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Abstract

Algorithms for exchange of kidneys is one of the key success-
ful applications in market design, artificial intelligence, and
operations research. Potent immunosuppressant drugs sup-
press the body’s ability to reject a transplanted organ up to
the point that a transplant across blood- or tissue-type incom-
patibility becomes possible. In contrast to the standard kidney
exchange problem, we consider a setting that also involves the
decision about which recipients receive from the limited sup-
ply of immunosuppressants that make them compatible with
originally incompatible kidneys. We firstly present a general
computational framework to model this problem. Our main
contribution is a range of efficient algorithms that provide
flexibility in terms of meeting meaningful objectives. Moti-
vated by the current reality of kidney exchanges using so-
phisticated mathematical-programming-based clearing algo-
rithms, we then present a general but scalable approach to
optimal clearing with immunosuppression; we validate our
approach on realistic data from a large fielded exchange.

Introduction
The deployment of centralized matching algorithms for effi-
cient exchange of donated kidneys is a major success story
of market design (Biró et al. 2019a,b). The theory and
practice of kidney exchange have benefited from active re-
search within artificial intelligence (e.g. Abraham, Blum,
and Sandholm 2007; Manlove and O’Malley 2014; McEl-
fresh, Bidkhori, and Dickerson 2019; McElfresh and Dick-
erson 2018; Farina, Dickerson, and Sandholm 2017). The
standard model for kidney exchange involves information
about recipients’ compatibility with kidneys in the market. A
recipient can only be given a kidney that is compatible with
the recipient. The goal is to enable exchanges of kidneys via
a centralized algorithm to satisfy the maximum number of
recipients.

We consider a new kidney exchange model which has an
interesting feature that is informed by significant technolog-
ical advances in organ transplant. The technology concerns
immunosuppressants which if given to a recipient can make
her receptive to kidneys which she is not receptive to by de-
fault (Montgomery et al. 2011). We will refer to the model
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as Kidney Exchange with Immunosuppressants (KEI). Im-
munosuppressants (abbreviated as suppressants from here
onwards) have been successfully used in Japan and Korea
for several years, and increasingly being considered and uti-
lized in other countries (Heo, Hong, and Chun 2020), even
though they are costly and may have side effects. Due to
these costs or side effects, it is desirable to match as many
recipients to kidneys while minimizing the number of recip-
ients who are given immunosuppressants.

In this paper, the fundamental research problem that we
explore is that of designing mechanisms for kidney ex-
change with suppressants that satisfy desirable computa-
tional, incentive and monotonicity properties. A naive way
of using suppressants is to clear the classic kidney exchange
market without using them and then give suppressant to the
recipients who are left. However, there can be more efficient
ways of giving suppressant to particular recipients and then
implementing exchanges of kidneys to facilitate as many
transplants as possible, as we will demonstrate in Figure 1.
At first sight, the two-stage and connected process of using
foresight to first giving suppressants to suitable recipients
and then finding a matching that satisfies suitable social ob-
jectives appears to be a complex problem. We design a flex-
ible algorithmic approach for the problem.

Contributions We formalize a general model of KEI that
features compatible, half-compatible, and incompatible kid-
neys, and which allows for allocations as a result of multi-
way exchanges. We then initiate a computational study of
kidney exchange with suppressants. Prior mechanism design
work on the subject either only allows pairwise exchanges or
focuses on a restricted model.

One of our central contributions is modeling important
KEI problems in terms of an underlying graph with different
classes of edges. One of the edge classes represents organ
compatibility that is dependent on administering immuno-
suppressants. Depending on how we set the edge weights in
the graph problem, we can find in polynomial time, alloca-
tions corresponding to several important objectives. The ob-
jectives include maximizing the total number of transplants
and given that, maximizing the number of compatible trans-
plants. Among the list of objectives captured by our algorith-
mic framework, we defer the choice of the exact objective to
the policy-makers.
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Then, we focus on the problem where there is an up-
per bound on the number of suppressants that can be used.
We present a polynomial-time algorithm for maximizing the
number of transplants for a restricted model that we refer to
as the Silver Bullet model. In the model, once a recipient
has been given a suppressant, then the recipient can take any
kidney. For our general model in which certain kidneys are
inherently incompatible, we show that the problem of max-
imizing the number of transplants reduces in polynomial-
time to an interesting generalized matching problem whose
complexity has been open for years.

Finally, we present a flexible integer linear program (ILP)
formulation that allows us to optimize objectives subject to
bounds on the length of exchange cycles. We validate that
model on realistic data from a large, fielded kidney exchange
in the United States, and show significant gains in the num-
ber of matches made even when the central clearinghouse is
only able to use a small number of suppressants.

