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Abstract. In order to model an e�cient learning paradigm, iterative
learning algorithms access data one by one, updating the current hy-
pothesis without regress to past data. Prior research investigating the
impact of additional requirements on iterative learners left many ques-
tions open, especially in learning from informant, where the input is
binary labeled.
We �rst compare learning from positive information (text) with learning
from informant. We provide di�erent concept classes learnable from text
but not by an iterative learner from informant. Further, we show that
totality restricts iterative learning from informant.
Towards a map of iterative learning from informant, we prove that strongly
non-U-shaped learning is restrictive and that iterative learners from in-
formant can be assumed canny for a wide range of learning criteria.
Finally, we compare two syntactic learning requirements.

Keywords: Learning in the Limit, Map for Iterative Learners from In-
formant, (Strongly) Non-U-Shaped Learning

1 Introduction

We are interested in the problem of algorithmically learning a descrip-
tion for a formal language (a computably enumerable subset of the set
of natural numbers) when presented successively all information about
that language; this is sometimes called inductive inference, a branch of
(algorithmic) learning theory.
Many criteria for deciding whether a learner M is successful on a lan-
guage L have been proposed in the literature. Gold, in his seminal paper
[Gol67], gave a �rst, simple learning criterion, Ex-learning3, where a
learner is successful i�, on every complete information about L it even-
tually stops changing its conjectures, and its �nal conjecture is a correct
description for the input sequence. Trivially, each single, describable lan-
guage L has a suitable constant function as a Ex-learner (this learner
constantly outputs a description for L). As we want algorithms for more
than a single learning task, we are interested in analyzing for which
classes of languages L there is a single learner M learning each member
of L. This framework is also sometimes known as language learning in

3 Ex stands for explanatory.
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the limit and has been studied using a wide range of learning criteria in
the �avor of Ex-learning (see, for example, the textbook [JORS99]).
One major criticism of the model suggested by Gold, see for example
[CM08], is its excessive use of memory: for each new hypothesis the
entire history of past data is available. Iterative learning [Wie76], is the
most common variant of learning in the limit which addresses memory
constraints: the memory of the learner on past data is just its current
hypothesis. Due to the padding lemma, this memory is still not void, but
�nitely many data can be memorized in the hypothesis.
Prior work on iterative learning [CK10,CM08,JKMS16,JMZ13,JORS99]
focused on learning from text, that is, from positive data only. Hence, in
TxtEx-learning the complete information is a listing of all and only the
elements of L. In this paper we are mainly interested in the paradigm
of learning from both positive and negative information. For example,
when learning half-spaces, one could see data declaring that x1, 1y is in
the target half-space, further is x3, 2y, but x1, 7y is not, and so on. This
setting is called learning from informant (in contrast to learning from
text).
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Fig. 1. Example Learning Process with binary labeled data and half-spaces as hypothe-
ses.

Iterative learning from informant was analyzed by [JLZ07], where various
natural restrictions have been considered and the authors focused on
the case of learning indexable families (classes of languages which are
uniformly decidable). In this paper we are looking at other established
restrictions and also consider learning of arbitrary classes of computably
enumerable languages.
In Section 3 we consider the two aforementioned restrictions on learn-
ing from informant: learning from text and learning iteratively. Both
restrictions render fewer classes of languages learnable; in fact, the two
restrictions yield two incomparable sets of language classes being learn-
able, which also shows that learning iteratively from text is weaker than
supposing just one of the two restrictions.
Towards a better understanding of iterative learners we analyze which
normal forms can be assumed in Section 4. First we show that, anal-
ogously to the case of learning from text (as analyzed in [CM09]), we
cannot assume learners to be total (i.e. always giving an output).
However, from [CM08] we know that we can assume iterative text learn-
ers to be canny (also de�ned in Section 4); we adapt this normal form
for the case of iterative learning from informant and show that it can be
assumed to hold for iterative learners generally.
Many works in inductive inference, see for example [JKMS16], [KP16],
[KS16], [KSS17], focus on relating di�erent additional learning require-
ments for a �xed learning model. In particular, [JKMS16] mapped out
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all pairwise relations for an established choice of learning restrictions for
iterative learning from text. The complete map of all pairwise relations
between for full-information learners from informant can be found in
[AKS18]. A similar map for the case of iterative learning from informant
is not known. Canniness is central in investigating the learning power of
iterative learning from texts. Hence, it is an important stepping stone
to understand iterative learners better and determine such pairwise rela-
tions. We argue in Lemma 3 that the normal form of canniness still can
be assumed in case we pose additional semantic learning requirements.
In Section 5 we collect all previously known results for such a map, see
[LZ92], [JLZ07]. We observe that it decreases learning power to require
the learner to never change its hypothesis, once it is correct. The proof
for separating this notion, called strong non-U-shapedness, relies on the
ORT recursion theorem [Cas74]. We close this section by comparing two
syntactic learning requirements for iterative learners from informant that
proved important to derive the equivalence of all syntactic requirements
for iterative learners from text.
We continue this paper with some mathematical preliminaries in Sec-
tion 2 before discussing our results in more detail.

