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Abstract. The question if a given partial solution to a problem can be extended reasonably
occurs in many algorithmic approaches for optimization problems. For instance, when enu-
merating minimal vertex covers of a graph G = (V,E), one usually arrives at the problem to
decide for a vertex set U ⊆ V (pre-solution), if there exists a minimal vertex cover S (i. e., a
vertex cover S ⊆ V such that no proper subset of S is a vertex cover) with U ⊆ S (minimal
extension of U). We propose a general, partial-order based formulation of such extension
problems which allows to model parameterization and approximation aspects of extension,
and also highlights relationships between extension tasks for different specific problems. As
examples, we study a number of specific problems which can be expressed and related in
this framework.
In particular, we discuss extension variants of the problems dominating set and feedback
vertex/edge set. All these problems are shown to be NP-complete even when restricted to
bipartite graphs of bounded degree, with the exception of our extension version of feedback
edge set on undirected graphs which is shown to be solvable in polynomial time. For the
extension variants of dominating and feedback vertex set, we also show NP-completeness for
the restriction to planar graphs of bounded degree. As non-graph problem, we also study
an extension version of the bin packing problem. We further consider the parameterized
complexity of all these extension variants, where the parameter is a measure of the pre-
solution as defined by our framework.

1 Introduction

The very general problem of determining the quality of a given partial solution occurs basically
in every algorithmic approach which computes solutions in some sense gradually. Pruning search-
trees, proving approximation guarantees or the efficiency of enumeration strategies usually requires
a suitable way to decide if a partial solution is a reasonable candidate to pursue. Consider for
example the classical concept of minimal vertex covers for graphs. The task of finding a maximum
cardinality minimal vertex cover (or an approximation of it) as well as enumerating all minimal
vertex covers naturally leads to solving the following extension problem: Given a graph G = (V,E)
and a vertex set U ⊆ V , does there exist a minimal vertex cover S with U ⊆ S?

In this paper, we want to consider these kinds of subproblems which we call extension problems.
Informally, in an extension version of a problem, we are given in the input a partial solution (that
we call a pre-solution) to be extended into a minimal or a maximal solution for the problem
(but not necessarily to a solution of globally minimum or maximum value, i. e., we consider a
certain partial ordering on the set of pre-solutions). Extension problems as studied in this paper
are encountered for many computational tasks/strategies. Let us go back to the prototype classical
problem Vertex Cover:

– When running a search tree algorithm, usually parts of the constructed solution are fixed,
i. e., some vertices are picked to be part of the solution. It is highly desirable to be able to
prune branches of the search tree as early as possible. Hence, it would be very nice to tell (in
polynomial time) if such a solution part can be part of a minimal vertex cover.



– The same type of reasoning is especially relevant if one aims to enumerate or count all mini-
mal dominating sets [22–24], transversals in a hypergraph [7, 15], cliques [38], or similar struc-
tures [5, 6, 17, 30, 31, 39]. Note that building up from only relevant pre-solutions yields the
possibility to define an order on solutions and hence enumerate without repetition. It was
this scenario of enumeration where the question of extension was asked for Vertex Cover
Extension in [15].

– Analyzing any algorithmic strategy that greedily builds a solution in a stepwise fashion es-
sentially always boils down to proving some quality of the intermediate pre-solutions, where
“quality” translates to “possibility to be extended”.

– Especially greedily solving the task of finding (and also approximating) a minimal vertex cover
lower-bounded by a given number k (a minimal vertex cover of maximum size) requires knowing
that (at least a significant part of) the pre-solution remains in a minimal solution. Considering
the strategies that give good approximations for the minimum vertex cover problem, it is
the difficulty of deciding extendability of pre-solutions that hinders using them for finding a
minimal vertex cover of maximum size.

Another popular strategy for problem solving is local search. In a more general setting, this can be
viewed as a strategy to move in the space of pre-solutions in order to find a good (if not optimum)
solution. The danger of local search is to get stuck at a pre-solution that cannot yield any minimal
solution, let alone a minimum solution. It is desirable to detect such a situation where the search
was trapped as early as possible.

On a more general note, the following question was already asked in 1956 by Kurt Gödel in a
famous letter to Joh(an)n von Neumann [40]: ”It would be interesting to know [ . . . ] how strongly in
general the number of steps in finite combinatorial problems can be reduced with respect to simple
exhaustive search.” The mentioned pruning of search branches and hence the question of finding
(pre-)solution extensions lies at the heart of this question.

Related work. This paper is not the first one to consider extension problems, however, we are not
aware of a systematic study of this type of problems. The question of finding extensions to minimal
solutions was encountered in the context of proving hardness results for (efficient) enumeration
algorithms for Boolean formulae, in the context of matroids and similar situations; see [6, 31]. More
precisely, it is NP-hard to decide if a partial solution can be extended for the problem of computing
prime implicants of the dual of a Boolean function; a problem which can also be seen as finding a
minimal hitting set for the set of prime implicants of the input function. Interpreted in this way,
the proof from [6] yields NP-hardness for an extension version of the 3-Hitting Set problem;
see also [36, Théorème 2.16]. Also, notice that the whole of Sec. 6 of [37] (a rather recent paper
on the efficient enumeration of solutions) is dedicated to the enumeration of minimal respectively
maximal solutions.

Another historical reference concerning extension problems that can be found in the literature
considers independence systems. An independence system is a set system (E, I), with I ⊆ 2E

being closed under taking subsets. Elements of I are also called independent sets. In the extension
problem Ext Ind Sys, given as input4 (E, I, U) where U ⊆ E, one asks for the existence of an
inclusion-wise maximal independent set contained in U . In [33], it has been proved in Theorem 1
that, unless P = NP, there is no algorithm that generates all K maximal independent sets of (E, I),
running in time polynomial in |E| and K. The proof of this result reduces from Satisfiability
(SAT) and can be modified to produce an NP-hardness result for Ext Ind Sys. More precisely,
with the notations from [33], define E = {T1, F1, . . . , TN , FN} and let the independence system
(E, I) be derived from the Boolean formula F as in [33]. Consider U1 = E \ {T1, T2}, U2 =
E \ {T1, F2}, U3 = E \ {F1, T2}, U4 = E \ {F1, F2}. Observe that F is satisfiable if and only if
(at least) one of the four Ext Ind Sys instances (E, I, Ui) is a yes-instance. As independence
systems can be used to model, for instance, the independence property in graphs, nowadays we
have even a number of (other) NP-hardness proofs concerning Ext Ind Sys. For more discussions
on extension problem variants of dependence and independence systems, we refer to Sec. 5 of [36].

4 Here, I is not given as an explicit input, rather, it is assumed that membership in I can be efficiently
detected by a suitable algorithm.
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In order to enumerate all (inclusion-wise) minimal dominating sets of a given graph, Kanté
et al. [28] studied the problem of deciding, given a subset U ⊆ V , if there exists a minimal
dominating set D containing U (denoted by Ext DS here); sometimes, another set Y of vertices
is given as input that should not intersect D. Mary proved in [36, Proposition 3.39] that Ext DS
is NP-complete (on general graphs, with Y = ∅, as in our setting). Kanté et al. proved that the
variation of Ext DS where also another set Y of vertices is given as input is NP-complete, even
in special graph classes like split graphs, chordal graphs and line graphs [27, 28]. Further, in [3] it
is shown that Ext DS remains NP-hard even when restricted to planar cubic graphs.

Recently, extension variants of the classical problems vertex cover (denoted Ext VC here) and
independent set were studied in [11]. While these problems are NP-complete on planar bipartite
sub-cubic graphs, they are polynomial-time decidable in chordal and in circular-arc graphs. Also,
Ext VC remains NP-hard, even restricted to planar cubic graphs, see [2].

In [21], Khosravian et al. studied the following extension variant of the Connected Vertex
Cover problem, denoted by Ext CVC: given a connected graph G = (V,E) together with a
subset U ⊆ V of vertices, the goal is to decide whether there exists a minimal connected vertex
cover of G containing U . It is shown that Ext CVC is polynomial-time decidable in chordal graphs
while it is NP-complete on bipartite graphs of maximum degree 3 even if U is an independent set.

Extension variants of three edge graph problems, namely Edge Cover, Edge Matching and
Edge Dominating Set, (here denoted by Ext EC, Ext EM and Ext EDS, respectively, and
formally defined in Section 2) were studied in [10]; it is shown that all these problems are NP-hard
in planar bipartite graphs of maximum degree 3. In all these problems, given a graph and a subset
of its edges U , the task is to find, respectively, a minimal edge cover containing U , a maximal edge
matching contained in U and a minimal edge dominating set containing U . Further, Ext EM is
polynomial-time decidable when the forbidden edges U = E \ U form an induced matching.

In [11] and [10], extension variants of some classical graph problems were also studied from a
parameterized complexity point of view, in particular under the parameterization by the cardinality
of the fixed pre-solution U (standard), or by the cardinality of its complement, i. e., |V | − |U | for
U ⊆ V , and |E| − |U | for U ⊆ E (dual). A summary of these parameterized results is presented
in Table 1. Further, the paper [11] contains some complexity lower bounds for extension problems
assuming the Exponential Time Hypothesis (ETH)5.

Admittedly, it is not that clear if the standard parameter |U | or the dual parameter are small
in practical situations. If one thinks of a traditional branching algorithm that should exactly solve
a minimization problem, then U is typically very small at the beginning and grows when moving
towards the leaves of the branching tree. Cutting off branches at an early stage would be highly
desirable, but our results indicate that this is in fact difficult to achieve; see Tables 1 and 2.
Conversely, close to the leaves of the branching tree, the dual parameter becomes relatively small,
in particular, if the graph parameter that is considered could be relatively large, as it is the case,
for instance, for Vertex Cover.

Param.
Ext. of

EC EM EDS IS VC

standard FPT FPT W[1]-hard FPT W[1]-complete
dual FPT FPT FPT W[1]-complete FPT

Table 1. Summary of parameterized complexity results for extension problems from [11] and [10].