Some of the techniques that we use such as to capture
strong individual rationality or handle pairwise exchanges
etc. are of independent interest and can be applied to a host
of other problems in matching markets. Although we present
our model and result in the language of kidney exchange and
suppressants, our model and algorithms also apply to any
exchange model in which agents have trichotomous prefer-
ences (Manjunath and Westkamp 2021) and for any half-
compatible match to materialize, the social designer needs
to use some resource such as money to facilitate such a
match. The goal is to implement desirable exchanges sub-
ject to minimum use of additional resources.

Related Work
Kidney exchange is one of the major research topics in
matching market design (Abraham, Blum, and Sandholm
2007; Ashlagi and Roth 2021; Hatfield 2005; Biró, Manlove,
and Rizzi 2009; Dickerson, Procaccia, and Sandholm 2014;
Li et al. 2019; Roth, Sönmez, and Ünver 2005; Sönmez and
Ünver 2011). In many of the papers, the algorithms only
allow exchange cycles of limited size due to logistical and
other constraints. In this paper, we first allow exchange cy-
cles of any size, and then discuss the bounded case. Note that
for any exchange cycle bounds that are three or more, even
the kidney exchange problem in the traditional model with-
out suppressants is NP-hard (Abraham, Blum, and Sand-
holm 2007).

The use of suppressants to facilitate more efficient kid-
ney exchange has been discussed in medical circles (see,
e.g. Abramowicz et al. (2018)). The two market design pa-
pers directly relevant to our work are the ones where kid-
ney exchange with suppressants has been mathematically
modeled (Heo, Hong, and Chun 2020; Andersson and Kratz
2020). Heo, Hong, and Chun (2020) prove a couple of im-
possibility results as well as an exchange mechanism with
some desirable monotonicity properties. They assume that
once suppressants are administered to a recipient, she can
take a kidney from any donor. We consider a more general
model in which half-compatibility is specific to particular
recipient-donor pairs.

Andersson and Kratz (2020) consider a model more gen-
eral than that of Heo, Hong, and Chun (2020) in which only
certain donor-recipient pairs can be made compatible after
giving suppressants to the recipient. They focus on pair-
wise kidney exchange (Roth, Sönmez, and Ünver 2005) and
demonstrate through experiments that adding suppressant
treatment to the pairwise exchange model results in a larger
increase in transplant numbers than allowing short cycles.
Considering both cycles and suppressants was discussed as
important future work by Andersson and Kratz (2020). Our
paper presents experimental results in this setting.

Model and Concepts
A kidney exchange market is a tuple (R,D,C,H, I) where
R = {r1, r2, . . . , rn} is a set of n recipients (agents) and
D is the set of donors. Some recipients and donors come in
pairs; others come single. Generous donors who offer their
kidney to the pool instead of a specific recipient in it are
called altruistic donors.

Each recipient ri partitions the donors D into sets Ci,
Hi, and Ii. The set Ci is the set of donors whom recipi-
ent ri is compatible with. The set Hi is the set of donors
ri is half-compatible with. Half-compatibility means that if
a suppressant is given to ri, then ri can accept a kidney
from any donor in Hi. Donors in the set Ii are incompati-
ble with recipient ri even if ri is given a suppressant. These
partitions at each recipient form the collections of sets C =
(C1, . . . , Cn), H = (H1, . . . ,Hn), and I = (I1, . . . , In) in
the input.

An allocation assigns each recipient ri at most one donor
who is either in Ci or in Hi. Recipients who are assigned a
half-compatible donor receive suppressants.

We consider three models.

1. BM (Baseline model): for each ri ∈ R, Hi = ∅.
2. SBM (Silver Bullet model): for each ri ∈ R, Ii = ∅.
3. GM (General model).

The baseline model coincides with the traditional kidney
exchange model in which suppressants are not considered.
SBM is the model in which we assume that if a recipient
is given a suppressant then she will be able to receive any
kidney in the market (Heo, Hong, and Chun 2020). GM is
the general model that also allows for some kidneys being
inherently incompatible for a recipient even if she has been
given suppressants. Unless specified, we will focus on GM.
In some cases, we will present some results that hold for
the Silver Bullet model (SBM). The SBM assumption was
made by Heo, Hong, and Chun (2020) so we keep it as an
important intermediate model between the baseline model
and general model. Except for Theorems 3 and 4, all of our
results and discussions hold for the general model.