2 Iterative Learning from Informant

Notation and terminology on the learning theoretic side follow [OSW86],
[JORS99] and [LZZ08], whereas on the computability theoretic side we
refer to [Odi99] and [Rog67]. For both we also recommend [Köt09].
A language L is a recursively enumerable subset of N. We denote the
characteristic function for L � N by fL : NÑ t0, 1u.
Gold in his seminal paper [Gol67], distinguished two major di�erent kinds
of information presentation. A function I : NÑ N�t0, 1u is an informant
for language L, if there is a surjection n : N Ñ N such that Iptq �
pnptq, fLpnptqqq holds for every t P N. Moreover, for an informant I let

pospIq :� ty P N | Dx P N : pr1pIpxqq � y ^ pr2pIpxqq � 1u and

negpIq :� ty P N | Dx P N : pr1pIpxqq � y ^ pr2pIpxqq � 0u

denote the sets of all natural numbers, about which I gives some positive
or negative information, respectively. A text for language L is a function
T : N Ñ N Y t#u with range L after removing #. The symbol # is
interpreted as pause symbol.
Therefore, when learning from informant, the set of admissible inputs to
the learning algorithm S is the set of all �nite sequences

σ � ppn0, y0q, . . . , pn|σ|�1, y|σ|�1qq

of consistently binary labeled natural numbers. When learning from text
(positive data only), we encounter inputs to the learning algorithm from
the set T of �nite sequences τ � pn0, . . . , n|τ |�1q of natural numbers and
the pause symbol #. The initial subsequence relation is denoted by �.
A set L � tLi | i P Nu of languages is called indexable family if there is
a computer program that on input pi, nq P N2 returns 1 if n P Li and 0
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otherwise. Examples are Fin and CoFin, the set of all �nite subsets of
N and the set of all complements of �nite subsets of N, respectively.
Let L be a collection of languages we seek a provably correct learning
algorithm for. We will refer to L as the concept class which will often
be an indexable family. Further, let H � tLi | i P Nu with L � H
be a collection of languages called the hypothesis space. In general we
do not assume that for every L P L there is a unique index i P N
with Li � L. Indeed, ambiguity in the hypothesis space helps memory-
resticted learners to remember data.
A learner M from informant (text) is a computable function

M : SÑ NY t?u pM : TÑ NY t?uq

with the output i interpreted with respect to H � tLi | i P Nu, a pre�xed
hypothesis space. The output ? often serves as initial hypothesis or is
interpreted as no new hypothesis. Often H is an indexable class or the
established W -hypothesis space de�ned in Subsection 4.
Let I be an informant (T be a text) for L and H � tLi | i P Nu a
hypothesis space. A learner M : S Ñ N Y t?u (M : T Ñ N Y t?u) is
successful on I (on T ) if it eventually settles on i P N with Li � L. This
means that when receiving increasingly long �nite initial segments of I
(of T ) as inputs, it will from some time on be correct and not change
the output on longer initial segments of I (of T ). M learns L wrt H if
it is successful on every informant I (on every text T ) for L. M learns
L if there is a hypothesis space H such that M learns every L P L wrt
H. We denote the collection of all L learnable from informant (text) by
rInfExs (rTxtExs). If we �x the hypothesis space, we denote this by a
subscript for Ex.
According to [Wie76], [LZ96], [CJLZ99] a learner M is iterative if its
output on σ P S (τ P T) only depends on the last input lastpσq and the
hypothesisMpσ�q after observing σ without its last element lastpσq. The
collection of all concept classes L learnable by an iterative learner from
informant (text) is denoted by rItInfExs (rItTxtExs).
The s-m-n theorem gives �nite and in�nite recursion theorems, see [Cas94],
[Odi99]. We will refer to Case's Operator Recursion Theorem ORT in its
1-1-form, see [Cas74], [JORS99], [Köt09].

