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Abstract. We generalize the tree doubling and Christofides algorithm
to parameterized approximations for ATSP. The parameters we con-
sider for the respective generalizations are upper bounded by the number
of asymmetric distances, which yields algorithms to efficiently compute
good approximations also for moderately asymmetric TSP instances. As
generalization of the Christofides algorithm, we derive a parameterized
2.5-approximation, where the parameter is the size of a vertex cover for
the subgraph induced by the asymmetric distances. Our generalization
of the tree doubling algorithm gives a parameterized 3-approximation,
where the parameter is the minimum number of asymmetric distances
in a minimum spanning arborescence. Further, we combine these with
a notion of symmetry relaxation which allows to trade approximation
guarantee for runtime. Since the two parameters we consider are theo-
retically incomparable, we present experimental results which show that
generalized tree doubling frequently outperforms generalized Christofides
with respect to parameter size.

Keywords: Parameterized approximation · Stability of
approximation · TSP vs. ATSP

1 Introduction

The ubiquitous traveling salesman problem asks for a shortest round trip through
a given set of cities. Its relation to the Hamiltonian cycle problem does not only
imply NP-hardness, but also implies that efficient approximation is impossible
for unrestricted instances, which is why distances are usually assumed to satisfy
the triangle inequality. This restriction to metric instances is one of the most
extensively studied problems in combinatorial optimization, yet its approxima-
bility prevails as an active research area. Despite the breakthrough by Svensson

c© Springer Nature Switzerland AG 2021
E. Bampis and A. Pagourtzis (Eds.): FCT 2021, LNCS 12867, pp. 53–66, 2021.
https://doi.org/10.1007/978-3-030-86593-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86593-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-86593-1_4


54 L. Behrendt et al.

et al. [32], particularly the difference between symmetric and asymmetric dis-
tances remains rather poorly understood. In this paper we employ the tools of
parameterized complexity as a new approach to explicitly study the effects of
asymmetry on the approximability of the metric traveling salesman problem.

1.1 Motivation

Symmetric distance, meaning that traveling from A to B has the same cost as
traveling from B to A, is certainly the most common assumption to the metric
traveling salesman problem. In fact, it is so common that the name (metric) trav-
eling salesman problem (TSP) is usually associated with this symmetric version,
while the more general case is explicitly referred to as asymmetric (ATSP).

It appears as if symmetry plays a vital role in view of approximations. For
TSP it was known for over 40 years that a 3

2 -approximation is possible with
the famous algorithm of Christofides [10] (or Christofides-Serdyukov, see [4]).
Recently, Karlin et al. [22] showed a randomized approximation with an expected
ratio of 3

2 −ε for a small constant ε > 0. For ATSP, Svensson et al. [32] answered
the longstanding open question for the existence of a constant factor approxima-
tion in the affirmative. Although the current state of the art was very recently
established by Traub and Vygen [33] with the ratio of 22 + ε, this still leaves
a significant gap between the positive results for TSP and ATSP, whereas the
currently known lower bounds by Karpinski et al. [23] of 123

122 for TSP and 75
74

for ATSP do not indicate such a vast difference. This raises the question of how
symmetry truly affects approximability.

The assumption of symmetry does not seem very natural. A study by
Mart́ınez Mori and Samaranayake [28] shows that road networks exhibit asym-
metry even when only the lengths of the shortest paths are considered. Phe-
nomena like road blocks, one-way streets and rush hour can result in unbounded
violations of symmetry while the triangle inequality remains satisfied. In compar-
ison, restricting to distances that satisfy the triangle inequality is a reasonable
assumption in all scenarios where visiting cities more than once is acceptable.
Finding a shortest tour that visits each city at least once translates to metric
TSP by taking the shortest path metric, also called metric closure.