As far as a recipient or the social designer is concerned,
there are two types of preferences. We will treat matching
with incompatible donors to be infeasible.

1. Coarse preferences: a recipient is indifferent between a
compatible donor and a half-compatible donor with a sup-
pressant, and prefers both options over no transplant at all.
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2. Refined preferences: a recipient prefers compatible
donors over half-compatible donors along with a suppres-
sant, which are preferred over no transplant at all.

Coarse preferences have the underlying assumption that a
recipient has no significant cost (in terms of money or side-
effects) when receiving a half-compatible kidney. Based
on the preference relation one can define concepts such as
Pareto optimality. Heo, Hong, and Chun (2020) considered
SBM and coarse preferences. They consider refined pref-
erences when defining a monotonicity property. Andersson
and Kratz (2020) considered GM and refined preferences.

A recipient who is assigned a compatible donor or a half-
compatible donor along with a suppressant is referred to as
satisfied. Our general goal is to satisfy the maximum num-
ber of recipients while minimizing the need of suppressants.
We will consider the following feasibility condition for all
allocations, which captures a natural individual rationality
requirement: either a recipient donates her donor’s kidney
to the market and gets a strict improvement or she and her
donated kidney are not part of any allocation. We will refer
to this condition as strong individual rationality (strong-IR).
A recipient who enters the market with a half-compatible
donor improves her situation if she is assigned to her own
or another half-compatible donor along with a suppressant.
Also, strong-IR implies that a donor arriving in a pair with
a recipient will only donate a kidney if her recipient also re-
ceives one. A weaker requirement is individual rationality
(IR) whereby no recipient whose own donor is compatible
ends up with no transplant or a half compatible kidney.
Example 1. Consider a kidney exchange problem in which
there are three recipients r1, r2, r3 with corresponding
donors d1, d2, d3. No recipient’s donor has a kidney com-
patible with the recipient. Recipient r1 finds the kidney of d2
compatible, while d3 ∈ H2 and d1 ∈ H3. The problem is
captured in Figure 1.

If suppressants are not allowed, then no recipient will be
able to get a kidney without violating strong-IR. This re-
mains the case if only one suppressant is allowed. Suppose
now that the system has 2 suppressants available. In that
case, one suppressant can be given r2 and another to r3.
Then r1 can take a compatible kidney of d2, r2 takes a half-
compatible kidney of d1 and r3 takes a half-compatible kid-
ney of d3.

r1

r2

r3

d1

d2

d3

Figure 1: A bipartite matching view of KEI. Dashed lines in-
dicate half-compatible edges. Solid edges indicate compati-
bility edges. Dotted edges indicate a recipient-donor pair.

A General Graph Theoretic Approach
We construct a general bipartite matching based model cap-
turing the most basic features of kidney exchange markets.

It guarantees that each donor gives at most one kidney, each
recipient receives at most one kidney, and the donor in a pair
is only part of the exchange if her recipient receives a kid-
ney. This framework gives us a set of feasible solutions for
the problem. Then, by adding edge weights to the graph and
finding a maximum weight matching, an optimal solution
can be calculated. We specify a set of possible edge weights
that can serve a large variety of goals of the decision maker,
such as cost-efficiency or saving as many lives as possible.

Matching Model
We build a bipartite graph to the instance (R,D,C,H, I),
see Figure 2. For convenience, we distinguish between re-
cipients with and without a related donor, who will form the
sets R2 and R1, respectively. Analogously, D1 is the set of
altruistic donors, while donors in D2 enter the market along
with their related recipient inR2. We construct the following
three types of vertices for our graph:
• a recipient vertex ri to each recipient ri ∈ R;
• a donor vertex di to each donor di ∈ D;
• a dummy donor vertex dj to each recipient rj ∈ R1, and

a dummy recipient vertex rj to each donor dj ∈ D1.
If a donor-recipient pair who applies for the scheme to-

gether, then the recipient and donor are given the same in-
dex: we refer to them as ri and di for some fixed i. Recipi-
ents without a donor share the same index with their dummy
donor vertex, and an analogous notation is applied for altru-
istic donors and their dummy counterparts. Dummy donors
form the set D0, while dummy recipients form the set R0.

The edges of the graph are as follows.
• Each recipient ri ∈ R is connected to the donor with the

same index di ∈ D via a private edge.
• Each dummy recipient rj ∈ R0 is connected to all donors

via dummy edges.
• A donor di has a compatible edge to a recipient rj , where
i might be equal to j, if di ∈ Ci.

