
Non-Volatile Memory Accelerated Posterior
Estimation

Andrew Wood
Boston University

aewood@bu.edu

Moshik Hershcovitch
IBM Research

moshikh@il.ibm.com

Daniel Waddington
IBM Research

daniel.waddington@ibm.com

Sarel Cohen
Hasso Plattner Institute

sarel.cohen@hpi.de

Peter Chin
Boston University

spchin@bu.edu

Abstract—Bayesian inference allows machine learning models
to express uncertainty. Current machine learning models use
only a single learnable parameter combination when making
predictions, and as a result are highly overconfident when
their predictions are wrong. To use more learnable parameter
combinations efficiently, these samples must be drawn from the
posterior distribution. Unfortunately computing the posterior
directly is infeasible, so often researchers approximate it with
a well known distribution such as a Gaussian. In this paper, we
show that through the use of high-capacity persistent storage,
models whose posterior distribution was too big to approximate
are now feasible, leading to improved predictions in downstream
tasks.

I. INTRODUCTION

Machine learning models, particularly neural networks, are
prone to overfitting. As a result, models are overconfident
in their predictions, especially when those predictions are
incorrect. This can have devastating consequences for agents
acting on those predictions; such as autonomous cars or
medical diagnosis.

Representing uncertainty has been studied for decades [1],
[2], [3], [4]. It is well known that the lack of uncertainty is
an artifact of learning a point mass estimate on incomplete
data [3], [4], [5]. For instance, if all possible data points could
be collected, then the optimal learning model would overfit
to that data. However, because of finite data, models which
learn a single parameter combination cannot make optimal
predictions.

To make optimal predictions, researchers have modeled the
learning setting from a Bayesian perspective. When learning, a
model seeks to find the most probable parameter combination
given the data P (θ|D). To then make optimal predictions, one
must marginalize out the parameters. To do this, one must first
compute the posterior distribution P (y|θ, x). Predictions can
then be made by the following equation:

Pr(y|x) =
∫
Pr(y|θ, x)Pr(θ|D)dθ

However, learning the posterior is not trivial. The posterior is
given from Bayes’ rule:

Pr(θ|D) =
Pr(D|θ)Pr(θ)

Pr(D)

where Pr(D|θ) is given via classical point estimate algorithms
such as stochastic gradient descent. The trouble lies with

computing Pr(D). This term could of course be conditioned
and then marginalized:

Pr(D) =

∫
Pr(D|θ)Pr(θ)dθ

however this would require computing every possible param-
eter combination: an infeasible task.

Therefore, researchers have often turned to approximating
the posterior using well known distributions. One fruitful
avenue of research has been approximating with a multivariate
gaussian [6]. However, posterior approximations require the
parameters of the distribution be stored and updated as the
model trains. For gaussians in particular, the computational
demand is intense. To represent a n-dimensional multivariate
gaussian, a covariance matrix of size O(n2) must be stored.

Until recently, there were only two ways of manipulating
data on a von-Neumann architecture: volatile system memory
(DRAM) and memory mapping (MMAP) data to disk. While
DRAM is fast, it is not high capacity. On the other hand,
MMAP storage is high capacity, but slow. To compute medium
to large size posteriors, MMAP was the only method that
dramatically increased the runtime of training.

In the last few years, a notable hardware breakthrough
has been the emergence of Intel Optane Persistent Memory
Modules (Optane-PM). Optane-PM in particular communi-
cates via the memory bus, circumventing bottlenecks such
as PCI-express lane availability, using the same interface to
the CPU as DRAM. While there are other Persistent Memory
technologies, Optane-PM is the most mature product on the
market. Optane-PM is based on 3D-XPoint (3DXP) technol-
ogy and operates at a cache-line granularity with a latency of
around 300ns [7], [8]. While this latency is slower than current
DRAM (∼100ns), it is 30x faster than the current state of the
art NVMe SSDs. Additionally, a single DIMM of Optane-PM
can reach 512GB, which is 8x larger than the available DRAM.
Thus, the maximum Optane-PM capacity of a commodity 2U
server machine is 12TB - significantly more than DRAM.

In this paper, we show that by using Optane-PM, existing
posterior approximation techniques can extend to models
that could be previously handled due to memory and speed
constraints. We demonstrate this using approximations that
require six to 470 GB of storage trained on the MNIST dataset.
We compare our results against approximating the posterior in
DRAM and traditional memory mapping.

II. EXPERIMENTS

In our experiments, we operate on the well known MNIST
dataset [9]. MNIST is a popular benchmark for a variety of
reasons: it is well curated, the complexity of the problem is
low, and it is small. We chose this dataset because of the
low problem complexity: we wish to test our implementation
on a posterior which, while complex, is reasonable to expect
models to learn.