The asymmetry factor is the maximum ratio between the length of the short-
est paths from A to B and B to A over all cities A,B. The investigation in [28]
revealed that most asymmetries are insignificantly small. With these few but
existing significant asymmetries in mind, we consider spending exponential time
with respect to some measure of the degree of asymmetry. Our basic objective
is to salvage the approximability of TSP for ATSP by allowing this increase in
runtime. Formally, we give parameterized approximations (see e.g., [26]), which
means a guaranteed performance ratio and a runtime of the form poly(n)f(k),
where f is an arbitrary function, n is the size of the instance and k is a measure
for asymmetry. This approach aims to offer efficiency for instances of low asym-
metry and to improve our understanding of the challenges asymmetric distances
pose to the design of approximation algorithms.
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1.2 Our Results

We derive parameterized approximations based on the Christofides and the tree
doubling algorithm with respective suitable parameters. Both parameters under
study are bounded by the number of asymmetric distances, i.e., pairs of vertices
(u, v) for which traveling from u to v is cheaper than traveling from v to u.
Further, we combine these parameters with the asymmetry factor Δ [28] in the
sense that they treat distances with asymmetry factor Δ ≤ β for some β ≥ 1
as symmetric, which shrinks both parameters to consider only the more severe
β-asymmetries (distance from v to u is at least β times the distance from u to v).
In particular, we derive parameterized approximations with

– ratio 7
4 + 3

4β for parameter k = size of a vertex cover for the subgraph induced
by the β-asymmetric distances (generalized Christofides);

– ratio 2 + β for parameter z = minimum number of β-asymmetric distances
in a minimum spanning arborescence (generalized tree doubling).

For β = 1, we prove the ratio of 2.5 to be tight for generalized Christofides.
The lack of such a tightness result and further observations lead us to conjecture
that generalized tree doubling is actually a 2-approximation for β = 1. Since the
two parameters k and z are theoretically incomparable, we conduct experiments
which show that generalized tree doubling frequently outperforms generalized
Christofides with respect to parameter size.

The paper is organized as follows. In Sect. 3 we generalize the Christofides
algorithm. Our main result, the more elaborate generalized tree doubling algo-
rithm, is presented in Sect. 4. In Sect. 5 we give the combination with the asym-
metry factor and Sect. 6 describes our experimental results. For the full version
of this extended abstract, see [3].

1.3 Related Work

Conceptually, our approach can be seen as a study of stability with respect
to asymmetry in the framework of stability of approximation by Böckenhauer
et al. [6]. Probably the most extensively studied stability measure for (A)TSP
is the β-triangle inequality, also called parameterized triangle inequality, which
refers to the requirement c(u, v) ≤ β(c(u,w) + c(w, v)) for all u, v, w ∈ V with
u �= v �= w. For ATSP with β-triangle inequality, the 1

2(1−β) -approximation
derived by Kowalik and Mucha [25] for β ∈ ( 12 , 1) improves upon a series of
previous results [5,9,34] and is also known to be tight with respect to the cycle
cover relaxation as lower bound. For TSP, the survey of Klasing and Mömke [24]
gives a summary of the known results with β-triangle inequality.

Mart́ınez Mori and Samaranayake [28] showed that the Christofides algorithm
is 3

2 -stable with respect to the asymmetry factor, meaning that it can be used to
compute a 3

2Δ-approximation for instances with asymmetry factor at most Δ.
So far, there are only a few parameterized approximations for (variations

of) TSP. Marx et al. [27] consider ATSP on a restricted graph class called k-
nearly-embeddable. They derive approximations where the ratio and the runtime
depend on structural parameters of the given instance. A true parameterized
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approximation for a TSP type problem is given by Böckenhauer et al. in [7] for
deadline TSP, a generalization of TSP where some cities have to be reached by
the tour within a given deadline. They give a 2.5-approximation that requires
exponential time only with respect to the number of cities with deadline.

Another interesting approach to invest moderate exponential time is given
by Bonnet et al. in [8]. They derive a routine that allows to compute for any
r ≤ n a log r-approximation for ATSP that requires time O∗(2

n
r ).

2 Preliminaries

Throughout the paper, instances of ATSP are always simple complete directed
graphs denoted by G = (V,A, c) with non-negative cost function c on A. For
u, v ∈ V , (u, v) denotes the arc from u to v and c(u, v) denotes its cost. For an
arc (u, v) ∈ A we call (v, u) ∈ A the opposite arc. To refer to the connections
between vertices without regarding any directedness, for an arc (u, v) ∈ A and
its opposite arc, we call {u, v} an arc-pair or simply link. Links can be thought
of like edges in an undirected graph. If the cost function c satisfies the triangle
inequality, i.e., c(u, v) ≤ c(u,w) + c(w, v) for all u, v, w ∈ V , we call G metric. If
the graph is not clear from context, we use V [G] and A[G] to denote the vertices
and arcs of G, respectively.