Finally, we also study an approximation question related to extension problems, called price
of extension, formally described below. The idea is that, if a certain pre-solution U cannot be

5 ETH is a conjecture implying that there is no 2o(n) (i. e., no sub-exponential) algorithm for solving
3-SAT, where n is the number of variables; the number of clauses is somehow subsumed into this
expression, as this number can be assumed to be linear in n (after applying the famous sparsification
procedure); cf. [26].
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extended to a minimal solution, then it would be good to find a pre-solution that is as close as
possible to U and that can be extended. The usefulness of the price of extension could be best
seen for algorithms that use a local search approach to explore the solution space. Then, if the
algorithm has detected that its current pre-solution has led to a dead end, because it cannot be
extended, some of the decisions that led to this pre-solution have to be undone, but this sort of
back-tracking should keep as many as possible of these previous decisions.

Summary of results and organization. In an attempt to study the nature of extension tasks, we
propose a general framework to express a broad class of what we refer to as extension problems.
This framework is based on a partial order approach, reminiscent of what has been endeavored
for maximin problems in [35]. In essence, we consider optimization problems in NPO with an
additionally specified set of partial solutions which we call pre-solutions (including the set of
solutions) and a partial order � on those. The partial order reflects not only the notion of extension
but also of minimality as follows. For a pre-solution U and a solution S, S extends U if U � S.
A solution S is minimal if there exists no solution S′ 6= S with S′ � S. The resulting extension
problem is formally defined as the task to decide, for a given pre-solution U , if there exists a
minimal solution S which extends U . We give more detailed and formal definitions for our broad
notion of extension together with some general properties in Section 2. This section also contains
a list of specific examples of extension problems.

We further study some of these specific examples. In particular, we consider extension version of
the dominating set problem (Ext DS) in Section 3, and extension versions of feedback vertex/edge
set (Ext FVS / Ext FES), as well as their directed version (Ext DFVS/Ext DFES) in
Section 4. An extension version of the bin packing problem (Ext BP) is discussed in Section 5.
For the graph problems dominating set and feedback vertex set (on directed or undirected graphs),
we consider extension versions that model gradually adding vertices to build up a solution. This
results in the question if a given subset of vertices (a pre-solution U in our setting) is a subset of
an inclusion minimal dominating set or feedback vertex set (a minimal solution S that extends
U), respectively.Similarly, for feedback edge set (on directed or undirected graphs), we consider
gradually adding edges, hence pre-solutions U are subsets of edges. For bin packing, we consider
the strategy of starting with the whole ground set and then gradually splitting up sets that are
still too large (for formal definitions of the resulting partial orderings and the according notion of
minimality, see Section 2).

For the graph problems considered here, we discuss in particular the restrictions to specific
graph classes. We consider restrictions to bipartite graphs, planar graphs, and bounded maximum
degree. We show that Ext DS, Ext FVS, and Ext DFVS are NP-complete even when restricted
to planar bipartite graphs of bounded degree. For Ext DFES we show NP-completeness for the
restriction to bipartite graphs of bounded degree (without planarity). The respective bounds on
the degree for these results are given in Table 2. In contrast, we show that Ext FES is solvable
in polynomial time.

We also consider the parameterized complexity of these extension problems, where the parame-
ter is the size of the given pre-solution. A summary of the respective results we obtain is also given
in Table 2. Note that the dual parameterization (parameter |V |−|U |), as discussed in [11] and [10]
and also stated in Table 1, is not particularly interesting for the graph problems we consider here,
as this parameterization trivially gives membership in FPT, by guessing and checking the set that
extends the pre-solution to a solution. We will state this observation in a more general terminology
in Corollary 1 below. The dual parameterization for Ext BP is discussed at the end of Section 5.

Fixing notions. We use standard notations from graph theory. A graph can be specified as G =
(V,E) and for two vertices u, v ∈ V , we denote by uv and (u, v) an (undirected) edge and a
directed edge, also called an arc, from vertex u to vertex v, respectively. We use N [v] to denote
in undirected graphs the closed neighborhood of v, i. e., N [v] = {w ∈ V | vw ∈ E} ∪ {v}. Further,
for U ⊆ V we write N [U ] =

⋃
v∈U N [v].

The degree of a vertex v in an undirected graph is its number of neighbors |{w ∈ V | vw ∈ E}|.
For a vertex v in a directed graph, we separate the degree-notion and use out-degree for the number
of arcs leaving v (i. e. |{(v, u) | (v, u) ∈ E}|) and in-degree for the number of arcs pointing to v
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graph cl.
Ext. of

DS FVS DFVS FES DFES BP

bipartite+planar ∆ ≤ 3 ∆ ≤ 6 ∆ ≤ 3 P ∆ ≤ 4 (non-planar) -

param-compl W[3]-complete W[1]-hard W[1]-hard P ? para-NP

Table 2. Summary of results where the first row (bipartite+planar), ∆ gives the restriction of maximum
degree that still gives NP-hardness for restriction to planar bipartite graphs (only bipartite graphs for
Ext DFES). The second row (param-compl) gives the classification of the parameterized complexity
w. r. t. standard parameterization (size of the pre-solution U).

(i. e. |{(u, v) | (u, v) ∈ E}|). A directed graph has bounded degree if both in-degree and out-degree
of each vertex is bounded by a constant, where we list the specific bounds separately in according
results.

For sets U ⊆ V , G[U ] denotes the subgraph induced by U . For X ⊆ E, G[X] denotes the graph
(V (X), X) where V (X) denotes the set of vertices incident to edges in X.

A parameterized problem is a decision problem specified together with a parameter, that is, an
integer k depending on the instance. A problem is fixed-parameter tractable (FPT for short) if it
can be solved in time f(k) · |I|c (often briefly referred to as FPT-time) for an instance I of size
|I| with parameter k, where f is a computable function and c is a constant. An FPT-reduction
between two parameterized problems P and Q is a function mapping an instance (I, k) of P to
an instance (I ′, k′) of Q such that k′ ≤ g(k), the running time is f(k)|I|O(1), for some computable
functions f and g, and where (I, k) is a yes-instance of P if and only if (I ′, k′) is a yes-instance
of Q.

If a parameterized problem P is C-hard for a parameterized complexity class C and there exists
an FPT-reduction from P to a parameterized problem Q, then Q is also C-hard. We will encounter
three particular parameterized complexity classes in this paper: W[1], W[3] and para-NP; see [16].
Hardness for any of these classes implies that it is unlikely to find an FPT algorithm under some
complexity assumptions; we refer the reader to the textbooks [14, 16] for details.

A short version of this paper, together with some more examples, was presented at an invited
paper at CIAC in 2021; see [12].

2 A General Framework of Extension Problems

In order to formally define our concept of minimal extension, we define what we call monotone
problems which can be thought of as problems in NPO with the addition of a set of pre-solutions
(which includes the set of solutions) together with a partial ordering on this new set. Formally,
we define such monotone problems as 5-tuples Π = (I, presol, sol,�,m) (where I, sol,m with an
additional goal ∈ {min,max} yields an NPO problem, see [25] for definitions of NPO):

– I is the set of instances, recognizable in polynomial time.
– For I ∈ I, presol(I) is the set of pre-solutions and, in a reasonable representation of instances

and pre-solutions, the length of the encoding of any y ∈ presol(I) is polynomially bounded in
the length of the encoding of I.6

– For I ∈ I, sol(I) is the set of solutions, which is a subset of presol(I).
– There exists an algorithm which, given (I, U), decides in polynomial time if U ∈ presol(I);

similarly there is an algorithm which decides in polynomial time if U ∈ sol(I).
– For I ∈ I, � is a partial ordering on presol(I) and there exists an algorithm that, given an

instance I and U,U ′ ∈ presol(I), can decide in polynomial time if U ′ � U .
– For each I ∈ I, the set of solutions sol(I) is upward closed with respect to �, i. e., U ∈ sol(I)

implies U ′ ∈ sol(I) for all U,U ′ ∈ presol(I) with U � U ′.
6 This condition is not only found in NPO problems, but also in the context of enumeration problems

(polynomially balanced), see [42], leading to the class EnumP.
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– m is a polynomial-time computable function which maps pairs (I, U) with I ∈ I and U ∈
presol(I) to non-negative rational numbers; m(I, U) is the value of U .

– For I ∈ I, m(I, ·) is monotone with respect to �, meaning that the property U ′ � U for some
U,U ′ ∈ presol(I) either always implies m(I, U ′) ≤ m(I, U) or m(I, U ′) ≥ m(I, U).

Given a monotone problem Π = (I, presol, sol,�,m), we denote by µ(sol(I)) the set of minimal
feasible solutions of I, formally given by

µ(sol(I)) = {S ∈ sol(I) : ((S′ � S) ∧ (S′ ∈ sol(I)))→ S′ = S} .

Further, given U ∈ presol(I), we define ext(I, U) = {U ′ ∈ µ(sol(I)) : U � U ′} to be the set of
extensions of U . Sometimes, ext(I, U) = ∅, which makes the question of the existence of such
extensions interesting. Hence, finally, the extension problem for Π, written Ext Π, is defined as
follows: An instance of Ext Π consists of an instance I ∈ I together with some U ∈ presol(I),
and the associated decision problems asks if ext(I, U) 6= ∅.

With these formal definitions, we try to capture aspects of extension that could be used to
transfer properties among different specific extension problems. The requirement that the set of
solutions is upward closed with respect to the partial ordering relates to independence systems,
see [33]. This choice also models greedy strategies that attempt to build up solutions gradually
by stepwise improvements towards feasibility. Note that such greedy approaches usually do not
employ steps that transform a solution back into a pre-solution that is not feasible.