When estimating the posterior, the size of the data does
not affect the storage or the runtime of the approximation
algorithm. The approximation algorithm is instead entirely
defined by the number of learnable parameters the model
contains. In our case of using a gaussian, the approximation
scales linearly with the number of parameters in the model. For
the gaussian to be full-rank, we will need to store |θ| separate
parameter vectors sampled from the SGD trajectory. Following
Maddox et al [6], parameter vectors are used to compute the
columns of a dense matrix D̂. D̂ is then used to estimate
off-diagonal entries of the covariance during sampling. D̂
induces a O(T |θ|) storage cost where T is the rank of the
approximation. The storage cost of this matrix explodes as it
approaches full-rank: requiring O(|θ|2) memory.

We chose a model consisting of four fully connected layers
as it is simple enough to learn MNIST while being large
enough to compare Optane-PM to traditional storage methods.
Our model contains 2.8M parameters, which requires 11MB
of memory. During training, we treat the learnable parameters
after every minibatch as a sample drawn from the posterior
and use it to update the corresponding gaussian [6]. In our
experiments, we store one posterior approximation entirely
on DRAM, another on a memory-mapped filesystem, and the
other on Optane-PM. We make use of a Python library called
PyMM. PyMM is a specialized version of a software frame-
work called Memory Centric Active Storage (MCAS) [10]
which removes the network layer and only uses local storage
devices. MCAS is a key-value store built from the ground
up that provides an interface between a client application and
Optane-PM. Data that is stored via PyMM is persistent and
can be operated on in-place; meaning code operates directly on
the device without requiring a copy or transfer to DRAM. We
evaluate Optane-PM using three modes as shown in table ??.

We measure the runtime of learning the posterior approx-
imation three times per storage method, and measure it as a
function of the number of training epochs. During each epoch,
we update the posterior after every minibatch (600 minibatches
per epoch with a minibatch size of 100). The memory size of
our posterior can be seen in Table I.

1 epoch 25 epochs 50 epochs 75 epochs
Size (GB) 6.28 156.33 312.62 468.92

Approximation Rank 600 15k 30k 45k

TABLE I: Posterior size for our four layer fully connected model.
Note that the posterior size is controlled by the number of samples
recorded (and hence the number of epochs during training). Note that
even with the high storage cost, our approximation is still low-rank
(full-rank = 2.8M).

Fig. 1: Total runtime of MNIST training. The posterior is updated
every minibatch. Note that memory mapping does not scale with the
posterior size (controlled via the number of training epochs).

Our experiments were conducted on Lenovo SR650 2U
server equipped with two Intel Xeon Gold 6248 (2.5GHz)
processors supporting 80 CPU hardware threads. The server is
also equipped with 384GB (12x32GB) of DDR4 DRAM and
1.5TB of Optane-PM (12x128GB). Our platform also includes
an NVIDIA Tesla M60 GPU, which we used to perform
traditional stochastic gradient descent calculations. Note that
PyMM can transfer memory directly to all devices attached to
the CPU, meaning that we transfer memory to and from the
GPU and Optane-PM without first copying to DRAM.

III. RESULTS AND DISCUSSION

The total runtime of our experiments, which can be seen in
Figure 1, shows that using Optane-PM is slower than DRAM
by a factor of 1:3. While this is expected as the latency of
Optane-PM to DRAM is also 1:3, we note that this gap is
shrinking as the amount of memory used increases (as seen in
Figure 3). We also note that the ability to solely use DRAM

Fig. 2: Avg epoch runtime of MNIST training with standard devi-
ation. Note the high variance in Memory mode where the posterior
is beyond DRAM capacity. This is due to the random access nature
of updating the posterior and processing cache misses/evictions.

Fig. 3: Ratios of runtimes (relative to DRAM). Note that FS-DAX
and Dev-DAX are getting closer to DRAM speed as the amount of
memeory increases.

is a rare case. In fact, in our simple experiments, we already
ran into the case where the posterior was larger than DRAM
capacity, and we were only able to produce results for the
470GB posterior by using Optane-PM (in Memory mode).
In the case where the posterior cannot fit into DRAM, other
Optane-PM configurations gain an advantage as Optane-PM in
Memory mode is volatile, meaning all data must be serialized
in order to persist. We do not report serialization costs in our
experiments.

A large portion of time is used to allocate memory. Persis-
tent Optane-PM configurations pay a steep penalty for crash-
consistent heap allocation (orders of magnitude more time
than on DRAM or memory mapping). However, once the
memory is allocated, using it obeys the 1:3 speed ratio as can
be seen in Figure 2. This figure reports the average runtime
of a single epoch of training. We note that while slower,
persistent Optane-PM configurations combine computation
and checkpointing into a single operation. After a successful
write, the written data can be flushed from the caches and
made persistent. If configured in Memory mode, a pessimistic
user would have to serialize to disk after every computation
in order to match the safety of using FS-DAX or Dev-DAX .

