
Near-Optimal Deterministic Single-Source
Distance Sensitivity Oracles
Davide Bilò #

Department of Humanities and Social Sciences, University of Sassari, Italy

Sarel Cohen #

Hasso Plattner Institute, Universität Potsdam, Germany

Tobias Friedrich #

Hasso Plattner Institute, Universität Potsdam, Germany

Martin Schirneck #

Hasso Plattner Institute, Universität Potsdam, Germany

Abstract
Given a graph with a distinguished source vertex s, the Single Source Replacement Paths (SSRP)
problem is to compute and output, for any target vertex t and edge e, the length d(s, t, e) of a
shortest path from s to t that avoids a failing edge e. A Single-Source Distance Sensitivity Oracle
(Single-Source DSO) is a compact data structure that answers queries of the form (t, e) by returning
the distance d(s, t, e). We show how to deterministically compress the output of the SSRP problem
on n-vertex, m-edge graphs with integer edge weights in the range [1, M] into a Single-Source DSO
that has size O(M1/2n3/2) and query time Õ(1). We prove that the space requirement is optimal
(up to the word size). Our techniques can also handle vertex failures within the same bounds.

Chechik and Cohen [SODA 2019] presented a combinatorial, randomized Õ(m
√

n + n2) time
SSRP algorithm for undirected and unweighted graphs. We derandomize their algorithm with the
same asymptotic running time and apply our compression to obtain a deterministic Single-Source
DSO with Õ(m

√
n +n2) preprocessing time, O(n3/2) space, and Õ(1) query time. Our combinatorial

Single-Source DSO has near-optimal space, preprocessing and query time for unweighted graphs,
improving the preprocessing time by a

√
n -factor compared to previous results with o(n2) space.

Grandoni and Vassilevska Williams [FOCS 2012, TALG 2020] gave an algebraic, randomized
Õ(Mnω) time SSRP algorithm for (undirected and directed) graphs with integer edge weights in
the range [1, M], where ω < 2.373 is the matrix multiplication exponent. We derandomize it for
undirected graphs and apply our compression to obtain an algebraic Single-Source DSO with Õ(Mnω)
preprocessing time, O(M1/2 n3/2) space, and Õ(1) query time. This improves the preprocessing time
of algebraic Single-Source DSOs by polynomial factors compared to previous o(n2)-space oracles.

We also present further improvements of our Single-Source DSOs. We show that the query time
can be reduced to a constant at the cost of increasing the size of the oracle to O(M1/3 n5/3) and
that all our oracles can be made path-reporting. On sparse graphs with m = O

(
n5/4−ε

M7/4

)
edges, for

any constant ε > 0, we reduce the preprocessing to randomized Õ(M7/8 m1/2 n11/8) = O(n2−ε/2)
time. To the best of our knowledge, this is the first truly subquadratic time algorithm for building
Single-Source DSOs on sparse graphs.

2012 ACM Subject Classification Theory of computation → Shortest paths; Theory of computation
→ Data structures design and analysis; Theory of computation → Cell probe models and lower
bounds; Theory of computation → Pseudorandomness and derandomization

Keywords and phrases derandomization, distance sensitivity oracle, single-source replacement paths,
space lower bound

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.18

Related Version Full Version: https://arxiv.org/abs/2106.15731

Funding Davide Bilò: This work was partially supported by the Research Grant FBS2016_BILO,
funded by “Fondazione di Sardegna” in 2016.

© Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davidebilo@uniss.it
https://orcid.org/0000-0003-3169-4300
mailto:sarel.cohen@hpi.de
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:martin.schirneck@hpi.de
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://arxiv.org/abs/2106.15731
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Near-Optimal Deterministic Single-Source DSO

1 Introduction

One of the basic problems in computer science is the computation of shortest paths and
distances in graphs that are subject to a small number of transient failures. We study two
central problems of this research area on undirected graphs G with n vertices and m edges,
namely, the Single-Source Replacement Paths (SSRP) problem and Single-Source Distance
Sensitivity Oracles (Single-Source DSOs).

The SSRP Problem. In the SSRP problem, we are given a graph G with a fixed source
vertex s and are asked to compute, for every vertex t and edge e, the replacement distance
d(s, t, e), which is the length of the shortest s-t-path in the graph G − e, obtained by dropping
the edge e. By first computing any shortest path tree for G rooted at s, one can see that
there are only O(n2) relevant distances d(s, t, e), namely, those for which e is in the tree.

Chechik and Cohen [10] presented an Õ(m
√

n +n2) time1 combinatorial2 SSRP algorithm
for unweighted graphs. They also showed that the running time cannot be improved by
polynomial factors, assuming that any combinatorial algorithm for Boolean Matrix Multipli-
cation (BMM) on n × n matrices containing m 1’s requires mn1−o(1) time. Gupta et al. [21]
simplified the SSRP algorithm and generalized it to multiple sources. For a set of σ sources,
they presented a combinatorial algorithm that takes Õ(m

√
nσ + σn2) time. Grandoni and

Vassilevska Williams [17, 18] gave an algorithm for both directed and undirected graphs with
integer edge weights in the range [1, M] that uses fast matrix multiplications and runs in
Õ(Mnω) time, where ω < 2.37286 is the matrix multiplication exponent [2, 25, 35]. We are
only concerned with positive integer weights, but it is worth noting that SSRP with weights
in [−M, M] is strictly harder, modulo a breakthrough in Min-Plus Product computation,
with a current best running time of O(M0.8043 n2.4957) as shown by Gu et al. [20].

All the SSRP algorithms above are randomized, it is an interesting open problem whether
they can be derandomized in the same asymptotic running time.

Single-Source DSOs. A Distance Sensitivity Oracle (DSO) is a data structure that answers
queries (u, v, e), for vertices u, v and edge e, by returning the replacement distance d(u, v, e),
A Single-Source DSO, with fixed source s, answers queries (t, e) with d(s, t, e).

Of course, any SSRP algorithm gives a Single-Source DSO by just tabulating the whole
output in O(n2) space, the replacement distances can then be queried in constant time.
However, the space usage is far from optimal. Parter and Peleg [29] developed a deterministic
algorithm that computes an O(n3/2) size subgraph of G containing a breadth-first-search
tree of G − e for every failing edge e. The subgraph can also be thought of as a Single-Source
DSO with O(n3/2) space and query time. Bilò et al. [7] presented a Single-Source DSO of
the same size with Õ(

√
n) query time and Õ(mn) preprocessing time. Gupta and Singh [22]

later designed a randomized Single-Source DSO of Õ(n3/2) size, Õ(mn) preprocessing time,3
but with a better Õ(1) query time. The results in the latter two works generalize to the case
of σ sources in such a way that the time and size scale by o(σ) factors.

For the case of σ = n sources, that is, general (all-pairs) DSOs, Bernstein and Karger [5, 6]
designed an oracle taking Õ(n2) space with constant query time, even for directed graphs with
real edge weights. The space was subsequently improved to O(n2) by Duan and Zhang [16],

1 For a non-negative function f = f(n), we use Õ(f) to denote O(f · polylog(n)).
2 The term “combinatorial algorithm” is not well-defined, and is often interpreted as not using any

matrix multiplication. Arguably, combinatorial algorithms can be considered efficient in practice as the
constants hidden in the matrix multiplication bounds are rather high.

3 The authors of [22] do not report the preprocessing time, but it can be reconstructed as Õ(mn).

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:3

which is optimal [34]. The combinatorial Õ(mn) time preprocessing for building the DSOs is
conditionally near-optimal as it matches the best known bound (up to polylogarithmic factors)
for the simpler problem of finding the All-Pairs Shortest Paths (APSP). The conditional lower
bound in [10], stating that there exists no combinatorial algorithm solving the undirected
SSRP problem with real edge weights in O(mn1−ε) time for any positive ε > 0, unless there
is a combinatorial algorithm for the APSP problem in O(mn1−ε) time, also implies that
there exists no Single-Source DSO with Õ(1) query time and O(mn1−ε) preprocessing time
for real edge weights. Therefore, the DSOs in [6, 16], are also conditionally near-optimal for
the single source case with real edge weights.

Several algebraic all-pairs DSOs with subcubic preprocessing time have been developed in
the last decade for graphs with integer edge weights in [1, M] [9, 11, 17, 30, 37]. Very recently,
Gu and Ren [19] presented a randomized DSO achieving a O(Mn2.5794) preprocessing
time with O(1) query time, improving upon the one by Ren [30, 31] with an Õ(Mn2.6865)
preprocessing time. Those DSOs can also be used in the single-source case, but the requirement
to store the information for all pairs forces them to take Ω(n2) space [34]. The algebraic
SSRP algorithm in [18], seen as a data structure, has a better preprocessing time than any
known (general) DSO but also takes O(n2) space, which we have seen to be wasteful.