Adding the function m to the formal description of a monotone problem is on the one hand
reminiscent of the problem class NPO, but it also allows to study approximate extension as fol-
lows. For a monotone problem Π one might ask for input (I, U) not to extend exactly U but
a pre-solution as close as possible to U . Formally this yields the task to find a pre-solution
U ′ ∈ presol(I) with U ′ � U and ext(I, U ′) 6= ∅ that optimizes the value m(I, U ′), where we
choose maxization (minimization) if m is monotonically increasing (decreasing) w. r. t. �, i. e.,
U ′ � U implies m(I, U ′) ≤ m(I, U) (m(I, U ′) ≥ m(I, U)). Such an optimization formulation was
studied for extension versions of the vertex cover and independent set problem under the notion
price of extension in [11]. Further, the function m allows to discuss the parameterized complexity
of extension problems, where we define the standard parameter for an extension problem Ext Π
for a monotone problem Π = (I, presol, sol,�,m) with m mapping to integers, to be the value
of the given pre-solution, i. e., the parameter for instance (I, U) of Ext Π is m(I, U). The dual
parameterizations as discussed in [11] and [10] to derive the results summarized in Table 1, can
be modeled as follows in this framework. The dual parameter is given by the difference between
the value of the given pre-solution and the maximum mmax(I) := max{m(I, y) : y ∈ presol(I)},
so the parameter for instance (I, U) of Ext Π is mmax(I)−m(I, U). In this case we say that Π
admits a dual parameterization, and observe the following.

Corollary 1. Let Π = (I, presol, sol,�,m) be a monotone problem that admits a dual param-
eterization. If, for all I ∈ I and U ∈ presol(I), the set Above(U) = {V : V ∈ sol(I), U � V }
can be constructed in FPT-time, parameterized by mmax(I) − m(I, U), then Ext Π with dual
parameterization is in FPT.

In order to compute Above(U), it is often easiest to actually list (if possible in FPT-time) the
superset {V : V ∈ presol(I), U � V } instead and then filter this set by checking which of the listed
pre-solutions are solutions, which can be done in polynomial time in our framework.

Although we strongly linked the definition of monotone problems to NPO, the correspond-
ing extension problems do not generally belong to NP (in contrast to the canonical decision
problems associated to NPO problems). Consider for example the following monotone problem
Πτ = (I, presol, sol,�,m) with:

– I = {F : F is a Boolean formula}.
– presol(F ) = sol(F ) = {φ | φ : {1, . . . , n} → {0, 1}} for a formula F ∈ I on n variables.
– For φ, ψ ∈ presol(F ), φ � ψ if either φ = ψ, or assigning variables according to ψ satisfies F

while an assignment according to φ does not.

6



– m ≡ 1 (plays no role for the extension problem)

The associated extension problem Ext Πτ corresponds to the co-NP-complete problem Tau-
tology in the following way: Given a Boolean formula F which, w.l.o.g., is satisfied by the all-ones
assignment ψ1 ≡ 1, it follows that (F,ψ1) is a yes-instance for Ext Πτ if and only if F is a tau-
tology, as ψ1 is in µ(sol(F )) if and only if there does not exist some ψ1 6= φ ∈ sol(F ) with φ � ψ1,
so, by definition of the partial ordering, an assignment φ which does not satisfy F . Consequently,
Ext Πτ is not in NP, unless co-NP = NP.

Still, we can prove a general upper bound as follows. Recall that Σp
1 = NP and that co-NP ⊆ Σp

2

in the usual terminology regarding the first levels of the polynomial-time hierarchy, see for example
the book of Arora and Barak for more definitions [1].

Proposition 2. If Π is a monotone problem, then Ext Π is in Σp
2 .

Proof. Deciding if (I, U) is a yes-instance of Ext Π can be done by evaluating the expression:

∃U ′∀U ′′(U ′ ∈ sol(I)) ∧ (U � U ′) ∧ ((U ′′ � U ′) ∧ (U ′′ ∈ sol(I))→ (U ′′ = U ′)) (1)

The number of bits required to express U ′ and U ′′ in the expression (1) above is polynomial in the
encoding length of I, by our assumption on pre-solutions for monotone problems. Note also, that
by the conditions of monotone problems, the tests for inclusion with respect to � and membership
in sol(I) can be performed in polynomial time. This explains membership in Σp

2 . ut

One of the consequences is that we cannot expect to obtain PSPACE-hard extension problems
within our framework.

Under certain circumstances, there is a more efficient algorithm. To this end, consider the finer
structure of the ordering � defined on presol(I) for an instance I of Π. For U,U ′ ∈ presol(I), call
U ′ an immediate predecessor of U if U ′ � U and U ′ is a maximal element in Below(U) = {X ∈
presol(I) : X � U ∧X 6= U}, i. e., there exists no U ′′ 6= U ′ with U ′′ ∈ Below(U) and U ′ � U ′′. We
say that a monotone problem Π admits polynomial computation of predecessors if there exists a
polynomial-time algorithm that, given any instance I of Π and U ∈ presol(I), computes the set
of all immediate predecessors of U in polynomial time.

Proposition 3. If Π is a monotone problem that admits polynomial computation of predecessors,
then Ext Π is in Σp

1 = NP.

Proof. Given an instance (I, U) of Ext Π, we can perform the following steps.

1. Guess a solution U ′ of I.

2. Verify that U � U ′ holds, i. e., that U ′ is an extension of U .

3. Check for all immediate predecessor U ′′ of U ′, if U ′′ ∈ sol(I).

4. If Step 4. does not find a predecessor with U ′′ 6= U ′ and U ′′ ∈ sol(I), then return U ′.

By our assumptions, solutions are of polynomial size with respect to I, so that the first step
means to guess a polynomial number of bits. Also, we can check if a guessed bitstring represents
a solution U ′ in polynomial time. Furthermore, we can check in polynomial time if U � U ′ holds.
Although all solutions of I will be exponentially many in general, they can be represented by
bitstrings of polynomial size. As Π admits polynomial computation of predecessors and checking
if U ′′ ∈ sol(I) can also be done in polynomial time, Step 4 requires polynomial time.

For correctness, note that if there exists some U ′′ � U ′ that is a solution with U ′′ 6= U ′

(disproving minimality of U ′) and if U ′′ is not an immediate predecessor of U ′, then there is a

pre-solution Û with U ′′ � Û � U ′ that is an immediate predecessor of U ′. As the set of solutions
is upward closed, Û is also a solution. Hence, minimality of a solution can be checked by cycling
through all (polynomially many) immediate predecessors of U ′. ut
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Some examples. Let us mention some well-known graph problems, that can quite naturally be
modeled as monotone problems with I always as the set of undirected graphs, denoting instances
by G = (V,E), and the simple cardinality function as objective, i. e., m(G,U) = |U | for all
U ∈ presol(G):

– Vertex Cover (VC): � = ⊆, presol(G) = 2V , C ∈ sol(G) iff each e ∈ E is incident to at
least one v ∈ C;

– Edge Cover (EC): � = ⊆, presol(G) = 2E , C ∈ sol(G) iff each v ∈ V is incident to at least
one e ∈ C;

– Independent Set (IS): � = ⊇, presol(G) = 2V , S ∈ sol(G) iff G[S] contains no edges;
– Edge Matching (EM): � = ⊇, presol(G) = 2E , S ∈ sol(G) iff none of the vertices in V is

incident to more than one edge in S;
– Dominating Set (DS): � = ⊆, presol(G) = 2V , D ∈ sol(G) iff N [D] = V ;
– Edge Dominating Set (EDS): � = ⊆, presol(G) = 2E , D ∈ sol(G) iff each edge belongs

to D or shares an endpoint with some e ∈ D.

When studying monotone graph problems restricted to some particular graph classes, this formally
means that the instance set I contains only graphs that fall into the graph class under considera-
tion. We hence arrive at problems like Ext VC (or Ext IS, resp.), where the instance is specified
by a graph G = (V,E) and a vertex set U , and the question is if there is some minimal vertex cover
C ⊇ U (or some maximal independent set I ⊆ U). Notice that the instance (G,V ) of Ext IS can
be solved by the exhaustive greedy approach that, starting from ∅, gradually adds vertices and
deletes their closed neighborhood. Note that this gives an independent set U that trivially satisfies
U ⊂ V so V � U . Further, for any w ∈ V \ U , the set U ∪ {w} is not an independent set by the
construction of U , which means that there exists no independent set U ′ 6= U with U ⊂ U ′ (i. e.,
U ′ � U), as {U ∪ {w} | w ∈ V \ U} is the set of immediate predecessors of U . Similarly, (G, ∅) is
an easy instance of Ext VC. We will show that this impression changes for other instances.

Notice that, as illustrated for Ext IS, each of the above monotone graph problems admits
polynomial computation of predecessors. Therefore, the corresponding extension problems all lie
in NP. It is instructive to have another look at the monotone problem Πτ whose extension variant
corresponds to Tautology. Here, the partial order � on {1, . . . , n}{0,1} can be also described as
follows (with respect to a given Boolean formula F ):

– All assignments that do not satisfy F are mutually incomparable, while
– each of them is strictly smaller (with respect to �) than any assignments that satisfy F ,
– which are again incomparable amongst themselves.

As a formula may possess exponentially many non-satisfying assignments, Πτ does not admit
polynomial computation of predecessors. In view of our earlier findings, this is a pre-requisite to
prove co-NP-hardness of the extension variant.

