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Abstract In the smallest grammar problem, we are given a word w and we
want to compute a preferably small context-free grammar G for the singleton
language {w} (where the size of a grammar is the sum of the sizes of its rules,
and the size of a rule is measured by the length of its right side). It is known
that, for unbounded alphabets, the decision variant of this problem is NP-hard
and the optimisation variant does not allow a polynomial-time approximation
scheme, unless P = NP. We settle the long-standing open problem whether
these hardness results also hold for the more realistic case of a constant-size
alphabet. More precisely, it is shown that the smallest grammar problem re-
mains NP-complete (and its optimisation version is APX-hard), even if the
alphabet is fixed and has size of at least 17. The corresponding reduction is
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École Normale Superieure de Lyon, Département Informatique, Lyon, France
E-mail: benjamin.gras@ens-lyon.fr

Markus L. Schmid
Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany,
E-mail: MLSchmid@MLSchmid.de

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.122
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.122


2 Katrin Casel et al.

robust in the sense that it also works for an alternative size-measure of gram-
mars that is commonly used in the literature (i. e., a size measure also taking
the number of rules into account), and it also allows to conclude that even com-
puting the number of rules required by a smallest grammar is a hard problem.
On the other hand, if the number of nonterminals (or, equivalently, the num-
ber of rules) is bounded by a constant, then the smallest grammar problem
can be solved in polynomial time, which is shown by encoding it as a problem
on graphs with interval structure. However, treating the number of rules as a
parameter (in terms of parameterised complexity) yields W[1]-hardness. Fur-
thermore, we present an O(3|w|) exact exponential-time algorithm, based on
dynamic programming. These three main questions are also investigated for
1-level grammars, i. e., grammars for which only the start rule contains non-
terminals on the right side; thus, investigating the impact of the “hierarchical
depth” of grammars on the complexity of the smallest grammar problem. In
this regard, we obtain for 1-level grammars similar, but slightly stronger re-
sults.

Keywords Grammar-Based Compression · Smallest Grammar Problem ·
Straight-Line Programs · NP-Completeness · Exact Exponential-Time
Algorithms

1 Introduction

Context-free grammars are among the most classical concepts in theoretical
computer science. Their wide range of applications, both of theoretical and
practical nature, is well-known and usually forms an integral part of academic
undergraduate courses in computer science. In this paper, we are concerned
with grammars G that describe singleton languages {w} (or, by slightly abus-
ing notation, grammars describing single words).1

1.1 Grammars as Inference Tools and Compressors

Although, from a formal languages point of view, describing a single word
by a context-free grammar seems excessive, there are at least two evident
motivations:

− Compression Perspective:2 The grammar G is a compressed representation
of the word w.

− Inference Perspective: The grammar G identifies the hierarchical structure
of the word w.

The inference perspective can be traced back to the work of Nevill-Manning
and Witten [50,49],3 in which the authors consider algorithmic possibilities

1 Such context-free grammars are also called straight-line programs in the literature.
2 In this work, the term “compression” always refers to lossless data compression.
3 The work [49] also considers the compression perspective.
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of extracting (hierarchical) structure from sequential data, such as texts (in a
natural or formal language), music or DNA, by constructing a grammar for a
given sequence. The hypothesis that small grammars are to be preferred can be
considered as an application of Occam’s razor (note that the size of a grammar
is the sum of the sizes of its rules, where the size of a rule is measured by the
length of its right side). In a more general sense, Nevill-Manning and Witten’s
approach embarks on the quest of inferring the intrinsic information content
of a given sequence, which is a central problem in learning theory and algo-
rithmic information theory (especially Kolmogorov complexity, as mentioned
below). In Nevill-Manning’s PhD-thesis [49], a multitude of connections be-
tween the compression perspective of computing grammars for single words
and other core topics of mathematics and theoretical computer science are
discussed (e. g., the minimum description length principle in learning theory,
information theory, data compression). The inference perspective of computing
grammars for single words has been applied in two more PhD-theses, namely
by de Marcken [48] in order to investigate whether analysing the structure of
small grammars for large English texts could help understanding the struc-
ture of the language itself, and by Gallé [23] in order to infer hierarchical
structures in DNA. Moreover, Lanctot et al. [37] contribute to the work on
estimating the entropy of DNA-sequences (see the references in [37]), by using
an algorithm first proposed by Kieffer and Yang [35] to compute grammars
for DNA-sequences.

While in the above mentioned work, grammars are mainly used as an infer-
ence tool, the obvious connections to data compression are often highlighted
as well (e. g., in [49]). The work of Kieffer et al. [36,35,62] directly approaches
the concept of representing words by grammars from a traditional data com-
pression perspective, i. e., we want to compute a small grammar representing
a large given word w (in the following, we denote the general concept of com-
pressing a single word by a context-free grammar as grammar-based compres-
sion). Besides the above mentioned papers by Nevill-Manning and Witten, the
work by Kieffer et al. is usually stated as the second origin of using grammars
for single words, but a closer look into the older literature reveals that the
external pointer macro scheme (without overlapping and with pointer size 1)
defined by Storer and Szymanski [58,57] is also equivalent to grammar-based
compression.

Another motivation is that grammar-based compression, like any lossless
data compression scheme, provides a computable upper bound of the Kol-
mogorov complexity (see [40]). Since this central measure in algorithmic infor-
mation theory is generally incomputable, such computable approximations are
important and, in this regard, grammars are of relevance, since, in compari-
son to other practically applied compression schemes, they achieve high com-
pression rates and therefore yield a better approximation of the Kolmogorov
complexity (in this regard, note that many practically relevant compression
schemes, e. g., some of the ones mentioned in Section 1.3, allow fast compres-
sion and decompression, but cannot achieve exponential compression rates).
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1.2 Algorithmics on Compressed Strings

The original motivations outlined so far are still relevant, but the actual reason
why grammar-based compression has experienced a renaissance and thrives
today as an independent and important field of research on its own are the
following. While in the early days of computer science, the most important
requirements for compression schemes were fast (i. e., linear or near linear
time) compression and decompression, nowadays the investigation regarding
whether they are suitable for solving problems directly on the compressed
data without prior decompression forms a vibrant research area.4 This area
is usually subsumed under the term algorithmics on compressed strings, and
grammar-based compression is particularly well suited for this purpose.

The success of grammars with respect to algorithmics on compressed strings
is due to the fact that they cover many compression schemes from practice
(most notably, the family of Lempel-Ziv encodings) and that they are mathe-
matically easy to handle (see Lohrey [41] for a survey on the role of grammar-
based compression for algorithmics on compressed strings). Many basic prob-
lems on strings, e. g., comparison, pattern matching, membership in a regular
language, retrieving subwords, etc. can all be solved in polynomial time di-
rectly on the grammars [41]. In addition, grammar-based compression has been
successfully applied in combinatorial group theory (see the textbook [42] by
Lohrey) and to prove problems in computational topology to be polynomial-
time solvable [41]. Grammars as compression schemes have also been extended
to more complicated objects, e. g., trees (see [1,43,44,45,28], and [27,28] for
applications in term unification) and two-dimensional words (see [8]). It is also
worth pointing out the successful applications of compression-techniques for
solving word equations (see, e. g., [53,34]).

A rather recent result is that any context-free grammar for a single word
can be transformed in linear time into an equivalent one that is balanced in
the sense that the depth of its derivation tree is logarithmic in the size of the
represented word (see [24]). This result has a direct impact on basic algorithmic
problems on grammar-compressed data, e. g., the random access problem (i. e.,
accessing in the compressed string the symbol at a given position).

1.3 The Smallest Grammar Problem

For grammar-based compression, the central computational problem is that of
computing a smallest (or at least small) grammar for a given word, which is
called the smallest grammar problem,5 and the respective literature is mainly

4 There is a Dagstuhl seminar series concerned with algorithmics on compressed sequences
that so far took place in 2008 [10], 2013 [46] and 2016 [9].

5 A concept of grammar complexity has also been introduced and is investigated in the
area of descriptional complexity of formal languages (see [3,20,12,18,30,32]). However, this
differs from the topic of this paper, since there, grammars for finite languages are investigated
and the complexity measure under interest is the number of rules (note that in [30,32], the
size of grammars is also considered).
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about approximation algorithms:6 LZ78 [63], LZW [61], Bisection [36], Se-
quitur [49,50] and Sequential [62], Longest Match [35], Greedy [4],
Re-Pair [38] (the names of algorithms in this list are according to [14,39]).
These algorithms share the benefit of being rather simple and fast, and their
approximation ratios have been studied thoroughly by Charikar et al. in [14],
by Lehman in his PhD-thesis [39] and some bounds have recently been fur-
ther improved by Hucke et al. [33]. Unfortunately, none of the approxima-
tion ratios are constant and the currently best achieved approximation ratio is

O
(

log
(
|w|
m∗

))
, where m∗ is the size of a smallest grammar (i. e., it is still open

whether an approximation algorithm with a constant approximation-ratio ex-
ists, or equivalently, whether the problem is in APX). This result is due to
the algorithms by Rytter [54] and Charikar et al. [14,39], which have been
developed independently from each other and are not mentioned in the above
list. On the other hand, assuming P 6= NP, it has been shown in [14,39] that
an approximation ratio better than 8569

8568 ≈ 1.0001 is not possible (thus, ruling
out a polynomial-time approximation scheme (PTAS)). However, the research
seems to have stagnated at this huge gap between lower and upper bound and
still neither an approximation algorithm with a constant approximation ratio
nor stronger inapproximability results are known.

The strong bias towards approximation algorithms is usually justified by
the general NP-hardness of the smallest grammar problem, but, as explained
next, this theoretical justification is seriously flawed. The NP-completeness can
be shown by a reduction from vertex cover (see [14,39]), but in the reduction,
an unbounded number of symbols in the underlying alphabet is needed. This
means nothing less than that the hardness-reduction is invalid for any realistic
scenario, where we deal with a constant alphabet (even more, if the alphabet is
rather small, as it is the case in practical applications). Consequently, since the
motivation for the approximation algorithms mentioned above is of a rather
practical kind (i. e., string compression in real-world scenarios), this theoreti-
cal foundation falls apart (in particular, note that an unbounded alphabet is
also necessary for the inapproximability result of [14,39]). One reason for this
situation is probably that in [5], it is claimed that the hardness for alphabets
of size 3 follows from [57], but a closer look into [57] does not confirm this
(we elaborate on this claim in Section 2.4). Consequently, the NP-hardness of
the smallest grammar problem for fixed alphabets is essentially open (for well
over 30 years, taking [58,57] as the first reference, which investigates hardness
and complexity questions).

6 Most of these algorithms were originally designed as compression algorithms (with
slightly different purposes than solving the smallest grammar problem), but they can also
be regarded as approximation algorithms for the smallest grammar problem and have also
been investigated in this regard in [14,39].
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1.4 Our Contribution

The main result of this paper is a reduction that proves the smallest grammar
problem for fixed alphabets to be NP-complete, at least for alphabet sizes of
17 or larger. As explained above, this closes an important gap in the literature
and therefore puts the previous work on grammar-based compression on a
more solid theoretical foundation.

Moreover, it also follows that the optimisation version of the smallest gram-
mar problem is APX-hard; thus, the impossibility of a PTAS, previously only
known for unbounded alphabets, carries over to the more realistic case of
bounded alphabets. By a minor modification of this reduction, we can also
show that these two hardness results hold for a slightly different (but fre-
quently used) size measure of grammars, i. e., the rule-size, which equals the
size of a grammar as defined above plus the number of its rules (both these
measures are formally defined Section 2.2).

Given these negative complexity results, we move on to the question of
whether smallest grammars can be efficiently computed, if certain parameters
(e. g., levels of the derivation tree, number of rules) are bounded. In this re-
gard, we show that smallest grammars can be computed in polynomial time,
provided that the size of the nonterminal alphabet (i. e., number of rules) is
bounded. This result, which is due to an encoding of the smallest grammar
problem as a problem on graphs with interval structure, raises two follow-
up questions: (1) is the problem fixed-parameter tractable with respect to the
number of rules, (2) is it possible to efficiently compute, how many rules are at
least necessary for a smallest grammar? Both of these questions are answered
in the negative, by showing W[1]-hardness and NP-hardness, respectively.

Finally, we investigate exact exponential-time algorithms which are not yet
considered in the literature. We consider this a relevant topic, since grammars
are particularly suitable for solving basic problems directly on the compressed
representation without decompression, which motivates scenarios, where an
extensive running time is invested only once, in order to obtain an optimal
compression, which is then stored and worked with. While brute-force algo-
rithms with running time O*(c|w|), for a constant c, can be easily found, we
present a dynamic programming algorithm with running time O*(3|w|).

The exploitation of hierarchical structure is one of the main features of
grammars (making them suitable tools for structural inference, and also al-
lowing exponential compression rates) and is reflected in the number of levels
of the corresponding derivation tree. Hence, from a (parameterised) complexity
point of view, it is natural to measure the impact of this “hierarchical depth”
of grammars with respect to the complexity of the smallest grammar prob-
lem. To this end, we investigate the above mentioned questions also for 1-level
grammars, i. e., grammars in which only the start rule contains nonterminals
and, surprisingly, our results suggest that computing general grammars is, if at
all, only insignificantly more difficult than computing 1-level grammars. More
precisely, the smallest grammar problem for 1-level grammars is NP-hard for
alphabets of size 5 (also with respect to the rule size measure), W[1]-hard if
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parameterised by the number of rules, it can be solved in polynomial time if
the number of rules is bounded by a constant and there is an O*(1.8392|w|)
exact algorithm. Moreover, the exact exponential-time algorithm for the gen-
eral case works incrementally in the sense that in the process of producing
a smallest grammar, it also produces a smallest 1-level grammar, a smallest
2-level grammar and so on.

1.5 Outline of the Paper

In Section 2, we give basic definitions, we define the smallest grammar problem,
we illustrate it with several examples and also illustrate in detail the connec-
tions between grammar-based compression and the related macro schemes by
Storer and Szymanski [58]. The next section contains the hardness results men-
tioned above, where the 1-level and the multi-level case is treated separately in
Sections 3.1 and 3.2, respectively (in Section 3.3, we define and discuss possi-
ble extensions of the hardness reductions). The second main part of the paper
is Section 4, where we show that the smallest grammar problem can be solved
in polynomial time, if the number of nonterminals is bounded (in Section 4.1,
we discuss some related questions). In the last part, Section 5, we first present
a (simple) exact exponential-time algorithm for the 1-level case and then, in
Section 5.2, we define the dynamic programming algorithm for the multi-level
case. Finally, in Section 6, we summarise our results, point out open problems
and mention further research tasks.

2 Preliminaries

In this section, we first introduce some general mathematical definitions and
terminology about strings, and some basic concepts from graph theory and
complexity theory. Then we define grammars and the smallest grammar prob-
lem and illustrate it by several examples. We conclude this section by a discus-
sion of Storer and Szymanski’s external pointer macro scheme already men-
tioned in Section 1.

Let N = {1, 2, 3, . . .} denote the natural numbers. By |A|, we denote the
cardinality of a set A. Let Σ be a finite alphabet of symbols. A word or string
(over Σ) is a sequence of symbols from Σ. For any word w over Σ, |w| denotes
the length of w and ε denotes the empty word, i. e., |ε| = 0. The symbol Σ+

denotes the set of all non-empty words over Σ and Σ∗ = Σ+ ∪ {ε}. For the
concatenation of two words w1, w2 we write w1 ·w2 or simply w1w2. For every
symbol a ∈ Σ, we denote by |w|a the number of occurrences of symbol a in
w. We say that a word v ∈ Σ∗ is a factor of a word w ∈ Σ∗ if there are
u1, u2 ∈ Σ∗ such that w = u1vu2. If u1 = ε (or u2 = ε), then v is a prefix
(or a suffix, respectively) of w. Furthermore, F(w) = {u : u is a factor of w}
and F≥2(w) = {u : u ∈ F(w), |u| ≥ 2}. For a position j, 1 ≤ j ≤ |w|, we
refer to the symbol at position j of w by the expression w[j] and w[j..j′] =
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w[j]w[j + 1] . . . w[j′], j ≤ j′ ≤ |w|. By wR, we denote the reversal of w, i. e.,
wR = w[n]w[n− 1] . . . w[1], where |w| = n.

A factorisation of a word w is a tuple (u1, u2, . . . , uk) with ui 6= ε, 1 ≤ i ≤
k, such that w = u1u2 . . . uk.

2.1 Basic Concepts of Graph Theory and Complexity Theory

We use undirected graphs, which are represented as pairs (V,E), where V is
the set of vertices and E is the set of edges. For the sake of convenience, we
write edges {u, v} ∈ E also as (u, v) or (v, u). For a vertex v ∈ V , N(v) =
{u : (v, u) ∈ E} is the (open) neighbourhood (of v), N [v] = N(v) ∪ {v} is the
closed neighbourhood (of v) and, furthermore, we extend the notation of closed
neighbourhood to sets C ⊆ V in the obvious way, i. e., N [C] =

⋃
v∈C N [v]. A

graph is cubic (or subcubic) if, for every v ∈ V , |N(v)| = 3 (or |N(v)| ≤ 3,
respectively).

A set C ⊆ V is

− an independent set if, for every u, v ∈ C, (u, v) /∈ E,
− a dominating set if N [C] = V ,
− an independent dominating set if it is both an independent and a dominat-

ing set,
− a vertex cover if, for every (u, v) ∈ E, {u, v} ∩ C 6= ∅.

We are concerned with the corresponding problems of deciding, for a given
graph G and a k ∈ N, whether there is a vertex cover (or an independent
dominating set) of cardinality at most k. It is a well-known fact that these
decision problems are NP-complete problems (see [25]).

For k ∈ N, a graph G = (V,E), with |V | = n, is a k-interval graph, if there
are intervals Ii,j , 1 ≤ i ≤ |V |, 1 ≤ j ≤ k, on the real line, such that G is

isomorphic to ({vi : 1 ≤ i ≤ |V |}, {(vi, vi′) :
⋃k
j=1 Ii,j ∩

⋃k
j=1 Ii′,j 6= ∅}). For

1-interval graphs (which are also just called interval graphs), it is possible
to compute minimal independent dominating sets in linear time (see [19];
note that a perfect elimination ordering (that is part of the input of Farber’s
algorithm) can be easily computed in our applications, because the intervals
are clear).

We assume the reader to be familiar with the basic concepts of complexity
theory (for unexplained notions, see Papadimitriou [52]) and the theory of
NP-completeness (see [52] and [25]).

As usual, for our running-time estimations, we mainly use the O-notation,
but sometimes also theO*-notation (ignoring polynomial factors). The latter is
appropriate, if we are dealing with exponential-time algorithms (see Section 5).

Since we also wish to discuss some of our results from the parameterised
complexity point of view, we shall briefly mention the concepts relevant for us
(for detailed explanations on parameterised complexity, the reader is referred
to the textbooks [17,21,15]). A parameterised problem is a decision problem
with instances (x, k), where x is the actual input and k ∈ N is the parameter.
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By XP, we denote the class of parameterised problems that are solvable in
time O(nf(k)) (where n is the size of the instance) and FPT denotes the class
of fixed-parameter tractable problems, i. e., problems having an algorithm with
running-time O(g(k) · f(n)), for a computable function g and polynomial f .

In order to argue about fixed-parameter intractability, we need the follow-
ing kind of reductions. A (classical) many-one reduction R from a parame-
terised problem to another is an fpt-reduction, if the parameter of the target
problem is bounded in terms of the parameter of the source problem, i. e.,
there is a recursive function h : N → N such that R(x, k) = (x′, k′) implies
k′ ≤ h(k).

We shall use two different kinds of fixed-parameter intractability. First, if
a parameterised problem is NP-hard if the parameter is fixed to a constant,
then it is not in FPT, unless P = NP. As a slightly weaker form of fixed-
parameter intractability, the framework of parameterised complexity provides
the classes of the so-called W-hierarchy, for which the hard problems (with
respect to fpt-reductions) are considered fixed-parameter intractable, i. e., they
are not in FPT (under some complexity theoretical assumptions). For a detailed
definition of the W-hierarchy, we refer to the textbooks [17,21,15]; in this
paper, we only use the first level of this hierarchy, i. e., the class W[1], and our
respective intractability results are W[1]-hardness results.

A minimisation problem7 P is a triple (I, S,m) with I being the set of
instances, S being a function that maps instances x ∈ I to the set of feasible
solutions for x, and m being the objective function that maps pairs (x, y)
with x ∈ I and y ∈ S(x) to a positive rational number. For every x ∈ I,
we denote m∗(x) := min{m(x, y) : y ∈ S(x)}. For two minimisation problems
P1, P2 with Pj given by (Ij , Sj ,mj), j ∈ {1, 2}, an L-reduction from P1 to P2

is a quadruple (f, g, β, γ) such that

− f is a polynomial-time computable function from I1 to I2 that satisfies, for
every x ∈ I1 with S1(x) 6= ∅, S2(f(x)) 6= ∅.

− g is a polynomial-time computable function that, for every x ∈ I1 and
y ∈ S2(f(x)), maps (x, y) to a solution in S1(x).

− β is a constant such that m∗2(f(x)) ≤ β ·m∗1(x) for each x ∈ I1.
− γ is a constant such that m1(x, g(x, y)) − m∗1(x) ≤ γ · (m2(f(x), y) −
m∗2(f(x))) for each x ∈ I1 and y ∈ S2(f(x)).

We shall use L-reductions in order to show hardness for APX, the class of op-
timisation problems for which there exists an approximation algorithm with a
constant approximation ratio. Note that, unless P = NP, an APX-hard problem
does not have a polynomial-time approximation scheme (see [6] for detailed
information of approximation hardness).

7 As we are not considering maximisation problems, we define the relevant terminology
only for minimisation problems.
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2.2 Grammars

A context-free grammar is a tuple G = (N,Σ,R, S), where N is the set of
nonterminals, Σ is the terminal alphabet, S ∈ N is the start symbol and
R ⊆ N×(N∪Σ)+ is the set of rules (as a convention, we write rules (A,w) ∈ R
also in the form A → w). A context-free grammar G = (N,Σ,R, S) is a
singleton grammar if R is a total function N → (N ∪ Σ)+ and the relation
{(A,B) : (A,w) ∈ R, |w|B ≥ 1} is acyclic.

For a singleton grammar G = (N,Σ,R, S), let DG : (N ∪Σ)→ (N ∪Σ)+

be defined by DG(A) = R(A), A ∈ N , and DG(a) = a, a ∈ Σ. We extend
DG to a morphism (N ∪ Σ)+ → (N ∪ Σ)+ by setting DG(α1α2 . . . αn) =
DG(α1)DG(α2) . . .DG(αn), for αi ∈ (N ∪ Σ), 1 ≤ i ≤ n. Furthermore, for
every α ∈ (N ∪Σ)+, we set D1

G(α) = DG(α), DkG(α) = D(Dk−1G (α)), for every

k ≥ 2, and DG(α) = limk→∞DkG(α) is the derivative of α. By definition,
DG(α) exists for every α ∈ (N ∪Σ)+ and is an element from Σ+. The size of
the singleton grammar G is defined by |G| =

∑
A∈N |DG(A)| and the rule-size

of G is defined by |G|r = |G|+ |N | or, equivalently, |G|r =
∑
A∈N (|DG(A)|+1).

Our main size measure will be |·|. The rule-size |·|r will play a role in Section 3.3
and will be discussed in more detail there.

Remark 1 The class of singleton grammars exactly coincides with the class
of context-free grammars that do not have unreachable rules (i. e., rules that
cannot occur in any derivation) and that can derive exactly one word. As
mentioned before, such grammars are also called straight-line programs in the
literature. A context-free grammar that can derive only a single word and is
not a singleton grammar must contain some rules that are not reachable. Since
unreachable rules can easily be discovered and removed, we directly add this
restriction to the concept of singleton grammars.