We are not aware of an algebraic Single-Source DSO that simultaneously achieves o(n2)
space and has a better preprocessing time than their all-pairs counterparts. It is interesting
whether we can construct space-efficient oracles faster when focusing on a single source.

Additional results on replacement paths and DSOs (for single or multiple failures and
directed graphs) can be found in [3, 9, 12, 13, 14, 15, 18, 23, 24, 26, 27, 28, 32, 36]. The
most efficient Single-Source DSOs in their respective settings are shown in Table 1 below.

1.1 Our Contribution
We research SSRP algorithms, Single-Source DSO data structures, and the connection
between the two. Our first contribution is presented in Section 5. We derandomize the
near-optimal combinatorial SSRP algorithm of Chechik and Cohen [10] for undirected,
unweighted graphs and the algebraic algorithm of Grandoni and Vassilevska Williams [17, 18]
for undirected graphs with integer weights in the range [1, M]. (The second algorithm can be
found in the full version.) Both deterministic algorithms have the same asymptotic runtime
as their randomized counterparts.

▶ Theorem 1. There is a deterministic, combinatorial SSRP algorithm for undirected,
unweighted graphs running in time Õ(m

√
n + n2) and a deterministic, algebraic SSRP

algorithm for undirected graphs with integer weights in the range [1, M] running in Õ(Mnω).

We present in Section 3 a deterministic reduction from the problem of building a Single-
Source DSO to SSRP on undirected graphs with small integer edge weights.

▶ Theorem 2. Let G be an undirected graph with integer edge weights in the range [1, M] and
let s be the source vertex. Suppose we are given access to a shortest path tree Ts of G rooted
in s and all values d(s, t, e) for vertices t of G and edges e in Ts. There is a deterministic,
combinatorial algorithm that in time O(n2) builds a Single-Source DSO of size O(M1/2 n3/2)
with Õ(1) query time. The same statement holds for vertex failures if instead we are given
access to the values d(s, t, v) for all vertices t and v of G

The algorithm does not require access to the graph G itself. As there can be up to O(n2)
relevant distances d(s, t, e), the running time is linear in the input. If the algorithm addition-
ally has access to G and is given O(m

√
Mn + n2) time, the Single-Source DSO also reports

the replacement paths P (s, t, e) in time Õ(1) per edge. The query time of the oracle can be
improved to O(1) at the cost of increasing the size of the oracle to O(M1/3 n5/3).

ESA 2021

18:4 Near-Optimal Deterministic Single-Source DSO

Plugging the deterministic SSRP algorithms of Theorem 1 into our reduction of Theorem 2,
gives the following Single-Source DSOs as corollaries.

▶ Theorem 3. There is a deterministic, combinatorial Single-Source DSO for undirected,
unweighted graphs taking O(n3/2) space, with Õ(m

√
n + n2) preprocessing time, and Õ(1)

query time. There is a deterministic, algebraic Single-Source DSO for undirected graphs with
integer weights in the range [1, M] taking O(M1/2 n3/2) space, with Õ(Mnω) preprocessing
time, and Õ(1) query time.

When comparing the results with other Single-Source DSO with o(n2) space, the prepro-
cessing time of our combinatorial solution is better by a factor of

√
n compared to previous

oracles [7, 22]. The preprocessing time of the algebraic part of Theorem 3 improves (ignoring
polylogarithmic factors) by a factor of n2.5794−ω > n0.2 over the current best algebraic (all-
pairs) DSO [19]. See Table 1 for more details. In fact, we combine the efficient preprocessing
of SSRP algorithms (seen as DSOs) with a compression scheme that achieves nearly-optimal
space. To the best of our knowledge, Theorem 3 presents the first algebraic Single-Source
DSO with o(n2) space that achieves a better performance than any all-pairs DSO. It is also
the first space-efficient Single-Source DSO for graphs with small integer weights.

We further study lower bounds for Single-Source DSOs. Note that given an oracle whose
preprocessing time is P and query time is Q, one can solve the SSRP problem in time
P + n2 · Q by building the DSO and running the queries (t, e) for every t ∈ V, e ∈ E(Ts).
Therefore, if n2 · Q = O(P), the mn1/2−o(1) + Ω(n2) conditional4 time-lower bound for the
SSRP problem [10], obtained by a reduction from BMM, implies the same lower bound for
P . The preprocessing of our combinatorial oracle in Theorem 3 is thus nearly optimal. We
further investigate how much a Single-Source DSO can be compressed. In contrast to [10],
we obtain an unconditional space-lower bound using an argument from information theory.

▶ Theorem 4. Any Single-Source DSO must take Ω(min{M1/2 n3/2, n2}) bits of space on at
least one O(n)-vertex graph with integer edge weights in the range [1, M].

A small gap remains between Theorems 2 and 4 as the space is bounded at Ω(M1/2 n3/2)
bits, while the oracle takes this many machine words. Nevertheless, it shows that on dense
graphs our Single-Source DSOs in Theorem 3 have near-optimal space.

The Single-Source DSOs presented above all have Ω(n2) preprocessing time, which cannot
be avoided for graphs with m = Ω(n3/2), assuming the BMM conjecture. SSRP algorithms
require Ω(n2) time simply to output the solution. It is not clear whether this lower bound
also applies to Single-Source DSO on sparse graphs. We partially answer this question
negatively by developing a truly subquadratic, randomized Single-Source DSO in Section 6.
We use new algorithmic techniques and structural properties of independent interest.

▶ Theorem 5. There is a randomized Single-Source DSO taking O(M1/2 n3/2) space that has
Õ(1) query time w.h.p.5 The oracle also reports a replacement path in Õ(1) time per edge
w.h.p. On graphs with m = O(M3/4 n7/4) edges, the preprocessing time is Õ(M7/8 m1/2 n11/8).
If the graph is sparse, meaning m = O(n5/4−ε/M7/4) for any ε > 0, this is Õ(n2−ε/2).

1.2 Comparison with Previous Work
Table 1 shows a comparison of the most efficient Distance Sensitivity Oracles in their respective
setting, as well as the results presented in this work. We distinguish four dimensions of
different problem types.

4 The Ω(n2) term is unconditional and stems from the size of the output, see [10].
5 An event occurs with high probability (w.h.p.) if it has probability at least 1 − n−c for some c > 0.

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:5

Table 1 Comparison of results. †The preprocessing time is for graphs with m = O(M3/4n7/4).

Preprocessing time Space Query time Setting Reference

Õ(mn) O(n2) O(1) D C W Ap [6, 16]
Õ(Mn2.5794) Õ(n2) O(1) R A I Ap [19]

Õ(mn1/2 + n2) O(n2) O(1) R C U Ss [10]
Õ(Mnω) O(n2) O(1) R A I Ss [18]
Õ(mn) Õ(n3/2) Õ(n1/2) D C U Ss [7]
Õ(mn) Õ(n3/2) Õ(1) R C U Ss [22]

Õ(mn1/2 + n2) O(n5/3) O(1) D C U Ss Lemma 10
Õ(mn1/2 + n2) O(n3/2) Õ(1) D C U Ss Theorem 3
Õ(Mnω) O(M1/3 n5/3) O(1) D A I Ss Lemma 10
Õ(Mnω) O(M1/2 n3/2) Õ(1) D A I Ss Theorem 3
Õ(M7/8 m1/2 n11/8)† O(M1/2n3/2) Õ(1) R C I Ss Theorem 5

1. Randomized (R) vs. deterministic (D),
2. Combinatorial (C) vs. algebraic (A),
3. Unweighted (U) vs. real weights (W) vs. integer weights in [1, M] (I),
4. All-Pairs (Ap) vs. single-source (Ss).

Our deterministic, combinatorial Single-Source DSO from Theorem 3 has near-optimal space,
preprocessing and query time for dense graphs. It improves the preprocessing time of the
randomized DSOs by Bernstein and Karger [6], Bilò et al. [7], and Gupta and Singh [22] by a
factor of O(

√
n). When viewing the randomized SSRP algorithm of Chechik and Cohen as

an oracle, our solution has the same preprocessing time but reduces the space requirement,
by an near-optimal factor of O(n1/3) while increasing the query time to only Õ(1).