• A donor di has a half-compatible edge to a recipient rj ,
where i might be equal to j, if di ∈ Hi.
The four kinds of edges will play distinct roles when as-

signing weights to them. Private and dummy edges represent
no transplant, while compatible and half-compatible edges
stand for compatible and half-compatible transplants. Notice
that a recipient and her donor forming a half-compatible (or
compatible) pair are connected by two parallel edges, one
private and one half-compatible (or compatible).

Our goal is to calculate a perfect matching in the con-
structed graph. A matching and the corresponding allocation
are in trivial one-to-one correspondence with each other. A
recipient matched along her private or dummy edge repre-
sents no transplant. The matching property ensures that each
recipient in R1 ∪ R2 receives one kidney at most, and each
donor in D1 ∪D2 also donates one kidney at most. Since a
recipient ri ∈ R2 is only connected to di ∪ Ci ∪ Hi, and
we restrict our attention to perfect matchings only, ri is ei-
ther satisfied or she participates in no transplant, keeping her
donor di. Perfectness thus ensures the following natural con-
sequence of strong-IR: either a recipient uses her donor’s
kidney and gets a strict improvement, or she and her donor
are not part of the allocation.
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r1

r2

r3

r4

r5

d1

d2

d3

d4

d5

D0

D2

D1

R1

R2

R0

Figure 2: Example instance for our bipartite graph. Here,
R1 = {r1}, and thus, d1 is a dummy donor. The only altru-
istic donor is d5, forming set D1, and her dummy recipient
is r5. Dotted black edges are private, dotted gray edges are
dummy, dashed edges mark half-compatible donations, and
finally, solid edges mark compatible donations.

Objective func. compatible half-compatible private

1. TR 1 1 0

2. CO (BM) 1 −∞ 0

3. (CO, TR) N 1 0

4. (CO,−HC) N −1 0

5. (TR,−HC) N N − 1 0

6. cost-optimal comp. gain half-comp. g. waiting g.

Table 1: A set of weight functions serving different goals.

To guarantee that a compatible pair only participates in
a pairwise exchange or a cycle if and only if the recipi-
ent receives a compatible kidney, we only need to delete
the edges running from the recipient to all half-compatible
donors. This could be a natural requirement from a compat-
ible recipient-donor pair who enter the market together—
which actually often happens in practice, for example in the
two largest exchange pools in Europe, in the Netherlands
and in the UK (Biró et al. 2019a).

Objectives
We offer a variety of different weight functions defined on
the edges of our graph. Each weight function serves a justi-
fiable goal, as we argue later.

Table 1 summarizes the options for defining the weight
function on each edge (ri, dj), depending on the type of
the edge. Dummy edges always carry zero weight, there-
fore they are omitted from the table. We assume N to be
a sufficiently large integer, n for example. In an alloca-
tion, we denote the number of recipients receiving a kidney
from a compatible donor by CO, the number of recipients
receiving a kidney from a half-compatible donor by HC,
while the total number of recipients receiving a kidney by
TR = CO + HC. Our objective functions are to be max-
imized in the lexicographic sense, e.g. (TR,−HC) maxi-
mizes the number of transplants in total, and subject to this,
it minimizes the number of half-compatible transplants.

Our objective functions can achieve the following.
1. The number of transplants is maximized if each pair cho-

sen for surgery contributes weight 1, while no transplant
adds no weight to the matching.

2. The number of transplants is maximized in the baseline
model, if half-compatible donations are forbidden due to
their infinitely large negative weight, and each compatible
donation contributes weight 1.

3. If a compatible transplant carries a larger weight than the
weight of all half-compatible transplants that can be car-
ried out, then the main goal is to maximize the number
of compatible donations. Since half-compatible donations
do carry some small weight, their number will be maxi-
mized, but only subject to the first objective.

4. Since half-compatible donations now carry a small nega-
tive weight, they are only to be planned if they enable ex-
tra compatible transplants. However, any number of half-
compatible donations are welcome if they make only one
more compatible donation happen, because we gain a lot
in our objective function by adding N just one more time
to it.

5. If compatible and half-compatible donations both carry a
large weight, but the latter ones are somewhat less prof-
itable, then the maximum number of donations will be
calculated, and subject to this, as few half-compatible do-
nations will be planned as possible.

6. The most general version is when we set an arbitrary, pos-
sibly negative weight to each transplant. This weight can
express the expected utility in terms of life expectancy,
risks, healthcare savings, and it can differ for each pair.
This objective is thus able to replace the trichotomous
metric by a finely scaled one. Private edges represent
withdrawal from donation, which can also be expressed
in utilities, for example as loss due to health deteriora-
tion. On the positive side, sparing an exceptionally valu-
able donor in order to wait for a better match in the next
round is also an entirely realistic scenario. A max weight
solution corresponds to a maximum utility allocation.