The derivation tree of G is a ranked ordered tree with node-labels from
Σ ∪ N , inductively defined as follows. The root is labelled by S and every
node labelled by A ∈ N with D(A) = α1α2 . . . αn has n children labelled by
α1, α2, . . . , αn in exactly this order; note that this means that all leaves are
from Σ.

From now on, we simply use the term grammar instead of singleton gram-
mar and if the grammar under consideration is clear from the context, we
also drop the subscript G. We set D(G) = D(S) and say that G is a gram-
mar for D(G). Since for singleton grammars, the start symbol is somewhat
superfluous, we will ignore it and denote grammars G = (N,Σ,R, S) in the
form G = (N,Σ,R, ax) instead, where ax = R(S) is called the axiom (of G).
In particular, we interpret derivations to start directly with the axiom and,
correspondingly, we also sometimes ignore the root of derivation trees. How-
ever, this does not change the size measures |·| and |·|r, which, when ignoring
the start symbol, can also be defined as |G| = (

∑
A∈N |DG(A)|) + |ax| and

|G|r = (
∑
A∈N (|DG(A)|+ 1)) + |ax|+ 1.

The number of levels of a grammar G = (N,Σ,R, ax) is min{k : DkG(ax) =
DG(ax)}, and a grammar with d levels is a d-level grammar. Intuitively speak-
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S

A ba A B b

B a B B a B baab

baab baab baab baab

Fig. 1 Derivation tree for the grammar G from Example 1 (for the sake of convenience,
neighbouring leaves are merged).

ing, a grammar G is a d-level grammar if we need exactly d derivation steps
in order to derive D(G) from the axiom; thus, the number of levels measures
what we called in the introduction the “hierarchical depth” of a grammar.
Note that for a d-level grammar, the derivation tree has a maximum depth of
d + 1 and d + 2 levels (when counting the root as well). With this definition,
the grammars that are the most restricted with respect to their hierarchical
depth and that are still reasonable, are 1-level grammars (i. e., an axiom that
derives a word in one step).

Let G = (N,Σ,R, ax) be a 1-level grammar. The profit of a rule (A,α) ∈ R
is defined by p(A) = |ax|A(|α|−1)−|α|. Intuitively speaking, if all occurrences
of A in ax are replaced by α and the rule A→ α is deleted, then the size of the
grammar increases by exactly p(A). Consequently, |G| = |D(G)|−

∑
A∈N p(A).

Example 1 The grammar G = (N,Σ,R, ax) with N = {A,B}, Σ = {a, b},
ax = AbaABb and

R = {A→ BaB,B → baab}

is a 2-level grammar of size 13 (and rule-size 16) with axiom AbaABb. Fur-
thermore, D(B) = baab, D(A) = D(B)aD(B) = baababaab and

D(G) = D(S) = baababaab︸ ︷︷ ︸
D(A)

ba baababaab︸ ︷︷ ︸
D(A)

baab︸ ︷︷ ︸
D(B)

b .

Consequently, G is a size 13 representation of a word of length 25. A derivation
tree of G can be seen in Figure 1.

Replacing the axiom by R(A)baR(A)Bb = BaBbaBaBBb and deleting
rule A → BaB turns G into a 1-level grammar G′ with D(G′) = D(G).
Moreover, p(B) = |ax|B(|R(B)| − 1)− |R(B)| = 5(4− 1)− 4 = 11 and |G′| =
|D(G′)| − p(B) = 25− 11 = 14.

A smallest grammar for a word w is any grammar G with D(G) = w and
|G| ≤ |G′| for every grammar G′ with D(G′) = w; generally, a grammar G
is smallest if it is a smallest grammar for D(G) (grammars that are smallest
with respect to the rule-size measure will be called r-smallest grammars). The
decision problem variant of computing smallest grammars is defined as follows:
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Smallest Grammar Problem (SGP)
Instance: A word w and a k ∈ N.
Question: Does there exist a grammar G with D(G) = w and |G| ≤ k?

The Smallest 1-Level Grammar Problem (1-SGP) is defined analo-
gously, with the only difference that we ask for a 1-level grammar of size
at most k. By SGPr and 1-SGPr, we denote the problem variants, where we
consider the rule-size instead of the size, i. e., we require |G|r ≤ k.

The optimisation variant of SGP, i. e., the task of actually producing a
smallest grammar for a given word w, shall be denoted by SGPopt (and
SGPr,opt if we are concerned with the rule-size). More precisely, according
to the definitions given in Section 2.1, SGPopt = (I, S,m), where I = Σ∗,
S(w) = {G : D(G) = w} and m(w,G) = |G| (or m(w,G) = |G|r for SGPr,opt).

2.3 Examples

While the following examples illustrate the smallest grammar problem in gen-
eral, they are particularly tailored to the technicalities to be encountered in
Section 3, i. e., they shall point out the difficulties arising in predicting how
factors in a larger word are compressed by a smallest grammar, which is crucial
in the design of gadgets for a hardness reduction.

Let w =
∏n
i=1 10i be a word over the binary alphabet Σ = {0, 1}, where

n = 2k, k ∈ N. This word has a very simple structure and can be interpreted
as a list of a (potentially unbounded) number of integers. This is crucial, since
if we want to encode objects (e. g., graphs), the size of which is not bounded in
terms of the alphabet size, then structures of this form will inevitably appear.

One way of compressing w that comes to mind is by the use of rules A1 →
10, Ai → Ai−10, 2 ≤ i ≤ n − 1, and an axiom A1A2 . . . An−1An−10, which
leads to the grammar G1 = (N,Σ,R, ax), with:

N = {Ai : 1 ≤ i ≤ n− 1} ,
R = {A1 → 10} ∪ {Ai → Ai−10: 2 ≤ i ≤ n− 1} ,
ax =A1A2 . . . An−1An−10 .

This grammar has an overall size given by |G1| = n+ 1︸ ︷︷ ︸
ax

+ 2(n− 1)︸ ︷︷ ︸
rules

= 3n− 1.

However, it is also possible to construct the factors 0i, 1 ≤ i ≤ n, “from
the middle” by rules A1 → 010, Ai → 0Ai−10, 2 ≤ i ≤ n

2 − 1, and an axiom
1(A1)2(A2)2 . . . By using these ideas, we can construct the smaller grammar
G2 = (N,Σ,R, ax), where

N = {Ai : 1 ≤ i ≤ n
2 − 1} ∪ {Bi : 1 ≤ i ≤ k − 2} ,

R = {A1 → 010, B1 → 00} ∪ {Ai → 0Ai−10: 2 ≤ i ≤ n
2 − 1}∪

{Bi → Bi−1Bi−1 : 2 ≤ i ≤ k − 2} ,
ax = 1(A1)2(A2)2 . . . (An

2−1)20An
2−10Bk−2Bk−2 .
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We have |G2| = n+ 4︸ ︷︷ ︸
ax

+ 3(n2 − 1) + 2(k − 2)︸ ︷︷ ︸
rules

= 5n
2 + 2k − 3.

Both of these grammars achieve an asymptotic compression rate of order
O(
√
|w|), but, generally, grammars are capable of exponential compression

rates (see [14,39]). Aiming for such exponential compression, it seems worth-

while to represent every unary factor 02
`

, 1 ≤ ` ≤ k, by a nonterminal B`
(obviously, this requires only k rules of size 2) and then represent all unary
factors by sums of these powers (e. g., 074 is compressed by B1B3B6). Formally,
consider G3 = (N,Σ,R, ax), where

N = {Bi : 1 ≤ i ≤ k − 1} ,
R = {B1 → 00} ∪ {Bi → Bi−1Bi−1 : 2 ≤ i ≤ k − 1} ,

ax =

(
n−1∏
i=1

1αi

)
(Bk−1)2 ,

where αi = x0x1 . . . xk−1 and, for every j, 1 ≤ j ≤ k−1, xj = Bj if the jth bit
(i. e., the one representing 2j) of the binary representation of i is 1 and xj = ε
otherwise. However, this yields a grammar of size

|G3| = 1
2 (n− 1)k︸ ︷︷ ︸

ax

+ 2(k − 1)︸ ︷︷ ︸
rules

=
k(n+ 3)

2
− 2 ,

which, if k is sufficiently large, is worse than the previous grammars.
A grammar that is even smaller than G2 can be obtained by combining

the idea of G2 with that of representing factors 02
`

by nonterminals B`. More

precisely, for every `, 1 ≤ i ≤ k − 2, we represent 02
`

by an individual nonter-
minal B` and, in addition, we use rules A1 → 010, Ai → 0Ai−10, 2 ≤ i ≤ n

4 .
Then the left and right half of w can be compressed in the way of G2, with
the only difference that in the right part, for every unary factor, we also need
an occurrence of Bk−1, i. e., consider G4 = (N,Σ,R, ax) with:

N = {Ai : 1 ≤ i ≤ n
4 } ∪ {Bi : 1 ≤ i ≤ k − 1} ,

R = {A1 → 010, B1 → 00} ∪ {Ai → 0Ai−10: 2 ≤ i ≤ n
4 }∪

{Bi → Bi−1Bi−1 : 2 ≤ i ≤ k − 1} ,
ax = 1(A1)2(A2)2 . . . (An

4
)2Bk−2

(A1Bk−1)2(A2Bk−1)2 . . . (An
4−1Bk−1)2An

4
Bk−1Bk−2 .

This grammar yields a size of |G4| = 3n
2 + 1︸ ︷︷ ︸

ax

+ 3n
4 + 2(k − 1)︸ ︷︷ ︸

rules

= 9n
4 + 2k − 1.

Note that again the asymptotic compression rate is of order O(
√
|w|).

These considerations point out that even for simply structured words like
w, it is very difficult to determine the structure of a smallest grammar or
its size. However, for reducing an NP-hard problem, we need to know, to at
least some extent, how smallest grammars compress the constructed strings in
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order to relate the reduced instances to the original instances. Consequently,
the above examples point out the challenges that arise in this regard.

We conclude this list of examples, by pointing out that giving a smallest
grammar for our toy-example w =

∏n
i=1 10i in dependency of n, is essentially

an open problem. A respective asymptotic bound of Ω(
√
|w|) is a reasonable

assumption, but we have no proof for this claim.

2.4 Storer and Szymanski’s External Pointer Macro Scheme and
Grammar-Based Compression

Storer and Szymanski [58] introduce a very general form of a compression
scheme that covers a large variety of different compression strategies, in par-
ticular also grammar-based compression. On the one hand, we cite their work
as the first that, in a sense, considered grammar-based compression, but in
the context of our paper, it is also of greater importance for the following
reasons. The technical report [57]8 provides a comprehensive complexity anal-
ysis of many different variants of Storer and Szymanski’s compression scheme
with many NP-hardness reductions. Some of the considered variants also con-
cern the case of fixed alphabets, which has led to the misunderstanding that
the hardness of the smallest grammar problem for fixed alphabets is provided
by [57], leading to the misconception that also in practical scenarios – i. e.,
for fixed alphabets – grammar-based compression is known to be intractable.
Since closing this gap by providing the assumed hardness result is one of the
main objectives of this paper, we shall discuss in some more detail why it
cannot already be found among the many hardness results of [57].

First, we recall the definitions of Storer and Szymanski [58] that are relevant
here. For a word w ∈ Σ+ and a pointer size p ∈ N, a compressed form of w for
pointer size p using the external pointer macro, EPM for short, is any word
s0#s1 with s0, s1 ∈ (Σ ∪ {1, 2, . . . , |s0|}2)+, # /∈ Σ, and w can be obtained
from s0#s1 by repeating the following two steps:

− Replace every symbol (i, j) in s1 by s0[i..j],
− repeat the first step until s1 equals w.

The size of an EPM s0#s1 is defined by
∑|s0s1|
i=1 `i, where `i = 1, if s0s1[i] ∈ Σ

and `i = p, otherwise (i. e., each occurrence of a symbol from {1, 2, . . . , |s0|}2
(the actual pointers) contribute the pointer size p to the overall size of the
EPM).

A grammar for a word w easily translates into an EPM for w. For example,
the grammar G = (N,Σ,R, ax) with N = {A,B}, Σ = {a, b, c}, R = {A →
BcB,B → ba} and ax = AabBBAc translates into the external pointer macro
ba(1, 2)c(1, 2)#(3, 5)ab(1, 2)(1, 2)(3, 5)c. More precisely, the prefix ab is the
right side of the rule for B, (1, 2)c(1, 2) corresponds to the right side of the
rule for A, where the occurrences of B are represented by pointers (1, 2) to

8 The report can be downloaded at http://www.informatik.uni-trier.de/~fernau/

Sto77.pdf.

http://www.informatik.uni-trier.de/~fernau/Sto77.pdf
http://www.informatik.uni-trier.de/~fernau/Sto77.pdf


On the Complexity of the Smallest Grammar Problem over Fixed Alphabets 15

the prefix s0[1..2] = ab, (3, 5)ab(1, 2)(1, 2)(3, 5)c corresponds to the axiom,
where occurrences of A and B are represented by pointers (3, 5) and (1, 2),
respectively. If the pointer size is 1, then the EPM has the same size as the
grammar.

If an EPM s0#s1 is non-overlapping, i. e., it is never the case that for two
pointers (i, j) and (k, `) we have i ≤ k ≤ j or k ≤ i ≤ `, then it also translates
into a grammar by transforming each pointer (i, j) into a nonterminal A(i,j)

with a rule A(i,j) → s0[i..j]. In this regard, it is important to note that the
property of an EPM that s1 can be turned into w by repeated replacement of
the pointers ensures that the derivation function of the grammar constructed
in this way is acyclic.

We conclude that the concept of singleton grammars and the concept of
EPMs with pointer size 1 and without overlapping are more or less identical,
i. e., they just differ syntactically. Consequently, the problem of grammar-based
compression and the problem of computing smallest EPMs with pointer size
1 and without overlapping are identical problems.

However, a closer look at Storer [57] shows that in this paper the variant of
computing EPMs with pointer size 1 is not considered. Instead, the focus is on
EPMs (and other kind of compression schemes), for which the pointer size is
not even constant, but a function of the length of the word that is compressed,
typically logarithmic in the size |w|. Note that this avoids the main difficulties
encountered when designing a reduction for grammar-based compression with
fixed alphabets (see Section 3): the factors that encode vertices of a graph
must have unbounded length, which makes it rather difficult to control how
the grammar compresses these codewords. On the other hand, if the pointers
(which correspond to nonterminals in the grammar) have size log(|w|), then
it does not make sense to compress factors that are smaller than this size
(since we gain nothing by replacing them by pointers). It is straightforward
to represent a graph as a word of length linear in the size of the graph, where
the length of the factors (i. e., the codewords) that represent single vertices are
logarithmic in the size of the graph (this is the case in all reductions of [14,39,
58]). The property mentioned above, i. e., that factors of logarithmic size are
not compressed, then simply means that we can assume that the codewords
for vertices are not compressed in the string that describes the graph, which
makes is rather simple to devise a hardness reduction (in fact, controlling
the possible compression of codewords is the main technical challenge in our
reductions).

3 NP-Hardness of Computing Smallest Grammars for Fixed
Alphabets

In their basic structure, the hardness reductions to be presented next are sim-
ilar to the one from [14,39], which shows NP-hardness of SGP for unbounded
alphabets by a reduction from the vertex cover problem. All the effort of this
section will consist in the extension of the general idea to the case of a fixed
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alphabet. In order to facilitate the accessibility of our technical proofs, we shall
sketch this reduction from [14,39].

Let G = (V,E) be a graph with

V = {v1, . . . , vn} and E = {(vj2i−1
, vj2i) : 1 ≤ i ≤ m} .

We define the following word over the alphabet V ∪{�i : 1 ≤ i ≤ 5n+m}∪{#}
(for the sake of simplicity, every individual occurrence of � in the word stands
for a distinct symbol of {�i : 1 ≤ i ≤ 5n+m}):

wG =

n∏
i=1

(#vi � vi#�)2
n∏
i=1

(#vi#�)
m∏
i=1

(#vj2i−1
#vj2i#�) .

Let G = (N,Σ,R, S) be a smallest grammar for wG , then we can observe
the following:

− For every A ∈ N , D(A) ∈ {#vi, vi#,#vi#: 1 ≤ i ≤ n}. This is due to the
fact that the only factors of wG with repetitions are of the form #vi, vi#
or #vi#.

− We can assume that, for every i, 1 ≤ i ≤ n, there are rules Ai → #vi
and Bi → vi#, since if some of these rules are missing, then adding them
and compressing the respective factors does not increase the size of the
grammar.

− Let I ⊆ {1, 2, . . . , n} contain exactly the indices i such that a rule with
derivative #vi# exists; moreover, we can assume that all these rules have
the form Ci → Ai#.

− Let Γ = {vi : i ∈ I}. If an edge (vj2i−1
, vj2i) is not covered by Γ , then

adding a rule Cj2i−1
→ Aj2i−1

# or Cj2i → Aj2i# does not increase the size
of the grammar. So we can assume that Γ is a vertex cover.

These observations show that there exists a grammar G for wG with |G| ≤
15n+ 3m+ k if and only if there is a vertex cover for G of size at most k (for
a formal proof, we refer to [14,39]).

A simple modification of this reduction yields the following.

Theorem 1 1-SGP is NP-complete.

Proof We slightly change the reduction from [14,39] as follows:

wG =

n∏
i=1

(#vi � vi#�)2
n∏
i=1

(#vi#�)2
m∏
i=1

(#vj2i−1#vj2i#�) .

The only difference from the original reduction is that the size of the rules with
derivative #vi# has increased by 1, i. e., they now have the form Ci → #vi#,
so by repeating the factors #vi#�, we make sure that adding such a rule
whenever an edge is not covered does not increase the size of the grammar.

ut
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In these reductions, we encode the different vertices of a graph by single
symbols and also use individual separator symbols (i. e., symbols with only
one occurrence in the word to be compressed). This makes it particularly easy
to devise suitable gadgets, but, on the other hand, it assumes that we have
an arbitrarily large alphabet at our disposal. In the remainder of this sec-
tion, we shall extend these hardness results to the more realistic case of fixed
alphabets. The general structure of our reductions is similar to the ones of
[14,39,57] sketched above, but, due to the constraint of having a fixed alpha-
bet, they substantially differ on a more detailed level. More precisely, since
fixed alphabets make it impossible to use single symbols (or even words of
constant size) as separators or as representatives for vertices, we need to use
special encodings for which we are able to determine how a smallest gram-
mar will compress them (in this regard, recall our examples from section 2.3
demonstrating how difficult it can be to determine a smallest grammar even
for a single simply structured word). This constitutes a substantial technical
challenge, which complicates our reductions considerably.

In the following, we prove that 1-SGP and SGP are NP-hard, even for
constant alphabet of size 5 and 24, respectively. The stronger result claimed
in the abstract and introduction, i. e., the hardness of SGP for alphabets of
size 17, is presented later as an improvement (see Section 3.4, Corollary 1).

3.1 The 1-Level Case

As a tool for proving the hardness of 1-SGP, but also as a result in its own
right, we first show that the compression of any 1-level grammar is at best
quadratic (in contrast to general grammars, which can achieve exponential

compression). Note that the bound of Lemma 1 is tight, e. g., consider an
2

and
a grammar with rules S → An and A→ an.

Lemma 1 Let G be a 1-level grammar. Then |G| ≥ 2
√
|D(G)|.

Proof Let n = |D(G)|, let ax be the axiom and let A → u be a rule with a
right side of maximum length. Obviously, |ax||u| ≥ n, and, since x+y ≥ 2

√
xy

holds for all x, y ≥ 0, also |ax|+ |u| ≥ 2
√
|ax||u|. Consequently,

|G| ≥ |ax|+ |u| ≥ 2
√
|ax||u| ≥ 2

√
n .

ut

In order to prove the NP-hardness of 1-SGP for constant alphabets, we also
devise a reduction from the vertex cover problem. To this end, let G = (V,E)
be the graph defined above and, without loss of generality, we assume n ≥ 40.
We define Σ = {a, b, �, ?,#} and [�] = �n3

. For each i, 1 ≤ i ≤ n, we encode
vi by a word vi ∈ {a, b}dlog(n)e such that vi 6= vj if and only if i 6= j (e. g.,
by taking vi to be the binary representation of i over symbols a and b with
dlog(n)e many digits). We now define the following word over Σ:
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w =

n∏
i=1

(#vi[�]vi#[�])2dlog(n)e+3
n∏
i=1

(#vi#[�])dlog(n)e+1

m∏
i=1

(#vj2i−1
#vj2i#[�])2 ? [�]n

3

.

First, we show how a vertex cover for G translates into a grammar for w:

Lemma 2 If there exists a size k vertex cover of G, then there exists a 1-level
grammar G with D(G) = w and |G| = 13n dlog(n)e+ 17n+ k+ 6m+ 1 + 2n3.

Proof Let Γ ⊆ V be a size-k vertex cover of G. We define a grammar G =
(N,Σ,R, ax) with

N = {D,
←
Vi,

→
Vi,

↔
Vj : 1 ≤ i ≤ n, vj ∈ Γ} ,

R = {S → u,D → [�]} ∪ {
←
Vi → #vi,

→
Vi → vi#: 1 ≤ i ≤ n}∪

{
↔
Vj → #vj#: vj ∈ Γ} ,

ax =

n∏
i=1

(
←
Vi D

→
Vi D)2dlog(n)e+3

n∏
i=1

(yi D)dlog(n)e+1
m∏
i=1

(zi D)2 ? Dn3

,

where, for every i, 1 ≤ i ≤ n, yi =
↔
Vi if vi ∈ Γ and yi =

←
Vi# otherwise, and,

for every i, 1 ≤ i ≤ m, zi =
↔
V j2i−1

→
V j2i if vj2i−1 ∈ Γ and zi =

←
V j2i−1

↔
V j2i if

vj2i−1 /∈ Γ (note that in this case vj2i ∈ Γ ).
Obviously, G is a 1-level grammar and it can be easily verified that D(G) =

w. It remains to determine the size of G. To this end, we first observe that

each rule
←
Vi → #vi and

→
Vi → vi#, 1 ≤ i ≤ n, has size of dlog(n)e + 1, each

rule
↔
Vj → #vj#, vj ∈ Γ , has size of dlog(n)e + 2, and the rule D → [�] has

size of n3. Hence, the size contributed by these rules is

2ndlog(n)e+ 2n+ kdlog(n)e+ 2k + n3 .

The axiom has size of

4n(2 dlog(n)e+ 3) + (3n− k)(dlog(n)e+ 1) + 6m+ 1 + n3

= 11n dlog(n)e − k dlog(n)e+ 15n− k + 6m+ 1 + n3 .

So the total size is

13n dlog(n)e+ 17n+ k + 6m+ 1 + 2n3 .

ut

Next, we take care of the opposite direction, i. e., we show how a vertex
cover can be extracted from a grammar for w:
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Lemma 3 If there exists a 1-level grammar G with D(G) = w and |G| ≤
13n dlog(n)e+ 17n+ k + 6m+ 1 + 2n3, then there exists a size k vertex cover
of G.

Proof Let G = (N,Σ,R, ax) be a smallest 1-level grammar with

|G| ≤ 13n dlog(n)e+ 17n+ k + 6m+ 1 + 2n3

and D(G) = w. We first observe that, since n ≥ 40,

13n dlog(n)e+ 17n+ k + 6m+ 1 < 19n2 + 18n < 20n2 =
40

2
n2 ≤ n

2
n2 =

n3

2
.

Thus, |G| < n3

2 + 2n3 = 5n3

2 . Due to the separator symbol ? with only one
occurrence in w, we know that the axiom of G has the form u ? u′. Hence,
we can consider all the nonterminals (and their rules) that occur in u′ as

an individual 1-level grammar G′ for the word D(u′) = [�]n3

of size n6. By

Lemma 1, we can conclude that |G′| ≥ 2n3; thus, 2n3 ≤ |G| < 5n3

2 .

Claim 1: There is a D ∈ N with D → [�] and, for every other rule A → x in
R, |x|� = 0.