Our algebraic combinatorial Single-Source DSO from Theorem 3 has near-optimal space
and query time for dense graphs, its preprocessing time improves over the randomized,
algebraic DSOs of Chechick and Cohen [11], Ren [30, 31], as well as Gu and Ren [19] by
a factor of Õ(n2.5794−ω). It has the same preprocessing time as the SSRP algorithm by
Grandoni and Vassilevska Williams [18], but compresses the output to O(M1/2 n3/2) space.

Our Single-Source DSO from Lemma 10 even achieves constant query time at the expense
of larger O(n5/3) (respectively, O(M1/3 n5/3)) space. All of our oracles can handle vertex
failures and are path-reporting, the query time then corresponds to the time needed per edge
of the replacement path. In Theorem 5, we also obtain Single-Source DSO with subquadratic
preprocessing time for sparse graphs.

1.3 Techniques
Multi-stage derandomization. To derandomize the SSRP algorithms, we extend the tech-
niques by Alon, Chechik, and Cohen [3] to identify a small set of critical paths we need to
hit. In [3], a single set of paths was sufficient, we extend this to a hierarchical multi-stage
framework. The set of paths in each stage depends on the hitting set found in the previous
ones. For example, a replacement path from s to t avoiding the edge e decomposes into two
shortest paths P (s, q) and P (q, t) in the original graph for some unknown vertex q, see [1].
It is straightforward to hit all of the components P (s, q). We then use this hitting set in a
more involved way to find sets of vertices that also intersect all of the subpaths P (q, t).

ESA 2021

18:6 Near-Optimal Deterministic Single-Source DSO

Versatile compression. The key observation of our reduction to SSRP is that any shortest
s-t-path can be partitioned into O(

√
Mn) segments such that all edges in a segment have

the same replacement distance. Gupta and Singh [22] proved this for unweighted graphs.
However, it is not obvious how to generalize their approach to the weighted case. We give
a simpler proof in the presence of small integer weights, which immediately transfers also
to vertex failures. We further show how to extend this to multiple targets and even reuse
it to obtain the subquadratic algorithm on sparse graphs. In [22], a randomized oracle
was presented that internally uses the rather complicated data structures of Demetrescu et
al. [14]. We instead give a deterministic construction implementable with only a few arrays.
Unfortunately, the compression scheme crucially depends on the graph being undirected.

Advanced search for replacement paths. The randomized algorithm building the DSO in
subquadratic time for sparse graphs needs to find the O(

√
Mn) segments partitioning the

s-t-path. Naively, this takes O(n) time per target vertex t as we need to explore the whole
path for potential segment endpoints and do not know the corresponding replacement paths
in advance. We use standard random sampling to hit all such replacements paths with only a
few vertices and exploit the path’s monotonicity properties to develop more advanced search
techniques. This reduces the time needed per target to O(n1−ε), after some preprocessing.
The analysis uses the fact that entire subpaths can be discarded without exploration.

Open problems. Our compression scheme and the randomized, subquadratic Single-Source
DSO on sparse graphs can also handle vertex failures rather than only edge failures. It
remains an open question whether one can obtain efficient deterministic SSRP algorithms
in the vertex-failure scenario. If an analog of Theorem 1 held for vertex failures, then
Theorem 2 would directly transfer the extension also to the DSOs of Theorem 3. Another
interesting open question is whether there is a Single-Source DSO with deterministic, truly
subquadratic time preprocessing on graphs with m = O(n3/2−ε) edges. Can one obtain
better Single-Source DSOs, and prove matching lower bounds, for sparse graphs?

2 Preliminaries

We let G = (V, E, w) denote the undirected, edge-weighted base graph on n vertices and
m edges, and tacitly assume m ⩾ n. The weights w(e), e ∈ E, are integers in [1, M] with
M = poly(n). For an undirected, weighted graph H, we denote by V (H) the set of its
vertices, and by E(H) edge set of its edges. We write e ∈ H for e ∈ E(H) and v ∈ H for
v ∈ V (H). Let P be a simple path in H. The length or weight w(P) of P is

∑
e∈E(P) w(e).

For u, v ∈ V (H), we denote by PH(u, v) a shortest path (one of minimum weight) from u to
v. If a particular shortest path is intended, this will be made clear from the context. The
distance of u and v is dH(u, v) = w(PH(u, v)). We drop the subscript when talking about
the base graph G. The restriction on the maximum weight M allows us to store any graph
distance in a single machine word on O(log n) bits. Unless explicitly stated otherwise, we
measure space complexity in the number of words.

Let x, y ∈ V (P) be two vertices on the simple path P . We denote by P [x..y] the subpath
of P from x to y. Let P1 = (u1, . . . , ui) and P2 = (v1, . . . , vj) be two paths in H. Their
concatenation is P1 ◦ P2 = (u1, . . . , ui, v1, . . . , vj), provided that ui = v1 or {ui, v1} ∈ E(H).

Fix some source vertex s ∈ V in the base graph G. For any target vertex t ∈ V and edge
e ∈ E, we let P (s, t, e) denote a replacement path for e, that is, a shortest path from s to
t in G that does not use the edge e. Its weight d(s, t, e) = w(P (s, t, e)) is the replacement

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:7

distance. Given a specific shortest path P (s, t) in G and a replacement path P (s, t, e), we can
assume w.l.o.g. that the latter is composed of the common prefix that it shares with P (s, t),
the detour part which is edge-disjoint from P (s, t), and the common suffix after P (s, t, e)
remerges with P (s, t). All statements apply to vertex failures as well.

3 Using SSRP to Build Single-Source DSOs

In this section, we prove Theorem 2. We describe how to deterministically reduce the task of
building a Single-Source DSO to computing the replacement distances in the SSRP problem.
Recall that we assume we are given a shortest path tree Ts of the base graph G rooted in
the source s. This does not loose generality as we could as well compute it in time O(m) via
Thorup’s algorithm [33]. However, the tree Ts focuses our attention to the O(n2) relevant
replacement distances in G. The failure of an edge e can only increase the distance from
s to some target t if e lies on the s-t-path P (s, t) in Ts. Given a query (e, t), we can thus
check whether e is relevant for t in O(1) time using a lowest common ancestor (LCA) data
structure of size O(n) [4]. If the maximum weight M is larger than n, we are done as we store
the relevant replacement distances, original graph distances, and the LCA data structure.

However, for M ⩽ n, there are more space-efficient solutions. Using time O(n2), that
is, linear in the number of relevant distances, we compress the space needed to store them
down to O(M1/2 n3/2) while increasing the query time only to Õ(1). This scheme also allows
several extensions, namely, handling vertex failures, reporting fault-tolerant shortest path
trees, or retaining constant query time by using slightly more space. We first give an overview
of the reduction. Suppose we have a set of pivots D ⊆ V such that any s-t-path P (s, t) in Ts

has at least one element of D among its last
√

n vertices. For a target t, let x be the pivot
on P (s, t) that is closest to t. We distinguish three cases depending on the failing edge e.

Near case. The edge e belongs to the near case if it is on the subpath P (s, t)[x..t] from
the last pivot to the target. We construct a data structure to quickly identify those edges
It is then enough to store the associated replacement distances explicitly.
Far case I. The edge e belongs to the far case I if it is on the subpath P (s, t)[s..x] and
there is a replacement path for e that uses the vertex x. We handle this by storing a
linear number of distances for every pivot in D.
Far case II. We are left with edges e on P (s, t)[s..x] for which no replacement path uses x.
We show that there are only O(M1/2 n3/2) many different replacement distances of this
kind. We can find the correct distance in Õ(1). This is the only case with a quadratic
running time, space requirements depending on M , and a super-constant query time. We
also show how to avoid the latter at the expense of a higher space complexity.

Near case. We first describe how to obtain the set D. We also take D to denote a
representing data structure. That is, for all t ∈ V , D[t] shall denote the last pivot on the
path P (s, t) in Ts. A deterministic greedy algorithm efficiently computes a small sets D.

▶ Lemma 6. There exists a set D ⊆ V with |D| ⩽
√

n , computable in time Õ(n), such that
every s-t-path in Ts contains a pivot in D among its last

√
n vertices. In the same time, we

can compute a data structure taking O(n) space that returns D[t] in constant time.

Let x = D[t] be the pivot assigned to t. An edge e belongs to the near case with respect
to t if it lies on P (x, t) = P (s, t)[x..t]. Observe that P (x, t) has less than

√
n edges. We

store d(s, t, e) for the near case in an array with (t, e) as key. With access to the distances,
the array can be computed in O(n3/2) total time and space. Consider a query (t, e) such
that e has already been determined above to be on the path P (s, t). The edge e = {u, v}
thus belongs to the near case iff D[u] = D[v] = x. If so, we look up d(s, t, e) in the array.