Theorem 1. For each of the objectives 1) to 6), there exists
a strongly polynomial-time algorithm to find an allocation
achieving those objectives.

Proof. Our goal is to compute a maximum weight perfect
matching in the graph. A maximum weight matching can be
computed in strongly polynomial time (Munkres 1957). To
take care of perfectness, or equivalently, maximum size, one
only needs to apply the standard weight modification (Ko-
rte and Vygen 2012), in which each edge gets an addi-
tional uniform weight that is larger than the sum of the
original weights in any matching. For this uniform addition,
n · wmax(e) + 1 suffices.

w′(e) := w(e) + n · wmax(e) + 1

The weight of matching M is thus w′(M) := w(M) +
(n·wmax(e)+1) ·|M |. Since (n·wmax(e)+1) ·|M | > w(M)
for any matching M , larger matchings have a larger weight
as well, thus w′(M) is maximized by a perfect matching.
Within the set of perfect matchings, (n ·wmax(e)+1) · |M | =
(n · wmax(e) + 1) · n is identical, and thus w′ is maximized
in the maximum weight matching according to w.
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Fixed Upper Bound on HC
Suppressants are highly useful to allow half-compatible kid-
neys to be allocated. However, they are not only extremely
expensive but they also have undesirable side-effects. Given
these issues, the market designer may wish to specify a fixed
upper quota on HC = h, and wishes to maximize the num-
ber of transplants subject to h. We show that even with an
upper bound, we can solve the following central problem.

h-ALLKEI
Input: KEI instance G = (R,D,C,H, I) and in-

teger h.
Question: Is there an allocation satisfying all the re-

cipients with at most h recipients using
suppressants?

Theorem 2. h-ALLKEI can be solved in polynomial time
even for the general model.

Proof. Construct the corresponding graph as defined in sec-
tion on the matching model, with vertex sets R and D.
For the edges, here we only keep the edges of vertices in
R0, compatible, and half-compatible edges. In particular,
we delete the private edges between same-index couples in
(R1 ∪R2)× (D0 ∪D2).

We want to check whether there exists an allocation such
that every single recipient in R1 ∪ R2 gets either a com-
patible or a half-compatible kidney, and at most h of them
receives a half-compatible kidney. In graph-theoretic terms,
this question translates to deciding whether a perfect match-
ing M exists in the constructed graph, so that M contains at
most h edges from the special edge setE′ of half-compatible
edges. This question can be answered by solving a simple
weighted perfect matching problem. In the reduced graph,
we give each compatible edge weight 1, and to all other
edges, weight 0. The weight of any perfect matching M is
n − |M ∩ E′|. The maximum weight matching in this in-
stance has weight at least n − h if and only if there is an
allocation using at most h suppressants.

Our next problem, h-MAXKEI is a more general version
of h-ALLKEI:

h-MAXKEI
Input: KEI instance (R,D,C,H, I) and integers

t and h.
Question: Is there an allocation giving at least t re-

cipients a compatible donor with at most h
recipients using suppressants?

Our next result is that h-MAXKEI can be solved in poly-
nomial time in the Silver Bullet model.
Theorem 3. h-MAXKEI can be solved in polynomial time
in the Silver Bullet model.

Proof. If we have a model that excludes incompatibility,
as the Silver Bullet model, then a modification of the con-
structed graph solves this problem. We assume that each re-
cipient inR1∪R2 is connected to each donor inD1∪D2 ei-
ther via a half-compatible or via a compatible edge. Besides
these edges, private and dummy edges are also present.

r1

r2

r3

r4

r5

d1

d2

d3

d4

d5

a1

a2

b1

b2

Figure 3: Substituting half-compatible edges by a gadget
allowing at most 2 half-compatible donations. Compatible
edges (r1, d2), (r2, d4), and the dotted private/dummy edges
remain intact.

The modification of the graph is as follows. The goal
is to decompose each half-compatible edge into a set
of paths, and then lead these paths through a gadget
that will regulate the maximum number of used half-
compatible edges through its size. First we add this gad-
get, which consists of 2h new vertices in sets A and B,
and a set of h disjoint edges of weight 0 between them:
{(a1, b1), (a2, b2) . . . , (ah, bh)}. Then we replace each edge
(ri, dj) in the half-compatible class by a set of edges con-
necting ri to each of a1, a2, . . . , ah, and dj to each of
b1, b2, . . . , bh. The weight on these edges are set to be half
of the original weight of the replaced half-compatible edges.
The rest of the graph remains unchanged. Notice that vertex
sets R ∪B and D ∪A build a bipartition of the new graph.