In a not necessarily complete graph G′, a trail is a sequence of vertices where
each vertex is equal to or has an arc to its successor. A path is a trail containing
no vertex twice. Circuit and cycle denote a trail and a path where the last vertex
has an arc to the first vertex, respectively. We denote a trail by v1, . . . , vn and a
circuit by (v1, . . . , vn). A tour of G′ is a cycle that visits each vertex of G′.

If G is metric, every trail can be turned into a path visiting the same vertices
via a metric shortcut without increasing the cost, where metric shortcut means
removing multiple occurrences of each vertex. All tours in G are valid ATSP
solutions, and we use c∗(G) to denote the cost of an optimal solution for G.

For G = (V,A, c) we denote the vertex-induced subgraph of V ′ ⊆ V by G[V ′],
the arc-induced subgraph of A′ ⊆ A by G[A′] and also the link-induced subgraph
of a set of links E by G[E]. Slightly abusing notation, G[V ′] and G[A′] then also
inherit the weights of G. Further, for a subgraph G′ of G, we use c(G′) to denote
the sum of all arc costs in G′. We observe:

Lemma 1. Let G be a metric graph and V ′ ⊆ V . Then, G[V ′] is metric as well.

Lemma 2. Let G be a metric graph and V ′ ⊆ V . Then, c∗(G[V ′]) ≤ c∗(G).

We also use one other transformation we call minor. Here, G′ is a minor
of G if there is a series of contractions which, starting from G, result in G′. A
contraction of (u, v) replaces u and v with a single vertex uv and sets c(w, uv) =
min{c(w, u), c(w, v)} and c(uv,w) = min{c(u,w), c(v, w)} for all w ∈ V \ {u, v}.

3 Generalized Christofides Algorithm

The Christofides algorithm [10] is a polynomial approximation for TSP with
performance ratio 3

2 . On instance G it first computes a minimum spanning tree T
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for G and then adds a minimum cost perfect matching M on the vertices V ′ of
odd degree in T . The resulting subgraph is connected and each vertex has an
even degree, so it is possible to compute an Eulerian cycle for it, which is a
circuit of cost c(T ) + c(M) that visits all vertices. Metric shortcuts turn this
circuit into a tour. Since taking every second edge in an optimal tour for G[V ′]
gives a perfect matching for the vertices of odd degree, the edges in M have a
cost of at most 1

2c∗(G[V ′]) ≤ 1
2c∗(G). Together with the bound of c∗(G) on the

cost of T , this proofs the approximation ratio of 3
2 .

Regarding ATSP, the most dire problem of this approach is that combining T
and M to an Eulerian circuit is impossible if some arcs point in the wrong
direction, and it is unclear how to restrict T and M accordingly while keeping
the relation of their cost to the optimum value. Due to this conceptual problem,
we use a reduction to a TSP instance for which the Christofides algorithm can be
applied. Observe that such a reduction cannot simply be designed by brute-force
guessing the correct set of asymmetries in an optimal solution; fixing a subset of
arcs to be in a solution cannot be modeled as an undirected instance. The design
of our algorithm is instead based on a simple structural insight that allows the
use of the Christofides algorithm on a symmetric subgraph.

We first explain an easier variant of the algorithm. The idea is to divide
the graph into an asymmetric and a symmetric subgraph. For G = (V,A, c) we
define the set of asymmetric links by Ea = {{u, v} | u, v ∈ V, c(u, v) �= c(v, u)}
and the set of asymmetric and symmetric vertices by Va = {v ∈ V | {u, v} ∈
Ea for some u ∈ V }, and Vs = V \ Va, respectively.