3 Comparison with Learning from Text

By ignoring negative information every informant incorporates a text for
the language presented and we gain rItTxtExs � rItInfExs.
It has been observed in [OSW86] that the super�nite language class
Fin Y tNu is in rInfExszrItInfExs. With Lk � 2N Y t2k � 1u and
L1
k � Lkzt2ku the indexable family L � t2Nu Y tLk, L1

k | k P Nu lies in
rTxtExsXrItInfExs but not in rItTxtExs. In [JORS99] the separations
are witnessed by the indexable family tNzt0uu Y tD Y t0u : D P Finu.
It can easily be veri�ed that CoFin P rItInfExszrTxtExs and with the
next result rItInfExs and rTxtExs are incomparable by inclusion.

Lemma 1. There is an indexable family in rTxtExszrItInfExs.
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Summing up, we know rItTxtExs � rTxtExs K rItInfExs � rInfExs,
where K stands for incomparability with respect to set inclusion, meaning
(1) there is a concept class learnable from text but not by an iterative
learner from informant and (2) there is a concept class learnable by an
iterative learner from informant but not from text.

Moreover, with a Boolean function we can show that every concept class
separating rItInfExs and rInfExs yields a separating class for rItInfExs
and rTxtExs. We generalize this further in the full version.

4 Total and Canny Learners

For the rest of the paper, without further notation, all results are under-
stood with respect to the W -hypothesis space de�ned in the following.
We �x a programming system ϕ as introduced in [RC94]. Brie�y, in the
ϕ-system, for a natural number p, we denote by ϕp the partial com-
putable function with program code p. We also call p an index for Wp

de�ned as dompϕpq.
We show that totality, denoted by R, restricts iterative learning from
informant.The proof uses an easy ORT argument.

Theorem 1. rItInfExszrRItInfExs � ∅.

Proof. Let o be an index for ∅ and de�ne the iterative learner M for all
ξ P N�t0, 1u by

Mp∅q � o;

hM ph, ξq �

#
ϕpr1pξq

p0q, else if pr2pξq � 1 and h R ranpindq;

h, otherwise.

We argue that L :� tL � N | L P ItInfExpMq u is not learnable by
a total learner from informants. Assume towards a contradiction M 1

is such a learner. For a �nite informant sequence σ we denote by σ
the corresponding canonical �nite informant sequence, ending with σ's
datum with highest �rst coordinate. Then by padded ORT there are
e P N and a strictly increasing computable function a : N ω Ñ N, such
that for all σ P N ω and all i P N

σ0 � ∅;

σi�1 � σi
a

#
papσiq, 1q, if M 1pσiapapσiq, 1qq �M 1pσiq;

∅, otherwise;
(1)

We �
¤
iPN

pospσiq;

ϕapσqpxq �

#
e, if M 1pσapapσq, 1qq �M 1pσq;

indpospσqYtapσqu, otherwise;

Clearly, we have We P L and thus M 1 also InfEx-learns We. By the Ex-
convergence there are e1, t0 P N, where t0 is minimal, such thatWe1 �We
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and for all t ¥ t0 we have M 1p
�
iPN σirtsq � e1 and hence by (1) for all i

with |σi| ¥ t0

M 1pσiapapσiq, 1qq �M 1pσiq �M 1pσiapapσiq, 0qq.

It is easy to see, that We � pospσiq and WeYtapσiqu P L. Moreover, M 1

is iterative and hence does not learn We and We Y tapσiqu.

We transfer the notion of canny learners to learning from informant.

De�nition 1. A learner M from informant is called canny in case for
every �nite informant sequence σ holds
1. if Mpσq is de�ned then Mpσq P N;
2. for every x P Nzppospσq Y negpσqq and i P t0, 1u a mind change

Mpσapx, iqq � Mpσq implies for all �nite informant sequences τ
with σapx, iq � τ that Mpτapx, iqq �Mpτq.

Hence, the learner is canny in case it always outputs a hypotheses and no
datum twice causes a mind change of the learner. Also for learning from
informant the learner can be assumed canny by a simulation argument.

Lemma 2. For every iterative learner M , there exists a canny iterative
learner N such that InfExpMq � InfExpNq.