Proof of Claim 1: First, we assume that there is a rule A → �` with ` > n3.
This rule can only be used in order to compress the suffix [�]n3

of w, since
the other part of w has no occurrence of a factor �`. Hence, we can replace
A→ �` by the rule A→ �n3

and change the axiom to u ? An
3

. By Lemma 1,
the rule A → �n3

with axiom An
3

compresses the subword [�]n3

optimally
which means that this operation does not increase the size of G. Therefore,
we conclude that G does not contain a rule A→ �` with ` > n3.

Since w contains at least n3 non-overlapping occurrences of the factor [�]
and since |G| < 3n3, at least one of these factors must be produced by at most

2 nonterminals. This implies that there is a rule B → v with |v| ≥ |[�]|2 = n3

2 .
If v contains a symbol from Σ \ {�}, then B → v is not a rule of G′; thus,

by Lemma 1, it follows that |G| ≥ |G′| + n3

2 ≥ 2n3 + n3

2 = 5n3

2 , which is a
contradiction. Hence, we can conclude that v ∈ {�}∗ and we further assume

that, among all rules with a right side in {�}∗ of size at least n3

2 , B → v is
such that |v| is maximal. Moreover, let |v| = n3 − t, for a t ∈ N.

We note that, due to the maximality of B → v and the fact that all rules
in G′ have a right side in {�}∗, a rule of maximum size in G′ has size at most
n3 − t. In particular, this implies

|u′| ≥ n6

n3 − t
>
n6 − t2

n3 − t
=

(n3 + t)(n3 − t)
n3 − t

= n3 + t ,

where u′ is the right side of the axiom as defined above.
We now remove rule B → v, add the rule D → [�] and replace part u′ of

the axiom by Dn3

. Since |[�]| = |v| + t and |u′| ≥ n3 + t = |Dn3 | + t, this
does not increase the size of the grammar. However, the rule B → v might
have been used in order to produce some of the factors [�] in the left part u
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of the axiom of G; thus, since we removed the rule B → v, we have to repair
G accordingly.

To this end, we first note that every occurrence of [�] to the left of ? in
w is compressed by a sequence E1C1C2 . . . CpE2 of terminals or nonterminals,
such that D(E1C1C2 . . . CpE2) = x[�]y, where E1 → x�q, q ≥ 1, or E1 = ε,
and E2 → �ry, r ≥ 1, or E2 = ε. For every such occurrence of [�] to the left of
? in w, we exchange E1C1C2 . . . CpE2 by E′1DE

′
2, where E′1 = ε, if E1 = ε and

E′1 = x if E1 → x�q, q ≥ 1, and E′2 = ε, if E2 = ε and E′2 = y if E2 → �ry,
r ≥ 1. This construction removes rules or shortens them; thus, in order to
conclude that the overall size of the grammar does not increase, we only have
to observe that the size of the axiom is not increased. To this end, we first
observe that if p = 0, then E1 or E2 must have a right side of length at least
n3

2 that contains a symbol from Σ \ {�}, but, as shown above, such rules do
not exist. Hence, we can assume that p ≥ 1. Furthermore, since E1 = ε implies
E′1 = ε and E2 = ε implies E′2 = ε, |E1C1C2 . . . CpE2| ≥ |E′1DE′2| follows.

We conclude that the overall size of the grammar did not increase due to
these modifications. Moreover, G now contains a rule D → [�] and, since all
occurrences of � in w are produced by this rule, we can safely remove all other
rules that produce an occurrence of � from the grammar. (Claim 1) �

The statement of the previous claim particularly implies that the axiom of G
has the form

ax =

n∏
i=1

(αi D α′i D)2dlog(n)e+3
n∏
i=1

(βi D)dlog(n)e+1
m∏
i=1

(γi D)2 ? Dn3

,

where αi, α
′
i, βi, γj ∈ (N ∪Σ)∗, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Claim 2: For every i, 1 ≤ i ≤ n, αi =
←
Vi, α

′
i =

→
Vi, where

←
Vi,

→
Vi are nontermi-

nals with rules
←
Vi → #vi and

→
Vi → vi#.

Proof of Claim 2: Obviously, for every i, 1 ≤ i ≤ n, D(αi) = #vi, which means
that |αi| = 1 implies that αi is a nonterminal with derivative #vi. We now
assume that |αi| ≥ 2 for some i, 1 ≤ i ≤ n. If we substitute αi, by a new

nonterminal
←
Vi with a rule

←
Vi → #vi, then we shorten the axiom by at least

2 dlog(n)e + 3 and the size of the new rule is |#vi| = dlog(n)e + 1; thus, the
overall size of the grammar does not increase. An analogous argument applies
if |α′i| ≥ 2 for some i, 1 ≤ i ≤ n. Consequently, we can assume that we have
←
Vi,

→
Vi ∈ N with rules

←
Vi → #vi and

→
Vi → vi#, and αi =

←
Vi, α

′
i =

→
Vi, 1 ≤ i ≤ n.

(Claim 2) �

We recall that, for every i, 1 ≤ i ≤ n, D(βi) = #vi#. Hence, if, for some i,

1 ≤ i ≤ n, |βi| ≥ 2, then we can as well replace βi by
←
Vi# without increasing

the size of the grammar. This implies that, for every i, 1 ≤ i ≤ n, βi =
←
Vi#

or βi =
↔
Vi with

↔
Vi → #vi#.

Next, recall that, for every j, 1 ≤ j ≤ m, D(γi) = # vj2i−1
# vj2i #. If,

for some i, 1 ≤ i ≤ n, |γi| ≥ 3, then we can as well replace γi by
←
V j2i−1

←
V j2i#
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without increasing the size of the grammar. If |γi| = 1, then there is a rule

E → #vj2i−1
#vj2i# of size 2 dlog(n)e+3. If we now replace γi by

←
V j2i−1

←
V j2i#,

then we increase the size of the axiom (and therefore of the grammar) by 4.
However, since there are no other occurrences of #vj2i−1

#vj2i# in w, there
are no other occurrences of E in the axiom; thus, we can remove the rule E →
#vj2i−1#vj2i#, which decreases the size of the grammar by 2 dlog(n)e+3 ≥ 4.
Hence, the overall size of the grammar does not increase. If |γi| = 2, then
γi = E1E2 with E1 → #vj2i−1

#x or E2 → x#vj2i#. Let us assume that there
is a rule E1 → #vj2i−1

#x (the case E2 → x#vj2i# is analogous). If we now

change this rule to E1 → #vj2i−1
# and substitute every E2 by

→
V j2i , then the

size of the grammar does not increase (note that the nonterminals E1 and E2

can only occur in some γj , which has been replaced in this way).
These considerations demonstrate that we can assume that, in addition to

the rule D → [�], the rules of G are
←
Vi → #vi,

→
Vi → vi#, 1 ≤ i ≤ n, and rules

↔
Vi → #vi# with i ∈ I, for some I ⊆ {1, 2, . . . , n}. We now define ` = |I| and
the vertex set V = {vi : i ∈ I}; furthermore, let t be the number of edges from
G that are covered by some vertex of V. The axiom has the following form:

ax =

n∏
i=1

(
←
Vi D

→
Vi D)2dlog(n)e+3

n∏
i=1

(yi D)dlog(n)e+1
m∏
i=1

(zi D)2 ? Dn3

,

where, for every i, 1 ≤ i ≤ n, yi =
↔
Vi if vi ∈ V and yi =

←
Vi# otherwise,

and, for every i, 1 ≤ i ≤ m, zi =
←
V j2i−1

←
V j2i#, if the edge (vj2i−1 , vj2i) is not

covered by V, zi =
↔
V j2i−1

→
V j2i or zi =

←
V j2i−1

↔
V j2i , if vj2i−1 ∈ V or vj2i ∈ V,

respectively.
The total size of the rules is

2n dlog(n)e+ 2n+ ` dlog(n)e+ 2`+ n3 .

Moreover,

|ax| = 4n(2 dlog(n)e+ 3) + (dlog(n)e+ 1)(3n− `)) + 6t+ 8(m− t) + 1 + n3

= 11n dlog(n)e+ 15n− ` dlog(n)e − `+ 8m− 2t+ 1 + n3 .

Consequently, |G| = 13n dlog(n)e + 17n + ` + 8m − 2t + 1 + 2n3. Since, by
assumption, |G| ≤ 13n dlog(n)e + 17n + k + 6m + 1 + 2n3, we conclude that
`+ 8m− 2t ≤ k+ 6m. From this inequality, since t ≤ m, we can deduce ` ≤ k
on the one hand and also m− k−`

2 ≤ t on the other.

Consequently, the vertex set V covers already m − k−`
2 edges of G. This

implies that we can extend V to a vertex cover V ′ for G by adding q vertices,
where q ≤ k−`

2 ≤ k − `. Since |V| = `, |V ′| ≤ |V|+ q ≤ `+ k − ` = k. ut

From Lemmas 2 and 3, we can directly conclude the following theorem:

Theorem 2 1-SGP is NP-complete, even for |Σ| = 5.
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3.2 The Multi-Level Case

In the above reduction for the 1-level case, the main difficulty is the use of
unary factors as separators. However, once those separators are in place, we
know the factors of w that are produced by nonterminals and, for a smallest
1-level grammar, this already fully determines the axiom and therefore also the
grammar itself. For the multi-level case, the situation is much more compli-
cated. Even if we manage to force the axiom to factorise w into parts that are
either separators or codewords of vertices, this only determines the top-most
level of the grammar and we do not necessarily know how these single factors
are further hierarchically compressed and, more importantly, the dependencies
between these compressions (i. e., how they share the same rules).

To deal with these issues, we rely on a larger alphabet Σ and we use
palindromic codewords u?uR, where ? ∈ Σ and u is a word over an alphabet of
size 7 representing a 7-ary number. The purpose of the palindromic structure
is twofold. Firstly, it implies that codewords always start and end with the
same symbol, which, in the construction of w, makes it easier to avoid the
situation that an overlapping between neighbouring codewords is repeated
elsewhere in w (see Lemma 4). Secondly, if all codewords are produced by
individual nonterminals, then we can show that they are produced best “from
the middle”, similar to the rules of the example grammar G2 from Section 2.3.
In addition to this, we also need a vertex colouring and an edge colouring of
certain variants of the graph to be encoded.

In order to formally define the reduction, we first give some preparatory
definitions. Let

Σ = {x1, . . . , x7, d1, . . . , d7, ?,#, ¢1, ¢2, $1, . . . , $6}

be an alphabet of size 24. The function M : N× N→ N is defined by

M(q, k) := min{r > 0: ∃ t ∈ N : q = tk + r}

(note that M is the positive modulo-function, i. e., M(q, k) = q%k, if q%k 6= 0
and M(q, k) = k, otherwise). Let the functions f : N → {x1, . . . , x7}+ and
g : N→ {d1, . . . , d7}+ be defined by

f(q) :=xa0xa1 . . . xak and

g(q) :=da0da1 . . . dak ,

for every q ∈ N, where k ∈ N∪{0} and ai ∈ {1, 2, . . . , 7}, 0 ≤ i ≤ k, such that

q =
∑k
i=0 ai7

i is satisfied. Note that since, for every q ∈ N, there are unique

k ∈ N and ai ∈ {1, 2, . . . , 7}, 1 ≤ i ≤ k, such that q =
∑k
i≥0 ai7

i, the functions
f and g are well-defined.

For every i ∈ N, let 〈i〉v := f(i) ? f(i)R and 〈i〉� := g(i) ? g(i)R. The
factors 〈i〉v and 〈i〉� are called codewords; 〈i〉v represents a vertex vi, while the
〈i〉� are used as separators.
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Observation 1 The functions f and g are bijections and they are 7-ary rep-
resentations of the integers n > 0 (least significant digit first). Thus, for
any n ∈ N ∪ {0}, g(7n + i)[1] = di and f(7n + i)[1] = xi, 1 ≤ i ≤ 7.
In particular, this means that {g(n + i)[1] : 0 ≤ i ≤ 6} = {d1, . . . , d7} and
{f(n + i)[1] : 0 ≤ i ≤ 6} = {x1, . . . , x7}, for every n ∈ N. Consequently, for
every n, n′ ∈ N with M(n, 7) 6= M(n′, 7), the factors 〈n〉v and 〈n′〉v do not
share any prefixes or suffixes (and the same holds for the words 〈n〉�).

Let G = (V,E) be a subcubic graph (i. e., a graph with maximum degree
3) with V = {v1, . . . , vn} and E = {{vj2i−1

, vj2i} : 1 ≤ i ≤ m} (note that
the vertex cover problem remains NP-hard if restricted to subcubic graphs
(see [26])). Let G′ = (V,E′) be the multi-graph defined by

E′ :=
{
{vj2i , vj2i+1} : 1 ≤ i ≤ m− 1

}
.

By [55], it is possible to compute in polynomial time a proper edge-colouring
(meaning a colouring such that no two edges which share one or two vertices
have the same colour) for a multi-graph with at most b 32mc colours, where m
is the maximum degree of the multi-graph. Since the graph G is subcubic, the
maximum degree of G′ is three and we can compute a proper edge-colouring
Ce : E′ → {1, 2, 3, 4} for G′ with colours {1,2,3,4}. Let G2 = (V,E′′) be the
graph defined by

E′′ = {{u, v} : {u,w}, {w, v} ∈ E for some w ∈ V \{u, v}, u 6= v} .

Since G is subcubic, G2 has maximum degree at most six. Let Cv : {1, . . . , n} →
{1, 2, 3, 4, 5, 6, 7} be a proper vertex-colouring (defined over the vertex-indices
of V = {v1, . . . , vn}) for G2 with colours {1, 2, 3, 4, 5, 6, 7}. Such a colouring
can be computed by an algorithmic version of Brook’s theorem [56].

Let wG = uvw be the word representing G, where u, v, w ∈ Σ+ are defined
as follows (note that m ≤ 3n

2 , so 7m < 14n in the word w).

u =

6∏
j=0

(
14n∏
i=1

(〈i〉� 〈M(i+ j, 14n)〉v)

)
$1

v =

n∏
i=1

(# 〈7i+ Cv(i)〉v ¢1 〈7i− 1〉�) $2

n∏
i=1

(# 〈7i+ Cv(i)〉v ¢2 〈7i− 2〉�) $3

n∏
i=1

(〈7i+ Cv(i)〉v # 〈7i− 2〉� ¢1) $4

n∏
i=1

(〈7i+ Cv(i)〉v # 〈7i− 1〉� ¢2) $5

n∏
i=1

(# 〈7i+ Cv(i)〉v # 〈7i〉�) $6
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w =

m−1∏
i=1

(# 〈7j2i−1 + Cv(j2i−1)〉v # 〈7j2i + Cv(j2i)〉v # 〈7i+ Ce(vj2i , vj2i+1
)〉�)

# 〈7j2m−1 + Cv(j2m−1)〉v # 〈7j2m + Cv(j2m)〉v #

This concludes the definition of the reduction. Since the following proof of
correctness is very complicated, we first present a corresponding “road-map”,
to make it more accessible:

− First, and completely independent from the question of how a grammar
could compress wG , we take a closer look at the structure of this word.
More precisely, in Propositions 1 and 2, we show that if a factor of wG
spans over the symbol ? of some codeword 〈i〉v or 〈i〉� and also reaches
over the boundaries of this codeword into some other factor, then it is
not repeated in wG . This property is the main reason for the complicated
structure of wG (especially the factor v).

− An immediate consequence of the property described in the previous point,
is that in a smallest grammar, any nonterminal that derives a factor with an
occurrence of ? necessarily derives a factor that is completely contained in
some codeword 〈i〉� or in some codeword 〈i〉v delimited by two occurrences
of the symbol # (see Lemma 4).

− Next, we show that we can assume that in a smallest grammar, there are
nonterminals that have exactly our codewords as derivatives (see Lemma 5).

− The next result (Lemma 6) states that we can also assume that in a small-
est grammar there are nonterminals with derivative #〈7i + Cv(i)〉v and
nonterminals with derivative 〈7i+ Cv(i)〉v#.

− Finally, we are able to fix the structure of a smallest grammar (Lemma 7)
and we can show that, just like in the reduction from [14,39] (see Page 16),
the set of rules that derive factors of the form #〈7i + Cv(i)〉v# can be
transformed into a vertex cover (see Lemma 8).

The following simple, but crucial observation shall be helpful throughout
the proof of correctness:

Observation 2 The word wG contains each of the symbols $1, . . . , $6 exactly
once, which implies that any smallest grammar for wG has an axiom of the
form

∏6
i=1(βi$i)β7, βi ∈ ((V ∪Σ) \ {$1, . . . , $6})+, 1 ≤ i ≤ 7.

We now prove the two propositions that establish the property with respect
to the repetitions of factors containing ?.

Proposition 1 For every i, 1 ≤ i ≤ 14n, and j, 1 ≤ j ≤ 7, the word wG
contains at most one occurrence of a factor of the form

? f(i)Rdj , djf(i)?, ? g(i)Rxj , xjg(i) ? .

Furthermore, if such a factor occurs in wG, then the occurrence is in u.
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Proof We first note that factors of the form stated in the lemma can only
occur in factors of the form 〈i〉v 〈i′〉� or 〈i〉� 〈i′〉v. Since such factors only occur
in u, the second statement of the proposition holds.

We first take care of factors of the form 〈i〉vdj′ , 1 ≤ i ≤ 14n, 1 ≤ j′ ≤ 7.
These factors are subwords of 〈M(x+j, 14n)〉v 〈x+1〉� for some j ∈ {0, . . . , 6}
and x such that i = M(x+ j, 14n), which for each choice of pair (j, x) occur at
most once in u. For every i, 6 < i ≤ 14n, this gives the seven choices (j, i− j)
with 0 ≤ j ≤ 6; note that i = M(x + j, 14n) implies x = i − j. This shows
that the word u contains the subword 〈i〉vg(x + 1)[1] = 〈i〉vg(i − j + 1)[1]
once for each j, 0 ≤ j ≤ 6, and these are the only occurrences of a subword
of the form 〈i〉vdj′ for some j′ ∈ {1, . . . , 7} in u. Since {g(i − j + 1)[1] : 0 ≤
j ≤ 6} = {d1, . . . , d7} by Observation 1, it follows that no subword of the
form 〈i〉vdj′ with j′ ∈ {1, . . . , 7} appears in u more than once. For every i,
1 ≤ i ≤ 6, the choices of pairs (j, x) shift x by taking the modulo and are
(j, i − j) for 0 ≤ j < i and (j, 14n − j + i) for i ≤ j ≤ 6. The word u hence
contains the subword 〈i〉vg(i−j+1)[1] once for each j, 0 ≤ j < i, the subword
〈i〉vg(14n − j + i + 1)[1] once for each j, i ≤ j ≤ 6, and these are the only
occurrences of a subword of the form 〈i〉vdj′ for some j′ ∈ {1, . . . , 7} in u. By
reducing the 14n modulo 7 to zero, shifting by +7 and substituting j by 7− r
we get that {g(14n− j+ i+ 1)[1] : i ≤ j ≤ 6} = {g(i+ 1 + r)[1] : 1 ≤ r ≤ 7− i}
and {g(i − j + 1)[1] : 0 ≤ j < i} = {g(i + 1 + r)[1] : 7 − i < r ≤ 7}. By
Observation 1 we can hence conclude that each subword of the form 〈i〉vdj′
with j′ ∈ {1, . . . , 7} appears in u mat most once. Note that for i = 6, the
factor 〈i〉vg(14n − j + i + 1)[1] for the only choice j = 6 does not show up,
as in this case u ends and 〈6〉v is followed by $1. Consequently, for every i,
1 ≤ i ≤ 14n, every factor ? f(i)R dj , 1 ≤ j ≤ 7, has at most one occurrence
in u.

Analogously, we can show that, for every i, 1 ≤ i ≤ 14n, every factor
dj f(i) ?, 1 ≤ j ≤ 7, has at most one occurrence in u. More precisely, it is
sufficient to observe that, for every 6 < i ≤ 14n, the word u contains the
subword g(i − j)[1]〈i〉v once for each j, 0 ≤ j ≤ 6; for every 1 ≤ i ≤ 6,
the subword g(i − j)[1]〈i〉v once for each j, 0 ≤ j ≤ i − 1, and the subword
g(14n− j)[1]〈i〉v once for each j, 0 ≤ j ≤ 6− i. As before, these are the only
occurrences of a subword of the form dj′〈i〉v for some j′ ∈ {1, . . . , 7} in u.

For every i, 1 ≤ i ≤ 14n, there are exactly 7 factors of the form ? g(i)R xj ,
for some j, 1 ≤ j ≤ 7. Let ? g(i) xj` , 1 ≤ ` ≤ 7, be these 7 factors. By
the structure of u, we observe that {j` : 1 ≤ ` ≤ 7} = {x1, x2, . . . , x7}, which
directly implies that, for every i, 1 ≤ i ≤ 14n, every factor ?g(i)Rxj` , 1 ≤ ` ≤ 7,
has at most one occurrence in u. Analogously, we can show that, for every i,
1 < i ≤ 14n, every factor of the form xj g(i) ?, 1 ≤ j ≤ 7, has at most
one occurrence in u. Finally, there are exactly 6 factors of the form xj g(1) ?,
1 ≤ j ≤ 7, namely the factors f(14n)[1] g(1) ? and f(j)[1] g(1) ?, 1 ≤ j ≤ 5.
Since {f(14n)[1], f(j)[1] : 1 ≤ j ≤ 5} = {x7, x1, x2, . . . , x5}, it follows that
every factor of the form xj g(1) ?, 1 ≤ j ≤ 7, has at most one occurrence
in u. ut
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Proposition 2 For every i, 1 ≤ i ≤ 14n, and j, 1 ≤ j ≤ 7, the word wG
contains at most one occurrence of a factor of the form

? g(i)Ry, yg(i)?, ? f(i)Rz, zf(i)?,

dj#f(i)?, ? f(i)R#dj , ? f(i)R#xj , xj#f(i)? ,

where y ∈ Σ \ {d1, . . . , d7} and z ∈ Σ \ {x1, . . . , x7,#}.

Proof We first consider the factors ?g(i)Ry with y ∈ Σ \ {d1, . . . , d7}. In the
case y ∈ {x1, . . . , x7}, Proposition 1 shows that such factors have at most one
occurrence in wG . For y ∈ {?,#, ¢1, ¢2, $1, . . . , $6}, there are occurrences of
factors of the form ?g(i)Ry in v and in w, but not in u. We note that each two
occurrences of factors ?g(i)Ry and ?g(i′)Ry′ in w satisfy i 6= i′ and are therefore
different. Moreover, all factors ?g(i)Ry in w satisfy g(i)[1] ∈ {1, 2, 3, 4} (this
is due to the colouring Ce). We next observe that all factors ?g(i)Ry in v
satisfy i ∈ {7i′, 7i′ − 1, 7i′ − 2: i′ ∈ N}, which implies that for these factors,
we have g(i)[1] ∈ {5, 6, 7}; thus, they all differ from the factors ?g(i)Ry in
w. Consequently, if a factor of the form ?g(i)Ry repeats, then there must
be individual occurrences of factors 〈i〉�y and 〈i〉�y′ in v. This is only the
case for i = 7i′ − 1, but then there are exactly two such factors and with
y ∈ {#, $2}, y′ = ¢2, or for i = 7i′ − 2, but then there are exactly two such
factors and with y ∈ {#, $3}, y′ = ¢1. This shows that each factor ?g(i)Ry
with y ∈ Σ \ {d1, . . . , d7} has at most one occurrence in wG . For the factors
yg(i)? the argument is the same up to the point where we consider individual
occurrences of factors y〈i〉� and y′〈i〉� in v. Again, this is only possible for
i = 7i′ − 1 or i = 7i′ − 2, but in the first case, we have y = ¢1, y′ = #, while
in the second case, we have y = ¢2, y′ = #.