We define the asymmetric subgraph by G[Va ∪ {v}], where v is an arbitrary
vertex in Vs, and the symmetric one by G[Vs]. Note that tours through both
subgraphs can be merged at the overlap in v and turned into a tour of the
whole graph with metric shortcuts. Combining in this way an exact solution for
G[Va∪{v}] and a 3

2 -approximate solution for G[Vs], computed by the Christofides
algorithm, overall yields a parameterized 5

2 -approximation with parameter |Va|.
To improve this, consider a vertex cover VC of G[Ea]. The complement of

VC forms an independent set in G[Ea], implying that G contains no asymmetric
links between vertices in Vs ∪ (Va \ VC ). This can be exploited to consider the
smaller structural parameter z, the size of a vertex cover in G[Ea]. The improved
algorithm uses a vertex cover VC in G[Ea], selects a vertex v ∈ Vs and considers
G[VC ∪ {v}] as the asymmetric and G[V \ VC ] as the symmetric subgraph.

Using a simple O(m + 2zz2) algorithm (e.g. branching on the k2-kernel as
discussed in the introduction of [11] for “Bar Fight Prevention”) for the minimal
vertex cover for G[Ea], and the dynamic programming algorithm by Held and
Karp [17] for ATSP on G[VC ∪ {v}] in O(2zz2) yields the following.

Theorem 1. Metric ATSP can be 5
2 -approximated in O(n3+2zz2) where z is the

size of a minimum vertex cover of the subgraph induced by all asymmetric links.

Instead of exact algorithms for the vertex cover for G[Ea] and the solution on
G[VC∪{v}], we can also use approximations. A 2-approximation for vertex cover
and the 2

3 log n-approximation of Feige and Singh [14] on G[VC ∪{v}] yields the
following interesting result.
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Fig. 1. Gk for k = 7: Black and gray links are symmetric with cost 2, dotted links are
symmetric with cost 1. Dashed links are asymmetric, with cost 1 from gray to black
vertex and cost 2 from black to gray vertex.

Corollary 1. Metric ATSP can be (23 log x + 3
2 )-approximated in polyno-

mial time, where x = min (2z + 1, |Va|), Va is the set of asymmetric vertices
and z is the size of a minimum vertex cover for the subgraph induced by all
asymmetric links.

This improves upon the approximation ratio of 2
3 log n if x

n < 2− 9
4 , mean-

ing that G[VC ∪ {v}] only contains a sufficiently small fraction of the ver-
tices. We note that the result of Asadapour et al. [2] gives a polynomial
(8 log(z)/ log log(z) + 3

2 )-approximation, which is asymptotically stronger but
less suitable for the instances with small values of z we are interested in.

Further, note that one can also use any approximation for TSP (not just
the Christofides algorithm) for the symmetric subgraph and obtain an (α + 1)-
approximation for ATSP from any α-approximation for TSP.

It remains to see if this approach can be improved. Aiming for a smaller
parameter seems difficult as this would not split off a symmetric subgraph.
Regarding a possible improvement of the ratio, one might hope to salvage the
ratio of 3

2 for TSP, obtained by the Christofides algorithm, for ATSP. However,
such an improvement requires a different algorithmic strategy as the ratio in
Theorem 1 is asymptotically tight, which can be shown as follows.

We define a family of graphs Gk for k ∈ N, k > 2 such that the approximation
ratio converges to 2.5 for increasing k, Fig. 1 describes G7. The black zig-zag
pattern is the textbook example for the tightness of the Christofides algorithm.
The idea is that the gray vertices build the minimum vertex cover such that
the black zig-zag pattern becomes the symmetric instance. The gray cycle is
then the asymmetric subgraph and solving it exactly yields a tour of cost 2k.
Together with the approximation on the symmetric subgraph, which converges
to 3k, this results in a tour of length 5k. As the optimal tour takes the dotted
and dashed links in the cheaper direction and has cost 2k, we deduce that 2.5 is
asymptotically tight for Theorem 1.

4 Generalized Tree Doubling Algorithm

One other widely known approximation for TSP is the tree doubling algorithm.
It computes a minimum spanning tree (MST) and doubles every edge in it to
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Fig. 2. Exemplary construction for a suitable path χi. Left: spanning tree with Pi

dashed; Middle: trail through partially doubled edges; Right: resulting path.

ensure the existence of an Eulerian circuit. Since the circuit uses every MST
edge exactly twice, it is twice as expensive as the tree, which itself is at most
as expensive as the optimum tour. Thus, transforming the circuit with metric
shortcuts gives a 2-approximation. To adapt this approach to ATSP we use a
minimum spanning arborescence (MSA) as the directed variant of an MST. Tree
doubling then runs into trouble when the cost of an opposite arc is arbitrarily
higher than the direction contained in the MSA. These arcs are the core of the
problem and hence our basis to generalize the tree doubling algorithm.