All storage methods were significantly faster than traditional
memory mapping. We used the memory mapping functionality
of NumPy [11] in our experiments, and we note that memory
mapping does not scale as the memory size increases. To
make matters worse, we did not explicitly flush the buffer
after each write,. Therefore, the reported performance of our
memory mapped experiments uses DRAM caching, and would
be significantly worse if caching was disabled.

We did not notice a statistically significant different between
FS-DAX and Dev-DAX performance. Even though Dev-DAX
was slightly faster, we suggest using FS-DAX for greater
system-wide flexibility via the mounted filesystem. Addition-
ally, these modes also support a crash-consistency policy
that use software undo-logging to protect against crashes or
machine resets during writes. We did not enable this feature
in our experiments in order to provide a fair comparison to
existing storage methods (which do not have protected write

operations). Optimizing persistent memory transaction support
is out of the scope of this paper.

One important behavior is the stability of FS-DAX and Dev-
DAX . As the memory consumption increases, we observed
large standard deviations in the runtime of memory mapping
and Memory mode. This is a result of cache misses occurring
in their implementation: NumPy will cache rows of the mem-
ory mapped file and evict data upon missing with a full cache.
Likewise, Memory mode uses DRAM as a cache for the data,
and when the memory size grows larger than DRAM capacity,
the full DRAM cache starts evicting data on misses. Due to
the nature of updating the posterior using random access, and
our updates writing to columns of a matrix, each cache miss
(when the cache is full) will induce a future cache miss upon
the next write since rows are stored, by default, in row-major
order in NumPy arrays.

IV. FUTURE WORK

In the future, we would like to further refine our posterior
approximation. Currently our posterior is controlled via the
number of samples to store, which is a hyper-parameter of
the method. In general, using SGD iterates assumes that as
the model trains, the iterates converge into high-probability
areas of the posterior. This means that early iterates should be
discarded while later iterates are useful. Where this boundary
exists is unclear, and is something we wish to further explore.

Additionally, our experiments so far are using the MNIST
dataset that can easily be stored in DRAM. Other, larger
datasets are also good targets to store on Optane-PM to
speed up data loading and preprocessing. However, if using
Memory Mode, storing the data now competes with additional
computation like the posterior for the DRAM cache. Further
experimentation is needed to show the limits of Optane-PM
Memory Mode in comparison to persistent configurations like
FS-DAX and Dev-DAX .

Another avenue of future work is to explore more robust
posterior approximations. While Maddox at al [6] provide a
robust solution, their approach uses a single well-known dis-
tribution to approximate an arbitrary probability distribution.
With Optane-PM accelerating the computation and providing
large capacity memory, more complicated approximations are
possible.

Finally, we wish to explore using Optane-PM in persistent
mode with a small DRAM cache. Currently writes into all stor-
age is random access and dominated by writing into columns
of D̂. In fact, Optane-PM and other storage methods have
better sequential write performance. We could take advantage
of this by storing a few local updates in DRAM and then
writing the cache to storage once the cache is full.

V. CONCLUSION

In conclusion, Optane-PM is an incredibly usefull tech-
nology which will revolutionize modern computing. For data
intensive applications, having access to memory which is fast,
persistent, and high capacity is groundbreaking. In our paper

we demonstrate that by using Optane-PM , we can acceler-
ate important learning tasks such as posterior approximation
without sacrificing runtime or precision.

REFERENCES

[1] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in International Conference on Machine
Learning. PMLR, 2015, pp. 1613–1622.

[2] T. Chen, E. Fox, and C. Guestrin, “Stochastic gradient hamiltonian
monte carlo,” in International conference on machine learning. PMLR,
2014, pp. 1683–1691.

[3] D. Draper, “Assessment and propagation of model uncertainty,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 57, no. 1,
pp. 45–70, 1995.

[4] L. Hansen and T. J. Sargent, “Robust control and model uncertainty,”
American Economic Review, vol. 91, no. 2, pp. 60–66, 2001.

[5] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and
the local reparameterization trick,” Advances in neural information
processing systems, vol. 28, pp. 2575–2583, 2015.

[6] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson,
“A simple baseline for bayesian uncertainty in deep learning,” Advances
in Neural Information Processing Systems, vol. 32, pp. 13 153–13 164,
2019.

[7] (2020) Spectra - Digital Data Outlook 2020. https://spectralogic.com/
wp-content/uploads/digital data storage outlook 2020.pdf.

[8] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” CoRR, vol. abs/1903.05714, 2019. [Online]. Available:
http://arxiv.org/abs/1903.05714

[9] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[10] D. Waddington, C. Dickey, M. Hershcovitch, and S. Seshadri, “An
architecture for memory centric active storage (mcas),” arXiv preprint
arXiv:2103.00007, 2021.

[11] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

https://spectralogic.com/wp-content/uploads/digital_data_storage_outlook_2020.pdf
https://spectralogic.com/wp-content/uploads/digital_data_storage_outlook_2020.pdf
http://arxiv.org/abs/1903.05714
https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	Experiments
	Results and Discussion
	Future work
	Conclusion
	References