So far, it might appear that every classical decision problem yields exactly one corresponding
extension problem. However, different algorithmic (greedy) strategies for a classical problem result
in different corresponding sets of pre-solutions and orderings, hence different extension problems.
Consider for example the following two greedy strategies of finding a proper vertex coloring.
Formally, vertex colorings of a graph G = (V,E) are functions c : V → {1, . . . , k} for some k ∈ N,
and they are proper (hence a solution to the graph coloring problem) if c(u) 6= c(v) for all edges
uv ∈ E. Starting from a base coloring c that assigns the same color to all vertices, formally
c : V → {1}, consider the following two options as greedy improvement strategies for a coloring
c : V → {1, . . . , k}:

(a) Pick an index i ∈ {1, . . . , k} and a subset Ci of {v ∈ V | c(v) = i}. Define the improved
coloring c′ on {1, . . . , k} by c′(v) = k + 1 for all v ∈ Ci, and c′(v) = c(v) for all v ∈ V \ Ci.
(split one color class into two)

(b) Pick an independent set C ⊆ V and define the improved coloring c′ on {1, . . . , k} by c′(v) =
k + 1 for all v ∈ C, and c′(v) = c(v) for all v ∈ V \ C. (recolor an independent set)
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These two ideas, expressed as partial orderings towards and among feasible solutions, yield the
partial orderings denoted a-chromatic and b-chromatic in [35], that can be expressed as the tran-
sitive closure of the following relations. Two colorings c1, c2 for a graph G satisfy c1 � c2 if c2
uses exactly one color more than c1, i. e., c1 : V → {1, . . . , k} and c2 : V → {1, . . . , k+ 1} with the
following conditions:

a-chromatic there exists a color i such that c1(v) 6= c2(v) only for v with c1(v) = i and c2(v) =
k + 1 (split one color into two)

b-chromatic c1(v) 6= c2(v) only for v with c2(v) = k + 1 AND the color class k + 1 forms an
independent set (recolor an independent set)

The reader is also referred to [35] as a rich source of other examples for instance orderings.

Bin Packing. As a non-graph example for extension that fits within our framework, we will discuss
in more detail in Section 5 an extension version of the bin packing problem. We consider as
ordering the so-called partition ordering. Bin packing can be modeled as monotone problem as
follows. Instances in I are sets X = {x1, . . . , xn} of items and a weight function w that associates
rational numbers w(xi) ∈ (0, 1) to items, presol(X) contains all partitions of X, and a partition
π of X is in sol(X), if for each set Y ∈ π,

∑
y∈Y w(y) ≤ 1. For two partitions π1, π2 of X, we

define the partial ordering � by π1 � π2 iff π2 is a refinement of π1, i. e., π2 can be obtained from
π1 by splitting up its sets into a larger number of smaller sets. The traditional aim of the bin
packing problem is to find a feasible π such that |π|, the number of bins, is minimized, hence we
set m(X,π) = |π|.

Notice that {X} is the smallest partition with respect to �. Clearly, the set of solutions is
upward closed. Now, a solution is minimal if merging any two of its sets into a single set yields
a partition π such that there is some Y ∈ π with w(Y ) :=

∑
y∈Y w(y) > 1. Aside from modeling

the greedy strategy that gradually splits up bins that are too large, fixing a pre-solution can be
interpreted as encoding knowledge about which items should not be put together in one bin.

Synchronizing Words. In [18], extension variants of one of the most famous combinatorial problems
in automata theory, namely the Synchronizing Word problem for deterministic finite automata
(DFA), were considered. As this reveals certain interesting aspects of the general framework that
we present, let us explain this in more detail. Recall that a deterministic finite semi-automaton
A = (S,Σ, δ) (or DFSA) can be specified by its state alphabet S, its input alphabet Σ, and the
total transition function δ : S × Σ → S, which can be extended to δ∗ : S × Σ∗ → S. A word
w ∈ Σ∗ is synchronizing A if |{δ∗(s, w) | s ∈ S}| = 1. The decision problem Synchronizing
Word expects a DFSA A and an integer k ≥ 0 and asks if there exists a synchronizing word for
A of length at most k. There are quite a number of partial orders � on Σ∗ that could be studied
to model this as a monotone problem. From a search-space perspective, the following choices look
most promising.

– y v w, meaning that y is a prefix of w, i. e., there is a word z such that w = yz;
– y w w, meaning that y is a suffix of w, i. e., there is a word x such that w = xy;
– y sub w, meaning that y is a subword of w, i. e., there are words x, z such that w = xyz;

This motivates to model extension problems Ext DFA-SW-�, depending on the partial order �
on input words as follows. Given a DFSA A and some word u over the input alphabet Σ, the
question is if there exists a word w �-extending u, i. e., with u � w, such that w is minimal for
the set of synchronizing words for A with respect to �. The complexity picture of these problems
is rather diverse, as the subsequence ordering |, the lexicographical ordering ≤lex (also of interest
in a search-space perspective) and the length-lexicographical ordering ≤ll were also considered
in [18].

– Ext DFA-SW-v, Ext DFA-SW-w and Ext DFA-SW-≤lex are solvable in polynomial time.
– The complexity status of Ext DFA-SW-sub is open.
– Ext DFA-SW-| is NP-hard, even for several restricted classes of automata (see [8]).
– Ext DFA-SW-≤ll is co-NP-hard, even when restricted to binary input alphabets.
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This complexity diversity might also be reflected by the fact that these types of extension
problems do not completely fit into the presented framework. Observe that none of the two natural
picks of defining the set of pre-solutions to a DFSA A, namely either the set of all input words,
or the set of all words synchronizing A, is polynomially bounded in the size of the input. But
even if we impose some length bound on the set of words we care about, we face the problem that
the solution space need not be upward closed. For instance, it could well be that u|v, u 6= v, u is
synchronizing, but v is not. Only with v, w and sub, this problem does not exist. Regarding the
subsequence order |, interestingly the question if a word w synchronizing A is minimal is complete
for co-NP.7 This discussion might explain some of the difficulties that were found when considering
extension models for synchronizing words. For further parameterized complexity results for Ext
DFA-SW-| in particular, we refer to [9].

3 Dominating Set

Recall that we defined for the dominating set problem a monotone problem version denoted DS=
(I, presol, sol,�,m) with I as the set of undirected graphs, denoting instances by G = (V,E),
� = ⊆, presol(G) = 2V , D ∈ sol(G) iff N [D] = V and m(G,U) = |U | for all U ∈ presol(G).

We study the resulting extension problem Ext DS, formally defined as follows:

Ext DS
Input: A graph G = (V,E), a set U ⊆ V (i. e., U ∈ presol(G)) .
Question: Is ext(G,U) 6= ∅?

Note that ext(G,U) 6= ∅ holds if and only if there is a minimal dominating set D (in the sense
that N [D′] 6= V for any D′ ⊂ D) such that U ⊆ D. We in particular study the complexity of
Ext DS when I is restricted to graphs of bounded degree with the additional properties bipartite
and planar. Additionally, in this section we prove a W[3]-completeness result for the standard
parameterization of Ext DS, a class rarely met when studying parameterized complexity.

We present a reduction from a variant of Satisfiability (SAT) named 4-Bounded Planar
3-Connected SAT (or 4P3C3SAT for short) that remains NP-hard by [32]. An instance I =
(C,X) of 4P3C3SAT is given by a set C of CNF clauses defined over a set X of Boolean variables
such that each clause has exactly 3 literals, and such that each variable occurs in at most four
clauses (at least one time negated and one time unnegated). The graph associated to instance
I = (C,X) is the variable-clause graph V C = (C ∪ X,E(V C)) with C = {c1, . . . , cm}, X =
{x1, . . . , xn} and E(V C) = {cjxi : xi or ¬xi is a literal of cj}. I is an instance of 4P3C3SAT if
V C is planar and bipartite of maximum degree 4.

Theorem 4. Ext DS is NP-complete for planar bipartite graphs of maximum degree 3.

Proof. Membership in NP follows directly from Proposition 3; note that for any instance G of
Ext DS, the set of immediate predecessors of any U ∈ presol(G) is equal to {U \ {v} | v ∈ U}.

To show NP-hardness, we give a reduction from 4P3C3Sat. For an instance I = (C,X) of
4P3C3Sat with clause set C = {c1, . . . , cm} and variable set X = {x1, . . . , xn}, we build an
instance (H,U) of Ext DS, where H = (VH , EH) is a planar bipartite graph with maximum
degree 3 and U ⊆ VH .

Informally, in order to build H, we start from an embedding of the variable-clause graph
V C = (C ∪ X,E(V C)) with C = {c1, . . . , cm}, X = {x1, . . . , xn} and E(V C) = {cjxi : xi or
¬xi is a literal of cj}, then delete all edges of V C and replace the vertices of V C by subgraphs
with inerconnections preserving planarity, where for replacing a variable vertex xi the construction
distinguishes how xi appears negated.

Recall that by the definition of the problem 4P3C3Sat, any variable xi appears in at most
four clauses. Assume that xi appears in the clauses c1, c2, c3, c4 of the original instance I such that
in the induced (embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}] an anti-clockwise ordering of edges

7 shown by Petra Wolf (personal communication)
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around xi is given by c1xi, c2xi, c3xi, c4xi. By looking at Gi and considering the constellation
in which xi appears negated or non-negated in the four clauses c1, c2, c3, c4 in I, the construction
distinguishes the following three cases:

• case 1: xi ∈ c1, c2 and ¬xi ∈ c3, c4,
• case 2: xi ∈ c1, c3 and ¬xi ∈ c2, c4,
• case 3: xi ∈ c1, c2, c3 and ¬xi ∈ c4.

Note that all other cases are included in these 3 cases by rotations and / or replacing xi(¬xi)
with ¬xi(xi).

H(c) for c = `1 ∨ `2 ∨ `3

1′
c

2′
c

1c

2c

3c4c5c

Fig. 1. The Gadget H(c) for Ext DS. Vertices in pre-solution illustrated by their bold border.

Considering the above explanation, we build an instance (H,U) of EXT DS as follows:

– For each clause c = `1 ∨ `2 ∨ `3, where `1, `2, `3 are literals, we introduce the subgraph H(c) =
(Vc, Ec) with 7 vertices and 6 edges as illustrated in Figure 1. The vertices 1′c and 2′c represent
literals in clause c (1′c represents literals `1 and `2 while 2′c represents `3) and the vertex set
Uc = {3c, 4c} is included in the pre-solution.

– For each of the three cases of variable xi, we choose a different subgraph, denoted by H(xi), to
replace xi in V C to build H. The resulting three gadgets are illustrated in Figure 2, where the
vertices among the subgraph H(xi) we put into the pre-solution, denoted Uxi

, are illustrated
in black.