We next turn to the factors ?f(i)Rz with z ∈ Σ \ {x1, . . . , x7,#}. Again,
Proposition 1 shows that for y ∈ {d1, . . . , d7} such factors have at most one
occurrence in wG ; thus, we consider the case y ∈ {?, ¢1, ¢2, $1, . . . , $6}. We first
note that such factors have no occurrence in u. Moreover, for every i, 1 ≤ i ≤
14n, any factor of the form 〈i〉vy with y /∈ {d1, . . . , d7, x1, . . . , x7} has either no
occurrence in vw, or exactly 5 occurrences in v and at most 3 occurrences in w
(this is due to the fact that G is subcubic). However, y is equal to # for all but
two of those occurrences, where one occurrence is with y = ¢1 and the other
with y = ¢2. Consequently, each factor ?f(i)Rz with z ∈ Σ \ {x1, . . . , x7,#}
has at most one occurrence in wG . The argument for the factors zf(i)? with
z ∈ Σ \ {x1, . . . , x7,#} is analogous, with the difference that the only two
occurrences of a factor y〈i〉v in v with y /∈ {d1, . . . , d7, x1, . . . , x7,#} are once
with y ∈ {$3, ¢1} and once with y ∈ {$4, ¢2}.

We next consider the factors dj # f(i) ? and first note that such a factor
only occurs in a factor # 〈i〉v that is preceded by a factor 〈i′〉�, for some i′,
1 ≤ i′ ≤ 14n, and that such factors only occur in v or w. In v, there are
either no or exactly 3 occurrences of # 〈i〉v. The first one is either a prefix
of v or preceded by 〈7` − 1〉�, 1 ≤ ` ≤ n, the second is preceded by either
$2 or 〈7` − 2〉�, 1 ≤ ` ≤ n, and the third one is preceded by either $5 or
〈7`〉�, 1 ≤ ` ≤ n. Hence, these three occurrences are preceded by symbols
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d6, d5 and d7, respectively (or by symbols not in {d1, . . . , d7}). Consequently,
the factor dj # f(i) ? is not repeated in v and if it occurs, j ∈ {5, 6, 7} holds.
Next, we note that every # 〈i〉v in w that is preceded by a 〈i′〉�, satisfies
i′ = 7`+Ce(vj2` , vj2`+1

), and since the range of Ce is {1, 2, 3, 4}, this occurrence
of # 〈i〉v is preceded by symbol d1, d2, d3 or d4. Finally, we have to show that
no dj # 〈i〉v is repeated in w. To this end, we assume that dj # 〈i〉v with
j ∈ {1, 2, 3, 4} is repeated. This implies that there are k, k′, 1 ≤ k < k′ ≤ m−1,
with j2k−1 = j2k′−1 = i, and, furthermore, 〈7(k− 1) +Ce(vj2(k−1)

, vj2(k−1)+1
)〉�

and 〈7(k′ − 1) + Ce(vj2(k′−1)
, vj2(k′−1)+1

)〉� both end with symbol dj . Thus,

Ce(vj2(k−1)
, vj2(k−1)+1

) = Ce(vj2(k′−1)
, vj2(k′−1)+1

) = j, which is a contradiction,

since the edges (vj2(k−1)
, vj2(k−1)+1

) and (vj2(k′−1)
, vj2(k′−1)+1

) of G′ are incident
with the same vertex vj2k−1

= vj2k′−1
= vi and Ce is a proper edge colouring

for G′. Consequently, no dj # 〈i〉v is repeated in w; thus, the word wG contains
at most one occurrence of a factor of the form dj # f(i) ?.

In an analogous way, we can show that every factor of form ? f(i)R # dj in
v satisfies j ∈ {5, 6, 7} and in w it satisfies j ∈ {1, 2, 3, 4}. That these factors
do not repeat follows from the fact that ? f(i)R # occurs at most 3 times
in v (followed by the different symbols d5, d6 and d7) and the repetitions of
? f(i)R # in w are followed by distinct symbols from {d1, d2, d3, d4} due to
the proper edge colouring Ce of G′. Thus, the word wG contains at most one
occurrence of a factor of the form ? f(i)R # dj .

For any i, 1 ≤ i ≤ 14n, and j, 1 ≤ j ≤ 7, the factor ?f(i)R#xj only occurs
in w and only in a factor of the form 〈7`+Cv(`)〉v#〈7`′+Cv(`′)〉v, 1 ≤ `, `′ ≤ n,
with i = 7`+Cv(`) and f(7`′+Cv(`

′))[1] = xj . Hence, if ? f(i)R #xj has two
occurrences, then there are `′, `′′, 1 ≤ `′, `′′ ≤ n, such that the vertices v`′ and
v`′′ are neighbours of v` (in G), and f(7`′+Cv(`

′))[1] = f(7`′′+Cv(`
′′))[1] = xj ,

which implies Cv(`
′) = Cv(`

′′) = j. This is a contradiction to the fact that Cv
is a proper vertex colouring for the graph G2. In an analogous way, it follows
that the factor xj # f(i) ? is not repeated. ut

Since a smallest grammar does not contain rules which produce a factor
which is not repeated, Propositions 1 and 2 yield the following:

Lemma 4 For every smallest grammar G = (N,Σ,R, ax) for wG, |D(A)|? ≥
1 for some A ∈ N implies that D(A) is a factor of some # 〈7i + Cv(i)〉v #,
1 ≤ i ≤ n, or a factor of some 〈j〉v, 1 ≤ j ≤ 14n, or a factor of some 〈j〉�,
1 ≤ j ≤ 14n.

The main consequence of Lemma 4 is that, in a smallest grammar, the
axiom has a length of at least the number of occurrences of ? in wG . This
allows us to show that, without increasing the size of the grammar, the axiom
can be restructured, such that each individual codeword is produced by its
own nonterminal.

Lemma 5 There is a smallest grammar G for wG such that, for every i,
1 ≤ i ≤ 14n, there is a nonterminal with derivative 〈i〉� and a nonterminal
with derivative 〈i〉v.
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Proof Let G = (N,Σ,R, ax) be a smallest grammar with D(G) = wG . We shall
first show how G can be modified in such a way that, for every i, 1 ≤ i ≤ 14n,
there is a nonterminal with derivative 〈i〉�. To this end, we assume that for
some I� ⊆ {1, 2, . . . , 14n} and every i, 1 ≤ i ≤ 14n, there currently is a
nonterminal in G with derivative 〈i〉� if and only if i ∈ I�; furthermore, let

I� = {1, 2, . . . , 14n} \ I�. For the sake of concreteness, for every i ∈ I�, let D̂i

be the nonterminal with D(D̂i) = 〈i〉�.
We now recursively define a set of rules R� := {r�,i : 1 ≤ i ≤ 14n} for

nonterminals Di, 1 ≤ i ≤ 14n, by r�,i := Di → di ? di, 1 ≤ i ≤ 7, and r�,i :=

Di → g(i)[1] Dh(i) g(i)[1], 8 ≤ i ≤ 14n, where h(i) := i−M(i,7)
7 . Obviously,

D(Di) = 〈i〉�, 1 ≤ i ≤ 14n. We modify G by the following algorithm. For
every i = 1, 2, . . . , 14n, if i ∈ I�, then we add the rule Di from R� to G,
and if i ∈ I�, then we replace the rule D̂i → α by Di → α. Furthermore,
we can carry out an analogous modification with respect to derivatives 〈i〉v.
More precisely, we define Iv ⊆ {1, 2, . . . , 14n} to be such that, for exactly the
i ∈ Iv, there is a nonterminal with derivative 〈i〉v. Then, in the same way
as above, we can add rules from the set Rv := {rv,i : 1 ≤ i ≤ 14n}, where
rv,i := Vi → xi ? xi, 1 ≤ i ≤ 7, and rv,i := Vi → f(i)[1] Vh(i) f(i)[1],

8 ≤ i ≤ 14n, where h(i) := i−M(i,7)
7 .

We denote this modified grammar by G′ and note that, by the considera-
tions from above, for every i, 1 ≤ i ≤ 14n, G′ contains nonterminals Di and
Vi with

D(Di) = 〈i〉� and D(Vi) = 〈i〉v, 1 ≤ i ≤ 14n .

Moreover, since every rule from R� and Rv has size 3, |G′| = |G| + 3(|I�| +
|Iv|). In the remainder of this proof, we show that this size increase can be
compensated by using the new rules in order to significantly shorten the axiom.
Hence, we obtain a smallest grammar, with the properties claimed in the
lemma. To this end, we first measure the size of the axiom of the original
grammar G.

Claim 1: ax =
∏6
i=1(βi$i)β7, where βi ∈ ((N ∪Σ) \ {$1, . . . , $6})+, 1 ≤ i ≤ 7,

and β1 contains at least 196n occurrences of symbols (terminal or nonterminal)
that each produces exactly one occurrence of ?.

Proof of Claim 1: From Observation 2, it follows that ax =
∏6
i=1(βi$i)β7,

βi ∈ ((N∪Σ)\{$1, . . . , $6})+, 1 ≤ i ≤ 7. Furthermore, β1 contains at least |u|?
symbols (terminal or nonterminal), since otherwise at least two occurrences
of ? of u are produced by the same nonterminal, which is a contradiction to
Lemma 4. Hence, β1 contains at least 196n occurrences of symbols that each
produces exactly one occurrence of ?. (Claim 1) �

Claim 2: There are at least 7d |I�|+|Iv|
2 e occurrences of symbols in β1 (terminal

or nonterminal), each of which has a derivative without any occurrence of ?.

Proof of Claim 2: Let i ∈ I�, i. e., there is no nonterminal with derivative 〈i〉�.
Furthermore, a derivative that properly contains 〈i〉� (and the corresponding
nonterminal which occurs in β1) contains an occurrence of ? and occurrences
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of symbols from both sets {d1, . . . , d7} and {x1, . . . , x7}, which contradicts
Lemma 4. Consequently, each of the 7 occurrences of 〈i〉� are produced by
at least two symbols. Hence, for each of these 7 occurrences, there is one
symbol producing a factor of 〈i〉� containing the symbol ? and a second symbol,
which produces a factor of 〈i〉� that contains symbols from {d1, . . . , d7}. Due
to Lemma 4, this second symbol cannot also produce the next or preceding
occurrence of ?. This means that for each i ∈ I�, there exist 7 symbols that do
not produce a symbol ?. In the same way, we can also conclude that for each
i ∈ Iv, there exist 7 symbols that do not produce a symbol ?. However, it is
possible that these symbols in β1 which do not produce a ? coincide, i. e., such
a symbol can produce parts of some 〈i〉� with i ∈ I� and 〈i′〉v, with i′ ∈ Iv.

So we can only conclude that there are at least 7d |I�|+|Iv|
2 e occurrences of

symbols in β1 that do not produce an occurrence of ?. (Claim 2) �

From these two claims, it follows that the axiom of G (and therefore the whole

grammar G) has size of at least 196n+7d |I�|+|Iv|
2 e. We now change G′ a second

time (into G′′), as follows. We replace β1 in the axiom ax′ =
∏6
i=1(βi$i)β7

of G′ (note that Observation 2 implies that ax′ must have this structure)

by β′1 =
∏6
j=0

∏14n
i=1DiVM(i+j,14n). We note that |β1| ≥ 196n + 7d |I�|+|Iv|

2 e,
whereas |β′1| = 196n. Consequently,

|G′′| = |G|+ 3(|I�|+ |Iv|)︸ ︷︷ ︸
|G′|

+|β′1| − |β1|

≤ |G|+ 3(|I�|+ |Iv|) + 196n−
(

196n+ 7

⌈
|I�|+ |Iv|

2

⌉)
= |G|+ 3(|I�|+ |Iv|)− 7

⌈
|I�|+ |Iv|

2

⌉
≤ |G| .

ut

In the hardness proof from [14,39] for the case of unbounded alphabets
(see Page 16), one simple, but crucial fact was that for every i, 1 ≤ i ≤ n,
we can assume that nonterminals for each factor #vi and vi# exist. By using
the previously mentioned lemmas, we now show a similar statement for our
reduction:

Lemma 6 There is a smallest grammar G for wG such that, for every i, 1 ≤
i ≤ n, there is a nonterminal with derivative #〈7i+Cv(i)〉v and a nonterminal
with derivative 〈7i+ Cv(i)〉v#.

Proof Let G = (N,Σ,R, ax) be a smallest grammar for wG . By Lemma 5, we
can assume that, for every i, 1 ≤ i ≤ 14n, there is a nonterminal Di with
derivative 〈i〉� and a nonterminal Vi with derivative 〈i〉v.

Let ` be the total number of occurrences of symbols from {?, ¢1, ¢2, #,
$1, . . . , $6} in wG . We can conclude that |ax| ≤ `, since an axiom of length `
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can be obtained from wG (without introducing any new rules) by replacing all
occurrences of 〈i〉� and 〈i〉v by Di and Vi, respectively.

Let Nax = {A : A ∈ N, |ax|A ≥ 1, |D(A)|? ≥ 1} and let Γ = {?, ¢1, ¢2,#}.
Furthermore, for every i, 1 ≤ i ≤ 3, Nax,i = {A : A ∈ Nax,

∑
x∈Γ |D(A)|x = i}.

Since, for every A ∈ Nax,
∑
x∈Γ |D(A)|x > 3 is a contradiction to Lemma 4,

we can conclude that {Nax,1, Nax,2, Nax,3} is a partition of Nax. Consequently,
we can use this partition in order to estimate the length of the axiom in the
following way: |ax| ≥ ` −

∑
A∈Nax,2

|ax|A − 2
∑
A∈Nax,3

|ax|A (note that each

occurrence of some A ∈ Nax,j , j ∈ {2, 3}, is responsible for |ax|A units of
the size |ax|, but also for exactly j|ax|A occurrences of the total amount ` of
symbols from {?, ¢1, ¢2,#, $1, . . . , $6}). Moreover, also due to Lemma 4, for
every A ∈ Nax,2, D(A) = #f(7i+ Cv(i)) ? ri or D(A) = ri ? f(7i+ Cv(i))

R#
with |ri| ≤ |f(7i+Cv(i))| and, for every A ∈ Nax,3, D(A) = #〈7i+Cv(i)〉v#.

We now add to G, for every i, 1 ≤ i ≤ n, the rules
←
Vi → #V7i+Cv(i)

and
→
Vi → V7i+Cv(i)#, and, for every A ∈ Nax,3, we add the rule

↔
Vi →

←
Vi#,

where D(A) = #〈7i+Cv(i)〉v#. Then, we replace ax by a new axiom ax′ that is
obtained from wG in the following way. Every factor 〈i〉� is replaced by Di. For
every occurrence of ? in wG , if this occurrence of ? is produced (according to ax)
by a nonterminal A ∈ Nax,3, which, since D(A) = #〈7i+Cv(i)〉v#, implies that

it is inside a factor #〈7i+Cv(i)〉v#, then we replace #〈7i+Cv(i)〉v# by
↔
Vi. All

remaining factors of the form #〈7i+Cv(i)〉v# are replaced by
←
Vi#. Then, all

remaining factors #〈7i+Cv(i)〉v and 〈7i+Cv(i)〉v# are replaced by
←
Vi and

→
Vi,

respectively (note that since there are no factors of the form #〈7i+Cv(i)〉v#
left, this is unambiguous). We note that |ax′| = ` −

∑n
i=1(|ax′|←

Vi
+ |ax′|→

Vi
) −

2
∑n
i=1|ax′|↔Vi

.

Next, we show that all the rules for the nonterminals of Nax,2 ∪Nax,3 can
be removed from the grammar. To this end, let A ∈ Nax,2∪Nax,3, which means
that |D(A)|# ≥ 1. However, every occurrence of # of wG that is produced by a
rule (and is not already present in the new axiom ax′), is directly produced by
←
Vi,

→
Vi or

↔
Vi, i. e., it occurs on the right side of these rules and is not produced

by means of any other nonterminal. Consequently, in the derivation of wG , the
nonterminal A is not used and, therefore, its rule can be erased.

It only remains to show that the modified grammar is not larger than
the original one, i. e., we have to compare |ax′| to |ax| show that the size
increase of 2 caused by each added rule is compensated. For every new rule
↔
Vi →

←
Vi# (of cost 2), there is an A ∈ Nax,3 with D(A) = #〈7i + Cv(i)〉v#

(of cost at least 2), for which the rule is erased and all all occurrences of

A in ax correspond to occurrences of some
↔
Vi in ax′, hence

∑n
i=1|ax′|↔Vi

=∑
A∈Nax,3

|ax|A. For every new rule
←
Vi → #V7i+Cv(i) consider

←
I := {i : D(A) =

#f(7i+Cv(i))? ri for some A ∈ Nax,2}. If i ∈
←
I we have removed at least one

rule A → α with D(A) = #f(7i + Cv(i)) ? ri with |α| ≥ 2, so the cost for all

rules
←
Vi → #V7i+Cv(i) with i ∈

←
I is compensated. Further, every occurrence of
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this A in ax yields an occurrence of
←
Vi in ax′. If i 6∈

←
I , then both occurrences

of #〈7i + Cv(i)〉v in the factor v of wG are produced in ax by at least two

nonterminals each. An analogous argument applies to the new rules
→
Vi →

V7i+Cv(i)# with
→
I := {i : D(A) = ri ? f(7i + Cv(i))

R# for some A ∈ Nax,2}.
This yields

∑n
i=1(|ax′|←

Vi
+ |ax′|→

Vi
) ≥

∑
A∈Nax,2

|ax|A + 2(n− |
←
I |) + 2(n− |

→
I |).

Together with
∑n
i=1|ax′|↔Vi

=
∑
A∈Nax,3

|ax|A we can conclude:

|ax′| = `−
n∑
i=1

(|ax′|←
Vi

+ |ax′|→
Vi

)− 2

n∑
i=1

|ax′|↔
Vi

≤ `−
∑

A∈Nax,2

|ax|A − 2(n− |
←
I |)− 2(n− |

→
I |)− 2

∑
A∈Nax,3

|ax|A

≤ |ax| − 2(n− |
←
I |)− 2(n− |

→
I |)

Since every new rule for
←
Vi or

→
Vi is added at a cost of two, the difference

between |ax′| and |ax| compensates for the additional rules
←
Vi → #V7i+Cv(i)

with i 6∈
←
I and

→
Vi → V7i+Cv(i)# with i 6∈

→
I . Recall further that the cost for

the rules for
↔
Vi are compensated by deleting the rules in Nax,3. Overall, the

modified grammar is not larger than the original grammar. Furthermore, the
new grammar has now the form stated in the lemma. ut

Now, by the lemmas presented above, we are able to sufficiently pin down
the structure of a smallest grammar for wG :

Lemma 7 There is a smallest grammar G for wG that contains all the rules

− R� := {r�,i : 1 ≤ i ≤ 14n}, with r�,i := Di → di ? di, 1 ≤ i ≤ 7, and

r�,i := Di → g(i)[1]Dh(i) g(i)[1], 8 ≤ i ≤ 14n, where h(i) := i−M(i,7)
7 ,

− Rv := {rv,i : 1 ≤ i ≤ 14n}, with rv,i := Vi → xi ? xi, 1 ≤ i ≤ 7, and

rv,i := Vi → f(i)[1] Vh(i) f(i)[1], 8 ≤ i ≤ 14n, where h(i) := i−M(i,7)
7 ,

−
←
V := {

←
Vi → #V7i+Cv(i) : 1 ≤ i ≤ n},

−
→
V := {

→
Vi → V7i+Cv(i)#: 1 ≤ i ≤ n},

−
↔
V := {

↔
Vi → #

→
Vi : i ∈ I}, for some I ⊆ {1, 2, . . . , n}.

and an axiom ax =
∏6
i=1(βi$i)β7 with

β1 =

6∏
j=0

(
14n∏
i=1

(Di VM(i+j,14n))

)
, β2 =

n∏
i=1

(←
Vi ¢1 D7i−1

)
,

β3 =

n∏
i=1

(←
Vi ¢2 D7i−2

)
, β4 =

n∏
i=1

(→
Vi D7i−2 ¢1

)
,

β5 =

n∏
i=1

(→
Vi D7i−1 ¢2

)
,
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β6 =

n∏
i=1

(yi D7i) , where for every i, 1 ≤ i ≤ n, yi =

{↔
Vi if i ∈ I,
←
Vi# otherwise,

β7 =

m−1∏
i=1

(yiD7i+Ce(vj2i ,vj2i+1
))ym, where for every i, 1 ≤ i ≤ m,

yi ∈ {
↔
V j2i−1

→
V j2i ,

←
V j2i−1

↔
V j2i} if {j2i−1, j2i} ∩ I 6= ∅,

yi =
←
V j2i−1

←
V j2i# otherwise.

Proof Let G be a smallest grammar for wG . By Lemma 5, we can assume that,
for every i, 1 ≤ i ≤ 14n, there is a nonterminal Di with derivative 〈i〉� and
a nonterminal Vi with derivative 〈i〉v, and, by Lemma 6, we can assume that,

for every i, 1 ≤ i ≤ n, there is a nonterminal
←
Vi with derivative # 〈7i+Cv(i)〉v

and a nonterminal
→
Vi with derivative 〈7i + Cv(i)〉v#. Obviously, for every i,

1 ≤ i ≤ n, we can substitute the rule for
←
Vi by

←
Vi → # Vi and the rule for

→
Vi

by
→
Vi → Vi #, without increasing the size of G.

Next, for every Vj → αj with |αj | ≥ 3, we can replace Vj → αj by Vj → xj ?

xj , if j ≤ 7, and by Vj → f(j)[1]Vh(j) f(j)[1], if 8 ≤ j, where h(j) := j−M(j,7)
7 .

This does not increase the size of G, since the size of the modified rules can
only decrease and no new rules need to be added. Now let j = max{i : 1 ≤ i ≤
14n, Vi → αi, |αi| = 2}. We can now again replace Vj → αj by Vj → xj ? xj ,

if j ≤ 7, and by Vj → f(j)[1] Vh(j) f(j)[1], if 8 ≤ j, where h(j) := j−M(j,7)
7 ,

but now this operation increases the size of the grammar by 1, which, as shall
be shown next, is compensated by removing a rule from the grammar. To this
end, we note that αj = AjBj and D(Aj) = f(j) ? tj or D(Bj) = tj ? f(j)R

for some tj ∈ {x1, . . . , x7}∗. Let us assume that D(Aj) = f(j) ? tj (the case
D(Bj) = tj ? f(j)R can be handled analogously); note that this particularly
implies that Aj /∈ {Vi : 1 ≤ i ≤ 14n}, since its derivative is not of the form
〈i〉v. Since f(j) ? tj does not occur in any 〈j′〉v with j′ < j, Aj is not involved
in a production of any 〈j′〉v with j′ < j. Moreover, Aj cannot occur on the
right side of the rule for a Vj′ with j < j′, since, due to the maximality of j
and the modifications from above, those only have nonterminals of the form
Vi on the right side. Thus, Aj has no occurrence in any of the rules for the
nonterminals Vi, 1 ≤ i ≤ 14n. This means that Aj can only occur on the right
side of some nonterminal with a derivative that is not a factor of some 〈i〉v
and, since |D(Aj)|? ≥ 1, with Lemma 4, we can further conclude that Aj can
only occur on the right side of some nonterminal with a derivative #〈i〉v, 〈i〉v#
or #〈i〉v#. The rules

←
Vi → # Vi and

→
Vi → Vi # have the derivatives #〈i〉v

and 〈i〉v#, respectively, and their right sides do not contain Aj . Furthermore,
if the right side of a nonterminal with derivative #〈i〉v# contains Aj , we can

replace it by
←
Vi# without increasing the size of the grammar. Consequently,

we can assume that the nonterminal Aj is never used and therefore its rule
can be removed. By repeating this argument, it follows that G contains all the
rules Rv.
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In a similar way, we can show that G contains all the rules R� (in fact, the
argument is simpler, since in this case, Lemma 4 together with the fact that
Aj can only occur on the right side of some nonterminal with a derivative that
is not a factor of some 〈i〉� immediately implies that Aj does not occur on any
right side).