ESA 2021

18:8 Near-Optimal Deterministic Single-Source DSO

Far case I. We say a query (t, e) belongs to the far case if e is on the subpath P (s, x) =
P (s, t)[s..x]. These are the queries not yet handled by the process above. Note that
d(s, t, e) ⩽ d(s, x, e) + d(x, t) holds for all queries in the far case. If a replacement path
P (s, x, e) exists, P (s, x, e) ◦ P (s, t)[x..t] is some s-t-path that avoids e whose length is the
right-hand side; otherwise, we have d(s, x, e) = ∞ and d(s, t, e) ⩽ d(s, x, e) + d(x, t) holds
vacuously. We split the far case depending on the existence of certain replacement paths.
Recall that we can assume that any replacement path consists of a common pre- and suffix
with the original path P (s, t) and a detour that is edge-disjoint from P (s, t). We let (t, e)
belong to the far case I if e is on P (s, x) and there is a replacement path P (s, t, e) that
uses the vertex x. It is readily checked that for a query in the far case this holds iff
d(s, t, e) = d(s, x, e) + d(x, t). Otherwise, that is, if no replacement path P (s, t, e) uses x or,
equivalently, d(s, t, e) < d(s, x, e) + d(x, t), the query is said to be in the far case II.

It takes too much space to store the replacement distances for all edges in the far case, or
memorize which edge falls in which subcase. Instead, we build two small data structures
and, at query time, compute two (potentially different) distances. We show that always
the smaller one is correct, which we return as the final answer. First, for every pivot
x ∈ D and edge e ∈ P (s, x), we store the replacement distance d(s, x, e). Since |D| ⩽

√
n

and |E(P (s, x))| ⩽ n, we can do so in O(n3/2) time and space. Given a query (t, e) in
the far case, we access the storage corresponding to D[t] = x, retrieve d(s, x, e), and add
d(x, t) = d(s, t) − d(s, x). This gives the first candidate distance. It may overestimate
d(s, t, e), namely, if e belongs to the far case II.

Far case II. This case is more involved than the previous. We make extensive use of what
we call break points. Let e1, . . . , ek be the edges of P (s, t)[s..x] in the far case II (w.r.t. t) in
increasing distance from s. We then have d(s, t, e1) ⩾ . . . ⩾ d(s, t, ek). This is due to the fact
that any replacement path P (s, t, ei) avoids the whole subpath starting with ei and ending
in x. Its length is thus at least the replacement distance for any ej , j ⩾ i. Let ui be vertex
of ei that is closer to s. We say ui is a break point if d(s, t, ei) > d(s, t, ei+1). A break point
is the beginning of a segment in which the edges in the far case II have equal replacement
distance. We show that there are only O(

√
Mn) break points/replacement distances.

For the analysis, we let the edges choose a representative replacement path. They do so
one after another in the above order. Edge ei first checks whether one of its replacement
paths has previously been selected by an earlier edge eh, h < i. If so, it takes the same
one; otherwise, it chooses a possible replacement path arbitrarily. Let R denote the set of
representatives and let R ∈ R. We define zR to be the first vertex on the detour part of R.
The vertices zR, R ∈ R, are also important for the subquadratic algorithm in Section 6.

▶ Lemma 7. Edges ei and ej that belong to the far case II choose the same representative
iff d(s, t, ei) = d(s, t, ej). All representatives have different lengths and |R| equals the number
of break points. Let R, R′ ∈ R be such that R′ is the next shorter representative after R. We
have d(s, zR) < d(s, zR′) and all edges represented by R lie on the subpath P (s, t)[zR..zR′].
There is exactly one break point on P (s, t)[zR..zR′], the one corresponding to length w(R).

Proof. Edges with different replacement distances have disjoint sets of replacement paths to
choose from. Now suppose the replacement distances d(s, t, ei) = d(s, t, ej) are equal. Without
loosing generality, the edge ej , j ⩾ i, is further away from s and selects its representative
after ei. The representative replacement path R for edge ei also avoids ej since it does not
remerge with P (s, t) prior to pivot x. As the distances d(s, t, ej) = d(s, t, ei) = w(R) are the
same, R is in fact a replacement path for ej and is selected again as representative. The
assertions of the different lengths and the total number of representatives easily follow.

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:9

Let R ∈ R be a representative replacement path. The first vertex zR of its detour part
must be closer to s than all edges it represents as R avoids them. Let e∗ be the edge closest
to s that belongs to the far case II and is represented by R. The break point u∗ starting the
segment with replacement distance w(R) is thus the vertex of e∗ that is closer to s.

Let now R′ ∈ R be the next shorter representative after R. If we had d(s, zR′) ⩾ d(s, zR),
then R′ would be a path that avoids e∗ and has length w(R′) < w(R) = d(s, t, e∗) strictly
smaller than the replacement distance, a contradiction. Reusing the same arguments as
before, we also get that the break point corresponding to w(R′) lies after zR′ and that
the break point u∗ ∈ e∗ cannot lie below zR′ (on subpath P (s, t)[zR′ ..t]). In summary, the
subpath P (s, t)[zR..zR′] contains exactly one break point, namely, u∗. ◀

It is left to prove that |R| = O(
√

Mn). The following lemma is the heart of our
compression scheme. It simplifies and thereby generalizes a result by Gupta and Singh [22]
for unweighted undirected graphs. The argument we use is versatile enough to not only
cover integer-weighted graphs, it extends to vertex failures as well (Lemma 9). A similar
idea also allows us to design an oracle with constant query time (Lemma 10) and the
subquadratic preprocessing algorithm on sparse graphs (Theorem 5). Unfortunately, the
argument crucially depends on the graph being undirected. New techniques are needed to
compress the fault-tolerant distance information in directed graphs.

▶ Lemma 8. The number of representatives for edges on P (s, t) is |R| ⩽ 3
√

Mn .

Proof. All representatives are of different length by Lemma 7. Also, they have length at
least d(s, t), the weight of the original s-t-path P . Hence, there are only 2

√
Mn many of

length at most d(s, t) + 2
√

Mn . We now bound the number of long representatives, which
are strictly longer than that. Let R be a long representative. Its detour part is longer than
2
√

Mn , whence it must span at least 2
√

n/M vertices. Consider the path on the first√
n/M vertices of the detour starting in zR, we call it StubR. If StubR does not intersect

with StubR′ for any other long R′ ∈ R, R′ ̸= R, there can only be n/(
√

n/M) =
√

Mn

stubs in total and thus as many long representatives.
To reach a contradiction, assume the stubs of R and R′ intersect. Let e be an edge

represented by R and y ∈ V (StubR)∩V (StubR′) a vertex on both stubs. W.l.o.g. R′ is strictly
shorter than R and thus zR′ comes behind zR on the path P and e is on P [zR..zR′] (Lemma 7).
Note that w(StubR), w(StubR′) ⩽

√
Mn . Therefore, the path P ∗ = P [s..zR] ◦ R[zR..y] ◦

R′[y..zR′] ◦ P [zR′ ..t] avoids e and has length w(P ∗) ⩽ d(s, t) + w(R[zR..y]) + w(R′[y..zR′]) ⩽
d(s, t) + 2

√
Mn < w(R). This is a contradiction to R being the representative of e. ◀

Observe how the argument in the proof above depends on the fact that we can traverse the
segment R′[zR′ ..y] ⊆ StubR′ in both directions. When following R′ from s to t, we visit zR′

prior to y, while for P ∗ it is the other way around. This is not necessarily true in a directed
graph. Indeed, one can construct examples that have a directed path on Ω(n) edges in which
each of them has its own replacement distance.

With access to the replacement distances, all break points can be revealed by a linear scan
of the path P (s, t) in time O(n). Let zi1 , . . . , zi|R| be the break points ordered by increasing
distance to the source s and ei1 , . . . , ei|R| the corresponding edges. For the data structure,
we compute an ordered array of the original distances d(s, zi1) < · · · < d(s, zi|R|) associated
with the replacement distances d(s, t, eij

), taking O(
√

Mn) space. Let (e, t) be a query with
e = {u, v}. We compute the index j = arg max1⩽k⩽|R| {d(s, zik

) ⩽ d(s, u)}, with a binary
search on the array in O(log n) time and retrieve d(s, t, eij

) as the second candidate distance.

