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—— Abstract

The hard-sphere model is one of the most extensively studied models in statistical physics. It
describes the continuous distribution of spherical particles, governed by hard-core interactions. An
important quantity of this model is the normalizing factor of this distribution, called the partition
function. We propose a Markov chain Monte Carlo algorithm for approximating the grand-canonical
partition function of the hard-sphere model in d dimensions. Up to a fugacity of A < e/Qd7 the
runtime of our algorithm is polynomial in the volume of the system. This covers the entire known
real-valued regime for the uniqueness of the Gibbs measure.

Key to our approach is to define a discretization that closely approximates the partition function
of the continuous model. This results in a discrete hard-core instance that is exponential in the size of
the initial hard-sphere model. Our approximation bound follows directly from the correlation decay
threshold of an infinite regular tree with degree equal to the maximum degree of our discretization.
To cope with the exponential blow-up of the discrete instance we use clique dynamics, a Markov
chain that was recently introduced in the setting of abstract polymer models. We prove rapid mixing
of clique dynamics up to the tree threshold of the univariate hard-core model. This is achieved by
relating clique dynamics to block dynamics and adapting the spectral expansion method, which was
recently used to bound the mixing time of Glauber dynamics within the same parameter regime.
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1 Introduction

Statistical physics models particle systems as probability distributions. One of the most
fundamental and mathematically challenging models in this area is the hard-sphere model,
which plays a central role in understanding the thermodynamic properties of monoatomic
gases and liquids [7, 29]. It is a continuous model that studies the distribution and macroscopic
behavior of indistinguishable spherical particles, assuming only hard-core interactions, i.e.,
no two particles can occupy the same space.
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We focus on computational properties of the grand-canonical ensemble of the hard-sphere
model in a finite d-dimensional cubic region V = [0,/)? in the Euclidean space. In the
grand-canonical ensemble, the system can exchange particles with its surrounding based on
a fugacity parameter A, which is inverse to the temperature of the system. For the rest of
the paper, we make the common assumption that the system is normalized such that the

1/d where vy is the

particles have unit volume. That means we fix their radii to r = (1/vg)
volume of a unit sphere in d dimensions.

A simple probabilistic interpretation of the distribution of particles in the grand-canonical
ensemble is that centers of points that are drawn from a Poisson point process on V with
intensity A, conditioned on the event that no two particles overlap (i.e., every pair of centers
has distance at least 2r). The resulting distribution over particle configurations in V is
called the Gibbs distribution of the model. An important quantity in such models is the
so called partition function Z(V, A), which can be seen as the normalizing constant of the
Gibbs distribution. Formally, it is defined as

Ak
_ A (1) (k) dxk
Z(V,\) =1+ E k!/ka(z e, T )dl/ ,
kENso

where

D(z(l),...,gg(k)) _ {1 if d(@®,20) > 2r for all i, j € [K] with i # j
0 otherwise

and v9** is the Lebesgue measure on R%**. Commonly, two computational task are

associated with the grand-canonical hard-sphere model: (1) approximating its partition

function Z(V,\), and (2) approximately sampling from the Gibbs distribution.

Studying computational aspects of the hard-sphere model carries a historical weight, as in
the seminal work of Metropolis [41], the Monte Carlo method was introduced to investigate
a two-dimensional hard-sphere model. Approximate-sampling Markov chain approaches have
been mainly focused on the canonical ensemble of the model, that is, the system does not
exchange particles with its surrounding and thus, the distribution is defined over a fixed
number of spheres [31, 36, 34]. Counsidering the grand canonical ensemble, exact sampling
algorithms have appeared in the literature for the two-dimensional model without asymptotic
runtime guarantees [37, 38, 43]. A result that is more aligned with theoretical computer
science was given in [28], where the authors introduced an exact sampling algorithm for the
grand-canonical hard-sphere model in d-dimensions. Their algorithm is based on partial
rejection sampling with a runtime linear in the volume of the system |[V| when assuming a
continuous computational model and access to a sampler from a continuous Poisson point
process. Their approach is guaranteed to apply for A < 2-(@+1/2),