Formally, we call (u, v) ∈ A a one-way arc in G = (V,A, c) if c(u, v) < c(v, u).
In a nutshell, our algorithm removes all one-way arcs from an MSA, computes a
tour for each resulting connected component by an altered tree doubling routine
and uses exponential time in the number of removed one-way arcs to connect
these subtours to a solution for the whole graph. For a best runtime, we hence
want to keep the number of one-way arcs in the starting MSA as small as possible.
For our parametrization, we formally define k to be the minimum number of one-
way arcs in an MSA for G.

At first glance, it might seem that finding an MSA with k one-way arcs is
a difficult task. However this can be accomplished by searching for an MSA
with the altered weight function c′ defined by c′(e) = |V |c(e) + 1 if e is a one-
way arc, and c′(e) = |V |c(e), otherwise. Trying every possible root vertex with
this altered weight function, and the Chu–Liu/Edmonds algorithm [13] with
Fibonacci heaps [15] to compute the MSA, yields the following result.

Lemma 3. Let G be a metric ATSP instance, then an MSA of G with a mini-
mum number of one-way arcs can be computed in O(n3).

With this best MSA, we can describe our generalized tree doubling algorithm.
Let T be the MSA for G computed with Lemma 3, and let T1, . . . , Tk+1

be the connected components in the graph created by deleting all k one-
way arcs from T . We construct a graph M by contracting each set of ver-
tices V [Ti] to one vertex vM

i with our notion of contraction to a minor. This
results in V [M ] = {vM

1 , . . . , vM
k+1} and for all vM

i , vM
j ∈ V [M ] with i �= j,

c(vM
i , vM

j ) = min ({c(ti, tj) | ti ∈ V [Ti], tj ∈ V [Tj ]}).

Lemma 4. Let G be a metric ATSP instance and M be minor of G, then
c∗(M) ≤ c∗(G).

Since M only contains k + 1 vertices, we brute-force an optimal tour τ ′ for M .
It remains to extend τ ′ to a tour of G. Consider a vertex vM

i in M (which corre-
sponds to the component Ti) and assume w.l.o.g. that in τ ′ it is preceded by vM

i−1
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and precedes vM
i+1. Further, let (vTi−1

out , vTi
in ) and (vTi

out , v
Ti+1
in ) be the cheapest arc

between Ti−1 and Ti, and Ti and Ti+1, respectively. The goal is to find a path χi

that starts in vTi
in , ends in vTi

out , and spans all vertices in Ti (formally a solution
to s-t-path TSP for G[Ti] with s = vTi

in and t = vTi
out). Replacing vTi in τ ′ by χi

for each i turns τ ′ into a tour. However, the cost of χi has to be bounded.
Such a path χi through Ti can be found by adapting the tree doubling algo-

rithm. We treat Ti as undirected and double all its edges that are not on the
shortest path Pi from vTi

in to vTi
out . The resulting graph contains an Eulerian trail

from vTi
in to vTi

out , which is turned into a path by metric shortcuts ensuring that
vTi
in and vTi

out remain start and end node, see Fig. 2 for an example. Observe that
we cannot use any of the better approximations for s-t-path TSP, such as [19],
since the subgraph induced by the vertices in Ti is not necessarily completely
symmetric. Further, even if this was possible, the only information we can use
to compare the tour through Ti with the optimum for the whole graph G are
the arcs from the MSA, which in the worst case always results in a ratio of 2.

For the cost of χi, note that it contains for each arc (u, v) in Ti at most both
(u, v) and (v, u). Since there are no one-way arcs in Ti, any opposite arc is at
most as expensive as the original arc in Ti. Consequently, the cost of χi is at
most twice the cost of the arcs in Ti and the sum of all χi is at most 2c∗(G). In
combination with the cost of at most c∗(G) for τ ′, this yields:

Theorem 2. Metric ATSP can be 3-approximated in O(2k · k2 + n3), where k
is the minimum number of one-way arcs in a minimum spanning arborescence.