– We connect the subgraphs H(x) and H(c) by edges in the following way: for each clause c with
literals `1, `2, `3, corresponding to variables x1, x2, x3, respectively, connect 1′c (representing `1
and `2) to the determined vertices in H(x1) and H(x2) and connect 2′c (representing `3) to the
determined vertex in H(x3) as illustrated in Figure 2 according to which of the three defined
cases variable xi complies with.

– At last, we set the pre-solution to U = (
⋃
xi∈X Uxi

) ∪ (
⋃
cj∈C Ucj ).

Note that this construction can be build in polynomial time and that the resulting graph H
is planar, bipartite and of maximum degree 3. To see that planarity is preserved, recall that we
replaced vertices of the variable-clause graph by subgraphs that are interconnected in the same
way as the previous vertices were. We claim that (H,U) is a yes-instance of Ext DS if and only
if I has a satisfying assignment T .

Suppose T is a truth assignment of I which satisfies all clauses. We construct a dominating set
S from U as follows:

• For each variable gadget H(xi) that complies with ”case 1”, add ti (or fi, respectively) to S
if T (xi) = true (or T (xi) = false, respectively).
• For each variable gadget H(xi) that complies with ”case 2” add t1i , t

2
i (or f1i , f

2
i , respectively)

to S if T (xi) = true (or T (xi) = false, respectively).
• For each variable gadget H(xi) that complies with ”case 3” add t1i , t

2
i ,mi (or fi, l

2
i , r

2
i , respec-

tively) to S if T (xi) = true (or T (xi) = false, respectively).
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xi

c1

c2

c3

c4

H(c1)

H(c2)

H(c3)

H(c4)

ti

fi

mi

case 1

H(c1)

H(c2)

H(c3)

H(c4)

t1i

f1
i

p1i

l1i

r1i

p2i

m1
i

t2i

f2
i

l2i

m2
i

r2i

case 2

t1i l2i

t2i
r2i

fi

p1i

l1i

p2i

r1i

p3i

mi

H(c2)

H(c3)

H(c4)

H(c1)

case 3

Fig. 2. Variable gadgets H(xi) of Theorem 4. On the left: A variable xi appearing in four clauses
c1, c2, c3, c4 in I. On the right, cases 1, 2, 3 are corresponding to H(xi), depending on how xi appears
(negated or non-negated) in the four clauses (Here case 3 is rotated). Black vertices denote elements of
Uxi . Crossing edges are marked with dashed lines. In case a variable only occurs in ` < 4 clauses, there
are no dashed edges to H(ct) for 4 ≥ t > `.

• For each clause c ∈ C, add vertex 1c to S if 1′c is not dominated by a variable vertex of S and
add 2c to S if 2′c is not dominated by a variable vertex of S.

We claim that there exists a minimal dominating set S′ ⊂ S such that U ⊂ S′. To this end, we
show that S is a dominating set of H and that for any u ∈ U , S \ {u} is not a dominating set.
Clearly U ⊆ S by construction, because we start from U and add some vertices based on the above
rules, which means that successively removing v ∈ S \ U is still a dominating set will then result
in the claimed minimal dominating set S′ with U ⊆ S′.

Based on the constructions of H(x) depicted in Figure 2, the vertex set Uxi when variable xi
complies with ”case 1” and ”case 2” and the vertex set Ux ∪ {l2i , r2i } or Ux ∪mi when xi complies
with ”case 3” is a minimal dominating set for the subgraph of the variable gadget H(x). Further,
observe that no neighbors of vertices in H(x) outside of this gadget are picked to be in S. This
means in particular that for any vertex u ∈ Ux, for some variable x, the set S \ {u} is not a
dominating set for H. Further, S is dominating for all vertices in the variable-gadgets. In each
clause gadget H(c), for some clause c, only the vertices 1′c, 2

′
c are not already dominated by U ,

and in the construction of S we include corresponding neighbors to ensure that S also dominates
1′c and 2′c. Hence S is also a dominating set for H(c). Since T is a satisfying assignment, for each
clause gadget H(c), at least one of 1′c, 2

′
c is dominated by a variable vertex of S. Thus, for each

H(c), at most one of the vertices 1c and 2c is added to S, consequently, S \{3c} does not dominate
either 1c or 2c. Further, S \{4c} does not dominate 5c. This shows that S \{u} is not a dominating
set for u ∈ Uc. In summary, S is a dominating set for H and S \ {u} is not a dominating set for
any u ∈ U , which yields the existence of the claimed minimal dominating set S′.

Conversely, suppose S is a minimal dominating set of G with U ⊆ S. Because of minimality,
S \ {3c} does not dominate either 1c or 2c. Hence, S contains at most one vertex in {1c, 1′c, 2c, 2′c}
for each clause gadget H(c). In particular, there is at least one vertex among {1′c, 2′c} which
needs to be dominated by a literal vertex (a vertex in a variable gadget H(x)), thus, there is an
assignment T which satisfies all clauses of I. We now show that T is a valid assignment, and in
order to do this, we consider the three types of variable gadgets independently:

• If H(xi) complies with case 1, by minimality, S cannot contain both ti, fi, since otherwise
S \ {mi} is also a dominating set. So we set T (xi) = true if {fi} ∩ S = ∅ and otherwise we
set T (xi) = false.
• If H(xi) complies with case 2, by minimality, S cannot contain both vertices in each pair

(t1i , f
1
i ), (t1i , f

2
i ), (t2i , f

1
i ), (t2i , f

2
i ), since otherwise, we can remove the vertices p1i ,m

2
i ,m

1
i , p

2
i from

S, respectively. So we set T (xi) = true if S∩{f1i , f2i } = ∅ and otherwise we set T (xi) = false.
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• If H(xi) complies with case 3, by minimality, S cannot contain both vertices in each pair
(t1i , fi), (t

2
i , fi), since otherwise we can remove one of vertices in the pairs (p1i , p

2
i ), (p

1
i , p

3
i )

from S, respectively. Note here that in order to dominate l1i and r2i , S ∩ {l1i , l2i ,mi} 6= ∅ and
S ∩ {mi, r

1
i , r

2
i } 6= ∅. Hence, we set T (xi) = true if S ∩ {fi} = ∅ and otherwise, we set

T (xi) = false. ut

Ext DS gives an interesting hardness result in the framework of parameterized complexity with
the size of pre-solution |U | as parameter (our standard parameterization for extension problems);
it happens to be one of the still rather few known problems that are complete for the class W[3],
also cf. the discussion in [13]. To show this result, we give a reduction from an extension variant
of Hitting Set to Ext DS. Minimum Hitting Set as an NPO problem is defined by I being
the set of hypergraphs with instances denoted I = (X,S) where X is a finite ground set and
S = {S1, . . . , Sm} is a collection of sets Si ⊆ X (usually referred to as hyperedges), feasible
solutions are subsets H ⊆ X such that H ∩ Si 6= ∅ for all i ∈ {1, . . . ,m} and m(I,H) = |H|.
This can be seen as a monotone problem with presol(I) = 2X and � = ⊆. In [4], the extension
problem associated to this monotone formulation, in the following referred to as Ext HS, appears
as a subproblem for the enumeration of minimal hitting sets in lexicographical order, and Ext
HS parameterized by m(I, U) = |U | is shown to be W[3]-complete. By a slight adjustment of the
classical reduction from the Hitting Set problem to Dominating Set, this result transfers and
formally yields:

Theorem 5. Ext DS with standard parameter is W[3]-complete, even when restricted to bipartite
instances.

...

X

...

S

yy′

z1

z2

z3

z4

Fig. 3. The graph G = (V,E) for Ext DS, vertices in the pre-solution set U ′ are drawn bold.

Proof. Ext DS can obviously be modeled as special case of Ext HS by interpreting the closed
neighborhoods as subsets of the ground set of vertices. This immediately gives membership in W[3]
for Ext DS.

Conversely, given an instance (I, U) with I = (X,S), S = {S1, . . . , Sm} for Ext HS we create a
graph for the corresponding instance for Ext DS as follows (This construction is also illustrated
in Figure 3.):

– Start with the bipartite graph on vertices X ∪ {s1, . . . , sm} containing edges xsi if and only if
x ∈ Si.

– Add two new vertices y, y′ with edges y′y and xy for all x ∈ X.
– Add four new vertices z1, z2, z3, z4 with edges z1z2, z2z3, z3z4 and z1si for all 1 ≤ i ≤ m.

Let G = (V,E) denote the graph created in this way, and observe that G is bipartite. With the
set U ′ containing the vertex y to dominate X, z2 and z3 to forbid including any vertex si in the
extension (as this would make z2 obsolete) and the vertices corresponding to the pre-solution U
for Ext HS, it is not hard to see that (G,U ′) is a yes-instance for Ext DS if and only if (I, U)
is a yes-instance for Ext HS. As the parameters relate by |U ′| = |U |+ 3, this reduction transfers
the W[3]-hardness of Ext HS to Ext DS on bipartite graphs. ut
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4 Feedback Vertex/Edge Set

A feedback vertex (edge) set in a graph G = (V,E) is a subset S of vertices (F of edges) such
that G[V \ S] (the graph (V,E \ F )) is acyclic. These two problems are studied both for directed
and undirected graphs; in case of the problem feedback edge set, the variant for directed graphs
is often called feedback arc set.

In [19], it is shown that it is NP-hard to find a feedback vertex set (in directed or undirected
graphs) or a feedback arc set of minimum size for a given graph. Computing a minimum size
feedback edge set, however, is equivalent to finding a spanning tree of maximum size for a given
edge weighted graph; a problem that can be solved in polynomial time (see [20] for details). With
respect to restricted graph classes, it is known that it is NP-hard to find a minimum feedback arc
set in graphs of maximum in-degree and out-degree 3. This is somewhat in contrast to the situation
in the undirected case, as minimum feedback edge sets can be found in polynomial time anyways,
but even minimum feedback vertex sets can be determined in polynomial time in (sub-)cubic
graphs; see [41].