Besides such sampling results, there is an ongoing effort to improve the known fugacity
regime where the Gibbs measure is unique and correlations decay exponentially fast [22, 14,
32, 42]. Note that for many discrete spin systems, such as the hard-core model, correlation
decay is closely related to the applicability of different methods for efficient approximation of
the partition function [50, 24, 54]. Recently, the correlation decay bounds for the hard-sphere
model were improved in [32] to A < 2/2¢, using probabilistic arguments, and in [42] to
A < e/2% based on an analytic approach. A common feature of [32] and [42] is that they
translated tools originally developed in theoretical computer science for investigating the
discrete hard-core model to the continuous domain.
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Our work is in line with the computational view on the hard-sphere model but more
algorithmic in nature. We investigate the range of the fugacity A for which an approximation
of Z(V, ) can be obtained efficiently in terms of the volume of the system |V|, assuming a
discrete computational model. Our main result is that for all A < e/2? there is a randomized
algorithm for e-approximating the partition function in time polynomial in [V| and 1/e.

» Theorem 1. Let (V,\) be an instance of the continuous hard-sphere model with V = [0, £)4.
If there is a 6 € (0,1] such that
e
A< (1- 5)ﬁ’
then for each € € (0, 1] there is a randomized e-approzimation of Z(V,\) computable in time

2
polynomial in |V|1/6 and L.

Note that this bound on A precisely coincides with the best known bound for the uniqueness
of the Gibbs measure in the thermodynamic limit, recently established in [42]. For many
discrete spin systems, such as the hard-core model or general anti-ferromagnetic 2-state spin
systems, the region of efficient approximation of the partition function is closely related to
uniqueness of the Gibbs measure. More precisely, it can be shown that the partition function
of every graph of maximum degree A can be approximated efficiently if the corresponding
Gibbs distribution on an infinite A regular tree is unique [39, 53]. A detailed discussion for
the discrete hard-core model can be found in the next subsection. In a sense, Theorem 1
can be seen as the algorithmic counterpart of the recent uniqueness result for the continuous
hard-sphere model. This answers an open question, asked in [42].

The way we prove our result is quite contrary to [32] and [42]. Instead of translating
discrete tools from computer science into the continuous domain, we rather discretize the
hard-sphere model. By this, existing algorithmic and probabilistic techniques for discrete
models become available, and we avoid continuous analysis.

Our applied discretization scheme is fairly intuitive and results in an instance of the
discrete hard-core model. This model has been extensively studied in the computer science
community. However, as this hard-core instance is exponential in the size of the continuous
system |V|, existing approaches for approximating its partition function, such a Markov
chain Monte Carlo methods based on Glauber dynamics, are not feasible. We overcome
this problem by applying a Markov chain Monte Carlo approach based on clique dynamics,
which were introduced in [23] in the setting of abstract polymer models. Previously known
conditions for the rapid mixing of clique dynamics were developed for the multivariate version
of the hard-core model. Due to this generality, those conditions do not result in the desired
bound in our univariate setting. Instead we relate those clique dynamics to another Markov
chain, called block dynamics. We then prove the desired mixing time for the block dynamics
by adapting a recently introduced technique for bounding the mixing time of Markov chains,
based on local spectral expansion [2]. Together with a known self-reducibility scheme for
clique dynamics, this results in the desired approximation algorithm.

Note that we aim for a rigorous algorithmic result for approximating the partition
function of the continuous hard-sphere model. To be in line with commonly used discrete
computational models, our Markov chain Monte Carlo algorithm does not assume access to
a continuous sampler but instead samples approximately from a discretized version of the
Gibbs distribution. Note that sampling from the continuous hard-sphere partition function
cannot be done using a discrete computation model as this would involve infinite float pointer
precision. For practical matters, our discretization of the Gibbs distribution can be seen as
an approximation of the original continuous Gibbs measure. However, a rigorous comparison
between both distributions based on total variation distance is not applicable, due to the
fact that one is discrete whereas the other is continuous in nature.
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Assuming access to a continuous sampler, we believe that our approach can be used to
obtain an approximation of the Gibbs distribution of the continuous model within the same
fugacity regime, by adding small perturbations to the drawn sphere centers. This would be
in line with the relation between the mixing time of continuous heat-bath dynamics and
strong spatial mixing, pointed out in [32], combined with the uniqueness bound from [42].

In Sections 1.1-1.3 we discuss our contributions in more detail and explain how they
relate to the existing literature. Finally in Section 1.4 we discuss possible extensions and
future work. All technical details, statements and proofs are presented the full version of the

paper.