For an example, see Figure 3. The instance originates
from our earlier example instance from Figure 2, with h = 2.
The difference from that instance is that while (r1, d2) and
(r2, d4) are compatible edges as before, all other recipient-
donor pairs are half-compatible unless the recipient or the
donor is a dummy, so that the input suits the Silver Bullet
model. Figure 3 depicts the graph after vertex setsA,B, and
the gadget on them are added to it.

Claim 1. A maximum weight perfect matching in the above-
described graph corresponds to an allocation maximizing
the weight subject to HC ≤ h, if half-compatible donations
are less desirable than compatible donations according to
the weight function.

Proof. Due to the size of the gadget, no perfect matching al-
lows more than h vertices in R to be matched along their
edges to the gadget. Moreover, the number of vertices in
R that are matched to a vertex in A equals the number of
vertices in D that are matched to a vertex in B, because
a perfect matching covers all vertices in the gadget. These
vertices in R and D will be the agents participating in half-
compatible donations. Due to the assumptions of the Silver
Bullet model, any perfect matching on them is a set of ex-
ecutable transplants. The rest of the transplants are chosen
based on the maximum weight matching criterion.

Notice that it is possible that a donor in D1 ∪ D2 and a
recipient in R1 ∪R2 are connected via a 3-path through the
gadget and via a direct compatible edge as well, but for all
weight functions where half-compatible donations are less
desirable than compatible donations (all our weight func-
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tions except for 1 and possibly 6), the path will carry the
lower weight. Therefore, no perfect matching using such
edges in the gadget can be of maximum weight.

This construction in the proof of Theorem 3 answers a
question more general than h-MAXKEI. It actually decides
whether there is an allocation of weight at least twhile using
at most h suppressants.

Theorem 4. In the Silver Bullet model, a maximum weight
strong-IR allocation can be computed in polynomial-time
even if there is an upper bound on the number of suppres-
sants that can be used.

Next, we identify connections of h-MAXKEI with a spe-
cial case of budgeted matching, a well-studied graph prob-
lem of unknown complexity.

UNIT-COST BUDGETED MATCHING

Input: Bipartite graph G = (A ∪B,E), E′ ⊆ E,
edge weights, and integers h and t.

Question: Is there a maximum weight matchingM of
weight at least t such that |M ∩ E′| ≤ h?

UNIT-COST BUDGETED MATCHING is a restricted vari-
ant of BUDGETED MATCHING, where in addition to the
edge weights, edge costs c(e) are also present, and the bud-
get |M ∩ E′| ≤ h is substituted by c(M) ≤ h. If costs are
0 or 1, then BUDGETED MATCHING is identical to UNIT-
COST BUDGETED MATCHING, where E′ is the set of edges
with cost 1.

UNIT-COST BUDGETED MATCHING admits a
PTAS (Berger et al. 2011; Mastrolilli and Stamoulis
2012). Berger et al. (2011) observe that for polynomial
weights and costs (here we set the costs to be 1), BUD-
GETED MATCHING is very unlikely to be NP-hard, because
it would imply RP=NP. However, after several decades,
the problem of finding a deterministic algorithm to solve
this problem is still open. We now show how h-MAXKEI
reduces to UNIT-COST BUDGETED MATCHING.

Lemma 1. h-MAXKEI polynomial-time reduces to UNIT-
COST BUDGETED MATCHING.

Proof. We set E′ to be the set of half-compatible edges,
while G and the upper bound h are identical in the two
problems. To make sure that the maximum weight match-
ing in UNIT-COST BUDGETED MATCHING is perfect, we
modify the edge weights w(e) from h-MAXKEI in an anal-
ogous manner to our method in the proof of Theorem 1:
w′(e) := w(e) + n.

The weight of matching M is thus w′(M) := w(M) +
n|M |. For w(e) ≤ 1, larger matchings have a larger weight
as well, thus w′(M) is maximized by a perfect matching.
Within the set of perfect matchings, w′ is maximized in the
maximum weight matching according to w.

Regarding parametrized complexity, our trivial parameter
is h, the number of suppressants available. If h is small, then
one can try which h half-compatible edges are used, and
then search for a maximum weight allocation in the rest of
the instance built out of compatible and private edges only.

