisabpiqa#`i , with i P N.

ψip`q ô Nparisabpiqa#`q � Nparisabpiqa#`�1q;

NoMCpi, σq ô D`i P N pψip`iq ^ @`   `i  ψip`q ^

Nparisabpiqa#`iaσqÓ � Nparisabpiqa#`iq q;

MCpi, σq ô D`i P N pψip`iq ^ @`   `i  ψip`q ^

Nparisabpiqa#`iaσqÓ � Nparisabpiqa#`iq q.

By 1-1 ORT [Cas74], applied to the recursive operator implicit in the follow-
ing case distinction, there are recursive total functions a, b, e1, e2 with pairwise
disjoint ranges and e0 P N, such that for all i, ξ P N, e P Ω

ϕapiqpxe, ξyq �

$''''''''&
''''''''%

xe0, ξy, if e P t?, e0u;

xe1pkq, 1y, else if ξ � 0, i even and Dk ¤ i p e � e1pkq q;

xe1pkq, 2y, else if ξ � 0, i odd and Dk ¤ i p e � e1pkq q;

xe2pkq, 0y, else if ξ � 1, i odd and Dk ¤ i p e � e1pkq q;

xe2pkq, 0y, else if ξ � 2, i even and Dk ¤ i p e � e1pkq q;

xe, ξy, otherwise;

ϕbpiqpxe, ξyq �

#
xe1piq, ξy, if e P t?, e0u;

xe, ξy, otherwise;

We0 �

#
ranpart0sq, if t0 is minimal with @t ¥ t0Npartsq � Npart0sq;

ranpaq, no such t0 exists;

We1piq � ranparisq Y tbpiqu Y

$'&
'%
tapjqu for �rst j ¥ i found

with MCpi, apjqq;

∅, no such j exists;

We2piq � ranpaq Y tbpiqu.
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As the learner constantly puts out e0 on every text forWe0 , we haveWe0 P L.
Thus, also N learns the �nite language We0 and t0 exists. Note that by the
iterativeness of N we obtain Npart0sq � Npart0s

aapiqq for all i ¥ t0 and with
this Npart0s

abpt0q
a#`t0 q � Npart0s

aapiqabpt0q
a#`t0 q for all i ¥ t0.

We1pt0q and We2pt0q also lie in L. To see that M explanatory learns both
of them, note that, after having observed bpt0q, M only changes its mind from
e1pt0q to e2pt0q after having seen apiq and apjq with i, j ¥ t0 and i P 2N as well as
j P 2N� 1. This clearly happens for every text for the in�nite language We2pt0q.
As |We1pt0qz pcontentpart0sq Y tbpt0quq | ¤ 1, this mind change never occurs for
any text for We1pt0q.

The syntactic non-U-shapedness ofM 's learning processes can be easily seen
as for all k, l P N the languages We0 , We1pkq and We2plq are pairwise distinct, the
learner never returns to an abandoned hypothesis and M only leaves hypothesis
xe1pkq, 0y for xe1pkq, ξy, ξ � 0, if We1pkq is not correct.

Next, we show the existence of j ¥ t0 with MCpt0, apjqq. Assume towards
a contradiction that j does not exist. Then We1pt0q � contentpart0sq Y tbpt0qu.

As M learns this language from the text art0s
abpt0q

a#8, so does N . The con-
vergence of N implies the existence of `t0 . Thus, for every j P N we either
have Npart0s

abpt0q
a#`t0aapjqq � Npart0s

abpt0q
a#`t0 q or the computation of

Npart0s
abpt0q

a#`t0aapjqq does not terminate. Because N is iterative and learns
We2pt0q, it may not be unde�ned and therefore always the latter is the case. But
then N will not learn We1pt0q and We2pt0q as they are di�erent but N does not

make a mind-change on the text art0s
abpt0q

a#`t0 aa after having observed the
initial segment art0s

abpt0q
a#`t0 , due to its iterativeness. Hence, j exists and

We1pt0q � ranpart0sq Y tbpt0q, apjqu.
Finally, by the choice of j, the learner N does perform a syntactic U-shape

on the text art0s
aapjqabpt0q

a#`t0aapjqa#8 for We1pt0q. More precisely, t0 and

`t0 were chosen such that Npart0s
aapjqabpt0q

a#`t0 q has to be correct and the
characterizing property of j assures

Npart0s
aapjqabpt0q

a#`t0 q � Npart0s
aapjqabpt0q

a#`t0 aapjqq.

Thus, no iterative learner can explanatory syntactically non-U-shapedly learn
the language L.

By Corollary 44 we also obtain rItTxtSDecExs � rTxtBMS�SDecExs
and rItTxtConvExs � rTxtBMS�ConvExs.

5 Related Open Problems

We have given a complete map for learning with bounded memory states, where,
on the way to success, the learner must use only �nitely many states. Future work
can address the complete maps for learning with an a priori bounded number of
memory states, which needs very di�erent combinatorial arguments. Results in
this regard can be found in [CCJS07] and [CK13]. We expect to see trade-o�s, for
example allowing for more states may make it possible to add various learning
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restrictions (just as non-deterministic �nite automata can be made deterministic
at the cost of an exponential state explosion).

Also memory-restricted learning from positive and negative data (so-called
informant) has only partially been investigated for iterative learners and not
at all for other models of memory-restricted learning. Very interesting also in
regard of 1-1 hypothesis spaces that prevent coding tricks is the Bem-hierarchy,
see [FJO94], [LZ96] and [CJLZ99].