1.1 Discretization and hard-core model

Our discretization scheme expresses the hard-sphere partition function as the partition
function of an instance of the (univariate) hard-core model. An instance of the hard-core
model is a tuple (G, A) where G = (V| F) is an undirected graph and A € Rsq. Its partition
function is defined as

Z(GN) = Y A

I1€Z(G)

where Z(G) denotes the independent sets of G. A common way to obtain an approximation
for the partition function is by applying a Markov chain Monte Carlo algorithm. This involves
sampling from the Gibbs distribution (% of (G, \), which is a probability distribution on
Z(G) that assigns each independent set I € Z(G) the probability

G\ _ A

Conditions for efficient approximation of the hard-core partition function have been
studied extensively in the theoretical computer science community. Due to hardness results
in [50] and [24], it is known that for general graphs of maximum degree A € {3} U N5
there is a critical parameter value \.(A) = (A — 1)271/(A — 2)2, such that there is no
FPRAS for the partition function of (G, ) for A > Ac(A), unless RP = NP. On the other
hand, in [54] it was proven that there is a deterministic algorithm for approximating the
partition function of (G, ) for A < A:(A) that runs in time |V|O(A). The critical value
Ac(A) is especially interesting, as it precisely coincides with the upper bound on A for
which the hard-core model on an infinite A-regular tree exhibits strong spatial mixing and a
unique Gibbs distribution [54]. For this reason, it is also referred to as the tree threshold.
This relation between computational hardness and phase transition in statistical physics is
one of the most celebrated results in the area. Both, the hardness results [25, 3] and the
approximation algorithms [46, 30] were later generalized for complex A.

Note that the computational hardness above the tree threshold A.(A) for general graphs
of maximum degree A applies to both, randomized and deterministic algorithms. However,
in the randomized setting, Markov chain Monte Carlo methods are known to improve
the runtime of the algorithm introduced in [54]. Those approaches use the vertex-wise
self-reducibility of the hard-core model to construct a randomized approximation of the
partition function based on an approximate sampler for the Gibbs distribution. Commonly,
a Markov chain on the state space Z(G), called Glauber dynamics, is used to construct
the sampling scheme. At each step, a vertex v € V is chosen uniformly at random. With
probability A/(1 + A) the chain tries to add v to the current independent set and otherwise
it tries to remove it. The resulting Markov chain is ergodic and reversible with respect
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to the Gibbs distribution, meaning that it eventually converges to u(%*). A sequence of
results has shown that for all A > 3 there is a family of graphs with maximum degree A,
such that the Glauber dynamics are torpidly mixing for A > A.(A), even without additional
complexity-theoretical assumptions [17, 27, 45]. Whether the Glauber dynamics are rapidly
mixing for the entire regime A < A.(A) remained a long-standing open problem, until recently
the picture was completed [2]. By relating spectral expansion properties of certain random
walks on simplicial complexes to the Glauber dynamics, it was shown that the mixing time is
polynomial in |V| below the tree threshold. The mixing time was recently further improved
in [12] for a broader class of spin systems by combining simplicial complexes with entropy
factorization and using the modified log-Sobolev inequality.

By mapping the hard-sphere model to an instance of the hard-core model we can make use
of the existing results about approximation and sampling below the tree threshold. Roughly,
our discretization scheme restricts the positions of sphere centers to an integer grid, while
scaling the radii of spheres and the fugacity appropriately. For a hard-sphere instance (V,\)
with V = [0, £)¢ the hard-core representation for resolution p € R>; is a hard-core instance
(Gp, Ap) with G, = (V,, E,). Each vertex v € V, represents a grid point in the finite integer
lattice of side length pf. Two distinct vertices in V,, are connected by an edge in F, if the
FEuclidean distance of the corresponding grid points is less than 2pr. Furthermore, we set
A, = A/p?. We provide the following result on the rate of convergence of Z(G,,\,) to the
hard-sphere partition function Z(V,\) in terms of p.

» Lemma 2. Let (V,\) be an instance of the continuous hard-sphere model in d dimensions.
For each resolution p > 2v/d it holds that

~1O(VIm|V]) < Z(V, ) <14 pLe@VImIVD,
Gpi Ao)

Although proving this rate of convergence involves some detailed geometric arguments,

L—p

there is an intuitive reason why the partition functions converge eventually as p — oo.