ESA 2021

18:10 Near-Optimal Deterministic Single-Source DSO

The edge e lies on the subpath P (s, t)[zij ..zij+1] (respectively, on P (s, t)[zi|R| ..x] if j = |R|).
It thus has replacement distance at most d(s, t, eij

). If e belongs to the far case II, the
second candidate distance is exact and (strictly) smaller than the first one d(s, x, e) + d(x, t);
otherwise, the first candidate is smaller (or equal) and correct.

Scaling this solution to all targets t ∈ V gives a total space requirement of O(M1/2 n3/2).
However, the preprocessing time is O(n2), dominated by the linear scans for each target.

3.1 Extensions
There are several possible extensions for our Single-Source DSO. While the transfer to
vertex failures comes for free, reducing the query time to a constant, making the oracle
path-reporting, or returning the whole fault-tolerant shortest path tree incurs additional costs
of a higher space requirement or preprocessing time, respectively. We still assume the setting
of Theorem 2, i.e., oracle access to the replacement distances for failing edges/vertices.

Vertex failures. The solutions for the near case, and far case I hold verbatim also for vertex
failures. A vertex on the path P (s, t)[s..x], except s itself, belongs to the far case II iff it
satisfies d(s, t, v) < d(s, t, x) + d(x, t). Let RV be the sets of representatives, now chosen
by the vertices. The advantage of the proof of Lemma 8 is that it easily transfers to vertex
failures. While the stubs of the detours may no longer be unique, they now intersect at most
one other stub and identify pairs of representatives.

▶ Lemma 9. The number of representatives for vertices on P (s, t) is |RV | ⩽ 5
√

Mn .

Constant query time. If we could query the break point of an edge in the far case II in O(1)
time, our Single-Source DSO had a constant overall query time. However, since the break
points also depend on the target t, hard-coding them would yield a O(n2) space solution,
which is wasteful for M = o(n). Instead, we improve the analysis in Lemma 8. It hardly
made any use of the fact that the pivot x is among the last

√
n vertices on the s-t-path

in Ts and considered only a single target. We now strike a balance between selecting more
pivots and grouping targets with the same assigned pivot together.

▶ Lemma 10. There is an algorithm that, when given oracle access to the replacement
distances for failing edges (vertices), preprocesses in O(n2) time a Single-Source DSO for
edge (vertex) failures taking O(min{M1/3 n5/3, n2}) space and having constant query time.

Path-reporting oracles. We can adapt our Single-Source DSOs to also report the replacement
paths using the same space. However, to do so it is not enough to have access to the
replacement distances as the paths depend on the structure of G. Also, making the oracle
path-reporting increases in preprocessing time, which now also depends on m.

▶ Lemma 11. With access to G, there is a path-reporting Single-Source DSO for edge (vertex)
failures with O(min{m

√
Mn , mn}+n2) preprocessing time and either O(min{M1/2 n3/2, n2})

space and Õ(1) query time per edge, or O(min{M1/3 n5/3, n2}) space and O(1) query time.

Fault-tolerant shortest path tree oracles. We are going one step further in the direction
of fault-tolerant subgraphs, see for example [8, 29]. We enable our oracle to report, for any
failing edge or vertex, the whole fault-tolerant single-source shortest path tree. Compared to
the path-reporting version, we make sure to return every tree edge only once.

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:11

▶ Lemma 12. With access to G, there is a data structure with O(min{m
√

Mn , mn} + n2)
preprocessing time, taking O(min{M1/2 n3/2, n2}) space that, upon query e ∈ E (respectively,
v ∈ V), returns a shortest path tree for G − e (respectively, G − v) rooted in s in time O(n).

4 Space Lower Bound

We now present an information-theoretic lower bound showing that the space of the Single-
Source DSO resulting from our reduction is optimal up to the word size.

▶ Theorem 4. Any Single-Source DSO must take Ω(min{M1/2 n3/2, n2}) bits of space on at
least one O(n)-vertex graph with integer edge weights in the range [1, M].

Proof. Let M ′ = min{M, n}. We give an incompressibility argument in that we show that
one can store any binary n × n matrix X across

√
n/M ′ Single-Source DSOs. Not all of

them can use only o(
√

M ′ n3/2) bits of space as otherwise this would compress X to o(n2)
bits. We create graphs G1, G2, . . . , G√

n/M ′ . Each of them has O(n) vertices and maximum
edge weight M . The graph Gk will be used to store the

√
M ′n rows of X with indices from

(k − 1)
√

M ′n + 1 to k
√

M ′n .
We first describe the parts that are common to all of the Gk. Let A = {a1, . . . , an}

and B = {b1, . . . , bn} be two sets of n vertices each, we connect ai and bj by an edge of
weight 1 iff X[i, j] = 1. There are no other edges between A and B. We also add a path
P = (v1, . . . , v√

M ′n) all of whose edges have weight 1. The vertex s = v√
M ′n is the source

in each graph. Also, let {v0, v1} be an edge of weight M , it serves to raise the maximum
edge weight to M , if needed. Specifically in Gk and for each 1 ⩽ i ⩽

√
M ′n , we connect the

vertex vi with a(k−1)
√

M ′n +i by a path Pk,i of total weight 2i − 1. Due to the edge weights,
we can make the path Pk,i so that it uses at most 2i/M ′ edges and thus so many new vertices.
In total, Gk has at most 2n + (

√
M ′n + 1) +

∑√
M ′n

i=1
2i

M ′ = O(n) vertices due to M ′ ⩽ n.
Let ei denote the edge {vi−1, vi} on P . We claim that X[(k−1)

√
M ′n + i, j] = 1 if

and only if the replacement distance in Gk is dGk
(v√

M ′n , bj , ei) =
√

M ′n + i. We assume
k = 1, larger k follow in the same fashion. Observe that one has to go through a vertex in
A′ = {ai, ai+1, . . . , a√

M ′n } to reach bj from the source s = v√
M ′n . Conversely, A′ is the

only part of A that is reachable from s in G1 − ei without using any vertex of B.
If there is no replacement path from s to bj avoiding ei, we have dG1(s, bj , ei) = ∞ and

X[i′, j] = 0 for all i ⩽ i′ ⩽
√

M ′n , as desired. Let thus P (s, bj , ei) be a replacement path and
further ai∗ its first vertex that is in A (the one closest to the source s). Therefore, i∗ ⩾ i and
P (s, bj , ei) has the form (v√

M ′n , . . . , vi∗) ◦ P1,i∗ ◦ P ′ for some ai∗-bj-path P ′. It holds that
dG1(v√

M ′n , bj , ei) = (
√

M ′n − i∗)+(2i∗ −1)+w(P ′) =
√

M ′n + i∗ −1+w(P ′) ⩾
√

M ′n + i.
Equality holds only if i∗ = i and w(P) = 1, thus ai must be a neighbor of bj and X[i, j] = 1
follows; otherwise, the replacement distance is strictly larger. ◀

5 Derandomizing Single-Source Replacement Paths Algorithms

In this section, we derandomize the combinatorial Õ(m
√

n + n2) time algorithm for SSRP
of Chechik and Cohen [10] obtaining the same asymptotic running time. In the full version,
we also derandomize the algebraic SSRP algorithm of Grandoni and Vassilevska Williams.
When combined with the reduction of Section 3, they give deterministic Single-Source DSOs.

Suppose the base graph G = (V, E) is unweigted. It follows from a result by Afek et al. [1,
Theorem 1] that for every target t ∈ V , edge e ∈ E, and replacement path P (s, t, e) in G − e,
there exists a vertex q on P (s, t, e) such that both subpaths P (s, t, e)[s..q] and P (s, t, e)[q..t]

ESA 2021

18:12 Near-Optimal Deterministic Single-Source DSO

are shortest paths in the original graph G. Computing the vertex q directly for each pair
(t, e) is too expensive. Instead, the algorithm in [10] employs a random hitting set for the
subpaths. The only randomization used in [10] is to sample every vertex independently with
probability O((log n)/

√
n) to create a set B ⊆ V of so-called pivots. The set B contains

Õ(
√

n) such pivots w.h.p. The correctness of the algorithm relies on the following important
property. With high probability, there exists a vertex x ∈ B ∪ {s} before q on P (s, t, e) and
a vertex y ∈ B ∪ {t} after q such that the subpath of P (s, t, e)[x..y] has length only Õ(

√
n).

Here, we describe how to compute the set B deterministically with the same properties. We
defer the proof of correctness of the algorithm to the full version.