Acknowledgements

This work was supported by DFG Grant Number KO 4635/1-1. We are grateful
to the people supporting us.

References

AKS18. M. Aschenbach, T. Kötzing, and K. Seidel. Learning from informants: Re-
lations between learning success criteria. arXiv preprint arXiv:1801.10502,
2018.

Ang80. D. Angluin. Inductive inference of formal languages from positive data.
Information and control, 45(2):117�135, 1980.

BB75. L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125�155, 1975.

BCM�08. G. Baliga, J. Case, W. Merkle, F. Stephan, and R. Wiehagen. When un-
learning helps. Information and Computation, 206:694�709, 2008.

Cas74. J. Case. Periodicity in generations of automata. Mathematical Systems

Theory, 8(1):15�32, 1974.

Cas94. J. Case. In�nitary self-reference in learning theory. Journal of Experimental

and Theoretical Arti�cial Intelligence, 6:3�16, 1994.

CC13. L. Carlucci and J. Case. On the necessity of U-shaped learning. Topics in
Cognitive Science, 5:56�88, 2013.

CCJS07. L. Carlucci, J Case, S. Jain, and F. Stephan. Results on memory-limited
U-shaped learning. Information and Computation, 205:1551�1573, 2007.

CJLZ99. J. Case, S. Jain, S. Lange, and T. Zeugmann. Incremental concept learning
for bounded data mining. Information and Computation, 152:74�110, 1999.

CK10. J. Case and T. Kötzing. Strongly non-U-shaped learning results by general
techniques. In Adam Tauman Kalai and Mehryar Mohri, editors, COLT
2010, pages 181�193, 2010.

CK13. J. Case and T. Kötzing. Memory-limited non-u-shaped learning with solved
open problems. Theoretical Computer Science, 473:100�123, 2013.

CK16. J. Case and T. Kötzing. Strongly non-u-shaped language learning results
by general techniques. Information and Computation, 251:1�15, 2016.

CM08. J. Case and S. Moelius. U-shaped, iterative, and iterative-with-counter
learning. Machine Learning, 72:63�88, 2008.

CM11. J. Case and S. Moelius. Optimal language learning from positive data.
Information and Computation, 209:1293�1311, 2011.

FJO94. M. Fulk, S. Jain, and D. Osherson. Open problems in Systems That Learn.
Journal of Computer and System Sciences, 49(3):589�604, December 1994.



12 Timo Kötzing, Karen Seidel

Gol67. E. Gold. Language identi�cation in the limit. Information and Control,
10:447�474, 1967.

Jan91. K. P. Jantke. Monotonic and nonmonotonic inductive inference of func-
tions and patterns. In Nonmonotonic and Inductive Logic, 1st International

Workshop, Proc., pages 161�177, 1991.
JKMS16. S. Jain, T. Kötzing, J. Ma, and F. Stephan. On the role of update constraints

and text-types in iterative learning. Information and Computation, 247:152�
168, 2016.

JLZ07. S. Jain, S. Lange, and S. Zilles. Some natural conditions on incremental
learning. Information and Computation, 205:1671�1684, 2007.

JMZ13. S. Jain, S. Moelius, and S. Zilles. Learning without coding. Theoretical

Computer Science, 473:124�148, 2013.
JORS99. S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An

Introduction to Learning Theory. MIT Press, Cambridge, Massachusetts,
second edition, 1999.

KP16. T. Kötzing and R. Palenta. A map of update constraints in inductive infer-
ence. Theoretical Computer Science, 650:4�24, 2016.

KS16. T. Kötzing and M. Schirneck. Towards an atlas of computational learning
theory. In 33rd Symposium on Theoretical Aspects of Computer Science,
2016.

KSS17. T. Kötzing, M. Schirneck, and K. Seidel. Normal forms in semantic language
identi�cation. In Proc. of Algorithmic Learning Theory, pages 493�516.
PMLR, 2017.

LZ96. S. Lange and T. Zeugmann. Incremental learning from positive data. Jour-
nal of Computer and System Sciences, 53:88�103, 1996.

MPU�92. G. Marcus, S. Pinker, M. Ullman, M. Hollander, T.J. Rosen, and F. Xu.
Overregularization in Language Acquisition. Monographs of the Society for
Research in Child Development, vol. 57, no. 4. University of Chicago Press,
1992. Includes commentary by H. Clahsen.

Odi99. P. Odifreddi. Classical Recursion Theory, volume II. Elsivier, Amsterdam,
1999.

OSW82. D. Osherson, M. Stob, and S. Weinstein. Learning strategies. Information

and Control, 53:32�51, 1982.
OSW86. D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduc-

tion to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge, Mass., 1986.

RC94. J. Royer and J. Case. Subrecursive Programming Systems: Complexity and

Succinctness. Research monograph in Progress in Theoretical Computer

Science. Birkhäuser Boston, 1994.
SS82. S. Strauss and R. Stavy, editors. U-Shaped Behavioral Growth. Develop-

mental Psychology Series. Academic Press, NY, 1982.
Wie91. R. Wiehagen. A thesis in inductive inference. In Nonmonotonic and Induc-

tive Logic, 1st International Workshop, Proc., pages 184�207, 1991.


	Learning Languages in the Limit from Positive Information with Finitely Many Memory Changes