Increasing the resolution p also linearly increases the side length of the grid and the minimum
distance that sphere centers can have. This is equivalent to putting a grid into V with
increasing granularity but fixing the radii of spheres instead. However, only scaling the
granularity of this grid increases the number of possible configurations by roughly p?, which
would cause the partition function of the hard-core model to diverge as p — oo. To
compensate for this, we scale the weight of each vertex in the hard-core model by the inverse
of this factor.

Using this discretization approach, the fugacity bound from Theorem 1 results from
simply considering A,, the maximum degree of G, and comparing A\, with the corresponding
tree threshold A.(A,). Recall that we assume 7 = (1/v4)/%. A simple geometric argument
shows that A, is roughly upper bounded by 24p? for sufficiently large p. Now, observe that

Ay = ;Ad < Ae(2%9),
for A < p?A. (ded). This follows from the fact that p?\. (ded) converges to e/2% from above
for p — oo. Thus, the approximation bound from Theorem 1 and the uniqueness bound in
[42] coincide with the regime of A, for which A, is below the tree threshold A.(A,) in the
limit p — oo.

The arguments above show that for a sufficiently high resolution p the partition function
of the hard-sphere model Z(V,\) is well approximated by the partition function of our
discretization (G, \,) and that (G,, \,) is below the tree threshold for A < e/2¢. However,
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this does not immediately imply an approximation algorithm within the desired runtime
bounds. Based on Lemma 2, we still need to choose p exponentially large in the volume |V]|.
Note that the number of vertices in G, is roughly |V,| € ©(p?|V]). Even without explicitly
constructing the graph, this causes problems, as the best bound for the mixing time of the
Glauber dynamics is polynomial in |V,| and thus exponential in |V|. Intuitively, the reason
for this mixing time is that the Glauber dynamics only change one vertex at each step.
Assuming that each vertex should be updated at least once to remove correlations with the
initial state, any mixing time that is sublinear in the number of vertices is unlikely. We
circumvent this problem by applying dynamics that update multiple vertices at each step
but still allow each step to be computed efficiently without constructing the graph explicitly.

1.2 Block and clique dynamics

Most of the results that we discuss from now on apply to the multivariate version of the
hard-core model, that is, each vertex v € V has its own weight A,. For a given graph
G = (V, E) we denote the set of such vertex weights by A = {\, },ev and write (G, A) for
the resulting multivariate hard-core instance. In the multivariate setting, the contribution of
an independent set I € Z(G) to the partition function is defined as the product of its vertex
weights (i.e., [],c; Av), where the contribution of the empty set is fixed to 1. Similar to the
univariate hard-core model, the Gibbs distribution assigns a probability to each independent
set proportionally to its contribution to the partition function.

As we discussed before, the main problem with approximating the partition function of
our discretization (G,,\,) is that the required graph G, is exponential in the volume of
the original continuous system |V|. As the Glauber dynamics Markov chain only updates
a single vertex at each step, the resulting mixing time is usually polynomial in the size of
the graph, which is not feasible in our case. Various extensions to Glauber dynamics for
updating multiple vertices in each step have been proposed in the literature, two of which
we discuss in the following.

Cligue dynamics

Recently, in [23] a Markov chain, called clique dynamics, was introduced in order to efficiently
sample from the Gibbs distribution of abstract polymer models. Note that this is similar
to our algorithmic problem, as abstract polymer models resemble multivariate hard-core
instances. For a given graph G = (V, E), we call a set A = {A;};cm) C 2V a clique cover of
size m if and only if its union covers all vertices V and each A; € A induces a clique in G.
For an instance of the multivariate hard-core model (G, ) and a given clique cover A of
G with size m the clique dynamics Markov chain C(G, A, A) is defined as follows. First, a
clique A; € A for ¢ € [m] is chosen uniformly at random. Let us write G[A;] for the subgraph,
induced by A;, and A[A;] = {\, }vea, for the corresponding set of vertex weights. Next, an
independent set from Z(G[A;]) is chosen according to the Gibbs distribution j(GlAdAND,
Note that, as the vertices A; form a clique, such an independent set is either the empty set
or contains a single vertex from v € A;. If the empty set is drawn, all vertices from A; are
removed from the current independent set. Otherwise, if a single vertex v € A; is drawn, the
chain tries to add v to the current independent set.