We will use FVS and FES to denote the problems feedback vertex set and feedback edge set
(both on undirected graphs), respectively, and we use DFVS and DFES to denote the versions
on directed graphs. We consider corresponding monotone problem versions, defined as follows.

FVS = (I, presol, sol,�,m), with I being the set of undirected graphs denoting instances by
G = (V,E), presol(G) = 2V , D ∈ sol(G) iff G[V \D] is acyclic, � = ⊆ and m(G,U) = |U | for all
U ∈ presol(G). DFVS is defined like FVS, except that I is the set of directed graphs, where we
denote instances by G = (V,A).

This yields the following extension versions:

Ext FVS
Input: A graph G = (V,E) and U ∈ presol(G) (i. e., U ⊆ V ).
Question: Is ext(G,U) 6= ∅? (Does G have a minimal feedback vertex set S with U ⊆ S?)

Ext DFVS
Input: A directed graph G = (V,A) and U ∈ presol(G) (i. e., U ⊆ V ).
Question: Is ext(G,U) 6= ∅? (Does G have a minimal feedback vertex set S with U ⊆ S?)

For feedback edge set, we define the monotone problem FES = (I, presol, sol,�,m) with I
being the set of undirected graphs, presol(G) = 2E , D ∈ sol(G) iff G[E \ D] is acyclic, � = ⊆
and m(G,U) = |U | for all U ∈ presol(G). DFES (sometimes denoted FAS in the literature) is
defined like FES, except that I is the set of directed graphs G = (V,A) (consequently, presol(G)
and also sol(G) contains subsets of the arcs A). As corresponding extension problems, this gives
the following.

Ext FES
Input: A graph G = (V,E) and U ∈ presol(G) (i. e., U ⊆ E).
Question: Is ext(G,U) 6= ∅? (Does G have a minimal feedback edge set S with S ⊇ U?)

Ext DFES
Input: A graph G = (V,A) and U ∈ presol(G) (i. e., U ⊆ A).
Question: Is ext(G,U) 6= ∅? (Does G have a minimal feedback arc set S with S ⊇ U?)

We start by looking at the extension problems Ext FVS, Ext DFVS and Ext DFES and
show that they are all NP-hard in graphs of bounded degree. For these results, we exploit the
relationships highlighted by our framework and reduce from another extension problem. More
precisely, we reduce from Ext VC, the extension version of the Vertex Cover problem as
defined as monotone problem above. Ext VC was studied in [11] and shown to be NP-complete
even when restricted to planar bipartite graphs of maximum degree 3.

Theorem 6. Ext FVS is NP-complete in planar bipartite graphs of maximum degree 6.
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Proof. Membership in NP follows from Proposition 3; note that for any instance G of Ext FVS,
the set of immediate predecessors of any U ∈ presol(G) is equal to {U \ {v} | v ∈ U}.

For NP-hardness, we give a reduction from Ext VC. Let (G,U) be an instance of Ext VC,
where G = (V,E) is a bipartite graph of maximum degree 3 and U ⊆ V is the pre-solution. We
construct a new graph G′ = (V ′, E′) by adding the gadget H(e) = (Ve, Ee) containing 4 new
vertices ve1, v

e
2, v

e
3, v

e
4 and 6 new edges xve1, yv

e
2, v

e
1v
e
2, v

e
2v
e
3, v

e
3v
e
4, v

e
4v
e
1 for each edge e = xy ∈ E

to G. Formally:

– V ′ = V ∪ {ve1, ve2, ve3, ve4 : e ∈ E},
– E′ = E ∪ {xve1, yve2, ve1ve2, ve2ve3, ve3ve4, ve4ve1 : e = xy ∈ E}.

An illustration of the gadget H(e) for e = xy is given in Figure 4. Observe that G′ is a planar
bipartite graph of maximum degree 6 and can be constructed from G in polynomial time.

x

y

ve1

ve2 ve3

ve4

Fig. 4. Gadget H(e) for e = xy. The vertex ve3 is in the pre-solution U ′.

We claim that (G,U) is a yes-instance of Ext VC if and only if (G′, U ′) with U ′ = U∪{ve3 : e ∈ E}
is a yes-instance of Ext FVS. Suppose (G,U) is a yes-instance of Ext VC, i. e., there exists a
minimal vertex cover S with U ⊆ S. We claim that S′ = S ∪ {ve3 : e ∈ E} is a minimal feedback
vertex set of G′ with U ′ ⊆ S′. For this, we prove separately that: S′ is a solution, S′ is minimal,
and S′ contains U ′:

– S′ ∈ sol(G′) (S′ is a solution): Assume on the contrary, that G′[V \S′] still contains a cycle C.
Since S is a vertex cover for G, it follows that C contains no edges from E. Further, all cycles
containing only vertices from V ′ \V are covered by {ve3 : e ∈ E} ⊆ S′. Hence, C has to contain
vertices from both V and V ′ \ V . Any such cycle in G′ that does not include a vertex from U ′

has to traverse a path of the form x − ve1 − ve2 − y for some edge e = xy ∈ E, which means
that x, y /∈ S for an edge xy ∈ E, hence a contradiction to S being a vertex cover for G.

– S′′ ∈ sol(G′) with S′′ ⊆ S′ implies S′′ = S′ (S′ is minimal): It suffices to show that each
immediate predecessor S′′ = S′\{v}, v ∈ S′, is not a feedback vertex set for G′. For v = ve3 ∈ U ′
for some e ∈ E, it follows that G′[V \ S′′] contains the 4-cycle (ve1, v

e
2, v

e
3, v

e
4), and so S′′ is

not in sol(G′). For v ∈ S (i. e., v ∈ U ′ with v 6= ve3 for some e ∈ E), the minimality of
S implies that S \ {v} is not a vertex cover in G, i. e., G[(V \ S) ∪ {v}] contains at least
one edge e. Consequently, e is also an edge in G′[V \ S′′] (note that this is a supergraph
of G[(V \ S) ∪ {v}]). With e = xy, it follows that the vertices x, y, ve1, v

e
2 form a 4-cycle in

G′[V \ S′′], hence S′′ /∈ sol(G′).
– U ′ ⊆ S′: This follows immediately from U ⊆ S and from the definitions U ′ = U ∪{ve3 : e ∈ E}

and S′ = S ∪ {ve3 : e ∈ E}.

Conversely, suppose that (G′, U ′) is a yes-instance of Ext FVS, so there exists a minimal feedback
vertex set S′ for G′ with U ′ ⊆ S′. We claim that S = V ∩ S′ is a minimal vertex cover for G′

with U ⊆ S. Again we prove the three properties of being a solution, minimality and extension
separately, with the following property derived from the minimality of U ′. By the requirement
{ve3 : e ∈ E} ⊆ U ′ ⊆ S′, minimality requires that U ′ \ {ve3} is not a feedback vertex set. Hence
for every edge e there has to be a cycle C such that C ∩ U ′ = {ve3} (a cycle uniquely covered by
ve3). Looking at the structure of G′, this implies that {ve1, ve2 : e ∈ E} ∩ S′ = ∅, since all cycles
containing ve3 for some e ∈ E contain both ve1 and ve2.
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– S ∈ sol(G): For each e = xy ∈ E, it follows that either x or y has to be in S′ to cover the
cycle built from x, y, ve1, v

e
2, which means that S is a vertex cover for G.

– S∗ ∈ sol(G) with S∗ ⊆ S implies S∗ = S: Assume towards contradiction that S∗ = S \ {v}
for some v ∈ S is a vertex cover for G. By the forward direction of the proof, it follows that
S′′ = S∗ ∪ {ve3 : e ∈ E} is a feedback vertex set for G′, contradicting the minimality of S′,
since S′′ ⊂ S ∪ {ve3 : e ∈ E} ⊂ S′ and v ∈ S′ \ S′′, so S′ 6= S′′.

– U ⊆ S follows directly from U ⊆ U ′ and U ′ ⊆ S′. ut

Theorem 7. Ext DFVS is NP-complete in planar bipartite graphs of maximum in-degree and
out-degree 3.

Proof. Membership in NP follows again directly from Proposition 3. To show NP-hardness, we
give a reduction from Ext VC adapted from Karp’s reduction [29]. Let (G,U) with G = (V,E)
and U ⊆ V be an instance of Ext VC. We transform G into a digraph G′ = (V,A), with the
same vertices as G and with the two arcs (u, v) and (v, u) in A for each edge uv ∈ E. Note that
G′ is bipartite of maximum in-degree and out-degree 3 if G is bipartite of maximum degree 3.

We claim that (G,U) is a yes-instance for Ext VC if and only if (G′, U) is a yes-instance
for Ext DFVS. Suppose (G,U) is a yes-instance for Ext VC, so there exists a minimal vertex
cover S for G with U ⊆ S. We claim that S′ = S is a minimal feedback vertex set for G′:

– S′ ∈ sol(G′): Since S is a vertex cover in G, it follows that G[V \ S] is edgeless, which by the
definition of G′ makes G′[V \ S] arcless, so in particular acyclic.

– S′′ ∈ sol(G′) with S′′ ⊆ S′ implies S′′ = S′: Assume towards contradiction that S′′ = S′ \ {v}
for some v ∈ S′ is a feedback vertex set for G′. By the structure of G′, this means that u ∈ S′
for all u ∈ V with uv ∈ E, since otherwise G′[V \ S′′] contains the cycle formed by the arcs
(u, v), (v, u) ∈ A. This however means that S \{v} is also a vertex cover for G, a contradiction
to the minimality of S.

– U ⊆ S′ follows directly from U ⊆ S and S′ = S.

Suppose (G,U ′) is a yes-instance for Ext DFVS, so there exists a minimal feedback vertex
set S′ for G′ with U ⊆ S′. We claim that S = S′ is a minimal vertex cover for G:

– S ∈ sol(G): For each e = xy ∈ E, it follows that either x or y has to be in S′ to cover the
cycle built from the arcs (x, y), (y, x) ∈ A, which means that S is a vertex cover for G.