We now assume that ax =
∏6
i=1(βi$i)β7 is the axiom of G. In the same

way as in the proofs of Lemmas 5 and 6, we can conclude that |β1| ≥ 196n,

|β`| ≥ 3n, 1 ≤ ` ≤ 5. Hence, replacing ax by ax′ =
∏6
i=1(β′i$i)β

′
7 with

β′1 =

6∏
j=0

(
14n∏
i=1

(Di VM(i+j,14n))

)
, β′2 =

n∏
i=1

(←
Vi ¢1 D7i−1

)
,

β′3 =

n∏
i=1

(←
Vi ¢2 D7i−2

)
, β′4 =

n∏
i=1

(→
Vi D7i−2 ¢1

)
,

β′5 =

n∏
i=1

(→
Vi D7i−1 ¢2

)
,

does not increase the size of the grammar. We now consider β6, which pro-
duces the word v6 =

∏n
i=1 (# 〈7i+ Cv(i)〉v # 〈7i〉�). We can conclude the

following from Lemma 4. No two occurrences of ? in v6 can be produced by
the same nonterminal; thus, |β6| ≥ 2n. Furthermore, the only factors that are
repeated in wG and that contain an occurrence of both ? and # are factors of
#〈7i+ Cv(i)〉v#. Hence, for every i, 1 ≤ i ≤ n, if the factor #〈7i+ Cv(i)〉v#
in # 〈7i+Cv(i)〉v # 〈7i〉� is not produced by a single nonterminal, then there
is an additional nonterminal in β6 (i. e., in addition to the two nonterminals
producing the two occurrences of ? in # 〈7i+ Cv(i)〉v # 〈7i〉�). This implies
that |β6| ≥ 3n − p, where p is the number of nonterminals with a derivative
of #〈7i + Cv(i)〉v#. This means that we can replace every such nonterminal

and its rule by
↔
Vi → #

→
Vi without increasing the size of the grammar. Further-

more, again without increasing the size of the grammar, we can replace β6 by∏n
i=1 (yi D7i), where, for every i, 1 ≤ i ≤ n, yi =

↔
Vi if this nonterminal exists

and yi =
←
Vi# otherwise.

Next, we consider β7, which produces the word

v7 =

m−1∏
i=1

(#〈7j2i−1 + Cv(j2i−1)〉v#〈7j2i + Cv(j2i)〉v#〈7i+ Ce(vj2i , vj2i+1
)〉�)

#〈7j2m−1 + Cv(j2m−1)〉v#〈7j2m + Cv(j2m)〉v# .

Similar as for the word v6, every occurrence of ? in v7 requires a distinct
nonterminal and, in addition to that, also a distinct nonterminal for each factor
#〈7i + Cv(i)〉v# that is not completely produced by a single nonterminal.

Hence, |β7| ≥ 4m−1−q, where q is the number of nonterminals
↔
Vi used in β7.

Consequently, we can also replace β7 by v7 =
∏m−1
i=1 (yiD7i+Ce(vj2i ,vj2i+1

))ym,

where, for every i, 1 ≤ i ≤ m, yi ∈ {
↔
V j2i−1

→
V j2i ,

←
V j2i−1

↔
V j2i}, if

↔
V j2i−1 or

↔
V j2i
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exist, and yi =
←
V j2i−1

←
V j2i#, otherwise. We note that this does not increase

the size of the grammar.
The grammar has now the form claimed in the statement of the lemma

(note that all other rules not mentioned in the statement of the lemma can be
ignored, since they are not used anymore). ut

Finally, we are able to conclude the proof of correctness by establishing
the connection between the size of a smallest grammar for wG and the size of
a vertex cover for G.

Lemma 8 The graph G has a vertex cover of size k if and only if wG has a
grammar of size 299n+ k + 3m+ 5.

Proof Let Γ be a size-k vertex cover of G. We construct the grammar described
in Lemma 7 with respect to I = {i : vi ∈ Γ}. Since Γ is a vertex cover, in the

definition of β7, we have yi ∈ {
↔
V j2i−1

→
V j2i ,

←
V j2i−1

↔
V j2i}, for every 1 ≤ i ≤ m.

Consequently, by simply counting the symbols on the right sides of the rules,
we conclude |G| = 299n+ |I|+ 3m+ 5 = 299n+ k + 3m+ 5.

On the other hand, if there is a grammar of size 299n+ k+ 3m+ 5 for wG ,
then, by Lemma 7, we can also assume that there exists a grammar G for wG
with |G| = 299n+ |I|+3m+5 ≤ 299n+k+3m+5 that has the form described
in Lemma 7, with respect to some I ⊆ {1, 2, . . . , n}. If, for some edge (vi, vj),

{vi, vj} ∩ I = ∅, then adding i to I (and therefore the rule
↔
Vi → #

→
Vi to the

grammar) does not increase the size of the grammar. This is due to the fact

that the additional cost of 2 for introducing the rule is compensated by using
↔
Vi

once in β6 and once in β7. Consequently, we can assume that Γ = {vi : i ∈ I}
is a vertex cover. Since |G| = 299n+ |I|+ 3m+ 5 ≤ 299n+ k + 3m+ 5, this
means that Γ is a vertex cover for G of size at most |I| = k. ut

From Lemma 8, we directly conclude our main result:

Theorem 3 SGP is NP-complete, even for alphabets of size 24.

Obviously, Theorem 3 leaves some room for improvement with respect to
smaller alphabet sizes. In our reduction, we did use terminal symbols economi-
cally, but, for reasons explained next, this was not our main concern. While we
generally believe that the alphabet size can be slightly reduced in our reduc-
tion, we consider it very unlikely that its current structure allows a substantial
improvement in this regard (e. g., an alphabet size below 10). Thus, we did not
further pursue this point, which we expect to lead to an even more involved
reduction while at the same time only insignificantly decreases the alphabet
size. Consequently, the NP-hardness of the smallest grammar problem for small
alphabets (with the most interesting candidates being 2 (i. e., binary strings)
and 4 (due to the fact that DNA-sequences use a 4-letter alphabet)) remains
open. Furthermore, we expect that completely new techniques are required
for respective hardness reductions. In this regard, note that for alphabets of
size 1, the smallest grammar problem is strongly connected to the problem of
computing the smallest addition chain for a single integer; a problem that is
neither known to be in P nor to be NP-hard (see [39] or Section 6 for details).
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3.3 Extensions of the Reductions

In this section, we conclude several important hardness results by slight mod-
ifications of the reduction presented in Section 3.2. First, we show that the
optimisation variant of the smallest grammar problem (over fixed alphabets)
is APX-hard and therefore it does not allow for a polynomial-time approxima-
tion scheme, unless P = NP. Just like Theorem 3 lifts the known NP-hardness
of the smallest grammar problem for unbounded alphabets to the practically
relevant case of fixed alphabets, this APX-hardness result lifts the inapprox-
imability result for unbounded alphabets of [14,39] to the fixed alphabet case.
There is one caveat, though, which is that the corresponding constant lower
bound on the approximation ratio is much lower than the already low 1.0001
achieved for unbounded alphabets; thus, we do not bother to actually compute
it and we consider the value of the APX-hardness result that the existence of
a PTAS is ruled out.

Theorem 4 SGPopt is APX-hard, even for alphabets of size 24.

Proof The reduction used for Theorem 3 can also be seen as an L-reduction
from the optimisation variant of the minimum vertex cover problem restricted
to cubic graphs (each vertex has degree 3), which remains APX-hard (see [2]).
More precisely, this problem is denoted by (IVC, SVC,mVC), where IVC is the
set of undirected cubic graphs, SVC(G) = {C : C is a vertex cover for G} and
mVC(G, C) = |C|; we denote SGPopt by (ISGP, SSGP,mSGP).

Next, we describe an L-reduction from the problem (IVC, SVC,mVC) to the
problem (ISGP, SSGP,mSGP). The above described translation of a graph G to
the word wG (i. e., the one defined in Section 3.2 in order to prove Theorem 3)
gives the function f for the L-reduction. The function g, that maps G ∈ IVC

and a grammar G ∈ SSGP(f(G)) to a vertex cover C ∈ SVC(G) works as
follows. We first build a grammar G′ with |G′| ≤ |G| which is of the form
described in Lemma 7; observe that all transformations that are necessary to
reach this kind of normal form are constructive and computable in polynomial
time. Then g(G, G) = {vi : i ∈ I}, which is a vertex cover for G by Lemma 8
(note that the set I is ensured by Lemma 7). Finally, we show that choosing
β = 613 and γ = 1 satisfies the inequalities. To this end, we first note that, for
any cubic graph G with n vertices and m edges, we have m = 3

2n (since each
vertex has degree 3) and m∗VC(G) ≥ n

2 (since each vertex can cover at most
three edges), and m∗VC(G) ≥ 1.

m∗SGP(wG) = 299n+ 3m+ 5 +m∗VC(G)

= 607 · n
2

+ 5 +m∗VC(G)

≤ 607 ·m∗VC(G) + 5 +m∗VC(G)

≤ 613 ·m∗VC(G) = β ·m∗VC(G) ,
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for any G ∈ IVC. Furthermore,

mVC(G, g(G, G))−m∗VC(G) = (299n+ 3m+ 5 +mVC(G, g(G, G)))−
(299n+ 3m+ 5 +m∗VC(G))

= 1 · (mSGP(wG , G)−m∗SGP(wG)) ,

for any G ∈ IVC and G ∈ SSGP(wG). ut

Next, we take a closer look at the rule-size measure of grammars, i. e., at
the problems SGPr and 1-SGPr. As defined in Section 2.2, the rule-size also
takes the number of rules into account. In fact, the literature on grammar-
based compression is inconsistent with respect to which kind of size is used,
e. g., in [5,14,39,39,35,62,41], the size of a grammar coincides with our def-
inition |·|, while in [51,7,23,13], the rule-size is used. The rule-size seems to
be mainly motivated by the question of how a grammar is encoded as a single
string, which, in any reasonable way, requires an additional symbol per rule.9

In many contexts, the difference between size and rule-size of grammars seems
negligible, but, formally, the problems SGP and SGPr (as well as 1-SGP and
1-SGPr) are different decision problems and hardness results do not automat-
ically carry over from one to the other. Since the existing literature suggests
that the rule-size is of interest as well, we consider it a worthwhile task to
extend our hardness results accordingly.

It seems intuitively clear that the size increase caused by measuring with
the rule-size does not have an impact on the complexity of the smallest gram-
mar problem. In fact, the arguments in the proof for Theorem 2 for the 1-level
case also apply for the rule-size, but with an addition of 2n+ k + 2 (i. e., the
number of rules) to the size of an r-smallest grammar. This is due to the fact
that the rules that are introduced in the proof of Lemma 3 also shorten the
grammar with respect to the rule-size measure.

Theorem 5 1-SGPr is NP-complete, even for even for alphabets of size 5.

In the multi-level case, however, the situation is not so simple. In particular,
in the proof of Theorem 3, there are some arguments, which do not apply for
the rule-size. For example, a rule which only compresses a factor of length two
is only profitable (with respect to the rule-size) if it can be used at least three
times, which is problematic, since the rules which correspond to the vertex
cover have length two and, in case the vertex only covers one edge, compress
factors which only occur twice. Beside these problems, already in Lemma 5,
we can see that it is hard to prove that the rule-size of the desired grammar
G′′ is smaller than |G|r as we now have to pay a cost of 4 for each rule Vi (or
Di) with i /∈ Iv (or i /∈ I�) which cannot be compensated by shortening the

axiom for u only by 7d |I�|+|Iv|
2 e.

9 For example, a grammar can be formed into a single string by using an order on the
rules and then listing the right sides with separators in between, or by listing the rules with
the corresponding nonterminals.
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With a larger alphabet and certain repetitions of subwords of wG , we can
modify the reduction to accommodate the rule-size, such that the arguments
used for Theorem 3 still hold for this measure. To this end, we now encode 〈i〉v
and 〈i〉� over 8-ary instead of 7-ary alphabets {x1, . . . , x8} and {d1, . . . , d8},
respectively, with analogous functions f and g. Let v′ and w′ be defined as v
and w on page 23, but with respect to the new 8-ary codewords which only
means that each occurrence of ‘7’ in the definition of v and w is replaced
by ‘8’. Moreover, let u′ be defined as u on page 23, but with the ‘6’ of the
first product replaced by ‘7’ and the ‘14n’ of the second product replaced by
‘24n + 4’ (the latter is necessary, since we need more separators of the form
〈i〉�). The colourings Cv and Ce remain unchanged.

In order to adapt the reduction to the rule-size measure, we have to repeat
each factor #〈8i + Cv(i)〉v and each factor 〈8i + Cv(i)〉v# once more, but in
such a way that Proposition 2 still holds, which is done by using three new
symbols $7, $8 and ¢3, and to add the following to v′:

v′′ = v′
n∏
i=1

(〈8i+ Cv(i)〉v # 〈8i− 3〉� ¢3) $7

n∏
i=1

(# 〈8i+ Cv(i)〉v ¢3 〈8i− 3〉�) $8 .

In order to also repeat once more the factors #〈8j2i + Cv(j2i)〉v# to make
covering edges profitable with respect to the rule-size, we repeat the complete
list of edges, but every edge (vj2i−1

, vj2i) is represented in reverse order as
#〈8j2i + Cv(j2i)〉v#〈8j2i−1 + Cv(j2i−1)〉v# to make sure that no subword of
the form 〈i〉v#xj or xj#〈i〉v is repeated. We further choose a new, previously
not used set of separators 〈i〉� (actually the 2m+ 4 more for which we created
codewords with u) to make sure that each factor of the form 〈i〉�# or #〈i〉�
occurs at most once. We still chose the separators according to the edge-
colouring to make sure that no factors of the form 〈i〉v#dj or dj#〈i〉v are
repeated; observe that by repeating the edges in reverse order, a factor of the
form 〈i〉v#dj in w′ becomes a factor of the form dj#〈i〉v in the reverse listing.
Formally, we define:

w′′ = w′ w̃ #〈8j2 + Cv(j2)〉v # 〈8j1 + Cv(j1)〉v# ,

where

w̃ =
2∏

i=m

( #〈8j2i + Cv(j2i)〉v#〈8j2i−1 + Cv(j2i−1)〉v

#〈8(i+m) + Ce(vj2(i−1)
, vj2i−1)〉�) .

Finally, we set w′G = u′v′′w′′.
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It can be easily verified that Lemma 4 remains true for the new construc-
tion; observe that appending the new part of w′′ yields the only occurrence
of the factor ## (note that w′ ends with #) which implies that the old and
the new part are separated in the axiom of any r-smallest grammar for w′G .
The equivalent to Lemma 5 also holds, since the part of the axiom for u′ now

has a length of at least 384n+ 64 + 8d |I�|+|Iv|
2 e+ 1 and the set of new rules,

which now costs 4(|I�|+ |Iv|), shortens this to 384n+ 65 (i. e., the number of
occurrences of ? in u′ plus 1 for $1). Lemma 6 follows with the same arguments
as before, just with 3 occurrences for each #〈i〉v and 〈i〉v#, which makes the
rules for these subwords profitable even with respect to the rule-size. An ana-
logue of Lemma 7 then follows exactly as before (the only addition is that the
new parts of v′′ and w′′ are compressed in the obvious way by the existing
rules). The following observation shall be helpful.

Observation 3 If I ⊆ {1, 2, . . . , n} is such that {vi : i ∈ I} is a vertex cover,
then the grammar for w′G according to the adapted version of Lemma 7 with
respect to I (see the proof of Lemma 8) satisfies |G| = 553n+ |I|+6m+94 and
|G|r = 603n+2|I|+6m+103 (note that for the rule-size, we also have to count
the start rule, so the sizes differ by the number of rules which is 50n+ k+ 9).

An analogous statement of Lemma 8 can now be concluded as follows. For
a size-k vertex cover Γ of G, we set I = {i : vi ∈ Γ} and then construct a
grammar G for w′G according to the adapted version of Lemma 7 with respect
to I with |G|r = 603n+2|I|+6m+103 (see Observation 3). On the other hand,
if there is a grammar for w′G of rule-size 603n + 2k + 6m + 103, then, by the
adapted version of Lemma 7, there is a grammar G for w′G with |G|r = 603n+
2|I|+6m+103 ≤ 603n+2k+6m+103 that has the form given by the adapted
version of Lemma 7, with respect to some I ⊆ {1, 2, . . . , n}. If, for some edge
(vi, vj), {vi, vj} ∩ I = ∅, then the factors #〈8i+Cv(i)〉v#〈8j +Cv(j)〉v# and
#〈8j+Cv(j)〉v#〈8i+Cv(i)〉v# in w′′ each correspond to three symbols in the
axiom, and the factor #〈8i+Cv(i)〉v# in v′′ corresponds to two symbols in the

axiom. Hence, introducing the rule
↔
Vi → #

→
Vi has a cost of three with respect

to the rule-size and shortens the axiom by at least three. Consequently, as in
the proof of Lemma 8, we can assume that Γ = {vi : i ∈ I} is a vertex cover.
Since |G|r = 603n+ 2|I|+ 6m+ 103 ≤ 603n+ 2k+ 6m+ 103, this means that
Γ is a vertex cover for G of size at most k. Thus, we conclude that the graph
G has a vertex cover of size k if and only if there exists a grammar of rule-size
603n+ 2k + 6m+ 103 for w′G , which yields the following:

Theorem 6 SGPr is NP-complete, even for alphabets of size 29.

Similar to Theorem 4, the above reduction can also be seen as an L-
reduction (with the only change of setting β = 1329), which shows that the
optimisation variant of the smallest grammar problem remains APX-hard un-
der the rule-size measure.

Theorem 7 SGPr,opt is APX-hard, even for alphabets of size 29.
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We conclude that if we change from the normal size measure to the rule-size
measure, NP- and APX-hardness of the smallest grammar problem over fixed
alphabets remains, although the smallest alphabet size in our constructions
is slightly larger. We conclude this section by another interesting observation
that follows from the rule-size variant of our reduction.

Obviously, the modified reduction to SGPr can also be interpreted as a
reduction to SGP. While, on first glance, this only seems to yield a weaker
hardness result compared to the one of Theorem 3, it has a nice feature that
entails an interesting result in its own right. More precisely, with respect to
the modified reduction and the normal size measure, every rule from Lemma 7
has a positive profit (i.e., replacing all occurrences of the nonterminal by the
right side of the rule would increase the overall size) and, furthermore, every
rule added in the proofs of Lemmas 5 and 6 yields a strictly smaller grammar
(note that this directly follows from the correctness of the construction for the
rule-size measure). Moreover, there are no repeated substrings in the grammar
with this set of rules which means that no additional rules with nonnegative
profit can be added. Consequently, we have not only determined the size of a
smallest (with respect to |·|) grammar G for w′G to be 553n + k + 6m + 94,
where k is the size of a smallest vertex cover for G (see Observation 3), but
also that G requires exactly |G|r − |G| = 50n+ k + 9 rules (or nonterminals).
Hence, the modified reduction also serves as a reduction from the vertex cover
problem to the following (weaker) variant of the smallest grammar problem:

Rule Number-SGP (RN-SGP)
Instance: A word w and a k ∈ N.
Question: Does there exist a smallest grammar G = (N,Σ,R, S) for w with

|N | ≤ k?

Theorem 8 RN-SGP is NP-hard, even for alphabets of size 29.

For the 1-level case, the original reduction already provides the analo-
gous result (here, 1-RN-SGP denotes the variant of RN-SGP, where we ask
whether there is a smallest 1-level grammar with |N | ≤ k):

Theorem 9 1-RN-SGP is NP-hard, even for alphabets of size 5.

While the problems RN-SGP and 1-RN-SGP naturally arise in the con-
text of grammar-based compression, they are particularly interesting in the
light of the results presented in Section 4.1 and their relevance shall be dis-
cussed there in more detail.

3.4 (Limits of) Alphabet Reduction

As shall be discussed in this section, we can achieve a slight reduction of the
alphabet size in Theorem 3. However, it seems rather unlikely that a substan-
tial decrease is possible with our current general approach. In particular, it is
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suggested that a different approach is needed to prove the hardness of SGP
for small, e. g., binary, alphabets.

We first note that we already saved one further unique separator of the form
$i in the construction for the rule-size by using ## instead, simply exploiting
the fact that this substring of length two is not repeated anywhere else, which
makes a rule containing it impossible in a smallest grammar. We can actually
also shrink our alphabet in the construction used to prove Theorem 3 by
saving separator symbols, more precisely, by only using one symbol $ instead
of $1, . . . , $6. Recall that $1, . . . , $6 only had the purpose to cut the grammar
at these symbols as described in Observation 2 and hence avoid unwanted
repetitions.

As a first observation, it is not hard to see that $2, $4, $5 can be removed
from the wG , without creating unwanted repetitions. Removing $2 only cre-
ates the two unwanted (in the sense that those should not repeat by Proposi-
tions 1 and 2) substrings ?g(7n− 1)# and d1#f(Cv(1))?, which do not occur
elsewhere in wG (more precisely for the second substring: y#f(Cv(1))? with
y /∈ {x1, . . . , x7} occurs only two other times once with y = $1 and, after
removal of $5, once with y = ¢2). Similar arguments hold for removing $4
and $5. The remaining $i occur in the subwords: x6$1#xCv(1), d5$3xCv(1),
d7$6#xCv(j1). Now consider replacing $1, $3, $6 each by the same symbol $.
If we make sure to list the edges in an order such that Cv(1) 6= Cv(j1), the
only repeating factor of length more than one containing this new symbol $
is $#. As this subword of length two only occurs twice, it is not profitable
for a smallest grammar to compress it with a rule. So with the little adjust-
ments of deleting $2, $4, $5, possible picking another order to list the edges and
replacing $1, $3, $6 by $, we need five symbols less for our reduction.

Further reduction of the alphabet size requires much more effort. Our main
kind of argument is that certain rules cannot exist, simply because their deriva-
tive does not occur more than once in wG . There are cases, where it is possible
to show that certain rules with a repeated derivative do not occur, but the
respective argument cannot be local and would rather depend on the struc-
ture of the whole grammar. On the other hand, rules that we want fixed in
a smallest grammar have to be provably profitable. With these properties in
mind, it is quite obvious that there is not much room to reduce the alphabet
size further.

The symbols ?,#, ¢1, ¢2 and, after applying the replacement above, $ each
have a very specific purpose. It seems very difficult to reduce the alphabet by
replacing one of those characters by another or some codeword.

For the symbols x1, . . . , x7, d1, . . . , d7, we see that in Lemma 5, which fixes
the codewords for vertices and separators built from these symbols, we require
at least six repetitions of each desired codeword. Doing this without repeating
unwanted subwords, means that, at least with the idea we used to repeat
these codewords in the alternating fashion given by the subword u, we need
at least six different symbols in each encoding. For the separators 〈j〉�, our
construction requires the seven different symbols d1, . . . , d7, to have unique
separators between the repetitions of the subwords #〈i〉v, 〈i〉v# and #〈i〉v#
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in v and between the edges in the listing in w, for which we need four different
kinds of separators, one for each colour of the edge-colouring Ce. For the
vertex codewords 〈i〉v, we also need seven different symbols to represent the
vertex colouring Cv. So, first of all, the only way to save symbols among
x1, . . . , x7, d1, . . . , d7 seems to modify the input graph in such a way that the
colourings Ce and Cv require less colours. It is possible to do this with the
adjustments described in the following.

Given a subcubic graph G = (V,E), we first build the graph G from G by
subdividing each edge twice, i.e., we replace each edge (u, v) ∈ E by three
edges (u, uv), (uv, vu) and (vu, v), where uv and vu are two new vertices which
are not adjacent to further edges. We now construct the word for SGP to
represent the graph G. This shift to the graph G can be used to decrease the
number of colours we require both for Cv and Ce. First observe that the graph

G2 (i. e., the graph obtained from G by the same operation used to obtain G2
from G in the original reduction; see page 23) has maximum degree three, as a
vertex v ∈ V is adjacent to the at most three vertices in {uv : (u, v) ∈ E}, and
a vertex vu, added by the subdivision process for an edge (u, v), is adjacent to
u and possible the at most two vertices in {vx : (v, x) ∈ E, x 6= u}. The vertex

colouring Cv hence only needs four different colours to properly colour G2.