Proof. Let f be a computable 1-1 function mapping every �nite informant
sequence σ to a natural number encoding a program withWfpσq �WMpσq

if Mpσq P N and Wfpσq � ∅ otherwise. Clearly, σ can be reconstructed
from fpσq. We de�ne the canny learner M 1 by letting

M 1p∅q � fp∅q

hM 1pfpσq, px, iqq �

$''''''&
''''''%

fpσapx, iqq, if x R pospσq Y negpσq^

Mpσapx, iqqÓ �MpσqÓ;

fpσq, if Mpσapx, iqqÓ �MpσqÓ _

x P contentpσq;

Ò, otherwise.

M 1 mimicsM via f on a possibly �nite informant subsequence of the orig-
inally presented informant with ignoring data not causing mind changes
of M or that has already caused a mind change.
Let L P InfExpMq and I 1 P InfpLq. As M has to learn L from every
informant for it, M 1 will always be de�ned. Further, let σ0 � ∅ and

σt�1 �

#
σt

aI 1ptq, if I 1ptq R ranpσtq ^Mpσt
aI 1ptqqÓ �MpσtqÓ;

σt, otherwise.

Then by induction for all t P N holds M 1pI 1rtsq � fpσtq.
The following function translates between the two settings

rp0q � 0;

rpt� 1q � mintr ¡ rptq | I 1pr � 1q R ranpσrptqqu.
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Intuitively, the in�nite range of r captures all points in time r at which
a datum that has not caused a mind change so far, is seen and a mind-
change of M 1 is possible. Thus the mind change condition is of interest
in order to decide whether σrpt�1q � σrptq. Note that σr � σrptq for all r
with rptq ¤ r   rpt� 1q.
Let Iptq � I 1prpt� 1q � 1q for all t P N. Since only already observed data
is ommited, I is an informant for L.
We next argue that MpIrtsq �Mpσrptqq for all t P N. As Ir0s � ∅ � σ0,
the claim holds for t � 0. Now we assumeMpIrtsq �Mpσrptqq and obtain
MpIrt� 1sq �MpIrtsaIptqq �Mpσrptq

aIptqq �Mpσrpt�1qq.
As by the de�nitions of I and r we have Iptq � I 1prpt�1q�1q R ranpσrptqq
there are two cases:
1. If Mpσrptq

aIptqq � Mpσrptqq, then from σrpt�1q�1 � σrptq and the
de�nition of M 1 we obtain σrpt�1q � σrptq. Putting both together the
claimed equality Mpσrptq

aIptqq �Mpσrpt�1qq follows.
2. If Mpσrptq

aIptqq � Mpσrptqq, the de�nition of M 1 yields σrpt�1q �
σrptq

aIptq. Hence the claimed equality also holds in this case.
We now argue thatM 1 explanatory learns L from I 1. In order to see this,
�rst observe σrpt�1q � σrptq if and only if MpI 1rt � 1sq � MpI 1rtsq for
every t P N. This is because

σrpt�1q � σrptq ôMpσrptq
aIptq q �Mpσrptqq

ôMpIrtsaIptqq �MpIrtsq

ôMpIrt� 1sq �MpIrtsq.

As I is an informant for L, the learner M explanatory learns L from I.
Hence there exists some t0 such that WMpIrt0sq � L and for all t ¥ t0
holds MpIrtsq � MpIrt0sq. With this follows σrptq � σrpt0q for all t ¥ t0.
As for every r there exists some t with rptq ¤ r and σr � σrptq, we
obtain σr � σrpt0q for all r ¥ rpt0q. We conclude M 1pI 1rtsq � fpσtq �
fpσrpt0qq for all t ¥ rpt0q and by the de�nition of f �nally Wfpσrpt0qq

�

WMpσrpt0qq
�WMpIrt0sq � L.

5 Additional Requirements

In the following we review additional properties one might require the
learning process to have in order to consider it successful. For this, we
employ the following notion of consistency when learning from informant.
As in [LZZ08] according to [BB75] and [B	ar77] for A � N we de�ne

Conspf,Aq :ô pospfq � A ^ negpfq � NzA

and say f is consistent with A or f is compatible with A.
Learning restrictions incorporate certain desired properties of the learn-
ers' behavior relative to the information being presented. We state the
de�nitions for learning from informant here.