– S∗ ∈ sol(G) with S∗ ⊆ S implies S∗ = S: Assume towards contradiction that S∗ = S \ {v}
for some v ∈ S is a vertex cover for G. By the forward direction of the proof, it follows that
S∗ is also a feedback vertex set for G′, contradicting the minimality of S′.

– U ⊆ S follows directly from U ⊆ S′ and S = S′. ut

Theorem 8. Ext DFES is NP-complete in bipartite graphs of maximum in-degree and out-
degree 4.

Proof. Membership in NP follows again directly from Proposition 3. To show NP-hardness, we give
a reduction from Ext VC adapted from the reduction given in [29]. Let (G,U) with G = (V,E)
and U ⊆ V be an instance of Ext VC, we transform G into a digraph GA = (VA, A) as follows.
We build the vertex set VA = V ∪ V ′ where V ′ = {v′ : v ∈ V } is a copy of V , and the arc set
A = A′ ∪ A′′ where A′ = {(v, v′) : v ∈ V } and A′′ = {(u, v′), (v′, u), (v, u′), (u′, v) : e = uv ∈ E}.
An illustration of this reduction for an edge e = uv in depicted in Figure 5. Finally, we define the
pre-solution as UA = {(u, v′), (v, u′) : e = uv ∈ E} ∪ {(u, u′) : u ∈ U}. Obviously, GA is bipartite
of maximum in-degree and out-degree 4 if G is bipartite of maximum degree 3.

We claim that (G,U) is a yes-instance of Ext VC if and only if (GA, UA) is a yes-instance of
Ext DFES. Observe that (VA, A \ UA) only contains edges of the form (v′, u) where v′ ∈ V ′ and
u ∈ V and vu ∈ E, or (u, u′) ∈ V ×V ′. Hence, all cycles in (VA, A\UA) alternate between vertices
in V and V ′, and the arcs alternate between edge-arcs ((v′, u) with vu ∈ E) and vertex-arcs
((u, u′) ∈ V × V ′).

Suppose (G,U) is a yes-instance of Ext VC, i. e., there exists a minimal vertex cover S with
U ⊆ S. We claim that S′ = {(u, u′) : u ∈ S} ∪ UA is a minimal directed feedback edge set of GA
with UA ⊆ S′:
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u u′

vv′

Fig. 5. Example of construction of GA if G is a single edge e = uv. Arcs drawn in bold are in UA.

– S′ ∈ sol(G): Suppose towards contradiction that (VA, A\S′) contains a cycle. By the structure
of (VA, A \ UA) (which is a supergraph of (VA, A \ S′)), it follows that the cycle is of length
at least 4 and contains a sequence of vertices of the form u, u′, v, v′, where uv ∈ E (recall the
limited types of edges). This means that (u, u′), (v, v′) /∈ S′, hence u, v /∈ S for uv ∈ E, which
contradicts S being a vertex cover for G.

– S′′ ∈ sol(GA) with S′′ ⊆ S′ implies S′′ = S′: Again, it suffices to show that S′′ = S′ \ {a} for
every arc a ∈ A is not a feedback arc set for G′. For a = (u, v′) with (u, v′) ∈ UA, the 2-cycle
built with the arc (v′, u) ∈ A \ S′ shows that S′′ = S′ \ {a} /∈ sol(GA). For a = (u, u′) ∈ S′, it
follows by construction of S′ that u ∈ S and the minimality of S implies that G[(V \S)∪{v}]
contains at least one edge e. Consequently, for e = uv it follows that v /∈ S and hence
(v, v′) /∈ S′, and further (v′, u), (u′, v) ∈ A. Since S′ contains no arcs of the form (u′, v) with
v 6= u, the 4-cycle on the vertices u, u′, v, v′ is contained in (VA, A \ S′′), hence S′′ /∈ sol(GA).

– UA ⊆ S′: This follows from setting S′ = {(u, u′) : u ∈ S} ∪ UA.

Conversely, suppose that (GA, UA) is a yes-instance of Ext DFES, so there exists a minimal
feedback vertex set S′ for G′ with UA ⊆ S′. We claim that S = {u ∈ V | (u, u′) ∈ S′} is a minimal
vertex cover for G′ with U ⊆ S.

– S ∈ sol(G): Assume towards contradiction that there is an edge e = uv ∈ E such that u, v /∈ S,
which means (u, u′), (v, v′) /∈ S′. Since u, u′, v, v′ is a 4-cycle in GA, it follows that at least
one of the arcs (u′, v), (v′, u) has to be in S′, so assume (u′, v) ∈ S′. By minimality of S′, it
follows that for the arc (v, u′) ∈ S′, S′ \ {(v, u′)} is not a feedback arc set. Hence there exists
a path p1 in (VA, A\S′) from u′ to v. Since (u, u′), (v, v′) /∈ S′, it follows that also (v′, u) ∈ S′,
since otherwise u, u′, p1, v, v

′ builds a cycle in (VA, A \ S′). Minimality again implies that also
S′ \ {(u, v′)} is not a feedback arc set, which yields a path p2 in (VA, A \ S′) from v′ to u.
This however gives a cycle from u to u′ via p1 to v to v′ and via p2 back to u (note that if p1
and p2 share arcs, the described cycle can be cut to be simple), which is a contradiction to S′

being a feedback arc set.
– S∗ ∈ sol(G) with S∗ ⊆ S implies S∗ = S: Assume towards contradiction that S∗ = S \ {v} for

some v ∈ S is a vertex cover for G. Since v ∈ S we know that (v, v′) ∈ S′, and by minimality
there exists a path p from v′ to v in (VA, A\S′). By the structure of the paths in (VA, A\UA),
this path p has to start with an edge-arc (v′, u) for some u with uv ∈ E, followed by the
only outgoing arc from u which is the vertex-arc (u, u′). This means that (u, u′) /∈ S′ and
hence u /∈ S for a vertex u with uv ∈ E, a contradiction to S∗ being a vertex cover for G, so
S∗ /∈ sol(G).

– U ⊆ S follows from the definitions UA = {(u, v′), (v, u′) : e = uv ∈ E} ∪ {(u, u′) : u ∈ U} and
S = {u ∈ V | (u, u′) ∈ S′}. ut

Note that our construction destroys the planarity of the input graph. Since we were not able to
mend this by a different construction, we leave the complexity of Ext DFES restricted to planar
graphs as an open problem. From our failed attempts to show hardness, it seems that Ext VC
is not a good choice as problem to reduce from. Also, the fact that feedback arc set is solvable in
polynomial time when restricted to planar graphs [34], might indicate that the same is true for
the extension version Ext DFES.

With respect to parameterized complexity, [11] also shows that Ext VC with standard pa-
rameterization is W[1]-complete. The reduction given to prove Theorem 6 does not transfer this
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parameterized hardness, since the value of the pre-solution of the constructed instance for Ext
FVS, and hence the parameter, is |U | + |E|. However, we can give a different construction that
transfers the W[1]-hardness of Ext VC to Ext FVS:

Theorem 9. Ext FVS with standard parameterization is W[1]-hard.

Proof. We give a reduction from Ext VC to Ext FVS. Let (G,U) be an instance of Ext VC
where U ⊆ V is the pre-solution. We construct a new graph G′ = (V ′, E′) by adding a universal
vertex u to G and attaching a triangle on two new vertices to u, formally

– V ′ = V ∪ {u, u1, u2},
– E′ = E ∪ {uv | v ∈ V } ∪ {uu1, uu2, u1u2}.

We claim that (G,U) is a yes-instance of Ext VC if and only if (G′, U ′) with U ′ = U ∪ {u1}
is a yes-instance of Ext FVS. Suppose (G,U) is a yes-instance of Ext VC, i. e., there exists a
minimal vertex cover S with U ⊆ S. We claim that S′ = S ∪ {u1} is a minimal feedback vertex
set of G′ with U ′ ⊆ S′:

– S′ ∈ sol(G′) (S′ is a solution): Since S is a vertex cover for G, it follows that G[V \ S] is
edgeless, hence G′[V \ S′] is a star with center u, so in particular acyclic.

– S′′ ∈ sol(G′) with S′′ ⊆ S′ implies S′′ = S′ (S′ is minimal): Again, it suffices to show that
S′′ = S′ \ {v} for every v ∈ S′ is not a feedback vertex set for G′. For v = u1, G′[V \ S′′]
contains the triangle formed by u, u1, u2, so S′′ /∈ sol(G′). For v ∈ S, the minimality of S
implies that S \ {v} is not a vertex cover in G, i. e., G[(V \ S) ∪ {v}] contains at least one
edge e. Consequently, e is also an edge in G′[V \ S′′]. With e = xy, it follows that the vertices
x, y, u form a triangle in G′[V \ S′′], hence S′′ /∈ sol(G′).

– U ′ ⊆ S′: This follows immediately from U ⊆ S and the definitions U ′ = U ∪ {u1} and
S′ = S ∪ {u1}.

Conversely, suppose that (G′, U ′) is a yes-instance of Ext FVS, so there exists a minimal feedback
vertex set S′ for G′ with U ′ ⊆ S′. We claim that S = V ∩S′ is a minimal vertex cover for G′ with
U ⊆ S. Note that minimality of S′ implies that S = S′ \ {u1}, since the only cycle covered by u1
is the triangle among the vertices u, u1, u2. This means that S satisfies:

– S ∈ sol(G): For each e = xy ∈ E, it follows that either x or y has to be in S′ to cover the
triangle built from x, y, u, which means that S is a vertex cover for G.

– S∗ ∈ sol(G) with S∗ ⊆ S implies S∗ = S: Assume towards contradiction that S∗ = S \ {v}
for some v ∈ S is a vertex cover for G. By the forward direction of the proof, it follows that
S′′ = S∗ ∪ {u1} is a feedback vertex set for G′, contradicting the minimality of S′, since
S′′ ⊂ S ∪ {u1} ⊂ S′ and v ∈ S′ \ S′′, so S′ 6= S′′.

– U ⊆ S follows directly from U ⊆ U ′ and U ′ ⊆ S′.