Next, we choose a specific listing of the edges of G such that the three
edges of G corresponding to an edge (u, v) of G are consecutively listed as
(uv, u), (vu, uv), (v, vu) (and the relative order of such triples is arbitrary). In

this way, the multi-graph G′ (i. e., the graph obtained from G by the same
operation used to obtain G′ from G in the original reduction; see page 23)
contains the edges {(u, vu), (uv, v) : (u, v) ∈ E} for vertices from V and, in
addition, we have at most one edge of the form (uv, u

′
v′) for each new vertex

added by the subdivision. This means that in G′, a vertex v ∈ V is only
adjacent to the at most three vertices in {uv : (u, v) ∈ E}, and a vertex uv
added by the subdivision process for the edge (u, v) is adjacent to one edge
connected to v and to at most one other edge connected to a vertex added by

the subdivision process different from uv. Consequently, G′ is a simple graph
and of maximum degree three. Further, observe that the vertices of degree

three in G′ (which are a subset of the vertices in V ) form an independent set

in G′. By a theorem of Fournier [22], an edge-colouring for a graph with these
properties, only requires three colours and can be computed in polynomial
time with Vizings algorithm [60]. With the same arguments used to prove
Theorem 3, it follows that a smallest grammar encodes a minimum vertex
cover for G. It remains to observe that the size of a minimum vertex cover for
the original input graph G can be derived from a minimum vertex cover for G.
If G has a vertex cover of size k, then this can be extended to a vertex cover
of size k+ |E| for G by adding exactly one of uv and vu for each edge (u, v) of
G. On the other hand, it can be easily seen that, without loss of generality, a
minimum vertex cover for G contains exactly one of uv and vu for each edge
(u, v) of G, and, moreover, the remaining k vertices in the vertex cover for G
must be a vertex cover for the graph G.
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Overall, the adjustments described so far lead to a hardness reduction
which only uses an alphabet with 17 symbols, as we now only require a 6-ary
encoding for vertices and separators. Observe that, although the colouring Cv
only requires four colours now, we cannot reduce the alphabet for the vertices
to be less than six, as we need six different symbols for the repetitions in u.

Corollary 1 SGP is NP-complete, even for alphabets of size 17.

The reduction sketched above can still be seen as an L-reduction from the
optimisation version of vertex cover to SGPopt. Too see this, observe that the
adjustments made to reduce the alphabet only cause an addition of O(m) to
the size of a smallest grammar for the word constructed for the input graph
G. As O(m) ⊆ O(m∗V C(G)) (recall that G is cubic), the size of the smallest
grammar can be linearly bounded by m∗V C(G) in a similar way as shown in
the proof of Theorem 4.

Corollary 2 SGPopt is APX-hard, even for alphabets of size 17.

The only way to further reduce the alphabet would be to not just use the
repetitions in u to prove Lemma 5 but the repetitions in the whole word. This
however is very difficult, as including the rules we want to fix can no longer
easily be shown to shorten the axiom. If there is no nonterminal Vi which
derives 〈i〉v for some index i, the larger substring #〈i〉v¢1 in v, for example,
might still only require three symbols in the axiom by compressing parts of
〈i〉v with # or ¢1. Similarly for all occurrences of the substring 〈i〉v in v or
w. This problem is actually the reason, why we need the nonterminals Vi and
Di fixed for Lemma 6, to make our desired rules to derive 〈i〉v# and #〈i〉v in
the cheapest possible way to enable the argument that other unwanted rules
in Nax cannot be more profitable. Consequently, an alphabet of size 17 seems
to be necessary to cleanly prove Theorem 3 with our construction.

Similar ideas and limits for alphabet reduction hold for the rule-size mea-
sure. A reduction that only uses $ instead of $1, . . . , $8 works analogously. The
symbols $i with i ∈ {2, 4, 5, 6, 7} can be deleted without creating repetitions of
unwanted subwords. Replacing the remaining $i, i ∈ {1, 4, 8} by $ and again
reordering the edges in the listing given in w′′ such that xCv(1) 6= xCv(j1) makes
sure that the only repeating factor of length more than one containing the new
symbol $ is $#. This factor occurs exactly twice and is hence not compressed
by a rule in a smallest grammar (observe that with the rule-size as measure,
such a rule is not just unprofitable but even makes the grammar larger). As
we here require eight repetitions to show the equivalent of Lemma 5 for the
rule-size, saving symbols among x1, . . . , x8, d1, . . . , d8 is not possible. Conse-
quently, Theorems 6 and 7 can be improved to require only an alphabet of
size 22 but a reduction with a smaller alphabet will be very difficult with our
construction.
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(1, 3) (2, 4) (3, 5) (4, 6) (5, 7) (6, 8) (7, 9)

abb bba bab aba

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Fig. 2 The third layer of Φ1(abbababab) (edges from E1 are omitted). The uppermost
vertices (1, 3), (2, 4), . . . are from V1, the ones in the middle labelled by abb, bba, . . . are the
ones from V2 and, finally, the lower vertices are from V3 (for the sake of convenience, these
are labelled by i instead of (u, i)).

4 Smallest Grammars with a Bounded Number of Nonterminals

A natural follow-up question to the hardness for fixed alphabets is whether
polynomial-time solvability is possible if instead the cardinality of the non-
terminal alphabet N (or, equivalently, the number of rules) is bounded. In
this section, we answer this question in the affirmative by representing words
w ∈ Σ∗ as graphs Φm(w) and Φ1(w), such that smallest independent dominat-
ing sets of these graphs correspond to smallest grammars and smallest 1-level
grammars, respectively, for w.

It will be more convenient to first take care of the simpler 1-level case
and to treat then the multi-level case as an extension of it, i. e., we first define
Φ1(w) and then derive Φm(w) from Φ1(w). Recall that, as defined in Section 2,
F≥2(w) is the set of factors of w with size at least 2. Let Φ1(w) = (V,E) be
defined by V = V1 ∪ V2 ∪ V3 and E = E1 ∪ E2 ∪ E3, where:

V1 = {(i, j) : 1 ≤ i ≤ j ≤ |w|} , E1 = {{(i1, j1), (i2, j2)} : i1 ≤ i2 ≤ j1} ,
V2 = F≥2(w) , E2 = {{w[i..j], (i, j)} : 1 ≤ i < j ≤ |w|} ,
V3 = {(u, i) : u ∈ V2, 0 ≤ i ≤ |u|} , E3 = {{u, (u, i)} : u ∈ V2, 0 ≤ i ≤ |u|} .

Intuitively speaking, the vertices of V1 represent every factor by its start
and end position, whereas V2 contains exactly one vertex per factor of length
at least 2. Every u ∈ V2 is connected to (i, j), if and only if w[i..j] = u.
Vertices (i, j), (i′, j′) are connected if they refer to overlapping factors. For
every u ∈ V2, there are |u| + 1 special vertices in V3 that are only adjacent
with u. Consequently, we can view Φ1(w) as consisting of |w| layers, where the
ith layer contains the vertices (j, j + (i − 1)) ∈ V1, 1 ≤ j ≤ |w| − (i − 1), the
vertices {u ∈ V2 : |u| = i} and the vertices {(u, j) ∈ V3 : |u| = i, 0 ≤ j ≤ |u|}
(see Figure 2 for an illustration).

Next, we show that 1-level grammars for w correspond to independent
dominating sets for Φ1(w). Intuitively speaking, the vertices in an independent
dominating set from V1 induce a factorisation of w, which, in turn, induces the
axiom of a 1-level grammar in the natural way (i. e., every factor of size at least
2 is represented by a rule). If (i, j) ∈ V1 is in the independent dominating set,
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then w[i..j] ∈ V2 is not; thus, due to the domination-property, all (w[i..j], `) ∈
V3, 0 ≤ ` ≤ j − i+ 1, are in the independent dominating set, which represents
the size of the rule.

Lemma 9 Let w ∈ Σ∗, k ≥ 1. There exists an independent dominating set D
of cardinality at most k for Φ1(w) if and only if there exists a 1-level grammar
G for w with |G| ≤ k − |F≥2(w)|.

Proof We start with the if direction. If G = (N,Σ,R, ax) is a 1-level grammar
for w with size k−|F≥2(w)|, then we can construct an independent dominating
set D for Φ1(w) of size k as follows. Let ax = A1A2 . . . An, Ai ∈ N ∪ Σ,
1 ≤ i ≤ n, and let F = {D(A) : A ∈ N}. For every i, 1 ≤ i ≤ n, we add
(|D(A1 . . . Ai−1)| + 1, |D(A1 . . . Ai)|) ∈ V1 to D and, if Ai ∈ N , then we also
add all {(D(Ai), j) : 0 ≤ j ≤ |D(Ai)|} to D. Furthermore, we add all V2 \F to
D. It can be easily verified that D is an independent dominating set. Moreover,
|D| = |ax| +

∑
v∈F (|v| + 1) + |V2 \ F | = |ax| +

∑
v∈F |v| + |V2| = |ax| +∑

A∈N |D(A)| + |V2| = |G| + |F≥2(w)|. Since |G| = k − |F≥2(w)|, we conclude
that |D| = k.

Next, we prove the only if direction. Let D be an independent dominating
set for Φ1(w). We first note that, for every u ∈ V2 \D, {(u, j) : 0 ≤ j ≤ |u|} ⊆
D, which implies that

|D| = |D ∩ V1|+ |D ∩ V2|+ |D ∩ V3|

≥ |D ∩ V1|+ |D ∩ V2|+
∑

u∈(V2\D)

{(u, j) : 0 ≤ j ≤ |u|}

= |D ∩ V1|+ |D ∩ V2|+
∑

u∈(V2\D)

(|u|+ 1)

= |D ∩ V1|+ |V2|+
∑

u∈(V2\D)

|u| .

For every i, 1 ≤ i ≤ |w|, we say that i is covered by (j, j′) ∈ V1 if (j, j′) ∈ D
and j ≤ i ≤ j′ (recall that any vertex (i, i) can only be dominated by some
vertex (j, j′) with j ≤ i ≤ j′, since vertex (i, i) has no neighbours in V2). If some
i, 1 ≤ i ≤ |w|, is not covered by any (j, j′) ∈ V1, then (i, i) is not dominated by
D and if i is covered by two different elements from V1, then there is an edge
(from E1) between them, so that D is not an independent set. Thus, every i,
1 ≤ i ≤ |w|, is covered by exactly one element (j, j′) ∈ V1. This directly implies
that D ∩ V1 = {(`1, r1), (`2, r2), . . . , (`m, rm)}, such that (u1, u2, . . . , um) is a
factorisation of w, where uj = w[`j ..rj ], 1 ≤ j ≤ m. Due to the edges in
E2, we know that, for every j, 1 ≤ j ≤ m, with `j < rj , there is an edge
(uj , (`j , rj)); thus, uj ∈ (V2 \D). Next, we define N = {Au : u ∈ (V2 \D)} and
R = {Au → u : u ∈ (V2 \D)}. Since now for each j, 1 ≤ j ≤ m, either uj ∈ Σ
or there exists a non-terminal Auj

which derives uj , we can define an axiom of
length m by ax = Cu1

Cu2
. . . Cum

with Cuj
= Auj

for all j with |uj | > 1 and
Cuj

= uj otherwise, in order to obtain a 1-level grammar G = (N,Σ,R, ax)
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with D(G) = w. Finally, we note that

|G| = |ax|+
∑

u∈(V2\D)

(|u|)

= |D ∩ V1|+ |V2|+

 ∑
u∈(V2\D)

|u|

− |V2|
≤ |D| − |F≥2(w)| .

ut

Since in the multi-level case the derivatives of the nonterminals that appear
in the axiom are again compressed by a grammar, a first idea that comes to
mind is to somehow represent the vertices u ∈ V2 again by graph structures
of the type Φ1(u) and iterating this step. However, naively carrying out this
idea would lead to redundancies (copies of the subgraph representing a factor
u would appear inside subgraphs representing different superstrings w1uw2

and w′1uw
′
2) that even seem to cause an exponential size increase of the graph

structure. Fortunately, it turns out that these redundancies can be avoided
and a surprisingly simple modification of Φ1(w) is sufficient.

For a word w ∈ Σ∗, let Φm(w) = (V,E) be defined as follows. Let V =
V1 ∪ V2 ∪ V3 ∪ V4, where V1 and V2 are defined as for Φ1(w), whereas

V3 = {(u, 0) : u ∈ V2} and

V4 =
⋃
u∈V2

V4,u with V4,u = {(u, i, j) : 1 ≤ i ≤ j ≤ |u|, u[i..j] 6= u} for u ∈ V2 .

Moreover, E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5, where E1 and E2 are defined as for
Φ1(w), while

E3 ={{u, (u, 0)} : u ∈ V2} ∪ {{u, (u, i, j)} : u ∈ V2, (u, i, j) ∈ V4,u} ,

E4 =
⋃
u∈V2

E4,u, with E4,u = {{(u, i1, j1), (u, i2, j2)} ⊆ V4,u : i1 ≤ i2 ≤ j1},

for every u ∈ V2, and

E5 ={{u, (v, i, j)} : u, v ∈ V2, v[i..j] = u, u 6= v} .

Intuitively speaking, Φm(w) differs from Φ1(w) in the following way. We
add to every vertex u ∈ V2 a subgraph (V4,u, E4,u), which is completely con-
nected to u and which represents u in the same way as the subgraph (V1, E1)
of Φ1(w) represents w, i. e., factors u[i..j] are represented by (u, i, j) and edges
represent overlappings. Moreover, if a u ∈ V2 is a factor of some v ∈ V2,
then there is an edge from u to all the vertices (v, i, j) ∈ V4,v that satisfy
v[i..j] = u (by these “crosslinks”, we get rid of the redundancies mentioned
above). Finally, every u ∈ V2 is also connected with an otherwise isolated
vertex (u, 0) ∈ V3. See Figure 3 for a partial illustration of a Φm(w).

Similar as for the 1-level case, we can show that (multi-level) grammars
for w correspond to independent dominating sets for Φm(w):
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abbaaa (ab, 0)(ba, 0)(aa, 0)

(ab, 1, 1) (ab, 2, 2)(ba, 1, 1) (ba, 2, 2)(aa, 1, 1) (aa, 2, 2)

ababaaaab (aba, 0)(baa, 0)(aab, 0)

(aba, 1, 1) (aba, 2, 2) (aba, 3, 3)(baa, 1, 1) (baa, 2, 2) (baa, 3, 3)(aab, 1, 1) (aab, 2, 2) (aab, 3, 3)

(aba, 1, 2) (aba, 2, 3)(baa, 1, 2) (baa, 2, 3)(aab, 1, 2) (aab, 2, 3)

Fig. 3 Second and third layer of Φm(abaabaa) (vertices from V1 and edges from E1 ∪
E2 omitted). For example, vertex (aba) ∈ V2 is connected to all the vertices V4,aba =
{(aba, i, j) : 1 ≤ i ≤ j ≤ 3, j−i ≤ 1}, and with (aba, 0) ∈ V3. Moreover, since (aba)[1..2] = ab,
there is an edge between (aba, 1, 2) and (ab) ∈ V2, and since (aba)[2..3] = ba, there is an
edge between (aba, 2, 3) and (ba) ∈ V2.

Lemma 10 Let w ∈ Σ∗, k ≥ 1. There is an independent dominating set D
of cardinality k for Φm(w) if and only if there is a grammar G for w with
|G| = k − |F≥2(w)|.

Proof Let D be an independent dominating set of cardinality k for Φm(w).
In the same way as in the proof of Lemma 9, it can be concluded that the
set V1 ∩D = {(`1, r1), (`2, r2), . . . , (`mw

, rmw
)} corresponds to a factorisation

(w1, w2, . . . , wmw
) of w, where wj = w[`j ..rj ], 1 ≤ j ≤ mw, and satisfies

{w1, w2, . . . , wmw
} ∩D = ∅.

Next, for an arbitrary u ∈ V2, we consider the subgraph with the vertices
N [u] \ V1 = V4,u ∪ {(v, i, j) : v[i..j] = u, u 6= v} ∪ {u, (u, 0)}. If u ∈ D, then
N(u) ∩D = ∅. On the other hand, if u /∈ D, then (u, 0) ∈ D and, analogously
as for V1, we can conclude that

V4,u ∩D = {(u, `u,1, ru,1), (u, `u,2, ru,2), . . . , (u, `u,mu , ru,mu)} ,

such that (u1, u2, . . . , umu
) is a factorisation of u (note that, in the same way

as for V1, if a position i of u is not covered in the sense that (u, j, j′) ∈ D
with j ≤ i ≤ j′, then vertex (u, i, i) would neither be in D nor adjacent
to a vertex in D), where uj = u[`u,j ..ru,j ], 1 ≤ j ≤ mu. Furthermore, for
every j, 1 ≤ j ≤ mu, with |uj | ≥ 2, {uj , (u, `u,j , ru,j)} ∈ E; thus, uj /∈ D.
Consequently, by induction, D induces a factorisation (u1, u2, . . . , umu

) for
every u ∈ (V2 \D) ∪ {w}, such that, for every i, 1 ≤ i ≤ mu, |uj | ≥ 2 implies
uj ∈ V2 \D, which means that there is also a factorisation for uj .
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For every u ∈ V2 \ D, we can now define a nonterminal Au and a rule
Au → B1B2 . . . Bmu , where, for every j, 1 ≤ j ≤ mu, Bj = Auj if |uj | ≥ 2
and Bj = uj if |uj | = 1. Obviously, these rules together with the axiom
ax = C1C2 . . . Cmw

, where, for every j, 1 ≤ j ≤ mw, Cj = Awj
if |wj | ≥ 2 and

Cj = wj if |wj | = 1, defines a grammar G for w.
We note that |ax| = |V1∩D| and, for every rule Au → αu, |αu| = |V4,u∩D|.

Since

|D| = |D ∩ V1|+ |(D ∩ (
⋃
u∈V2

V4,u))|+ |D ∩ (V2 ∪ V3)| ,

|V2| = |D ∩ (V2 ∪ V3)| and

|G| = |D ∩ V1|+ |(D ∩ (
⋃
u∈V2

V4,u))| ,

we conclude that |G| = |D| − |V2| = k − |F≥2(w)|.
For a grammar G for w, we can select vertices from Φm(w) according to

the factorisations induced by the rules of G, which results in an independent
dominating set D for Φm(w) with |D| = |G|+ |V2|. ut

For the algorithmic application of these graph encodings, it is important to
note that the proofs of Lemmas 9 and 10 are constructive, i. e., they also show
how an independent dominating set D of Φm(w) or Φ1(w) can be transformed
into a grammar for w (a 1-level grammar for w, respectively) of size |D| −
|F≥2(w)|, which, in the following, we will denote by G(D).

Thus, the smallest grammar problem can be solved by constructing Φm(w)
or Φ1(w), then computing a smallest independent dominating set D for Φm(w)
(or Φ1(w), respectively) and finally constructing G(D). Unfortunately, this
does not lead to a polynomial-time algorithm, since computing a minimal in-
dependent dominating set is an NP-complete problem, even for quite restricted
graph classes [47, Theorem 13].

In the following, we shall analyse the graph structures Φm(w) and Φ1(w)
more thoroughly and we begin with their respective sizes:

Proposition 3 Let w ∈ Σ∗. Then Φ1(w) has O(|w|3) vertices and O(|w|4)
edges; Φm(w) has O(|w|4) vertices and O(|w|6) edges.

Proof We first consider Φm(w). The subgraph (V1, E1) has O(|w|2) vertices
and O(|w|4) edges. Similarly, every induced subgraph on the set of vertices
V4,u ∪ {u, (u, 0)}, u ∈ V2 has O(|w|2) vertices, O(|w|4) edges and there are
O(|w|2) such subgraphs. In addition to this, there are O(|w|) edges connecting
any u ∈ V2 with vertices from V1 andO(|w|2) edges connecting any u ∈ V2 with
vertices from V4. Finally, there are O(|w|2) vertices in V3 with one incident
edge each. Consequently, Φm(w) has O(|w|4) vertices and O(|w|6) edges.

For Φ1(w), the situation is easier. The subgraph (V1, E1) has O(|w|2) ver-
tices and O(|w|4) edges. There are O(|w|2) vertices in V2 and each u ∈ V2
has O(|w|) edges. Finally, there are O(|w|2) vertices in V3 with one edge each.
Consequently, Φ1(w) has O(|w|3) vertices and O(|w|4) edges. ut
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Next, we investigate the interval-structure of Φm(w) and Φ1(w).

Proposition 4 Φm(w) and Φ1(w) are 2-interval graphs.

Proof In the following 2-interval representations, we denote by I1(v) the first
and by I2(v) the second interval that represents a vertex v.

We first consider the graph Φ1(w). For every (i, j) ∈ V1, we set I1((i, j)) =
[i, j]; this already yields the subgraph (V1, E1). In addition, let I1(u), u ∈ V2, be
a sequence of pairwise disjoint intervals that are also disjoint with the intervals
I1((i, j)), (i, j) ∈ V1. For every (u, j) ∈ V3, let I1((u, j)) be an interval that lies
within I1(u) and is disjoint from every other interval. Now, it only remains to
represent the edges from E2, for which we simply let I2((i, j)), (i, j) ∈ V1, be
an interval that lies within I1(w[i..j]) and is disjoint from every other interval.
Note that only the vertices from V1 are represented by two intervals each.

For Φm(w), we represent V1 ∪ V2 and the edges E1 ∪E2 by intervals in the
same way as for the graph Φ1(w). Then, for every u ∈ V2 and (u, i, j) ∈ V4,u, we
set I1((u, i, j)) = [i+ku, j+ku], where ku is chosen such that all these intervals
lie inside I1(u) without intersecting an interval I2((i, j)) for some (i, j) ∈ V1.
In particular, this takes care of all the edges E4,u (due to the intersections
between these intervals) and the edges between u and the vertices V4,u (due to
the fact that these intervals lie inside I1(u)). In order to take care of the edges
from E5, for every u and for every (v, i, j) ∈ V4,v with v[i..j] = u, we place
a new interval I2((v, i, j)) inside of I1(u) such that it does not intersect with
any other interval inside of I1(u). This creates all the edges from E5. Now it
only remains to take care of vertices (u, 0), u ∈ V2, and their edges, which can
be done by placing a new interval I1((u, 0)) inside I1(u) such that it does not
intersect with any other interval. ut

Unfortunately, the independent dominating set problem for 2-interval graphs
is still NP-complete (in [47], the hardness of the independent dominating set
problem for subcubic graphs is shown and from [29], it follows that subcu-
bic graphs are 2-interval graphs). Nevertheless, solving the smallest grammar
problem by computing small independent dominating sets for Φm(w) or Φ1(w),
as sketched before Proposition 3, might still be worthwhile, since computing
small independent dominating sets is a well-researched problem, for which the
literature provides fast and sophisticated algorithms (see [31,11]). In particu-
lar, the 2-interval structure suggests that we are dealing with simpler instances
of the independent dominating set problem.

Our algorithmic application of the graph encodings, which leads to the
polynomial-time solvability of the smallest grammar problem with a bounded
number of nonterminals, can be sketched as follows. If we have fixed the set of
factors F ⊆ F≥2(w) to occur as derivatives of nonterminals in the grammar,
i. e., {D(A) : A ∈ N} = F , then, for the corresponding independent dominat-
ing set D of Φm(w) or Φ1(w), we must have (F≥2(w)\F ) ⊆ D and F ∩D = ∅.
Thus, in order to find an independent dominating set that is minimal among
all those that correspond to a grammar with {D(A) : A ∈ N} = F , it is suf-
ficient to first select the vertices (F≥2(w) \ F ), deleting the neighbourhood of
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this vertex set and computing a smallest independent dominating set for what
remains, which is the graph H = Φ(w) \ (N [F≥2(w) \F ]∪F ).10 However, H is
an interval graph, so a smallest independent dominating set can be computed
in linear time.