De�nition 2. Let M be a learner and I an informant. We denote by
ht �MpIrtsq the hypothesis of M after observing Irts and write



8 A. Khazraei and T. Kötzing and K. Seidel

1. ConvpM, Iq ([Ang80]), if M is conservative on I, i.e., for all s, t
with s ¤ t holds ConspIrts,Whsq ñ hs � ht.

2. DecpM, Iq ([OSW82]), if M is decisive on I, i.e., for all r, s, t with
r ¤ s ¤ t holds Whr �Wht ñ Whr �Whs .

3. CautpM, Iq ([OSW86]), if M is cautious on I, i.e., for all s, t with
s ¤ t holds  Wht �Whs .

4. WMonpM, Iq ([Jan91],[Wie91]), if M is weakly monotonic on I,
i.e., for all s, t with s ¤ t holds ConspIrts,Whsq ñ Whs �Wht .

5. MonpM, Iq ([Jan91],[Wie91]), if M is monotonic on I, i.e., for all
s, t with s ¤ t holds Whs X pospIq �Wht X pospIq.

6. SMonpM, Iq ([Jan91],[Wie91]), if M is strongly monotonic on I,
i.e., for all s, t with s ¤ t holds Whs �Wht .

7. NUpM, Iq ([BCM�08]), if M is non-U-shaped on I, i.e., for all
r, s, t with r ¤ s ¤ t holds Whr �Wht � pospIq ñ Whr �Whs .

8. SNUpM, Iq ([CM11]), if M is strongly non-U-shaped on I, i.e., for
all r, s, t with r ¤ s ¤ t holds Whr �Wht � pospIq ñ hr � hs.

9. SDecpM, Iq ([KP16]), if M is strongly decisive on I, i.e., for all
r, s, t with r ¤ s ¤ t holds Whr �Wht ñ hr � hs.

When additional requirements apply to the de�nition of learning success,
we write them between Inf and Ex. For example, Theorem 1 proves
rItInfConvSDecSMonExszrRItInfExs � ∅ because the non-total
learner acts conservatively, strongly decisively and strongly monotoni-
cally when learning L.
The text variants can be found in [JKMS16] where all pairwise rela-
tions �, � or K between the sets rItTxtδExs (iterative learners from
text) for δ P ∆, where ∆ � tConv,Dec,Caut,WMon,Mon,SMon,
NU,SNU,SDecu, are depicted. We sum up the current status regarding
the map for iterative learning from informant in the following.
For all δ P ∆ztSMonu with a locking sequence argument we can observe
rItInfSMonExs � rItInfδExs. If we denote by Inf can the set of all
informants labelling the natural numbers according to their canonical
order, which corresponds to the characterisic function of the respective
language, we obtain Fin Y tNu P rRItInf canConsConvSDecMonExs
and thus it holds in contrast to full-information learning from infor-
mant rItInf canExs � rItInfExs, see [AKS18]. [LZ92] observed that
requiring a monotonic behavior of the learner is restrictive, i.e. there
exists an indexable family in rItInfMonExs � rItInfExs. The in-
dexable family tNu Y tNztxu | x P Nu is clearly not cautiously learn-
able but conservatively, strongly decisively and monotonically learnable
by a total iterative learner from informant. Hence, rItInfCautExs K
rItInfMonExs. Moreover, [JLZ07] observed that requiring a conserva-
tive learning behavior is also restrictive. Indeed, they provide an index-
able family in rItInfCautWMonNUDecExszrItInfConvExs and an-
other indexable family in rRItTxtCautConvSDecExszrItInfMonExs.
Hence, the map on iterative learning from informant di�ers from the map
on iterative learning from text in [JKMS16] as Caut is restrictive and
also from the map of full-information learning in [AKS18] from informant
as Conv is restrictive too. It has been open how WMon, Dec, NU,
SDec and SNU relate to each other and the other requirements. We
show that also SNU restricts ItInfEx with an intricateORT-argument.
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Theorem 2. rItInfSNUExs � rItInfExs

In the following we provide a lemma that might help to investigate
WMon, Dec and NU.

De�nition 3. Denote the set of all unbounded and non-decreasing func-
tions by S, i.e.,

S :� t s : NÑ N | @x P N Dt P N : sptq ¥ x and @t P N : spt� 1q ¥ sptq u.

Then every s P S is a so called admissible simulating function.

A predicate β � P � I, where P stands for the set of all learners, is
semantically delayable, if for all s P S, all I, I 1 P I and all learners
M,M 1 P P holds: Whenever we have pospI 1rtsq � pospIrsptqsq, negpI 1rtsq �
negpIrsptqsq and WM 1pI1rtsq � WMpIrsptqsq for all t P N, from βpM, Iq we
can conclude βpM 1, I 1q.