Finally, note that this construction is a parameterized reduction as the parameter of the con-
structed instance m(G′, U ′) satisfies m(G′, U ′) = m(G,U) + 1. This overall transfers the W[1]-
hardness of Ext VC to Ext FVS. ut

Observe that we cannot use the construction of Theorem 9 for the NP-hardness result of
Theorem 6, since the universal vertex destroys both the degree bound and planarity.

Theorem 7 is proven by a parameterized reduction (the pre-solution U for Ext VC remains
the pre-solution for Ext DFVS, which gives the same parameter value). Hence we can conclude:

Corollary 10. Ext DFVS with standard parameterization is W[1]-hard.

The construction used to prove Theorem 8 is again not a parameterized reduction, as it blows
up the parameter. We leave the classification of the parameterized complexity of Ext DFES with
standard parameterization as an open problem. Further, Theorem 9 and Corollary 10 only show
hardness for the class W[1] while we are not able to show a corresponding membership result. The
full classification of the parameterized complexity of Ext FVS and Ext DFVS with standard
parameterization hence also remains open. However, as we can list all supersets of a given set
U ⊆ X in time O(2|X|−|U |), we can easily conclude with Corollary 1:
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Corollary 11. Ext FVS, Ext DFVS, and Ext DFES with dual parameter are in FPT.

At last, we have not yet considered the problem Ext FES. This problem turns out to be
easy, and it might be tempting to think that this simply follows from the polynomial solvability
of the related decision problem. Recall that there are numerous examples of polynomial-time
solvable decision problems, for which a corresponding monotone formulation results in an NP-
hard extension problem, e. g., Ext EM (an extension version of the maximum matching problem)
is shown to be NP-hard in [10], and also Ext VC restricted to bipartite graphs, shown to be
NP-hard in [11]. For our monotone version of the feedback edge set problem, the nice properties
of spanning trees in graphs however quickly give the following.

Theorem 12. Ext FES is solvable in polynomial time.

Proof. Note that a feedback edge set S of a given connected graph G = (V,E) is minimal if and
only if the graph (V,E \ S) is a tree. Hence, for a given connected graph G = (V,E) and a pre-
solution U ⊆ E, there is a minimal feedback edge set of G containing U if and only if the graph
(V,E \ U) is connected.

Generally, let (G,U) be an instance of Ext FES where G = (V,E) and U ⊆ E, then the
answer is yes if and only if the number of connected components of the graph (V,E \ U) is equal
to the number of connected components of G. ut

5 Bin Packing

In this section we study the extension version of the bin packing problem Ext BP. Recall our
definition introduced in Section 2: The monotone problem BP= (I, presol, sol,�,m) is given
by I being sets X of items with associated weights given by a function w : X → (0, 1), presol(X)
contains all partitions of X and such a partition π ∈ presol(X) is in sol(X) if

∑
y∈Y w(y) ≤ 1 for

each set Y ∈ π. For the partial ordering �, two pre-solutions π1, π2 ∈ presol(X) satisfy π1 � π2
iff π2 is a refinement of π1. At last, m(X,π) = |π|, where |π| counts the number of sets in the
partition. This monotone problem formulation yields the following extension problem:

Ext BP
Input: A set of items X with weight function w, a partition πU of X (i. e., πU ∈ presol(X)).
Question: Is ext(X,πU ) 6= ∅?

It turns out that this extension problem is already NP-hard for the very restricted case that πU
only contains two sets. Hence, Ext BP with standard parameterization is para-NP-hard, since NP-
hardness already holds for the restriction to instances (X,πU ) with parameter value m(X,πU ) = 2.

Theorem 13. Ext BP is NP-complete, even if the pre-solution πU contains only two sets.

Proof. Observe that BP admits polynomial computation of predecessors and hence Ext BP is in
NP by Proposition 3.

The proof then consists of a reduction from 3-Partition which is defined as follows: given a
multiset S = {s1, . . . , s3m} of positive integers and a positive integer b as input, decide if S can
be partitioned into m triples S1, . . . , Sm such that the sum of each subset equals b. 3-Partition
is NP-complete even if each integer satisfies b/4 < si < b/2; see [19].

Let (S = {s1, . . . , s3m}, b) be the input of 3-Partition, where b/4 < si < b/2 for each 1 ≤ i ≤ 3m.
We build a set X = {x0, x1, . . . , x3m} of items and a weight function w where w(x0) = 1

b and
w(xi) = si

b for each 1 ≤ i ≤ 3m and set πU = {{x0}, {x1, . . . , x3m}} as a partial partition of X.

Claim: (S, b) is a yes-instance of 3-Partition if and only if (X,πU ) is a yes-instance of Ext BP.

Suppose first that S can be partitioned into m triples S1, . . . , Sm, where
∑
sj∈Si

sj = b for each

Si ∈ S. We build a set Xi = {xj : 1 ≤ j ≤ 3m, sj ∈ Si}, 1 ≤ i ≤ m. Considering πU , π′U =
{{x0}, X1, . . . , Xm} is a feasible partition and since for each Si ∈ S,

∑
sj∈Si

sj = b, we have
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w(Xi) = 1 for each Xi ∈ π′U . Hence π′U is not the refinement of any other feasible partition for
(S, b), as especially x0 cannot be added to any subset Xi ∈ π′U . Since π′U is obviously a refinement
of πU , π′U is a minimal feasible partition with πU � π′U .

Conversely, assume that π′U is a minimal partition of X as a refinement of πU . As the set {x0}
in the partition πU can not be split up further, it follows that the extension π′U is of the form
{{x0}, X1, . . . , Xk}. By using the minimality of π′U , it follows especially that

∑
xl∈Xi

w(xl) +
w(x0) > 1 for all i ∈ {1, . . . , k}, as otherwise π′′U = {X1, . . . , Xi−1, Xi ∪{x0}, Xi+1, . . . , Xk} would
be a feasible partition of X with π′′U � π′U . This implies that w(Xi) = 1 for all 1 ≤ i ≤ k, since all
values w(xj) are multiples of 1

b , which means that w(Xi) < 1 yields w(Xi) ≤ 1− 1
b = 1− w(x0),

a contradiction to minimality. Consider the collection of the sets Si = {sj : 1 ≤ j ≤ 3m,xj ∈ Xi},
1 ≤ i ≤ k, as a partition for S. Since w(Xi) = 1 it follows that

∑
sl∈Si

sl = b for each i ∈ {1, . . . ,m}.
The requirement b/4 < si < b/2 for each 1 ≤ i ≤ 3m then implies that the size of each Xi equals
3, which overall means that S1, . . . , Sm is a solution for 3-Partition on (S, b). ut

Remark 14. At last, we like to note that dual parameterization for EXT BP easily yields mem-
bership in FPT by kernelization. Recall that by our definitions, the dual parameter for instance
(X,πU ) is |X|−|πU |, as putting each object in its own set is the pre-solution with largest value with
respect to m. Consider the reduction rule that, for a partition πU of X given by sets X1, . . . , Xk,
removes for all i with Xi = {xi} the elements xi from X and Xi from πU , leaving the dual param-
eter kd = n − k unaffected. An irreducible instance is then a partition πU = {X1, . . . , Xk} of X,

|X| = n, with |Xi| ≥ 2 and hence 2k ≤ n = |X| =
∑k
i=1 |Xi|, so that kd = n−k ≥ 1

2n. It is known

that the number of partitions of an m-element set is given by the mth Bell number, which again
is upper-bounded by O(mm). Hence, by simple brute-force, an instance (X,πU ) can be solved in

time O∗(kkdd ).

6 Conclusions

This paper gives a general framework to capture the problem of minimal extension with the aim
to highlight useful relationships between different specific extension problems on the one hand,
but also to capture broader aspects like parameterized and approximation approaches. In view of
the richness of combinatorial problems, many other areas could be looked into with our extension
model. Further, it would be interesting to investigate to what extent enumeration problems can be
improved by a clever solution to extension or, conversely, how the difficulty of extension implies
bounds on enumeration problems. Also, it might be interesting to investigate further additional or
alternative parameters for extension problems. For instance, in the case of minimization problems,
it might be known that |V | is not reachable by any extension of U concerning a typical graph
extension instance (V,E,U). Then, having a better estimate pU < |V | for the size of a possible
extension would provide a more interesting parameter pU − |U | that is always smaller than the
dual parameter that we considered. Again, this area is widely open for research.

Let us also give one concrete open question in the spirit of the mentioned letter of Gödel to von
Neumann: Is it possible to design an exact algorithm for Upper Domination (the task to find a
minimal dominating set of maximum cardinality) that avoids enumerating all minimal dominating
sets? This still unsolved question already triggered quite some research; see [2, 3].

From the specific extension problems for feedback vertex/edge set studied here, some open
problems are the following ones:

– Does Ext DFES remain NP-hard when restricted to planar graphs, or can planarity be
exploited (like for the decision problem) to find an efficient algorithm?

– Is Ext DFES with standard parameterization in FPT?
– To which class in the W-hierarchy does Ext FVS (and also Ext DFVS) with standard

parameterization belong to? Note that we only showed W[1]-hardness but no membership,
and not even W[2]-membership appears to be apparent.

At last, let us give a remark concerning the exact exponential complexity of the specific exten-
sion problems discussed here. Assuming the ETH, it is known that there is no 2o(n+m)-algorithm
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for solving n-variable, m-clause instances of (3, B2)-SAT and no 2o(n+m)-algorithm for n-vertex,
m-edge bipartite subcubic instances of Ext VC [11]. Therefore, by reducing from these problems,
we can conclude the following by observing that our reductions increase the size of the instances
only linearly.

Corollary 15. Under the ETH, there is no 2o(n+m)-algorithm for n-vertex, m-edge bipartite in-
stances of Ext DS, Ext FVS, Ext DFVS, Ext DFES.

Looking again at the reductions, this result is also valid for degree-restricted instances, but different
formulations would apply for the different problems, so that we do not integrate it into the corollary.
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