We derandomize the vertex selection using an approach similar to the one of Alon,
Chechik, and Cohen [3]. Given paths D1, . . . , Dk, where each contains at least L vertices,
the folklore greedy algorithm constructs a hitting set of size Õ(n/L), by iteratively covering
the maximum number of unhit paths, in Õ(kL) time. The challenge is to quickly compute a
suitable set of paths. We construct three systems of path L1, L2, and L3 to obtain B.

We prepare some notation. For a rooted tree T , a vertex v ∈ V (T), and an integer
parameter L ⩾ 0, let LastT,L(v) be the subpath containing the last L edges of the path in
the tree T from the root to v, or the whole path if it has length less than L. Let |LastTs,L(v)|
denote the number of edges on the path.

Paths L1 and hitting set B1. Set L1 contains the last
√

n /2 edges of every path in Ts,
L1 = {LastTs,

√
n /2(v) | v ∈ V, |LastTs,

√
n /2(v)| =

√
n /2}. As an alternative, we can also

use Lemma 6 to compute in Õ(n) time a deterministic hitting set B1 for L1 of size 2
√

n .
Paths L2 and hitting set B2. We run a breadth-first search from every vertex x ∈ B1
to compute the shortest paths trees Tx rooted in x, and define the second set to be L2 =
{LastTx,

√
n /2(y) | x ∈ B1, y ∈ V, |LastTx,

√
n /2(y)| =

√
n /2} Greedy selection computes a

hitting set B2 for L2 of size Õ(
√

n) in total time Õ(n2).

Before we can define L3, we need additional notation. Let e = {u, v} be an edge in Ts

such that u is closer to s than v and let Ts,v be the subtree of Ts rooted in v. Let further
Ge = (Ve, Ee, we) be a weighted graph such that Ve contains s and the vertices x ∈ V (Ts,v)
with d(s, x) ⩽ d(s, v) + 4

√
n . The edges of Ge that are inside of Ts,v are the same as in G,

and additionally every shortest path P (s, x) from s to every vertex x ∈ Ve such that P (s, x)
passes only through vertices outside of Ve (except for its first vertex s and its last vertex
x ∈ Ve) is replaced with a shortcut edge (s, x) whose weight is equal to the length d(s, x)
of the corresponding shortest path P (s, x), preserving the original paths distances (using
weights). The SSRP algorithm in [10] computes Dijkstra’s algorithm from s in each Ge. We
let TGe

denote the resulting shortest path tree.

Paths L3 and hitting set B3. The third set L3 := {LastTGe ,
√

n /2(x) | x ∈ V, e ∈ E(Ts),
|LastTGe ,

√
n /2(x)| =

√
n /2} contains O(n3/2) paths as every vertex x ∈ V belongs to at

most 4
√

n graphs Ge. We thus get a hitting set B3 of size Õ(
√

n) in time Õ(n2).
The deterministic set B = B1 ∪ B2 ∪ B3 can then be used as pivots in the SSRP algorithm.

6 Subquadratic Preprocessing on Sparse Graphs

Finally, we show how to obtain a Single-Source DSO with subquadratic preprocessing at
least on sparse graphs. In order to prove Theorem 5, we present an algorithm running in
time Õ(M7/8 m1/2 n11/8 + M1/8 m3/2

n3/8). If m = O(M3/4 n7/4), then the dominating term is
Õ(M7/8 m1/2 n11/8). If the graph even satisfies m = O(n5/4−ε/M7/4) for any ε > 0, then

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:13

the preprocessing time is Õ(n2−ε/2). We explain the main part of the randomized algorithm
that allows us to design the Single-Source DSO. The algorithm is easily adaptable to deal
with vertex failures as well. The proofs and some of the technical details are deferred to the
full version due to the lack of space. In the following, we assume that the graph is indeed
sparse, that is, m = O(n5/4−ε/M7/4). The next sampling lemma is folklore, see e.g. [18, 32].

▶ Lemma 13. Let H be a graph with n vertices, c > 0 a positive constant, and L such that
L ⩾ c ln n. Define a random set R ⊆ V by sampling each vertex to be in R independently
with probability (c ln n)/L. Then, with probability at least 1 − 1

nc , the size of R is Õ(n/L).
Let further P be a set of ℓ simple paths in H, each of which spans at least L vertices. Then,
with probability at least 1 − ℓ

nc , we have V (P) ∩ R ̸= ∅ for every P ∈ P.

We employ random sampling to hit one shortest path on at least L = n11/8

M1/8 m1/2 edges for
every pair of vertices. Any vertex is included in the set R of random pivots independently
with a probability of (3 ln n)/L. We also include the source s in R to hit all short s-t-paths.
By Lemma 13, we have |R| = Õ(n/L) = Õ

(
M1/8 m1/2

n3/8

)
w.h.p. Randomization is used here

since it takes too long to handle the O(n2) paths explicitly.
We additionally construct a set D of (possibly different, regular) pivots that are used to

classify replacement paths into near case, far case I, and far case II similar to Section 3. The
set D is computed deterministically using Lemma 6, where we select a pivot every

√
n levels.

For a target vertex t ≠ s, the proper pivot of t shall be that pivot x ∈ D on the path P (s, t)
in Ts that is closest to t but satisfies d(x, t) ⩾ 4ML, or x = s if there is no such pivot. We
let D1[t] denote the proper pivot of t and D2[t] = D1[D1[t]], provided that D1[t] ̸= s.

For every random pivot χ ∈ R and every edge e on the path P (s, χ), we compute d(s, χ, e)
in Õ(m) time per pivot using the algorithm of Malik, Mittal, and Gupta [26]. In the same
time bound, we also get the vertex of P (s, χ) at which P (s, χ, e) diverges and we assume
that P (s, χ, e) represents the path that diverges from P (s, χ) at a vertex that is as close as
possible to s.6 For each pivot x ∈ D and every e on P (s, x), we also compute d(s, x, e). This
takes total time Õ(m(|D| + |R|)) = Õ

(
mn1/2 + M1/8 m3/2

n3/8

)
= Õ

(
m1/2 n9/8−ε/2

M7/8 + M1/8 m3/2

n3/8

)
and allows us to answer replacement distance queries in O(1) time if the target is in D ∪ R.

We are left to handle non-pivot targets. Fix a t ∈ V \(D ∪ R) and let x1 = D1[t], and
x2 = D2[t]. We use similar cases as before.

Near case. The edge e is on P (s, t)[x2..t] = P (x2, t).
Far case I. The edge e is on P (s, t)[s..x2] = P (s, x2) and there is a replacement path
P (s, t, e) that passes through x2.
Far case II. The edge e is on P (s, x2) and there is no replacement path P (s, t, e) that
passes through x2.

In the remainder, we show how to efficiently compute the replacement distances in the far
case II as previously this was the only case with quadratic run time. The technical details of
the near case are reported in full version. A shortest path tree of G and the replacement
distances to targets in D are enough to handle the far case I, see Section 3.

Since in the far case II the pivot x2 lies on P (s, t), we can assume P (s, t) to have length
d(s, t) ⩾ d(x2, t) ⩾ 4ML and at least 4L edges. In the following, we use different indexing
schemes pointing to objects and distances related to P (s, t), all of them are ordered from the
source s to pivot x2. First, we denote by R1, . . . , Rk the k representative replacement paths

6 The replacement path P (s, χ, e) computed in [26] is obtained as the concatenation of a subpath P (s, u)
of Ts, an edge {u, v} of G − e, and a subpath P (v, χ) in Tχ (the shortest paths tree of G rooted at χ).

ESA 2021

18:14 Near-Optimal Deterministic Single-Source DSO

for edges in the far case II. We have k ⩽ 3
√

Mn by Lemma 8. Let the distinguished edge
e∗

ℓ ∈ P (s, t) be the one that is closest to s such that Rℓ represents e∗
ℓ , i.e., Rℓ is a replacement

path in G − e∗
ℓ and we fall in far case II. Set dℓ = w(Rℓ). As no replacement path from s

to t for edge e∗
ℓ uses vertex x2, we have dℓ < d(s, x2, e∗

ℓ) + d(x2, t). The distinguished edges
e∗

1, . . . , e∗
k are ordered by increasing distance from s, this implies d1 > · · · > dk for their

replacement distances, see Section 3. Furthermore, let N be the number of all edges (of the
far cases I and II) on the path P (s, x2) = (e1, e2, . . . , eN), seen in order from s to x2. This
way, we identify P (s, x2) with the interval [1, N], an index j ∈ [1, N] stands for the j-th edge
ej on P (s, x2). With a slight abuse of notation, we also say that ej ∈ [a, b] in case j ∈ [a, b].