In order to carry out this approach, we first formally prove that H is an
interval graph:

Proposition 5 Let w ∈ Σ+, F ⊆ F≥2(w) and Φ(w) ∈ {Φm(w),Φ1(w)}. Then
H = Φ(w) \ (N [F≥2(w) \ F ] ∪ F ) is an interval graph.

Proof We only prove the case Φ(w) = Φm(w), since the case Φ(w) = Φ1(w)
can be handled analogously. First, we consider the 2-interval representation
of Φm(w) described in the proof of Proposition 4. We can now obtain a 1-
interval representation of H from the 2-interval representation of Φm(w) as
follows. Since H does not contain any vertex from V2, we first remove the
corresponding intervals for vertices from V2. The only vertices represented by
more than one interval are the ones from V1 and V4. However, the second
intervals of these only intersect intervals which represent vertices from V2 in
the 2-interval representation of Φm(w), which means that they are now all
isolated and can therefore be removed. Consequently, every vertex of H can
be represented by one interval. ut

Next, we show that independent dominating sets for H can be easily ex-
tended to independent dominating sets for Φm(w) (or Φ1(w)).

Proposition 6 Let w ∈ Σ+, F ⊆ F≥2(w), Φ(w) ∈ {Φm(w),Φ1(w)} and let
DH be an independent dominating set for H = Φ(w) \ (N [F≥2(w) \ F ] ∪ F ).
Then DH ∪ (F≥2(w)\F ) is an independent dominating set for Φ(w).

Proof We start with the multi-level case. Since DH is an independent domi-
nating set for H, it is also an independent set for Φm(w). The only vertices of
Φm(w) that are not necessarily dominated by DH are from N [F≥2(w) \ F ] or
F . Since F≥2(w) \F ⊆ DH ∪ (F≥2(w)\F ), the vertices from N [F≥2(w) \F ] are
dominated by DH ∪ (F≥2(w)\F ). Regarding the vertices from F , we note that
since F ∩DH = ∅, the vertices {(u, 0) : u ∈ F} occur in H as isolated vertices
and, thus, they must be included in DH, which means that the vertices F are
dominated in Φm(w) by DH ∪ (F≥2(w)\F ) as well. Now it only remains to
observe that, by definition of Φm(w), the vertices (F≥2(w)\F ) are clearly in-
dependent and, since their neighbourhood is completely excluded from H and
therefore also from DH, they are also independent from the vertices in DH.
Consequently, DH∪ (F≥2(w)\F ) is an independent dominating set for Φm(w).

The argument for the 1-level case is very similar with the only difference
that {(u, i) : u ∈ F, 0 ≤ i ≤ |u|} are the vertices from DH ∪ (F≥2(w)\F ) that
dominate the vertices F . ut

10 See page 8 for the definition of the closed neighbourhood.
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For the sake of convenience, for any F ⊆ F≥2(w), we denote a grammar
G = (N,Σ,R, ax) for w with {D(A) : A ∈ N} = F by the term F -grammar, a
smallest F -grammar for w is one that is minimal among all F -grammars for
w.

Lemma 11 Let w ∈ Σ+ and F ⊆ F≥2(w). A smallest F -grammar for w can
be computed in time O(|w|6) and a smallest 1-level F -grammar for w can be
computed in time O(|w|4).

Proof Again, we only prove the multi-level case, since the 1-level case can
be dealt with analogously. We compute a smallest F -grammar for w as fol-
lows. First, we construct Φm(w) and then H = Φm(w) \ (N [F≥2(w) \ F ] ∪ F ),
which can be done in time O(|Φm(w)|) = |w|6 (see Proposition 3). Obvi-
ously, we could also construct H directly, which would not change the over-
all running-time. Next, we compute a minimal independent dominating set
DH for H, which, since H is an interval graph (see Proposition 5), can be
done in time O(|H|) = O(|w|6) (see Section 2.1). Finally, we construct G =
G(DH ∪ (F≥2(w) \ F )) (note that, by Proposition 6, DH ∪ (F≥2(w) \ F ) is an
independent dominating set for Φm(w); thus, G is well-defined), which can be
done in time O(|w|6) as well.

It remains to prove that G is a smallest F -grammar. To this end, we as-
sume that there exists an F -grammar G′ for w and |G′| < |G|. Consequently,
by Lemma 10, there is an independent dominating set D′ for Φm(w) with
|G′| = |D′| − |F≥2(w)|. Since both G and G′ are F -grammars, F≥2(w) \D =
F≥2(w) \ D′ = F . This implies that D′H = D′ \ (F≥2(w) \ F ) is an indepen-
dent dominating set for H. Since by Lemma 10, |G| = |D| − |F≥2(w)| and, by
assumption, |D′| < |D|, it follows that |D′H| < |DH|, which is a contradiction
to the minimality of DH. Consequently, G is a smallest F -grammar for w. ut

If instead of a set F of factors, we are only given an upper bound k on
|N |, then we can compute a smallest grammar by enumerating all F ⊆ F≥2(w)
with |F | ≤ k and computing a smallest F -grammar. This shows that smallest
grammars can be computed in polynomial time if the number of nonterminals
is bounded.

Theorem 10 Let w ∈ Σ∗ and k ∈ N. A grammar (1-level grammar, resp.)
for w with at most k rules that is smallest among all grammars (1-level gram-
mars, resp.) for w with at most k rules can be computed in time O(|w|2k+6)
(O(|w|2k+4), resp.).

Proof Obviously, a grammar G for w with k rules and

|G| = min{|G′| : G′ is smallest F -grammar, with F ⊆ F≥2(w), |F | ≤ k}

is smallest among all grammars for w with at most k rules. In order to com-
pute such a grammar, it is sufficient to compute, for every set F ⊆ F≥2(w)
with |F | ≤ k, a smallest F -grammar, which requires time O(|w|2k · |w|6) =
O(|w|2k+6).
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Analogously, we can compute a 1-level grammar for w with at most k rules
that is smallest among all 1-level grammars for w with at most k rules in time
O(|w|2k+4). ut

This result raises some related questions, which shall be discussed next.

4.1 Related Questions

In the literature on grammar-based compression, the size of a smallest gram-
mar has been interpreted in terms of a computable upper bound of the Kolo-
mogorov complexity and, thus, as some measure for entropy or information
content of strings (see Section 1). Similarly, we could treat the minimal number
of nonterminals (i. e., number of rules) that are needed for a smallest grammar
as a general parameter of strings, which we call the rule-number. The main
motivation for doing this is pointed out by Theorem 10, which shows that
a smallest grammar for w can be computed in time that is exponential only
in the rule-number of w (or, in parameterised complexity terms, the small-
est grammar problem parameterised by |N | is in XP). However, in order to
apply the algorithm of Theorem 10 in this regard, we need to know the rule-
number, which naturally leads to the question whether the rule-number of a
given string can efficiently be computed. However, the hardness reductions for
the rule-size variants of the smallest grammar problem (see Section 3.3) has
already provided a negative answer to this question (see Theorems 8 and 9).

The XP-membership of the smallest grammar problem, provided by Theo-
rem 10, shows that the parameter |N | has a stronger impact on the complexity
than |Σ| and, furthermore, it gives reason to hope that bounding |N | might
also lead to practically relevant algorithms. In this regard, the algorithm of
Theorem 10 with its running-time of the form |w|O(|N |) is a bit dissapoint-
ing, since it cannot be considered practical for larger constant bounds on |N |.
On the other hand, an algorithm with a running-time of f(|N |) · g(|w|), for a
polynomial g, would be a huge improvement. In other words, the question is
whether the smallest grammar problem is also fixed-parameter tractable with
respect to the number of nonterminals. Unfortunately, this seems unlikely,
since, as stated by the next result, these parameterisations of 1-SGP and
SGP are W[1]-hard. To prove this, we devise a parameterised reduction from
the independent set problem parameterised by the size of the independent set,
which is known to be W[1]-hard (see [16]).

Let G = (V,E) be a graph with V = {v1, v2, . . . , vn}, |E| = m, and let k ∈
N. We define the alphabet Σ = V ∪{#}∪{�i : 1 ≤ i ≤ m+

∑n
i=1 n− |N(vi)|}

and the following word over Σ

w =
∏

{vi,vj}∈E

(#vi#vj#�)
n∏
i=1

(#vi#�)n−|N(vi)| .

As already done in Section 3, every occurrence of � in the word stands for
a distinct symbol of {�i : 1 ≤ i ≤ m +

∑n
i=1 n − |N(vi)|}). Note that |w| =

6m+ 4(n2 − 2m) = 4n2 − 2m.
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Lemma 12 The following statements are equivalent for each k ≤ n:

− G has an independent set I with |I| = k.
− There is a grammar G for w with at most k nonterminals and |G| ≤

4n2 − 2m+ 3k − 2kn.
− There is a 1-level grammar G for w with at most k nonterminals and
|G| ≤ 4n2 − 2m+ 3k − 2kn.

Proof We first prove the equivalence of the first and the third statement.
Let I be an independent set for G with |I| = k. We define a grammar G =
(N,Σ,R, ax) by N = {Ai : vi ∈ I}, R = {Ai → #vi#: Ai ∈ N} and ax = w′,
where w′ is obtained from w, by replacing, for every vi ∈ I, all occurrences
of #vi# by Ai (note that since I is an independent set, no two occurrences
of factors #vi# and #vj# with vi, vj ∈ I overlap). Obviously, G is a 1-level
grammar for w with k nonterminals. For every vi ∈ I, |ax|Ai

= |N(vi)|+ (n−
|N(vi)|) = n; thus, p(Ai) = 2n− 3 (recall that the concept of the profit p(A)
of a nonterminal A of a 1-level grammar is defined on page 11). Consequently,
|G| = |w| −

∑
A∈V p(A) = 4n2 − 2m− k(2n− 3).

Let G = (N,Σ,R, ax) be a 1-level grammar of size at most 4n2 − 2m −
2kn + 3k, with at most k nonterminals. We note that, for every A ∈ N ,
p(A) ≤ 2n − 3, since in w every repeated factor has size of at most 3 and is
repeated at most n times. Since, by assumption, |G| ≤ 4n2 − 2m− k(2n− 3)
and |G| = 4n2−2m−

∑
A∈N p(A), we conclude that

∑
A∈N p(A) ≥ k(2n−3).

Hence, there are exactly k nonterminals A ∈ N each with a right side of length
3, which implies A→ #vi#, for some i, 1 ≤ i ≤ n, and, furthermore, |ax|A = n.
It can be easily verified that this is only possible if {vi : there is (A→ #vi#) ∈
R} is an independent set for G.

The third statement obviously implies the second statement. We assume
that the second statement holds, i. e., there is a grammar G = (N,Σ,R, ax)
for w with at most k nonterminals and |G| ≤ 4n2− 2m+ 3k− 2kn. If G is not
a 1-level grammar, then it has a rule A→ α with α /∈ Σ+ and, since the only
repeated factors of w with a length of at least 3 have the form #x#, for some
x ∈ {v1, . . . , vn}, we also know that D(A) = #x#. In particular, this implies
that α = B# or α = #B with B → #x ∈ R or B → x# ∈ R. Generally, each
rule in G has a length (and hence cost) of at least 2, compresses a factor of
length at most 3 and occurs in the axiom at most n times. The rules A and B
together can occur at most n times in ax, as they both derive the symbol x. This
means that the axiom has a length of at least |w|− (k−1)2n and therefore the
overall grammar has size of at least |ax|+2k = 4n2−2m−2kn+2n+2k. Since we
assumed that |G| ≤ 4n2−2m+3k−2kn, this implies 4n2−2m−2kn+2n+2k ≤
4n2 − 2m+ 3k − 2kn, so 2n ≤ k which contradicts the assumption k ≤ n. ut

Lemma 12 directly yields the following result:

Theorem 11 1-SGP and SGP parameterised by |N | are W[1]-hard.

We emphasise that Theorem 11 shows W[1]-hardness for the smallest gram-
mar problem parameterised by |N | only for the case where the terminal al-
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phabet Σ is unbounded. The most important respective question, which, un-
fortunately, is left open here, is whether the smallest grammar problem is
fixed-parameter tractable with respect to the combined parameter (|N |, |Σ|)
(we discuss the open cases of the parameterised complexity of the smallest
grammar problem in more detail in Section 6).

Finally, we note that we can use Lemma 11 in order to obtain a simple
exact exponential-time algorithm for the smallest grammar problem. More
precisely, we compute for each subset F ⊆ F≥2(w) a smallest F -grammar,

which yields an algorithm with an overall running-time of 2O(|w|2). In the next
section, we present more advanced exact exponential-time algorithms for SGP
and 1-SGP.

5 Exact Exponential-Time Algorithms

An obvious approach for an exact exponential-time algorithm for SGP is to
enumerate all ordered trees with |w| leaves and to interpret them as derivation
trees of a grammar for w. More precisely, for a given ordered tree with |w|
leaves, we first label the leaves with the symbols of w and then we inductively
label each internal node with u1u2 . . . uk, where ui are the labels of its children
nodes. Finally, for every factor u that occurs as a label of some internal node,
we substitute all occurrences of this label by a nonterminal Au. In order to
estimate the number of such trees, we first note that the ith Catalan number Ci
is the number of full binary trees (i. e., every non-leaf has exactly two children)
with i + 1 leaves. Moreover, every tree with |w| leaves can be obtained from
a full binary tree with |w| leaves by contracting some of its ‘non-leaf’ edges
(i. e., edges not incident to a leaf). Since every full binary tree with |w| leaves
has less than |w| such ‘non-leaf’ edges, the number of trees that we have to
consider is at most C|w|−1 · 2|w|. Since C|w|−1 ∈ O(4|w|−1), this leads to an

algorithm with running-time O*(8|w|).

In the following, we shall give more sophisticated exact exponential-time
algorithms with running timesO*(1.8392|w|), for the 1-level case, andO*(3|w|),
for the multi-level case. First, we need to introduce some helpful notations.

Let G = (N,Σ,R, ax) be a grammar for w and let α = A1 . . . Ak, Ai ∈
(Σ ∪ N), 1 ≤ i ≤ k. The factorisation of D(α) induced by α is the tuple
(DG(A1), . . . ,DG(Ak)). Furthermore, the factorisation of w induced by ax is
called the factorisation of w induced by G. A factorisation q = (u1, u2, . . . , uk)
of a word w with |w| = n can be characterised by the vector vq ∈ {0, 1}n−1
defined by setting vq[i] = 1 if and only if i = |u1 . . . uj | for some 1 ≤ j < k.
For the sake of convenience, we implicitly assume vq[0] = vq[n] = 1, and treat
vectors as words over the alphabet N, which allows us to use notations already
defined for words. From now on, we shall use these two representations of
factorisations, i. e., tuples of factors and vectors in {0, 1}n−1, interchangeably,
without mentioning it.
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5.1 The 1-Level Case

In the 1-level case, as long as we are only concerned with smallest grammars,
the factorisation induced by the axiom already fully determines the grammar.
More formally, let q = (u1, u2, . . . , uk) be a factorisation for a word w and
let Fq = {ui : 1 ≤ i ≤ k, |ui| ≥ 2}. We define the 1-level grammar Gq =
(Nq, Σ,Rq, axq) by Rq = {(Au, u) : u ∈ Fq}, Nq = {Au : u ∈ Fq} and axq =
B1 . . . Bk with Bj = Auj

, if uj ∈ Fq and Bj = uj , otherwise.

Lemma 13 For any factorisation q = (u1, u2, . . . , uk) for w, Gq is a smallest
grammar among all 1-level grammars for w that induce the factorisation q.

Proof Let q = (u1, u2, . . . , uk) be a factorisation for a word w. Every 1-
level grammar G = (N,Σ,R, ax) for w that induces q satisfies |G| = k +∑
A∈N |D(A)| ≥ k +

∑
u∈Fq
|u|. Since |Gq| = k +

∑
u∈Fq
|u|, Gq is a smallest

1-level grammar for w that induces q. ut

Choosing the smallest among all grammars {Gq : q is a factorisation of w}
yields an O*(2n) algorithm for 1-SGP. However, it is not necessary to enu-
merate factorisations that contain at least two consecutive factors of length 1,
which improves this result as follows.

Theorem 12 1-SGP can be solved exactly in polynomial space and in time
O*(1.8392|w|).

Proof For any k ∈ N, let Γk contain all q ∈ {0, 1}k, such that v has no prefix
11, no suffix 11 and no factor 111; furthermore, let Γ ′k contain all q ∈ {0, 1}k,
such that v has no suffix 11 and no factor 111. Clearly, Γ|w|−1 contains exactly
the factorisations for w that have no consecutive factors of length 1. In order to
solve the smallest 1-level grammar problem, we enumerate Γ|w|−1 and for every
q ∈ Γ|w|−1, we construct Gp, where p is obtained from q, by replacing every
non-repeated factor u of q with the factors u[1], u[2], . . . , u[|u|]. It remains to
prove the correctness of this algorithm and to estimate its running-time.

To this end, let G be a smallest 1-level grammar for w and let p =
(u1, u2, . . . , uk) be the factorisation induced by G. Furthermore, let q be the
factorisation obtained from p by joining any maximal sequence ui, ui+1, . . . , uj ,
1 ≤ i < j ≤ k, of factors with |u`| = 1, i ≤ ` ≤ j (note that q ∈ Γ|w|−1).
If none of the newly constructed factors of q is repeated, then the algorithm,
when enumerating q, constructs grammar Gp that, according to Lemma 13, is
smallest among all 1-level grammars for w that induce p; thus, Gp is a small-
est 1-level grammar. If, on the other hand, any of these newly constructed
factors is repeated and has a length of at least 3, or has length 2 and is re-
peated for at least 3 times, then a 1-level grammar smaller than G could be
constructed, which is a contradiction. This leaves the case where all newly
constructed factors of q have length 2 and are repeated exactly twice. In this
case the algorithm will, when enumerating q, construct a grammar that differs
from Gp only in that it compresses some factors of length 2 that are repeated
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only twice, and that Gp does not compress. This grammar has obviously the
same size as Gp and is therefore a smallest 1-level grammar as well.

In order to estimate the running-time, let T (k) = |Γk| and T ′(k) = |Γ ′k|,
for every k ∈ N. Obviously,

T (k) = |{q ∈ Γk : q[1] = 0}|+ |{q ∈ Γk : q[1] = 1}| ,

so, in the following, we shall determine |{q ∈ Γk : q[1] = 0}| and |{q ∈
Γk : q[1] = 1}| separately. To this end, we first note that |{q ∈ Γk : q[1] =
1}| = T (k − 1) − T ′(k − 3) (this is due to the fact that T (k − 1) also counts
all q = 110q′ . . . with q′ ∈ Γ ′k−3, so we have to subtract T ′(k − 3)). Moreover,

|{q ∈ Γk : q[1]q[2] = 01}| = T (k − 2) ,

|{q ∈ Γk : q[1]q[2]q[3] = 001}| = T (k − 3) ,

|{q ∈ Γk : q[1]q[2]q[3] = 000}| = T ′(k − 3) .

This is due to the fact that extending the prefix 01 or 001 with 11 yields
a factor 111, where the prefix 000 can be extended by 11. With the above
observations, we can now conclude the following:

T (k) = |{q ∈ Γk : q[1] = 0}|+ |{q ∈ Γk : q[1] = 1}|
= |{q ∈ Γk : q = 01 . . .}|+ |{q ∈ Γk : q = 001 . . .}|+
|{q ∈ Γk : q = 000 . . .}|+ |{q ∈ Γk : q[1] = 1}|

= T (k − 2) + T (k − 3) + T ′(k − 3) + T (k − 1)− T ′(k − 3)

= T (k − 1) + T (k − 2) + T (k − 3) .

This yields T (k) = O(1.8392k); since we can also enumerate Γ|w|−1 in time

O*(1.8392|w|), the algorithm has a running-time of O*(1.8392|w|). ut

5.2 The Multi-Level Case

The obvious idea for a dynamic programming algorithm is to build up gram-
mars level by level, e. g., by starting with a 1-level grammar, then extending
it by a new axiom, which can derive the old axiom in one derivation step, and
iterating this procedure. Obviously, we have to try an exponential number
of axioms, which will lead to an exponential-time algorithm (as suggested by
the NP-completeness of the problem). However, there is a more fundamental
problem with this general approach, which shall be pointed out by going a bit
more into detail.

For every i and every factorisation p of w, we store in entry T [i, p] of a
table the size of a smallest i-level grammar with an axiom ax that induces
factorisation p (in the sense defined at the beginning of this section). Then,
for every factorisation q, such that p is a refinement of q, we construct a new
axiom ax′ that induces factorisation q and that can derive ax in one step, which
is treated as the axiom of a new (i+1)-level grammar. We subtract the profit of
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the rules needed to derive ax from ax′ to T [i, p] and store the obtained number
in T [i + 1, q]. Note that the axioms ax and ax′ are fully determined by the
factorisations p and q (similar as a factorisation determines a smallest 1-level
grammar with an axiom inducing this factorisation, see Lemma 13). However,
this approach is fundamentally flawed, since in order to compute the size of the
new (i+1)-level grammar, we need to know whether the rules needed to derive
ax from ax′ have already been used earlier in the i-level grammar and therefore
are already counted by T [i, p], or whether they are newly introduced. On the
other hand, it should clearly be avoided to additionally store all previously
used rules as well.

To overcome this problem, we do not consider the levels of a grammar as
strings ax,D(ax),D(D(ax)), . . . , w, which is the obvious choice, but we define
them in such a way that all occurrences of a nonterminal are on the same
level. With this definition, all the rules that are needed for the extension to
the new level must be completely new rules without prior application; thus,
a dynamic programming approach similar to the one described above will be
successful. Next, we give the required definitions (which are also illustrated by
Example 2).

For a d-level grammar G = (N,Σ,R, ax), we partition the set of nontermi-
nals N according to the number of derivation steps that are necessary to derive
a terminal word (or, equivalently, according to their height, i. e., the maximum
distance to a leaf in the derivation tree). More precisely, let N1, . . . , Nd be the
partition of N into Ni = {A ∈ N : (DiG(A) ∈ Σ+) ∧ (Di−1G (A) /∈ Σ+)}. We
recall that the morphism D : (N ∪Σ)∗ → (N ∪Σ)∗ replaces every occurrence
of a nonterminal by the right side of its rule. For every i, 1 ≤ i ≤ d, we modify
D, such that it only considers nonterminals from Ni and ignores the rest. More
formally, for every i, 1 ≤ i ≤ d, we define a morphism D̂i : (N∪Σ)∗ → (N∪Σ)∗

component-wise by D̂i(x) = D(x), if x ∈ Ni and D̂i(x) = x, otherwise. Using
these morphisms, we now inductively define the levels Li, 0 ≤ i ≤ d, of G by
Ld = ax and, for every i, 0 ≤ i ≤ d− 1, Li = D̂i+1(Li+1).

Observation 4 The sequence Ld, Ld−1, . . . , L1, L0 is a derivation with Ld =
ax, L0 = w and, by a simple induction over i, it can be verified that, for every
i, 1 ≤ i ≤ d, all applications of rules for nonterminals from Ni happen in the
single derivation step from Li to Li−1. In particular, this implies that, for every
i, 1 ≤ i ≤ d, Li contains all occurrences of nonterminals A ∈ Ni that are ever
derived in the derivation of w or, in other words, for every j, 0 ≤ j ≤ i − 1,∑
A∈Ni

|Lj |A = 0.