Contrary to the approach in Sect. 3, we cannot plug in some approximation
to find a good tour τ ′ for M to derive something like Corollary 1. Note that
the minor M is not necessarily metric since contractions do not preserve the
triangle inequality. Still, one might ask if M , as minor of a metric graph, has
useful structural properties. However, the following result discourages such ideas.

Lemma 5. Let G be a complete, directed graph with cost function c. Then, there
exists a complete, metric graph Ĝ of which G is a minor.

Computing a tour for M is related to the generalized traveling salesman problem
(GTSP) which can be tracked back to publications of Henry-Labordère and Sak-
sena [18,31]. Given a partition of the cities into r sets, GTSP asks for a minimum
cost tour containing (at least) one vertex from each of the r sets. Unfortunately,
there are no known efficient ways to solve or approximate GTSP. However, we
observe that using an optimal GTSP tour for the vertex sets corresponding to
T1, . . . , Tk+1 instead of the tour through M still yields a 3-approximation. In
fact, this remains true even if we fix one arbitrary city for each set, which yields
a graph M ′ that is just an induced subgraph and hence metric. For this simplified
approach, the ratio 3 is indeed asymptotically tight.

Aside from the fact that we did not find a tight example for Theorem 2, seeing
that the choice of any arbitrary vertex still yields a 3-approximation causes us
to conjecture that our more sophisticated generalization of the tree doubling
algorithm is in fact a 2-approximation. Proving such a ratio however requires an
exploitable connection between the cost for the paths χi and the cost of τ ′.
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5 Trading Approximation Quality for Runtime

In real life, we expect instances with many small asymmetries which have little
impact but lead to relatively large parameter values. Therefore, ignoring asym-
metric links where both directions have similar cost and trading some approxi-
mation quality for running time yields an intriguing perspective. As a formal way
to describe moderate asymmetry, we use the asymmetry factor of Mart́ınez Mori
and Samaranayake [28] as introduced in Sect. 1.3. Since Δ is commonly used
for the maximum degree, and we want to describe variable restrictions of the
asymmetry factor, we use β instead. For β ≥ 1 we call a link {u, v} or arc (u, v)
β-symmetric if 1

β ≤ c(u,v)
c(v,u) ≤ β, otherwise it is called β-asymmetric. We show

that our algorithms support a quality-runtime trade-off with respect to β.

5.1 Relaxed Generalized Christofides Algorithm

For a given β we modify the algorithm presented in Sect. 3 by treating every
β-symmetric link as symmetric. This results in parametrization by the ver-
tex cover of the subgraph induced by all β-asymmetric links. We denote this
parameter by zβ . Since the β-symmetric subgraph is not completely symmet-
ric, the Christofides algorithm cannot be directly used. Mart́ınez Mori and
Samaranayake [28] showed that it is 3

2 -stable by replacing every link with
an undirected edge and assigning it the cost of the more expensive direction.
Combined with the arguments used for Theorem 1, this gives a parameterized
( 32β + 1)-approximation for parameter zβ . This can be improved by turning the
β-symmetric subgraph symmetric by assigning the cost of the cheaper direction.
Although this may not yield a metric graph, it suffices that the original graph
is metric to prove that the Christofides algorithm yields a good solution.

Theorem 3. For any β ≥ 1, metric ATSP can be (34β + 7
4 )-approximated in

O(n3 + 2zβ z2β) where zβ is the size of a minimum vertex cover of the subgraph
induced by all β-asymmetric links.

5.2 Relaxed Generalized Tree Doubling Algorithm

For the generalized tree doubling algorithm, we define a β-one-way arc as a
one-way arc that is β-asymmetric. We denote by kβ the minimum number of
β-one-way arcs in an MSA. Note that the strategy in Lemma 3 can also be used
to find an MSA with kβ β-one-way arcs. The generalization of Theorem 2 is
straightforward, instead of deleting all one-way arcs we only delete β-one-way
arcs. This results in fewer components and a smaller graph Mβ . The drawback
is a change to the cost analysis: so far, we considered the component trees Ti to
be symmetric. Now for every (u, v) ∈ A[Ti], the opposite arc (v, u) can be up to
β times as expensive. The adjusted tree doubling algorithm for the path through
Ti uses every arc in Ti and its opposite arc at most once, which in total costs
at most (1 + β)c∗(G). Combined with the cost of at most c∗(G) for an optimum
tour through Mβ , this yields:
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Theorem 4. For any β ≥ 1, metric ATSP can be (2 + β)-approximated in
O(2kβ k2

β +n3) where kβ is the minimum number of β-one-way arcs in an MSA.