It is easy to see that every δ P tCaut,Dec,WMon,Mon,SMon,NUu
is semantically delayable and Lemma 2 can be restated as follows.

Lemma 3. For every iterative learner M and every semantically de-
layable learning restriction δ, there exists a canny iterative learner N
such that InfδExpMq � InfδExpNq.

Proof. Add any semantically delayable δ in front of Ex in the proof
of Lemma 2. We de�ne a simulating function (De�nition 3) by sptq �
maxts P N | rpsq ¤ tu. It is easy to check that s is unbounded and
clearly it is non-decreasing. Then by the de�nitions of I and s we have
pospIrsptqsq � pospI 1rrpsptqqsq � pospI 1rtsq and similarly negpIrsptqsq �
negpI 1rtsq for all t P N. AsM 1pI 1rtsq � fpσtq andMpσrpsptqqq �MpIrsptqsq
for all t P N, in order to obtain WM 1pI1rtsq � WMpIrsptqsq it su�ces to
show Wfpσtq � WMpσrpsptqqq. Since Wfpσtq � WMpσtq for all t P N, this
can be concluded from σt � σrpsptqq. But this obviously holds because
rpsptqq ¤ t   rpsptq � 1q follows from the de�nition of s.
Finally, from δpM, Iq we conclude δpM 1, I 1q.

Two other learning restrictions that might be helpful to understand the
syntactic learning criteria SNU, SDec and Conv better are the follow-
ing.

De�nition 4. Let M be a learner and I an informant. We denote by
ht �MpIrtsq the hypothesis of M after observing Irts and write
1. LocConvpM, Iq ([JLZ07]), if M is locally conservative on I, i.e.,

for all t holds ht � ht�1 ñ  ConspIptq,Whtq.
2. WbpM, Iq ([KS16]), if M is witness-based on I, i.e., for all r, s, t

with r   s ¤ t the mind-change hr � hs implies pospIrssqXWhtzWhr �
∅ _negpIrssq XWhr zWht � ∅.

Hence, in a locally conservative learning process every mind-change is
justi�ed by the datum just seen. Moreover, a in witness-based learning
process each mind-change is witnessed by some false negative or false
positive datum. Obviously, LocConvñ Conv and Wbñ Conv.
As for learning from text, see [JKMS16], we gain that every concept class
locally conservatively learnable by an iterative learner from informant is
also learnable in a witness-based fashion by an iterative learner.
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Theorem 3. rItInfLocConvExs � rItInfWbExs

Proof. Let L be a concept class learned by the iterative learner M in
a locally conservative manner. As we are interested in a witness-based
learner N , we always enlarge the guess of M by all data witnessing a
mind-change in the past. As we want N to be iterative, this is done via
padding the set of witnesses to the hypothesis and a total computable
function g adding this information to the hypothesis of M as follows:

Wgppadph,xMCyqq � pWh Y posrMCsq znegrMCs;

Np∅q � gppadpMp∅q, x∅yqq;

hN pgppadph, xMCyqq, ξq �

$'''&
'''%
gppadph, xMCyqq, if hM ph, ξq � h_

ξ PMC;

gppadphM ph, ξq,

xMC Y tξuyqq, otherwise.

Clearly, N is iterative. Further, wheneverM is locked on h and Wh � L,
since MC is consistent with L, we also have Wgppadpfphq,xMCyqq � L. As
N simulates M on an informant omitting all data that already caused
a mind-change beforehand, N does explanatory learn L. As M learns
locally conservatively and by employing g, the learner N acts witness-
based.

6 Suggestions for Future Research

Future work should address the complete map for iterative learners from
informant. In particular, WMon, Dec and NU seem to be challenging
as the proofs in related settings fail without an obvious �x. We hope
that Lemma 3 is a helping hand in this endeavour. Also the equivalence
of the syntactic criteria SNU, SDec and Conv does not trivially hold.
Theorem 3 might be helpful regarding the latter.

Maps for other models of memory-limited learning, such as BMS, see
[CCJS07], or Bem, see [FJO94], [LZ96] and [CJLZ99], would help to
rate models.

Last but not least we encourage to investigate the learnability of in-
dexable classes motivated by grammatical inference or machine learning
research. The pattern languages often serve as a helpful example to refer
to and we hope for even more examples of this kind. As a starting point,
in the full version, we prove the learnability of half-spaces.
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