Using a coupling argument, it was proven in [23] that the so-called clique dynamics
condition implies that for any clique cover of size m the clique dynamics are mixing in time
polynomial in m and Zyayx, where Zpax = max;em){ Z(G[A], A[A])} denotes the maximum
partition function of a clique in A. This is important for the application to polymer models, as
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they are usually used to model partition functions of other spin systems, which often results
in a multivariate hard-core model of exponential size [33, 9, 35, 10, 6, 8, 26]. As discussed
in [23], those instances tend to have polynomial size clique covers that arise naturally from
the original spin system. In such cases, the mixing time of clique dynamics is still polynomial
in the size of original spin system, as long as the clique dynamics condition is satisfied.

This is very similar to our discretization (G, A,). To see this, set a = 2—’;7" and divide the
d-dimensional integer lattice of side length p¢ into cubic regions of side length a. Every pair of
integer points within such a cubic region has Euclidean distance less than 2pr, meaning that
the corresponding vertices in G, are adjacent. Thus, each such cubic region forms a clique,
resulting in a clique cover of size (pf/a)? € O(|V|). This means, there is always a clique
cover with size linear in |V| and independent of the resolution p. By showing that, for the
univariate hard-core model, the mixing time of clique dynamics is polynomial in the size of
the clique cover for all A, < Ac(A,), we obtain a Markov chain with mixing time polynomial
in | V| independent of the resolution p. Unfortunately, the clique dynamics condition does
not hold for the entire regime up to the tree threshold in the univariate hard-core model.
We overcome this problem by proving a new condition for rapid mixing of clique dynamics
based on a comparison with block dynamics.

Block dynamics

Block dynamics are a very natural generalization of Glauber dynamics to arbitrary sets of
vertices. For a given graph G = (V, E), we call a set A = {A; }iepm) € 2Y a block cover of size
m if and only if its union covers all vertices V. We refer to the elements of A as blocks. Note
that the clique cover discussed before is a special case of a block cover, where all blocks are
restricted to be cliques. At each step, the block dynamics Markov chain B(G, A, A) chooses
a block A; € A uniformly at random. Then, the current independent set is updated on A;
based on the projection of the Gibbs distribution onto A; and conditioned on the current
independent set outside A;.

In fact, block dynamics are defined for a much more general class of spin systems than
the hard-core model. However, due to the fact that each step of the Markov chain involves
sampling from a conditional Gibbs distribution, block dynamics are rarely used as an
algorithmic tool on its own. Instead, they are usually used to deduce rapid mixing of other
dynamics.

For spin systems on lattice graphs, close connections between the mixing time of block
dynamics and Glauber dynamics are known [40]. Such connections were for example applied
to improve the mixing time of Glauber dynamics of the Monomer Dimer model on torus
graphs [51]. Moreover, block dynamics were used to improve conditions for rapid mixing
of Glauber dynamics on specific graph classes, such as proper colorings [16, 18, 19, 44] or
the hard-core model [18, 44] in sparse random graphs. A very general result for the mixing
time of block dynamics was achieved in [4], who proved that for all spin systems on a finite
subgraph of the d-dimensional integer lattice the mixing time of block dynamics is polynomial
in the number of blocks if the spin system exhibits strong spatial mixing. This result was
later generalized in [5] for the Ising model on arbitrary graphs. Very recently, block dynamics
based random equally-sized blocks where used in [12] to prove entropy factorization and
improve the mixing time of Glauber dynamics for a variety of discrete spin systems up to
the tree threshold.

Although our discretization works by restricting sphere positions to the integer lattice,
the resulting graph is rather different from the lattice. Thus, results like those in [4] do not
apply to our setting. However, on the other hand, we do not need to prove rapid mixing for
arbitrary block covers. Instead, in order to obtain rapid mixing for clique dynamics, it is
sufficient to establish this result for cases where all blocks are cliques.
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Applying block dynamics directly would involve sampling from a conditional Gibbs
distribution within each clique. Due to the exponential size of the cliques in our discretization,
this would impose additional algorithmic challenges. Instead, similar to the previous literature,
we rather use block dynamics as a tool for proving rapid mixing of another Markov chain,
namely clique dynamics.