We employ the random pivots to efficiently compute all the k pairs (dℓ, e∗
ℓ) w.h.p. The

key idea is that, for each failing edge e on P (s, x2), there exists w.h.p. a random pivot χ ∈ R

such that d(χ, t) ⩽ ML and d(s, t, e) = d(s, χ, e) + d(χ, t) simultaneously hold. To see this,
recall that any replacement path P (s, t, e) has at least 4L edges and let y be the vertex such
that P (s, t, e)[y..t] consists of the last L of them. We claim that P (s, t, e)[y..t] is in fact a
shortest path in G. Assume there were a shorter y-t-path, then it must contain e and have
length at least d(x2, t) ⩾ 4ML, a contradiction. Therefore, some shortest y-t-path in G has
at least L edges and is thus hit by a random pivot χ w.h.p., which gives the equality. Any
reference to high probability refers to this fact. We use it to design a recursive algorithm
that finds the pairs (dℓ, e∗

ℓ) w.h.p. in time O(|R|M3/4 n3/4) = Õ(M7/8 m1/2 n3/8) per target.
Recall that we view P (s, x2) as [1, N]. When exploring a subinterval [a, b], the algorithm

searches for a pair (dℓ, e∗
ℓ) with a distinguished edge e∗

ℓ ∈ [a, b]. The algorithm knows both an
upper bound ∆[a,b] and a lower bound δ[a,b] on the admissible values for dℓ. More precisely,
∆[a,b] + 1 corresponds w.h.p. to the smallest possible value dℓ′ such that e∗

ℓ′ ∈ [1, a−1] (the
lower the index, the higher is dℓ′); similarly, δ[a,b] − 1 is the the largest possible value dℓ′ for
e∗

ℓ′ ∈ [b+1, N]. In the beginning, we set ∆[1,N] = ∞, δ[1,N] = 0 and the algorithm explores
the entire interval [1, N]. It terminates when there are no more unexplored subintervals.

We now describe the search for dℓ with e∗
ℓ ∈ [a, b]. We assume a ⩽ b and δ[a,b] ⩽ ∆[a,b] as

otherwise no such pair exists. Set µ = maxj∈[a,b]{d(s, x2, ej)+d(x2, t)}. The algorithm keeps
searching in the interval only if µ > δ[a,b]. Indeed, if µ ⩽ δ[a,b], we know for sure that such a
pair does not exist as there must be a replacement path (of type far case I) that passes through
vertex x2. We first compute the largest index j ∈ [a, b] for which µ = d(s, x2, ej) + d(x2, t).
We do so by employing a range minimum query (RMQ) data structure to support such
queries in constant time after an O(N) = O(n) time preprocessing [4]. Observe that the
same data structure can be reused for all the target vertices t′ for which D2[t′] = x2. It
is enough that it stores the values d(s, x2, e), instead of d(s, x2, e) + d(x2, t). The former
distances are independent of the considered target and we already computed them above.
We use only O(|D|) RMQ data structures, which we prepare in O(n|D|) = O(n3/2) time.

In the following, we assume µ > δ[a,b]. We select a candidate replacement path for ej by
choosing the shortest one that runs through a random pivot in O(|R|) time via brute-force
search in the data we computed above for the targets in R. Ties are broken in favor of the
replacement path P (s, χ, ej) that diverges from P (s, x2) at the vertex that is closest to s.
Let δ = minχ∈R

{
d(s, χ, ej) + d(χ, t)

}
be the length of such a replacement path, w.h.p. it is

the actual replacement distance P (s, t, ej). Let further χj be the minimizing random pivot,
and zj the vertex of P (s, x2) at which P (s, χj , ej) diverges. We check whether δ < µ and
δ ⩽ ∆[a,b] holds. If either of the two conditions is violated, then there is no need to keep
searching in the interval [a, j], as shown in the next lemma. In this case, the algorithm makes
a recursive call on the lower interval [j+1, b] (the one with smaller replacement distances)
by setting ∆[j+1,b] = ∆[a,b] and δ[j+1,b] = δ[a,b]. We say that the search was unsuccessful.

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:15

▶ Lemma 14. If δ ⩾ µ or δ > ∆[a,b], then, w.h.p. we have e∗
ℓ ̸∈ [a, j] for all ℓ ∈ [k].

Suppose the search is successful, that is, δ < µ and δ ⩽ ∆[a,b]. We then use binary
search techniques7 to compute in O(log n) time the smallest index i ∈ [a, j] for which the
edge ei lies on the subpath P (s, x2)[zj ..x2] and δ < d(s, x2, ei) + d(x2, t) holds. The case
i = j is possible. The condition on ei is such that P (s, χj , ej) also avoids ei, which implies
d(s, t, ei) ⩽ δ < d(s, x2, ei) + d(x2, t). The edge ei must belong to the far case II w.r.t. target
t. We show that in fact (δ, ei) is w.h.p. the sought pair with e∗

ℓ ∈ [a, j] and minimum dℓ.

▶ Lemma 15. Let ℓ ∈ [k] be maximal such that e∗
ℓ ∈ [a, j]. Then, w.h.p. δ = dℓ and ei = e∗

ℓ .

The algorithm outputs (δ, ei) and recurses on the lower interval [j+1, b] with new bounds
∆[j+1,b] = δ − 1 and δ[j+1,b] = δ[a,b], as well as on the upper interval [a, i−1], with ∆[a,i−1] =
∆[a,b] and δ[a,i−1] = δ + 1. This is justified since the edges in [i, j] that belong to the far case
II are w.h.p. precisely the ones represented by the path Rℓ of length dℓ = δ.

The time needed for one target t is proportional (up to a log-factor) to the number
of random pivots and the overall number of searches. There are k = O(

√
Mn) successful

searches by Lemma 8. The following lemma bounds the number of unsuccessful searches.

▶ Lemma 16. The number of unsuccessful searches for a single target vertex is O(M3/4 n3/4).

The algorithm computes w.h.p. all pairs for one target vertex in time Õ(|R|M3/4 n3/4) =
Õ(M7/8 m1/2 n3/8), scaling this to all targets gives Õ(M7/8 m1/2 n11/8).

References
1 Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith Cohen, and Michael Merritt. Restora-

tion by Path Concatenation: Fast Recovery of MPLS Paths. Distributed Computing, 15:273–283,
2002. doi:10.1007/s00446-002-0080-6.

2 Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method and Faster Matrix
Multiplication. In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA), pages
522–539, 2021. doi:10.1137/1.9781611976465.32.

3 Noga Alon, Shiri Chechik, and Sarel Cohen. Deterministic Combinatorial Replacement Paths
and Distance Sensitivity Oracles. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming, (ICALP), pages 12:1–12:14, 2019. doi:10.4230/
LIPIcs.ICALP.2019.12.

4 Michael A. Bender and Martin Farach-Colton. The LCA Problem Revisited. In Proceedings
of the 4th Latin American Symposium Theoretical Informatics (LATIN), pages 88–94, 2000.
doi:10.1007/10719839_9.

5 Aaron Bernstein and David R. Karger. Improved Distance Sensitivity Oracles via Random
Sampling. In Proceedings of the 19th Symposium on Discrete Algorithms (SODA), pages 34–43,
2008. URL: https://dl.acm.org/citation.cfm?id=1347082.1347087.

6 Aaron Bernstein and David R. Karger. A Nearly Optimal Oracle for Avoiding Failed Vertices
and Edges. In Proceedings of the 41st Symposium on Theory of Computing (STOC), pages
101–110, 2009. doi:10.1145/1536414.1536431.

7 Davide Bilò, Keerti Choudhary, Luciano Gualà, Stefano Leucci, Merav Parter, and Guido
Proietti. Efficient Oracles and Routing Schemes for Replacement Paths. In Proceedings of
the 35th Symposium on Theoretical Aspects of Computer Science (STACS), pages 13:1–13:15,
2018. doi:10.4230/LIPIcs.STACS.2018.13.

7 Let interval [a′, b′] ⊆ [a, j] lie entirely below zj . We divide it into subintervals [a′, j′] and [j′+1, b′] of
roughly equal sizes and check whether the maximum value returned by the RMQ data structure on
query [a′, j′] is still larger than δ. If so, we recurse on the interval [a′, j′]; otherwise, on [j′+1, b′].

ESA 2021

https://doi.org/10.1007/s00446-002-0080-6
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.1007/10719839_9
https://dl.acm.org/citation.cfm?id=1347082.1347087
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.4230/LIPIcs.STACS.2018.13

18:16 Near-Optimal Deterministic Single-Source DSO

8 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-Tolerant Approximate
Shortest-Path Trees. Algorithmica, 80:3437–3460, 2018. doi:10.1007/s00453-017-0396-z.