Since in the derivation Ld, Ld−1, . . . , L1, L0 occurrences of a nonterminal A
are not derived until all of them are collected in Li and then they are derived
all at once in the same derivation step, we can conveniently define the term
profit for all rules (of the d-level grammar G) as follows. For every i, 1 ≤ i ≤ d,
we define the profit of every A ∈ Ni by p(A) = |Lj |A(|D(A)| − 1) − |D(A)|.
Note that for d = 1 this corresponds to the definition of profit for 1-level
grammars as introduced on page 11. In particular, we can now express the
size of a grammar in terms of the profit of its rules:
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Proposition 7 Let G be a grammar. Then |G| = |w| − (
∑d
i=1

∑
A∈Ni

p(A)).

Proof We recall that, by definition of the size of a grammar and as a conclusion
of Observation 4, we have

|G| =

(
d∑
i=1

∑
A∈Ni

|D(A)|

)
+ |ax| , |w| =

(
d∑
i=1

∑
A∈Ni

|Li|A(|D(A)| − 1)

)
+ |ax| .

Consequently,

|w| −

(
d∑
i=1

∑
A∈Ni

p(A)

)
= |w| −

(
d∑
i=1

∑
A∈Ni

|Li|A(|D(A)| − 1)− |D(A)|

)
=

|w| −

((
d∑
i=1

∑
A∈Ni

|Li|A(|D(A)| − 1)

)
−

(
d∑
i=1

∑
A∈Ni

|D(A)|

))
=

|w| − ((|w| − |ax|)− (|G| − |ax|)) = |G| .

ut

Example 2 Let G = (N,Σ,R, ax) with N = {A,B,C,D}, Σ = {a, b}, R =
{A → Dbb, B → ab, C → AB,D → aaa} and ax = CDC be the 3-level
grammar illustrated in Figure 4. According to the definitions from above, the
partition of N is N1 = {B,D}, N2 = {A}, N3 = {C}, and the levels are

L3 = ax = CDC ,

L2 = D̂3(CDC) = ABDAB ,

L1 = D̂2(ABDAB) = DbbBDDbbB ,

L0 = D̂1(DbbBDDbbB) = aaabbabaaaaaabbab .

Note that, for every i, 1 ≤ i ≤ 3, Li contains all occurrences of all nonterminals
fromNi and the rules for all nonterminalsNi are exclusively applied in deriving
Li−1 from Li. In particular, note that in the derivation L3, . . . , L0, the derivation
of occurrences of nonterminals B and D is delayed until the very last derivation
step.

Furthermore, the profits are as follows

p(A) = |L2|A(|D(A)| − 1)− |D(A)| = 2(3− 1)− 3 = 1,

p(B) = |L1|B(|D(B)| − 1)− |D(B)| = 2(2− 1)− 2 = 0,

p(C) = |L3|C(|D(C)| − 1)− |D(C)| = 2(2− 1)− 2 = 0,

p(D) = |L1|D(|D(D)| − 1)− |D(D)| = 3(3− 1)− 3 = 3 .

Moreover, |w| −
∑
A∈N p(A) = 17− 4 = 13 and |G| = |ax|+ |D(A)|+ |D(B)|+

|D(C)|+ |D(D)| = 3 + 3 + 2 + 2 + 3 = 13.
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C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

Fig. 4 A derivation tree for 3-level grammar (neighbouring leaves are combined, the start
rule is omitted).

Before we formally present the dynamic programming algorithm, we sketch
its behaviour in a more intuitive way. We first need the following defini-
tion. A factorisation p = (u1, u2, . . . , uk) is a refinement of a factorisation
q = (v1, v2, . . . , vm), denoted by p � q, if (uji−1+1, uji−1+2, . . . , uji) is a factori-
sation of vi, 1 ≤ i ≤ m, for some {ji}0≤i≤m, with 0 = j0 < j1 < . . . < jm = k.

The algorithm runs through steps i = 1, 2, . . . , w2 and in step i, it considers
all possibilities for two factorisations qi−1 and qi of w induced by Li−1 and Li,
respectively (note that this implies qi−1 � qi). The differences between qi−1
and qi implicitly define Ni as follows. Let qi = (v1, v2, . . . , vk) and let qi−1 =
(u1, u2, . . . , u`), which, since qi−1 � qi, means that for some ji, 0 ≤ i ≤ k, with
1 = j0 < j1 < . . . < jk = `+ 1, (uji−1 , uji−1+1, . . . , uji−1) is a factorisation of
vi, 1 ≤ i ≤ k. If js − js−1 > 1 for some 1 ≤ s ≤ k, Ni contains a nonterminal
A with |D(A)| = js− js−1 and D(A) = vs. The number |Li|A is also implicitly
given by counting how often the sequence of factors (ujs−1+1, . . . , ujs) inde-
pendently occurs in qi−1 and is combined into one single factor in qi; more
precisely, |Li|A = |{t : (ujt−1+1, . . . , ujt) = (ujs−1+1, . . . , ujs)}|. This allows to
calculate the profit of the rule for A without knowing the exact structure of the
rules for nonterminals in Nj with j 6= i. By Lemma 13, this choice of nonter-
minals for Ni is optimal for the fixed induced factorisations, which means that
a search among all choices for qi−1 and qi yields a smallest i-level grammar for
w. The running time of this algorithm is dominated by enumerating all pairs
qi−1 and qi of factorisations of w. However, due to qi−1 � qi, these pairs can
be compressed as vectors {0, 1, 2}|w|−1 (the entries denote whether the corre-
sponding position in w is factorised by both (entry ‘1’), only by the refinement
(entry ‘2’) or none (entry ‘0’) of the factorisations). Hence, enumerating these
pairs of vectors can be done in time O(3|w|).

Theorem 13 SGP can be solved in time and space O*(3|w|).

Proof Let n = |w|. We use dynamic programming to consider all possible
factorisations of w and refinements for each level i = 1, . . . , d. A factorisation
of w is stored as a vector q ∈ {0, 1}n−1 and, furthermore, we use vectors
q ∈ {0, 1, 2}n−1 in order to represent a factorisation together with a refinement,
as explained above (for the sake of convenience, we implicitly assume q[0] =
q[n] = 1). For such a vector q ∈ {0, 1, 2}n−1 that describes two factorisations
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p and p′ with p � p′, we denote by F (q) the factorisation p′ (represented
as a vector from {0, 1}n−1) and by R(q) the refinement p (represented as
a vector from {0, 1}n−1). More formally, let F : {0, 1, 2}n−1 → {0, 1}n−1 be a
mapping that replaces each ‘2’-entry by a ‘0’-entry (and leaves all other entries
unchanged), and let R : {0, 1, 2}n−1 → {0, 1}n−1 be a mapping that replaces
each ‘2’-entry by a ‘1’-entry (and leaves all other entries unchanged).

The dynamic program uses the following tables:

− T [i, q] for i ∈ {2, . . . , n2 } and all q ∈ {0, 1, 2}n−1 \ {0, 1}n−1 stores the size
of a smallest i-level grammar for w for which the axiom ax induces the
factorisation F (q) and for which D̂i(ax) induces the factorisation R(q).

− S[i, q] for all i ∈ {1, . . . , n2 } and all q ∈ {0, 1}n−1 stores the size of a smallest
i-level grammar for w for which the axiom induces the factorisation q.

− P [i, q] for all i ∈ {2, . . . , n2 } and all q ∈ {0, 1}n−1 stores the refinement of

q which equals the factorisation induced by D̂i(ax) for an optimal i-level
grammar for which ax induces factorisation q.

− opti for all i ∈ {1, . . . , n2 } stores the value of a smallest i-level grammar for
w.

We point out that the tables T and S are sufficient to compute the size of a
smallest grammar; the purpose of table P is to construct an actual grammar of
minimal size after termination of the algorithm. Intuitively speaking, in order
to determine S[i, q], i. e., the size of a smallest i-level grammar for which the
axiom induces the factorisation q, we have to check all entries T [i, q′] for which
the factorisation of q′ (note that q′ represents a factorisation and a refinement)
equals q and for a minimal one of these entries, we store the actual refinement
(which is not needed anymore to compute the size of a minimal grammar) in
P [i, q]. In this way, the entries of P [i, q] allow us to restore an actual smallest
grammar.

We first initialise S by setting S[1, q] = |Gq|, for every q ∈ {0, 1}n−1, where,
according to Lemma 13, Gq is a smallest 1-level grammar for w that induces
factorisation q, and we set opt1 = min{S[1, q] : q ∈ {0, 1}n−1}.

We then compute iteratively for each i = 2, . . . , n2 the entries T [i, q], S[i, q′]
and P [i, q′], for every q ∈ {0, 1, 2}n−1 \{0, 1}n−1 and q′ ∈ {0, 1}n−1 as follows.

First, for any q ∈ {0, 1, 2}n−1 \ {0, 1}n−1, we define the set I(q) of consec-
utive factors in R(q) which are combined into one factor in F (q):

I(q) := {(j0, j1, . . . , jk) : |q[j0 − 1..jk]|1 = |q[j0 − 1]q[jk]|1 = 2,

|q[j0..jk]|2 = |q[j1] . . . q[jk−1]|2 = k − 1 ≥ 1} .

Furthermore, from I(q), we can extract the set N(q) of nonterminals which
create these factors on level i, i. e., N(q) := {w(j0, j1, . . . , jk) : (j0, . . . , jk) ∈
I(q)}, where

w(j0, j1, . . . , jk) := (w[j0 + 1..j1], w[j1 + 1..j2], . . . , w[jk−1 + 1..jk]) .



60 Katrin Casel et al.

The corresponding number of occurrences of the nonterminal w(j0, j1, . . . , jk)
on level i is given by

c(j0, j1, . . . , jk) := |{(j′0, j′1, . . . , j′k) ∈ I(q) : w(j0, j1, . . . , jk) = w(j′0, j
′
1, . . . , j

′
k)}| .

The entry T [i, q] can now be computed as follows:

T [i, q] = S[i− 1, R(q)]−

 ∑
w(j0,j1,...,jk)∈N(q)

c(j0, j1, . . . , jk)(k − 1)− k


Then, for every q′ ∈ {0, 1}n−1, we can compute entries S[i, q′] and P [i, q′] by

S[i, q′] = min{T [i, q] : F (q) = q′} and

P [i, q′] = q ,

where q ∈ {0, 1, 2}n−1 \ {0, 1}n−1 with F (q) = q′ and T [i, q] = S[i, q′]. Finally,
the value opti is computed by opti = min{S[i, q′] : q′ ∈ {0, 1}n−1}.

After termination of step n
2 , the size of a smallest grammar for the word

w is min{opti : 1 ≤ i ≤ n
2 }. Since the values in T [i, q] for any i = 2, 3, . . . , n2

and q ∈ {0, 1, 2}n−1 \{0, 1}n−1 are constructively computed from S[i, R(q)] by

defining the rules in N(q), the set
⋃i
j=1N(qi) with qi := q and qj−1 := P [j, qj ]

for j = i−1, . . . , 1 yields an i-level grammar for w of size T [i, q]. For the index
i with opti = min{opti : 1 ≤ i ≤ n

2 } and a vector q ∈ {0, 1, 2}n−1 \ {0, 1}n−1
such that opti = S[i, R(q)], this construction gives a smallest grammar for w.

In order to prove the correctness of the algorithm, we show for each q ∈
{0, 1}n−1, inductively for each i = 1, . . . , n2 that S[i, q] equals the size of a
smallest i-level grammar for w which induces the factorisation q. For i = 1 this
is implied by Lemma 13. Assuming that this statement is true for some value
i−1, let Gi = (N,Σ,R, ax) be a smallest i-level grammar for w with i ≤ n

2 . Let
qi and qi−1 be the vector-representations of the factorisations induced by ax

and D̂i(ax) respectively. The grammar Gi−1 := (N \Ni, Σ,R\{(A,D(A)) : A ∈
Ni}, D̂i(ax)) is an (i− 1)-level grammar for w with induced factorisation qi−1
and the size of Gi−1 can be computed by |Gi| +

∑
A∈Ni

p(A) and is at least
S[i− 1, qi−1] by the induction hypothesis. By definition of the profit, the term

|Gi|+
∑
A∈Ni

p(A) can be re-written to |Gi|+ |D̂i(ax)| − |ax| −
∑
A∈Ni

|D(A)|.
Let q ∈ {0, 1, 2}n−1 be such that F (q) = qi and R(q) = qi−1, i. e., for every

j, 1 ≤ j ≤ n − 1, q[j] = 2, if qi[j] 6= qi−1[j] and q[j] = qi[j], otherwise. The
value T [i, q] is computed from S[i− 1, qi−1] by subtracting∑

w(j0,j1,...,jk)∈N(q)

c(j0, j1, . . . , jk)(k − 1)− k =

 ∑
(j0,...,jk)∈I(q)

(k − 1)

−
 ∑
w(j0,...,jk)∈N(q)

k

 .
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Each 2-entry in q occurs in exactly one set in I(q) which, by definition of q,
yields:

∑
(j0,j1,...,jk)∈I(q)

(k − 1) =

n−1∑
j=1

(qi−1[j]− qi[j]) = |D̂i(ax)| − |ax| .

For each w(j0, j1, . . . , jk) ∈ N(q), Ni contains a nonterminal A ∈ Ni with
|D(A)| = k, which means that

∑
A∈Ni

|D(A)| ≥
∑
w(j0,j1,...,jk)∈N(q) k; thus,

|Gi| = |Gi−1| − |D̂i(ax)|+ |ax|+
∑
A∈Ni

|D(A)|

≥ S[i− 1, qi−1]−
∑

w(j0,j1,...,jk)∈N(q)

c(j0, j1, . . . , jk)(k − 1)− k

= T [i, q] ≥ S[i, F (q)] = S[i, qi] .

Consequently, the algorithm computes the size of a grammar for w that is
smallest among all grammars for w with at most n

2 levels and since for any

word w there always exists a smallest grammar with at most |w|2 levels, we
conclude that the described algorithm finds a smallest grammar for w. ut

We conclude this section by pointing out some features of the algorithm of
Theorem 13. First, note that the brute-force enumeration of all q ∈ {0, 1, 2}n−1\
{0, 1}n−1, which dominates the running-time, provides some possibilities for
modifications. For example, if we only consider q such that at most 2 neigh-
bouring factors of R(q) are combined in F (q) (which are much less than
the full set {0, 1, 2}n−1 \ {0, 1}n−1), then we automatically compute small-
est grammars in Chomsky normal form.11 Moreover, for a fixed i and two
q1, q2 ∈ {0, 1, 2}n−1 \ {0, 1}n−1, the computations that are necessary to com-
pute T [i, q1] and T [i, q2] are independent from each other and only require the
previously computed values S[i− 1, ·] (an analogous observation can be made
for the computation of the S[i, ·] and P [i, ·]). Hence, the brute-force enumera-
tion of the q ∈ {0, 1, 2}n−1 \ {0, 1}n−1 and of the q′ ∈ {0, 1}n−1 can be easily
done in parallel.

6 Conclusions

We conclude this work by discussing some important open problems and ad-
ditional questions that are motivated by our results.

11 The restriction to grammars in Chomsky normal form is quite common, since also many
of the existing approximation algorithms compute grammars in Chomsky normal form.
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6.1 Small Alphabets

For hard problems on strings, we usually encounter the situation that either
the problem becomes polynomial-time solvable for constant alphabets, or there
is a hardness reduction that works for some constant alphabet, which, by sim-
ple encoding techniques, extends to binary alphabets as well. Moreover, the
unary case is often trivially solvable in polynomial time, even if the problem
becomes intractable for larger alphabets. However, the smallest grammar prob-
lem shows a drastically different behaviour: it is not polynomial-time solvable
for every constant alphabet (unless P = NP), but the NP-hardness for very
small alphabets (even for the binary or unary case) is still open. Thus, we
consider the following as one of the most important open questions:

Open Problem 1 Is it possible to compute smallest grammars for binary
alphabets in polynomial time?

We believe that answering this question in the negative might be rather
difficult. In fact, the substantial effort that was necessary to prove Theorem 3
suggests that further strengthening our reduction to the case of binary al-
phabets is problematic. Thus, a completely different kind of reduction seems
necessary. However, the main technical challenge seems to be the necessity
to control the compression of factors that function as codewords for parts of
the source problem of the reduction. It is arguably difficult to think about
reductions that somehow circumvents this issue.

On the other hand, it is not apparent how a small alphabet could help in
order to efficiently compute smallest grammars and, if this is possible, it seems
that deeper combinatorial insights with respect to grammar-based compression
are necessary.

6.2 Approximation

So far, no constant-factor approximation algorithm is known for the smallest
grammar problem (as already mentioned in Section 1.3, the best approxima-

tion algorithms achieve a ratio in O
(

log
(
|w|
m∗

))
[54,14,39]) and, although not

backed by any hardness results, the existing literature suggests that no such
algorithm exists. Moreover, this apparent hardness of approximating smallest
grammars also applies to the case of fixed alphabets, since, as shown in [33], if
there is an approximation algorithm for the smallest grammar problem over a
binary alphabet with a constant approximation ratio c, then there also is a 6c-
approximation algorithm for arbitrary alphabets. This especially means that
disproving the existence of a 6-approximation for the smallest grammar prob-
lem for unbounded alphabets, under some complexity theoretic assumption,
implies, under the same assumption, that there is no polynomial algorithm
for the restriction to binary alphabets. Considering the substantial effort that
went into designing a reduction for alphabet size 17 in this paper, such an
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inapproximability result for unbounded alphabets might actually be an easier
way to show computational lower bounds for binary alphabets.

Aside from these consequences for binary alphabets, an inapproximability
result (with some ratio significantly larger than the current bound of 8569

8568 ) for
the smallest grammar problem would be very interesting, yet not unexpected.
The common belief that general constant-factor approximations probably do
not exist is based on the fact that, despite substantial effort, such algorithms
have not been found so far, but also on the close relation to the problem of
computing shortest addition chains for a set of integers — a problem which has
been extensively studied for over 100 years (see [59] for a survey on addition
chains and [39,14] for their connections to the smallest grammar problem).
Formally, an addition chain is a strictly increasing sequence (a1, a2, . . . , ak) ∈
Nk with a1 = 1 and, for every i, 2 ≤ i ≤ k, there are b, c ∈ {a1, . . . , ai−1}
with ai = b + c; the task is to compute a desirably short addition chain that
contains a given set of integers. In a sense, grammars can be seen as the natural
extension of addition chains (i. e., instead of integers, we are concerned with
strings and integer-addition becomes string-concatenation).

It has been shown in [39,14], that a set of integers can be translated
into a word (over an alphabet that grows with the number of integers), the
smallest grammar of which is larger than the length of a shortest addition
chain of the integers by only a constant factor. Consequently, an approxima-
tion algorithm for the smallest grammar problem with approximation ratio in
o( logn

log logn ) would imply an improvement of long-standing results for addition
chains, for which the best known approximation algorithm achieves an approx-
imation ratio in O( logn

log logn ) (see [39] for details). Note that, with the results

of [33] mentioned above, this statement also holds for the case of constant,
even binary, alphabets.

Moreover, we can also observe that the fundamental technique of the ap-
proximation algorithms of [54,14,39], which links smallest grammars with the
size of LZ77-factorisations, is unlikely to prove an approximation with ra-
tio in o( logn

log logn ). More precisely, by bounding the size of a smallest gram-
mar of a word from below by the length of its shortest LZ77-factorisation,
the performance of these algorithms is shown by comparison with this LZ77-
bound. However, it is also shown (see [54,14]) that there are words, for which
a smallest grammar is O( logn

log logn )-times as large as the size of a smallest
LZ77-factorisation; thus, for such algorithms, an approximation-ratio better
than O( logn

log logn ) cannot be shown by this technique. Moreover, note that this

result is improved in [33], where binary words are presented, for which a
smallest grammar is O( logn

log logn )-times as large as the size of a smallest LZ77-
factorisation.

Open Problem 2 Is there a constant-factor approximation algorithm for the
smallest grammar problem? (Note that a negative result disproving a ratio of
6 or larger, yields a bound for the restriction to binary alphabets.)
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6.3 Parameterised Complexity

This work can also be seen as the starting point of a comprehensive parame-
terised complexity analysis of the smallest grammar problem. More precisely,
our results show that the problem is most likely not in FPT, if parameterised
by |Σ|, |N | or the number of levels. However, with respect to parameter |N |,
we saw that it is at least in XP. A simple fixed-parameter tractable case can
be obtained, if we parameterise by both |Σ| and ` = max{|D(A)| : A ∈ N}.
More precisely, for every F ⊆ {u : u ∈ Σ+, 2 ≤ |u| ≤ `}, we compute a small-
est F -grammar according to Lemma 11 and we output one that is minimal
among them. Since the number of the sets F is bounded by a function of the
parameters, this yields an fpt-algorithm. However, we consider the following
parameterised variant, for which the existence of an fpt-algorithm is still open,
the most interesting:

Open Problem 3 Is the smallest grammar problem parameterised by |Σ| and
|N | fixed-parameter tractable?

6.4 A More Abstract View

From a rather abstract point of view, one could generally interpret any set of
factors F ⊆ 2Σ

∗
as a grammar. More precisely, an F -grammar is then a triple

GF = (N,Σ,R) (the axiom or start symbol is intentionally missing) with N =
{Au : u ∈ F} and R is a set of rules over Σ and N that satisfies D(Au) = u,
for every u ∈ F . In this way, an F -grammar is a representation of F (just
that none of the words in F is the designated compressed word). Obviously,
there is a large element of freedom in this definition of F -grammars, since
many choices for R are possible. However, as long as we are only interested in
small grammars, this is justified, since a grammar that is a smallest among all
F -grammars (in the sense described above) can be computed in polynomial
time. To see this, we can slightly adapt the approach from Section 4 as follows.
For every u ∈ F , we first construct the subgraph with vertices V4,u and edges
E4,u, then we delete all vertices (u, i, j) with i < j and u[i..j] /∈ F (and
adjacent edges). As before, it can be shown that an independent dominating
set for the resulting interval graph corresponds to a smallest F -grammar. In
the following, we denote by GF the smallest F -grammar obtained in this way.

In a sense, this abstracts away the question of how factors are compressed
by other factors and boils the problem of computing small grammar down to
its core of hardness, which relies in choosing the right factors. While this per-
spective is interesting from a theoretical point of view, it also yields questions
that might have algorithmic application. For example, as an alternative to the
exponential brute-force enumeration of all F ⊆ F≥2(w) in order to obtain an
F -grammar that is smallest among all grammars, one could compute GF for
a factor set F that is inclusion maximal in the sense that, for every F ′ ) F ,
|GF | < |GF ′ | (or inclusion minimal, which can be defined analogously). How-
ever, this approach only seems applicable in a reasonable way, if this concept
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of inclusion maximality is monotone, i. e., the inclusion maximality of F is
characterised by |GF | < |G(F∪{u})|, for every u ∈ Σ∗. In this regard, note
that |GF | = |GF ′ | is possible for F ( F ′, as witnessed by F = {a4} and
F = {a4, a2}.

Open Problem 4 Are there F1 ( F2 ( F3 ⊆ F≥2(w), such that |GF1 | <
|GF2

| and |GF3
| < |GF1

|?

If the inclusion maximality is monotone, then every inclusion maximal F
(thus, also an optimal F for which GF is a smallest grammar) can be computed
by starting with F = {w} and iteratively adding factors from w, until every
possible new factor would increase the size of GF . This also yields an obvious
greedy strategy: always choose the new factor that results in a smallest GF . In
this regard, we stress the fact that this kind of greedy strategy differs from the
algorithm Greedy [4], analysed in [39,14], since the latter iteratively changes
an existing grammar and the greediness is with respect to the rules of the
intermediate grammars.

This also points out an interesting fact (and a potential difficulty) of this
approach: The grammars corresponding to the factor sets F , F∪{u}, F∪{u, u′}
and so on, i. e., the grammars GF , G(F∪{u}), etc., could be quite different and
do not necessarily share the incremental character of the factor sets, in the
sense that one grammar can be obtained from the previous one by small, local
modifications.
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