Improved mixing condition for clique dynamics via block dynamics

We analyze the mixing time of clique dynamics for a given clique cover by relating it to the
mixing time of block dynamics, using the cliques as blocks. This is done by investigating
a notion of pairwise influence between vertices that has also been used to establish rapid
mixing of Glauber dynamics up to the tree threshold [2]. Let Pg[w] denote the probability
of the event that a vertex w € V is in an independent set drawn from p(%. Further, let
P¢[w] denote the probability that w is not in an independent set. We extend this abuse
of notation to conditional probabilities, so Pg[- | @] for example denotes the probability of
some event conditioned on w not being in an independent set. For a pair of vertices v,w € V
the influence U (v, w) of v on w is defined as

0 if v =w,

Polw | v] —Pglw | 7] otherwise.

Uo(v,w) = {

The following condition in terms of pairwise influence is central to our analysis.

» Condition 3. Let (G, A) be an instance of the multivariate hard-core model. There is a
constant C' € Rsg and a function q: V — R such that for all S CV and r € S it holds
that

> 1¥a(rv)la(v) < Cq(r).

veES

Note that this condition appeared before in [13], where it was used for bounding the mixing
time of Glauber dynamics for anti-ferromagnetic spin systems. Given Condition 3, we obtain
the following result for the mixing time of block dynamics based on a clique cover.

» Theorem 4. Let (G, X) be an instance of the multivariate hard-core model that satisfies Con-
dition 3. Let A be a clique cover for G of size m, and let Zayx = max;c{ Z(G[A:], A[A4])}.
The mixing time of the block dynamics B(G, A, A), starting from 0 € Z(G), is bounded by

7O (c) < mOEHOIO) ZO(2+€)0) lnC:).

Using a bound for the sum of absolute pairwise influences that was recently established
in [13], it follows that the univariate hard-core model satisfies Condition 3 up to the tree
threshold. As a result, we know that the mixing time of block dynamics is polynomial in m
and Zy.x for any clique cover of size m. To the best of our knowledge, this is the first result
for the mixing time of block dynamics for the univariate hard-core model on general graphs
that holds in this parameter range.

As we aim to apply clique dynamics to avoid sampling from the conditional Gibbs
distribution in each step, we still need to prove that Theorem 4 also holds in terms of clique
dynamics. To this end, we apply a Markov chain comparison argument from [15] to prove
that using clique dynamics instead of block dynamics for the same clique cover A increases
the mixing time by at most a factor 27Z,,,x. The following corollary, which is central for
proving Theorem 1, follows immediately.
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» Corollary 5. Let (G,\) be an instance of the univariate hard-core model such that
the degree of G is bounded by A. Let A be a given clique cover of size m with Zyax =
max;eq,{Z(G[Ai], \)}. Denote by C = C(G, N\, A) the corresponding clique dynamics. If
there is some § € Rsq such that A < (1—0)A.(A) then the mixing time of the clique dynamics
C, starting from O € Z(G), is bounded by

2
() < mO(1/5%) 7007 1n<1).
13

A side journey: comparison to multivariate conditions

In fact, Corollary 5 is sufficient for our application to the hard-sphere model. However, we
also aim to set Condition 3 in the context of other conditions for rapid mixing of clique
dynamics for the multivariate hard-core model. Note that such a rapid mixing result for
clique dynamics caries over to Glauber dynamics by taking each vertex as a separate clique
of size 1.

To this end, we compare Condition 3 to a strict version of the clique dynamics condition,
originally introduced in [23] in the setting of clique dynamics for abstract polymer models. It

turns out that this strict version of the clique dynamics condition directly implies Condition 3.

This is especially interesting, as the clique dynamics condition was initially introduced as a
local condition (only considering the neighborhood of each vertex) and is based on a coupling
argument. However, we show that it can as well be understood as a sufficient condition for
the global decay of pairwise influence with increasing distance between vertices.

Formally, we say that the strict clique dynamics condition is satisfied for an instance of
the multivariate hard-core model (G, A) if there is a function f: V — R and a constant
a € (0,1) such that for all v € V' it holds that

A

Y T fw) < (1-a)f()
weN (v) w

where N (v) is the neighborhood of v in G. This is a strict version of the clique dynamics

condition in that the original clique dynamics condition would correspond to the case a = 0

(i.e., the strict clique dynamics condition requires some strictly positive slack «).

The result of our comparison is summarized in the following statement.

» Lemma 6. Let (G, A) be an instance of the multivariate hard-core model. If (G, X) satisfies
the strict clique dynamics condition for a function f and a constant c, then it also satisfies
Condition 8 for q= f and C = %

Lemma 6 is proven by translating the calculation of pairwise influences to the self-avoiding
walk tree of the graph, based on a result in [13], and applying a recursive argument on this
tree.