9 Jan van den Brand and Thatchaphol Saranurak. Sensitive Distance and Reachability Oracles
for Large Batch Updates. In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 424–435. IEEE
Computer Society, 2019. doi:10.1109/FOCS.2019.00034.

10 Shiri Chechik and Sarel Cohen. Near Optimal Algorithms for the Single Source Replacement
Paths Problem. In Proceedings of the 30th Annual Symposium on Discrete Algorithms (SODA),
pages 2090–2109, 2019. doi:10.1137/1.9781611975482.126.

11 Shiri Chechik and Sarel Cohen. Distance Sensitivity Oracles with Subcubic Preprocessing
Time and Fast Query Time. In Proccedings of the 52nd Symposium on Theory of Computing
(STOC), pages 1375–1388, 2020. doi:10.1145/3357713.3384253.

12 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f -Sensitivity Distance Ora-
cles and Routing Schemes. Algorithmica, 63:861–882, 2012. doi:10.1007/s00453-011-9543-0.

13 Shiri Chechik and Ofer Magen. Near Optimal Algorithm for the Directed Single Source
Replacement Paths Problem. In Proceedings of the 47th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 81:1–81:17, 2020. doi:10.4230/LIPIcs.ICALP.
2020.81.

14 Camil Demetrescu, Mikkel Thorup, Rezaul A. Chowdhury, and Vijaya Ramachandran. Oracles
for Distances Avoiding a Failed Node or Link. SIAM Journal on Computing, 37:1299–1318,
2008. doi:10.1137/S0097539705429847.

15 Ran Duan and Seth Pettie. Dual-failure Distance and Connectivity Oracles. In Proceedings
of the 20th Symposium on Discrete Algorithms (SODA), pages 506–515, 2009. URL: https:
//dl.acm.org/citation.cfm?id=1496770.1496826.

16 Ran Duan and Tianyi Zhang. Improved Distance Sensitivity Oracles via Tree Partitioning. In
Proceedings of the 15th Algorithms and Data Structures Symposium (WADS), pages 349–360,
2017. doi:10.1007/978-3-319-62127-2_30.

17 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved Distance Sensitivity Oracles via
Fast Single-Source Replacement Paths. In Proceedings of the 53rd Symposium on Foundations
of Computer Science (FOCS), pages 748–757, 2012. doi:10.1109/FOCS.2012.17.

18 Fabrizio Grandoni and Virginia Vassilevska Williams. Faster Replacement Paths and Distance
Sensitivity Oracles. ACM Transaction on Algorithms, 16:15:1–15:25, 2020. doi:10.1145/
3365835.

19 Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in O(n2.5794M) Time. In
Proceedings of the 48th International Colloquium on Automata, Languages, and Programming
(ICALP), 2021. To appear.

20 Yuzhou Gu, Adam Polak, Virginia Vassilevska Williams, and Yinzhan Xu. Faster Monotone
Min-Plus Product, Range Mode, and Single Source Replacement Paths. In Proceedings of the
48th International Colloquium on Automata, Languages, and Programming (ICALP), 2021.
To appear.

21 Manoj Gupta, Rahul Jain, and Nitiksha Modi. Multiple Source Replacement Path Problem.
In Proceedings of the 39th Symposium on Principles of Distributed Computing (PODC), pages
339–348, 2020. doi:10.1145/3382734.3405714.

22 Manoj Gupta and Aditi Singh. Generic Single Edge Fault Tolerant Exact Distance Oracle. In
Proceedings of the 45th International Colloquium on Automata, Languages, and Programming,
(ICALP), pages 72:1–72:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.72.

23 John Hershberger and Subhash Suri. Vickrey Prices and Shortest Paths: What is an edge
worth? In Proceedings of the 42nd Symposium on Foundations of Computer Science (FOCS),
pages 252–259, 2001. doi:10.1109/SFCS.2001.959899.

24 John Hershberger and Subhash Suri. Erratum to “Vickrey Pricing and Shortest Paths: What
is an edge worth?”. In Proceedings of the 43rd Symposium on Foundations of Computer Science
(FOCS), page 809, 2002. doi:10.1109/SFCS.2002.1182006.

https://doi.org/10.1007/s00453-017-0396-z
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1137/1.9781611975482.126
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.4230/LIPIcs.ICALP.2020.81
https://doi.org/10.4230/LIPIcs.ICALP.2020.81
https://doi.org/10.1137/S0097539705429847
https://dl.acm.org/citation.cfm?id=1496770.1496826
https://dl.acm.org/citation.cfm?id=1496770.1496826
https://doi.org/10.1007/978-3-319-62127-2_30
https://doi.org/10.1109/FOCS.2012.17
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3382734.3405714
https://doi.org/10.4230/LIPIcs.ICALP.2018.72
https://doi.org/10.1109/SFCS.2001.959899
https://doi.org/10.1109/SFCS.2002.1182006

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:17

25 François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 296–303,
2014. doi:10.1145/2608628.2608664.

26 Kavindra Malik, A. K. Mittal, and Sumit K. Gupta. The k Most Vital Arcs in the Shortest Path
Problem. Operations Research Letters, 8:223–227, 1989. doi:10.1016/0167-6377(89)90065-5.

27 Enrico Nardelli, Guido Proietti, and Peter Widmayer. A Faster Computation of the Most
Vital Edge of a Shortest Path. Information Processing Letters, 79:81–85, 2001. doi:10.1016/
S0020-0190(00)00175-7.

28 Enrico Nardelli, Guido Proietti, and Peter Widmayer. Finding the Most Vital Node of a Shortest
Path. Theoretical Computer Science, 296:167–177, 2003. doi:10.1016/S0304-3975(02)
00438-3.

29 Merav Parter and David Peleg. Sparse Fault-Tolerant BFS Structures. ACM Transactions on
Algorithms, 13:11:1–11:24, 2016. doi:10.1145/2976741.

30 Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time. In
Proceedings of the 28th European Symposium on Algorithms (ESA), pages 79:1–79:13, 2020.
doi:10.4230/LIPIcs.ESA.2020.79.

31 Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time. CoRR,
abs/2007.11495, 2020. ArXiv preprint. Full version of [30]. arXiv:2007.11495.

32 Liam Roditty and Uri Zwick. Replacement Paths and k Simple Shortest Paths in Unweighted
Directed Graphs. ACM Transaction on Algorithms, 8:33:1–33:11, 2012. doi:10.1145/2344422.
2344423.

33 Mikkel Thorup. Undirected Single-Source Shortest Paths with Positive Integer Weights in
Linear Time. Journal of the ACM, 46:362–394, 1999. doi:10.1145/316542.316548.

34 Mikkel Thorup and Uri Zwick. Approximate Distance Oracles. Journal of the ACM, 52:1–24,
2005. doi:10.1145/1044731.1044732.

35 Virginia Vassilevska Williams. Multiplying Matrices Faster Than Coppersmith-Winograd. In
Proceedings of the 44th Symposium on Theory of Computing (STOC), pages 887–898, 2012.
doi:10.1145/2213977.2214056.

36 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic Equivalences Between Path,
Matrix, and Triangle Problems. Journal of the ACM, 65:27:1–27:38, 2018. doi:10.1145/
3186893.

37 Oren Weimann and Raphael Yuster. Replacement Paths and Distance Sensitivity Oracles
via Fast Matrix Multiplication. ACM Transactions on Algorithms, 9:14:1–14:13, 2013. doi:
10.1145/2438645.2438646.

ESA 2021

https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1016/0167-6377(89)90065-5
https://doi.org/10.1016/S0020-0190(00)00175-7
https://doi.org/10.1016/S0020-0190(00)00175-7
https://doi.org/10.1016/S0304-3975(02)00438-3
https://doi.org/10.1016/S0304-3975(02)00438-3
https://doi.org/10.1145/2976741
https://doi.org/10.4230/LIPIcs.ESA.2020.79
http://arxiv.org/abs/2007.11495
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/316542.316548
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2438645.2438646

	1 Introduction
	1.1 Our Contribution
	1.2 Comparison with Previous Work
	1.3 Techniques

	2 Preliminaries
	3 Using SSRP to Build Single-Source DSOs
	3.1 Extensions

	4 Space Lower Bound
	5 Derandomizing Single-Source Replacement Paths Algorithms
	6 Subquadratic Preprocessing on Sparse Graphs