6 Experimental Results

To test the practical viability of our algorithms, we implemented them in their
relaxed form (see Sect. 5) to also observe their behavior when certain asymme-
tries are ignored. We evaluated on the asymmetric graphs from the TSPLIB
collection [29], the standard benchmark for TSP solvers, and on a set of specific
ATSP instances extracted from road networks by Rodŕıguez and Ruiz [30].

6.1 Implementation Details

Our implementation (available on GitHub1) is written in Python 3, except for
the vertex cover solver, which is written in Java. We used the Python library
NetworkX [16] for graph manipulation, the C++ library Lemon [12] for com-
puting MSAs, and Concorde [1] for solving TSP exactly. Since Concorde is a
TSP solver, we transformed the ATSP instances into TSP instances with the
transformation presented by Jonker and Volgenant [20,21].

We note that the runtime of our implementations is incomparable to state
of the art ATSP solvers. Among others, the reason is Python’s inherently low
performance and the inefficiency of solving ATSP with Concorde. However, this
is of no importance for our evaluation of approximation ratio, parameter size,
and the proof of concept.

6.2 Experiments

In the TSPLIB there are 19 asymmetric instances ranging from 17 up to 443
vertices. As some of the instances are not metric, we computed the metric closure
of each graph. The instances’ names contain the number of vertices (e.g., ftv33 )
and similar names indicate similar properties. For example, instances starting
with rbg have relatively high symmetry and a high number of zero-cost arcs.
Contrasting that, the instances with prefix ftv contain little symmetry, but most
asymmetric links are only moderately asymmetric. Most instances are rather
small, with only 6 of the instances having more than 70 vertices. We ignored the
instance br17 as its metric closure is completely symmetric.

For each TSPLIB instance we executed each algorithm five times with differ-
ent values for β and recorded the value of the parameter as well as the approxima-
tion ratio. Starting with β = 1 (which corresponds to 100% of the asymmetric
links), we raised the value of β each step, reducing the number of asymmet-
ric links treated as asymmetric to a quarter of the previous experiment. Some
instances include many zero-cost arcs, so there is no value of β ignoring those.
We considered zero-cost arcs to have a small positive cost (set to 0.1) when cal-
culating the asymmetry factor, thus treating links with a small additive error
1 https://github.com/Blaidd-Drwg/atsp-approximation.

https://github.com/Blaidd-Drwg/atsp-approximation
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Table 1. Experimental results on TSPLIB instances with percentage of asymmetric
links that were treated as asymmetric shown in the column header. Each cell contains
parameter value and approximation factor, separated by a slash (trivial parameter
value 0 omitted in 0% column). Superiority in the sense of smaller kernel or better
approximation ratio is highlighted with bold font.

Generalized Christofides algorithm Generalized tree doubling algorithm

100% 25% 6.25% 1.56% 0% 100% 25% 6.25% 1.56% 0%

ft53 53/1.00 29/1.54 13/1.70 6/1.69 1.72 45/1.08 25/1.36 6/1.42 1/1.57 1.97

ft70 69/1.02 34/1.24 12/1.26 7/1.41 1.24 64/1.02 27/1.13 4/1.20 2/1.21 1.28

ftv170 155/1.17 123/1.38 97/1.57 64/1.85 2.37 108/1.14 107/1.14 103/1.21 75/1.46 1.81