Despite being an interesting relationship between local coupling arguments and global
pairwise influence, Lemma 6 also implies that, from an algorithmic perspective, Theorem 4

can be used to produce similar results as those obtained in [23] for abstract polymer models.

Further, note that for the univariate model, using pairwise influence yields strictly better
results than any coupling approach in the literature. This raises the question if a refined
argument based on pairwise influences can be used in the multivariate setting to improve on
the clique dynamics condition, leading to better approximation results on abstract polymer
models.
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1.3 Analyzing spectral expansion

As core technique for obtaining Theorem 4, we adapt an approach for bounding the mixing
time that was recently used to prove rapid mixing of Glauber dynamics for the entire regime
below the tree threshold for several applications, such as the hard-core model [2], general
two-state spin systems [13], and proper colorings [11, 21]. The idea is to map the desired
distribution to a weighted simplicial complex.

A simplicial complex X over a groundset U is a set family X C 2V such that for each
7 € X every subset of 7 is also in X. We call the elements 7 € X the faces of X and refer to
its cardinality |7| as dimensionality.

For a univariate hard-core instance (G, A), the authors of [2] construct a simplicial complex
over a ground set U that contains two elements z,,x7 € U for each vertex v € V. For every
independent set I € Z(G), a face 71 € X is introduced such that x, € 77 if v € I and x5 € 71
otherwise. The simplicial complex is completed by taking the downward closure of these faces.
Note that by construction all maximum faces of the resulting complex are |V'|-dimensional
and there is a one-to-one correspondence between the maximum faces and the independent
sets in Z(G). By assigning each maximum face 7; € X an appropriate weight, the Glauber
dynamics can be represented as a random walk on those maximum faces, which is sometimes
referred to as the two-step walk or down-up walk. Using a local-to-global theorem [1], the
mixing time of this two-step walk can then be bounded based on certain local expansion
properties of the simplicial complex X. It is then proved that such local expansion properties
are well captured by the largest eigenvalue of the pairwise influence matrix ¥¢, which is
a |V|] x |V] matrix that contains the pairwise influence g (v, w) for all v,w € V. Finally,
by bounding those influences a bound on this largest eigenvalue of W is obtained. This
analysis was later refined and generalized in [13] to general two-state spin systems.

This method was independently extended in [11] and [21] to the non-Boolean domain
by applying it to the Glauber dynamics for proper colorings. The main differences to the
Boolean domain are that elements of the simplicial complex now represent combinations of a
vertex and a color. Furthermore, the bound on the local spectral expansion was obtained by
using a different influence matrix, which captures the effect of selecting a certain color for
one vertex on the distribution of colors for another vertex.

Although we are dealing with the hard-core model, which is Boolean in nature, the way
that we model block dynamics is mainly inspired by the existing work on proper colorings [11].
Assume we have an instance of the multivariate hard-core model (G, ) and let A be a clique
cover for G of size m such that every pair of distinct cliques is vertex-disjoint (i.e., A is a
partition of G into cliques). We construct a simplicial complex X based on a ground set
U that contains one element x, € U for each vertex v € V and one additional element 0;
for each clique A; € A. We introduce a face 77 € X for each independent set I € Z(G)
such that for every A; € A we have §; € 77 if A,NI =0 and =, € 77 if A, N T = {v} for
some v € A;. The simplicial complex is completed by taking the downward closure of these
faces. All maximum faces of the resulting complex are m-dimensional and there is a bijection
between the maximum faces and the independent sets of G. Furthermore, there is a natural
partitioning {U; };c[m) of the ground set U, each partition U; corresponding to a clique A,
such that every maximum face in X contains exactly one element from each partition Uj.

By weighting each maximum face of X by the contribution of the corresponding inde-
pendent set to the partition function, the block dynamics based on A are equivalent to the
two-step walk on X. Thus, in order to bound the mixing time of the block dynamics, it is
sufficient to study the local expansion properties of X. To this end, we adapt the influence
matrix used for proper colorings in [11]. For x € U, let Pg[x] denote the probability that
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x € 17 for an independent set I € Z(G) drawn from p(%* and corresponding maximum face
77 € X. Similarly as for defining pairwise influences, we extend this notation to conditional
probabilities. The clique influence matrix ®¢ o contains an entry ®¢ (2, y) for each x,y € U
with

0 if x,y € U; for some i € [m],

PG a(r,y) = {

Poly | ] = Pgly]  otherwise.