Restrictions on the Exchange Cycle Length
In kidney exchange, the length of the exchange cycles is
typically required to be small for logistical reasons and to
reduce the risk of a cycle being disrupted if someone backs
out of the exchange. In this section, we focus our attention
to short exchange cycles.

Maximizing kidney exchange under the restriction on the
size of the exchange cycles is NP-hard (Abraham, Blum, and
Sandholm 2007; Biró, Manlove, and Rizzi 2009). A practi-
cal approach to solving the problem involves formulating
it as an ILP (Integer Linear Program).1 We present an ILP
based on PICEF (Dickerson et al. 2016), given in (1) below.

First we construct the graph to the instance as described
in the section on the matching model. Edges are equipped
with the edge weight w(e) serving any chosen objective in
Table 1. To construct the corresponding ILP, we create the
following binary variables:
• yek: 1 if edge e is matched at position k in a chain, and 0

otherwise
• zc: 1 if cycle c is matched and 0 otherwise
• ue: 1 if edge e is matched and 0 otherwise (not part of the

original PICEF model).
Following this, we define additional parameters (aligning

with those described earlier in the paper, as well as new
formulation-specific parameters):
• E,P,N : the set of edges, patient-donor pair vertices, and

NDD vertices
• H ⊆ E: the set of half-compatible edges
• h ∈ Z+: the maximum number of immunosuppressants
• w : E → R: the edge weight for edge e
• K(e) ⊆ {1, . . . , L}: the set of positions that edge e can

take in a chain, where K is the maximum chain length
• C: the set of feasible cycles (up to length D). With some

abuse of notation, we denote membership in a cycle using
“∈” for both edges and vertices: e.g., if edge e is used in
cycle c then e ∈ c; if vertex i participates in c, then i ∈ c.
Finally, we construct ILP (1) below as follows.

max
∑
e∈E

uew(e)

∑
e∈δ−(i)

∑
k∈K(e)

yek +
∑

c ∈ C :
i ∈ c

zc ≤ 1 ∀i ∈ P

∑
e ∈ δ−(i)∧
k ∈ K(e)

yek ≥
∑

e∈δ+(i)

ye,k+1
∀i ∈ P,
k ∈ {1, ..., L− 1}∑

e∈δ+(i)

ye1 ≤ 1 ∀i ∈ N

ue =
∑

k∈K(e)

yek +
∑

c ∈ C :
e ∈ c

∀e ∈ E

∑
e∈H

ue ≤ h

yek ∈ {0, 1} ∀e ∈ E, k ∈ K(e)
zc ∈ {0, 1} ∀c ∈ C
ue ∈ {0, 1} ∀e ∈ E

(1)

1Additionally, we address the case of pairwise exchange in the
supplemental material, and give a polynomial-time clearing algo-
rithm for just that special case.
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The final two constraints are not part of the original PICEF
model: the first new constraint defines variables ue, which
is 1 if edge e is matched; the second new constraint requires
that at most h half-compatible edges are matched.

This ILP model is powerful, because it can deal with
bounded cycle length and a budget on the number of sup-
pressants at the same time. Even though it does not provide
a polynomial method to solve the problem (since such an
algorithm cannot exist unless P=NP), ILP formulations have
proved to work well in practical scenarios (Constantino et al.
2013; Biró et al. 2019a,b).

Experimental Results
In this section, we demonstrate the utility of immunosup-
pressants, with computational experiments on simulated kid-
ney exchange graphs generated using data from the United
Network for Organ Sharing (UNOS). For each UNOS graph,
we begin with all vertices V and fully-compatible edges
EF . Then we add new half-compatible edges by enumer-
ating every blood-type-compatible pair of vertices that are
not already connected; we randomly create edges between
fraction α ∈ [0, 1] of these pairs. Let these half-compatible
edges be denoted by EH ; they can be matched only with
an immunosuppressant. We denote the full set of edges as
E = EF ∪ EH . All edges have weight 1.

For each graph we find the optimal matching by solving
ILP (1) with a budget of h ∈ {0, . . . , 100} suppressants.
Results. For each immunosuppressant budget h ∈
{0, . . . , 100}, we find the optimal matching by solving Prob-
lem 1; then, let Mh denote the matching weight (objective
value) of this optimal matching using at most h suppres-
sants. Then, for each graph and each h ∈ {1, . . . , 100} we
calculate %Baseline ≡ 100 × Mh−M0

M0
. In other words,

%OPTh is the percentage-difference between the matching
weight with budget h, and with budget 0 (no half-compatible
edges). Figure 4 shows %Baseline for each set of random
graphs, and for α ∈ {0.05, 0.1, 0.2}. Figure 5 shows the
median percentage of each patient type matched. Additional
figures in the supplemental material give further information
about the spread of results over all the simulated runs.