ftv33 29/1.12 19/1.45 11/1.43 5/1.56 1.33 19/1.34 16/1.34 11/1.44 2/1.23 1.50

ftv35 32/1.07 21/1.51 12/1.55 6/1.49 1.38 23/1.15 17/1.23 11/1.47 2/1.28 1.58

ftv38 33/1.13 23/1.38 12/1.43 7/1.47 1.39 23/1.24 18/1.33 12/1.54 3/1.30 1.62

ftv44 40/1.09 32/1.38 19/1.46 10/1.56 1.54 32/1.24 25/1.41 18/1.41 7/1.50 1.79

ftv47 44/1.05 32/1.47 19/1.66 13/1.65 1.66 35/1.09 30/1.16 19/1.34 9/1.38 1.58

ftv55 49/1.13 38/1.44 23/1.57 15/1.65 1.84 37/1.20 32/1.26 25/1.34 12/1.58 2.00

ftv64 57/1.11 46/1.46 30/1.66 18/1.73 1.72 50/1.10 43/1.15 31/1.29 14/1.71 1.45

ftv70 63/1.11 50/1.43 32/1.64 20/1.72 1.96 53/1.26 47/1.14 33/1.21 16/1.57 1.51

kro124p 99/1.11 86/1.30 65/1.36 40/1.41 1.24 81/1.06 70/1.13 57/1.20 34/1.28 1.37

p43 15/1.01 6/1.01 0/1.01 0/1.01 1.01 0/1.01 0/1.01 0/1.01 0/1.01 1.01

rbg323 148/1.02 59/1.17 43/1.19 18/1.30 1.34 235/1.09 22/1.27 6/1.27 0/1.30 1.30

rbg358 108/1.01 47/1.13 27/1.15 22/1.14 1.18 232/1.03 39/1.14 18/1.19 13/1.20 1.22

rbg403 125/1.01 41/1.12 11/1.26 11/1.26 1.17 113/1.05 30/1.14 0/1.24 0/1.24 1.24

rbg443 138/1.00 43/1.14 12/1.24 12/1.24 1.15 127/1.04 32/1.17 0/1.24 0/1.24 1.24

ry48p 47/1.20 37/1.40 23/1.46 11/1.47 1.16 28/1.10 22/1.14 11/1.24 5/1.29 1.21

as symmetric in case of these otherwise undauntedly asymmetric one-way arcs
of cost 0. Note that we did not alter the instance, but only used these additive
errors for relaxation decisions. Finally, β was set to ∞, such that the graph is
treated as completely symmetric. This results in the non-generalized versions of
the tree doubling and Christofides algorithm. The results are shown in Table 1.

The second dataset contains 450 ATSP instances based on travel distances
between random points sampled across different regions and cities in Spain. The
graphs in this dataset have between 50 and 500 vertices. On average 98.8% of
the links are asymmetric (std. dev. 1.08%) and no graph contains arcs of cost
zero. Most links are however only slightly asymmetric: denoting by asymmetry
factor the relative difference between the cost of a links more expensive arc and
its opposite arc, the mean asymmetry factor is 3.55% on average over all graphs
(std. dev. 0.040%). The median asymmetry factor is 1.32% (std. dev. 1.56%) on
average. There are however also links with large asymmetry factor. The highest
asymmetry factor is 15.0 (std. dev. 58.8) on average. Overall this makes the
graphs in the second dataset very relevant to the algorithms we present. Unfor-
tunately, due to computational constraints and the size of the dataset and the
graphs therein, we could only determine the values of the parameters and not the
cost of all optimal tours and the obtained approximation ratio. Figure 3 presents
the relative value of z and k for different values of β.
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Fig. 3. Parameter values relative to graph size for generalized Christofides and tree
doubling algorithms for different values of β. Each box spans the second and third
quartile of the data and whiskers extend for 1.5 inter-quartile-ranges. The median is
marked as a line, the mean as a rhombus and outliers as disks.

6.3 Evaluation

First, we note that most graphs in the TSPLIB contain very little symmetry.
This leads to large parameter values for β = 1, i.e., only some graphs with more
than 10% symmetry have parameter values below 50% of the graph size. Still, we
observe that the approximation factor is always far below the upper bound, never
exceeding even 2.0. Also, we see that interpolating β to reduce the number of
relevant asymmetric links produces a valuable trade-off between approximation
quality and parameter value. Comparing both algorithms, we observe that on the
majority of instances and values for β the generalized tree doubling algorithm
produces smaller parameter values.

This can also be observed on the instances of the second dataset, which we
consider to be more representative of realistic inputs. We want to highlight that
the parameters are significantly smaller than the size of the input graphs even for
small values of β. E.g., for the generalized tree doubling algorithm with β = 1.1
the median relative parameter value over all instances is 0.045. It also seems
that the relative size of the parameters is stable for different input sizes.

These results underline the practicality of our approach, especially with
regards to the parameter values obtained by choosing a suitable β.
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