By using similar linear-algebraic arguments as in [11] we prove that the maximum eigenvalue
of @ A can be used to upper bound the local spectral expansion of X. To obtain Theorem 4
it is then sufficient to relate Condition 3 to the maximum eigenvalue of ®; . The following
lemma establishes this connection.

» Lemma 7. Let (G, ) be an instance of the multivariate hard-core model that satisfies
Condition 8 for a function q and a constant C. For every S CV and every disjoint clique
cover A of G[S] it holds that the largest eigenvalue of ®gs).a is at most (2+ C)C.

Note that our simplicial-complex representation is only given under the assumption that
the cliques in the clique cover A are pairwise disjoint. Indeed, this is a necessary requirement
to map the block dynamics to the two-step walk such that the local-global-theorem from [1]

can be applied. Thus, Lemma 7 only helps to prove Theorem 4 for disjoint clique covers.

However, we relax this requirement by proving that for every clique cover A a disjoint clique
cover K can be constructed such that the block dynamics B(G, A, A) and B(G, A, K) have
asymptotically the same mixing time. By this comparison argument, we extend Theorem 4
to arbitrary clique covers.

We are aware that, in the case of Glauber dynamics, more recent techniques for combining
simplical complex representations with entropy factorization as proposed in [12] yield superior
mixing time results. However, in case of the hard-core model, this approach comes with

an additional multiplicative factor of AO(2%) in the mixing time (see section 8 of [12]).

Although negligible for bounded degree graphs, this would be too much for our application,
as the degree of our discretization gets exponentially large in the continuous volume |V| of
the system. Thus, directly relating local spectral expansion with the spectral gap of block
dynamics is more suitable in our case. We leave as an open question, whether a modification
of the approach in [12] can be applied to further improve our mixing time result.

1.4 OQutlook

We obtain the fugacity bound from Theorem 1 based on the tree threshold A.(A) of the
hard-core model. An obvious question is whether there are any structural properties of our
discretization that can be used to improve this bound. Similar results are known for specific
graph classes, such as the 2-dimensional square lattice [48, 52, 54]. In [42] the authors discuss
that a generalization of the connective constant to the continuous Euclidean space might
be applicable to improve their uniqueness result for the hard-sphere model. A comparable
algorithmic result was already established for the discrete hard-core model in [49]. However,
any such improvement for our discretization would require the connective constant of G, to
be at least by a constant factor small than its maximum degree A,. Unfortunately, due to a
result in [47], this is not the case. Although this does not necessarily imply that a similar
concept does not work in continuous space, it gives a strong evidence that a more specialized
tool instead of the connective constant might be required.

A different direction for future work is to see which other quantities and properties of the
model are preserved under discretization. This would especially include the thermodynamic
pressure and its analyticity. As a matter of fact, non-analytic points of the pressure along the
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positive real axis of fugacity in the thermodynamic limit are known to mark phase transitions
in infinite volume systems (see for example [42]). One way to approach this could be to prove
a relation between zero-freeness of the continuous and the discretized partition function in a
complex neighborhood of the real axis by extending our convergence result to the complex
domain. Along this line, insights could be gained in how far properties like correlation decay
and phase transitions (or their absence) are preserved under sufficiently fine discretization.

From a purely technical point of view, it is interesting to see if our result on the mixing
time of block dynamics in Theorem 4 also holds without the requirement of using cliques as
blocks. Especially: is the mixing time for block dynamics for the univariate hard-core model
polynomial in the number of blocks for any block cover? Most of our techniques that we use
for clique covers, such as modeling the distribution as a simplicial complex and relating its
local spectral expansion to the clique influence matrix, can be generalized in a straightforward
way for different choices of blocks. However, the main difficulty is to relate generalized
versions of the clique influence matrix to pairwise influences, as we do in Lemma 7. One way
to circumvent this might be to not rely on pairwise influences at all but to rather investigate
the influence matrix directly, for example, via different computational-tree methods.

Finally, it would be interesting to see if approaches like ours can be extended to other
continuous models from statistical physics (see for example coarse-graining [20]). We believe
that the variety of tools that are already established for discrete spin systems are useful in
this setting to establish rigorous computational results for different continuous models. We
emphasize that clique and block dynamics are a useful computational tool to handle the
exponential blow-ups caused by discretization.
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