Figure 4 shows the immediate benefit of matching half-
compatible edges. Unsurprisingly, increasing the budget
h results in diminishing marginal returns; the greatest
marginal benefit comes from the first 10 edges. For the
small- and medium-sized (i.e., 64 and 128-node) graphs,
that relatively small budget nearly doubles the match size
(weight); for the largest size (i.e., 256-node) graphs, that rel-
ative gain is 50% more—still a substantial gain. There is also
a trailing off effect such that, given enough immunosuppres-
sant budget, no additional gain can be achieved.

Recall that we are only able to “activate” potential edges
between blood-type-compatible vertices; thus, many pairs of
vertices may never be connected directly (e.g., O-type pa-
tients and AB-type donors), and graph structure may prevent
vertices from ever being matchable at all. Figure 5 shows
this behavior: relatively more of the “easier-to-match” blood
types (AB, A, and B) are matched than the O-type patients,
i.e., those with the hardest-to-match blood type. Still, Fig-
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Figure 4: Median %Baseline for each set of graphs (top:
64-node graphs, middle: 128-node graphs, bottom: 256-
node graphs), and each α ∈ {0.05, 0.1, 0.2}. Shading is be-
tween the min and max values of %Baseline.
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Figure 5: Median percentage of each patient type: highly-
sensitized (Sens.), and blood type (A, B, AB, O), for each
set of random graphs (top: 64-node graphs, middle: 128-
node graphs, bottom: 256-node graphs), and α = 0.2. Each
column shows a different edge budget (0, 10, 20, 50).

ure 5 shows that in aggregate patients of each blood type
are helped—again, exhibiting diminishing marginal returns
as immunosuppressant budget increases.

Real-world kidney exchange pools range in size from a
few dozen patient-donor pairs and altruistic donors—either
at individual transplant centers or in burgeoning but still-
nascent multi-center programs—to a few hundred in larger
exchanges in the US, UK, and (soon) multinational ex-
changes. Our experimental results support that application
of even a small number of suppressants results in large gains
on realistic kidney exchange graphs of varying, realistic size.

27



Acknowledgements
Cseh was supported by the Hungarian Academy of Sciences
under its Momentum Programme (LP2016-3/2020), OTKA
grant K128611, and COST Action CA16228 European Net-
work for Game Theory. Dickerson and McElfresh were sup-
ported in part by NSF CAREER Award IIS-1846237, NSF
Award CCF-1852352, NSF D-ISN Award #2039862, NIST
MSE Award #20126334, NIH R01 Award NLM-013039-
01, DARPA GARD Award #HR00112020007, DoD WHS
Award #HQ003420F0035, DARPA Disruptioneering Award
(SI3-CMD) #S4761, and a Google Faculty Research Award.

Ethical Impact
Kidney exchanges save lives and are broadly viewed as
beneficial to humanity; however, as in many resource-
constrained settings, decision-makers must make morally-
laden decisions when designing the objective functions,
constraints, and other modeling concerns that increasingly
run modern exchange programs. The economics, AI, oper-
ations research, bioethics, medical, and legal communities
have long discussed the moral implications of different ap-
proaches to the allocation of organs (see, e.g., Cohen 1989),
including kidney exchanges (see, e.g., Ross et al. 1997;
Minerva, Savulescu, and Singer 2019; Torres et al. 2019).
Broadly speaking, our proposed work falls into the category
of creating a more general, and thus potentially more pow-
erful, model for the exchange of organs, and thus may come
with many of the same positive and negative potential ethical
impacts. Positives are clear: those who could not previously
receive a kidney may now be afforded that opportunity, and
those who would have been matched to a relative worse kid-
ney donor are now afforded the opportunity to match to a
relatively better one. Specific to our model, though, is the
potential ethical implication of applying a suppressant to one
patient so that another patient—matched elsewhere in a cy-
cle or chain—might receive a kidney. There is a cost—both
monetary and in terms of quality of health—to immunosup-
pression; thus, an open and morally-laden question lies in
determining the tradeoffs between, and level of agency given
to, participants in exchanges that run immunosuppression
schemes. As in many such scenarios, there is no “globally
correct” answer, but rather only an answer that can be ar-
rived at after careful consideration by stakeholders: patients,
donors, doctors, ethicists, lawyers, and possibly others. We
do not prescribe a specific solution here, but rather note that
our model is general and could, with input from domain ex-
perts, be augmented to address some of these concerns.
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