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Abstract
This paper considers time exchanges via a common platform (e.g., markets for exchanging time
units, positions at education institutions, and tuition waivers). There are several problems asso-
ciated with such markets, e.g., imbalanced outcomes, coordination problems, and inefficiencies.
We model time exchanges as matching markets and construct a non-manipulable mechanism that
selects an individually rational and balanced allocation which maximizes exchanges among the
participating agents (and those allocations are efficient). This mechanism works on a preference
domain whereby agents classify the goods provided by other participating agents as either unac-
ceptable or acceptable, and for goods classified as acceptable agents have specific upper quotas

representing their maximum needs.
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1 Introduction

This paper considers time exchanges, i.e., markets where agents have initial endowments (that they

wish to exchange with other agents), and there is a central organization overseeing the exchanges.
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Three well-known time exchange markets are (i) the Erasmus program where more than 5,000 Eu-
ropean higher education institutions across 37 countries participate to exchange students for shorter
time periods;1 (i1) the US-based program The Tuition Exchange, Inc. (TTEI) where tuition waivers
can be used by family members of faculty to attend colleges without paying tuition fees (Dur and
Unver, 2019); and (iii) time banks where groups of individuals and/or organizations set up common
platforms to trade services among themselves (Cahn, 2011). Even if many exchange systems have
been operating for decades, we argue that the absence of a centralized market structure is a source of
inefficiency and that it may lead to “unbalanced” exchanges. These problems will ultimately threaten
the long run sustainability of the exchange market. Given this observation, we propose a centralized
market structure where exchanges are identified using a “priority mechanism” that satisfies a number
of desirable properties on a reduced, yet relevant, preference domain.

As claimed above, there are reasons to believe that these exchange markets often are less effi-
cient than centralized markets. First, centralized and computer-based clearing houses typically have
lower overhead costs than their counterparts above. Second, it is challenging to identify and coor-
dinate longer exchange cycles on “semi-centralized markets.” By centrally organizing exchanges, a
formal matching mechanism can identify and coordinate longer trading cycles based on reported pref-
erences, which will lead to more efficient outcomes. Related to this, it is by no means clear that all
reported information is taken into account when identifying exchanges in those markets, and this may,
consequently, result in undesirable outcomes for the participating agents.

Inefficiencies aside, a well-documented obstacle for the long-term sustainability of time exchange
markets is the fact that the exchanges are not necessarily “balanced.” For example, in the Erasmus and
the TTEI programs, the participating education institutions care about the balance of the incoming and
outgoing students as there are no monetary transfers between participating institutions. Yet, there is
still a documented imbalance in both these programs as described in Dur and Unver (2019). Similarly,
members of time banks are concerned about “time balance” since they do not wish to provide more
time to the bank than they get back in return. Still, Ozanne (2010) concludes that time bank members
often experience that time credits are comparatively easy to earn but harder to spend, i.e., that most
members run a “time deficit.” The lack of balance may discourage participation in these types of
exchange markets, which ultimately threatens their long-term sustainability.

To overcome some of these problems associated with time exchange markets, this paper proposes

'See www. erasmusprogramme . compostwhat—is-the—erasmus-programme (retrieved September 1, 2019).



aredesign whereby a central planner identifies exchanges based on a “priority mechanism” (discussed
below). This mechanism identifies an allocation, i.e., a formal description of all exchanges, based on
the information reported by the agents. The identified allocation only contains desirable (individually
rational) exchanges; it is balanced and guarantees a maximal number of exchanges (the latter property
implies efficiency on the considered preference domains). Given the interest in individually rational,
efficient, and balanced allocations, a first observation is that such allocations always exist on the
general preference domain. This follows since the allocation in which there are no exchanges (i.e.,
when all agents keep their initial endowments) is individually rational and satisfies balancedness.
The conclusion then follows directly from the observation that the number of individually rational
and balanced allocations is finite, and, consequently, there exists an allocation among those which is
efficient.

Even if an allocation satisfying the specific properties of interest can be identified, two new prob-
lems arise. First, it is often natural to require that the matching mechanisms should be designed in
such a fashion that it is in the best interest for all agents to report their preferences truthfully (non-
manipulability). This property is incompatible with individual rationality, efficiency, and balancedness
on a general preference domain (Sénmez, 1999, Corollary 1).? Second, because participating agents
can be involved in multiple exchanges (e.g., education institutions may exchange multiple students,
time bank members may receive services from several distinct members, etc.), it is not clear that it
is easy for agents to generally rank any two distinct allocations. In timebanking, for example, is an
allocation whereby the agent receives two hours of hairdressing, two hours of gardening and one hour
of babysitting strictly better, equally good, or less preferred to an allocation where the agent receives
one hour of hairdressing, one hour of gardening and three hours of housekeeping? Hence, it may be
difficult for agents to report their preferences when they are allowed to be involved in multiple cyclical
exchanges with a number of distinct agents.

We show that, if agent preferences satisfy certain conditions, the above two problems are no longer
present. In some settings, the considered preference domain is clearly unrealistic (e.g., in exchange
problems related to school choice). In other settings, it provides a reasonably good approximation.
Given a few assumptions related to, e.g., monotonicity, the restricted domain only requires that each
agent (a) partitions the other agents into two disjoint subsets containing agents that provide acceptable

and unacceptable goods, and (b) specify an upper “exchange bound” for each acceptable agent. For

This impossibility should come as no surprise given the results in, e.g., Hurwicz (1972), Green and Laffont (1979),
Roth (1982), Alcalde and Barbera (1994), Barbera and Jackson (1995), or Schummer (1999).



example, an education institution in the Erasmus program may classify the other participating institu-
tions as either acceptable or unacceptable to send their students to (an agent’s “horizontal” preference),
but also an upper limit on how many students the institution at most wishes to send to each accept-
able institution (an agent’s “vertical” preference). The reduced preference domain facilitates agents’
ability to report their preferences since they need only report the information in (a) and (b). Under all
circumstances, it is most likely much easier to report preferences on this domain than on the general
domain where agents need to report a complete ranking over all possible allocations. The considered
reduced domain is an extension of the dichotomous domain that was popularized by Bogomolnaia and
Moulin (2004).3

To solve the considered exchange problem, we define a “priority mechanism” and demonstrate
that it can be formulated as a max-weight matching problem (Proposition 1). The definition of the
priority mechanism is flexible since it can be adopted on both the restricted and the general preference
domain. The main result shows that the priority mechanism is non-manipulable on the restricted
preference domain and that it always makes a selection from the set of individually rational, maximal,
and balanced allocations (Theorem 1). To prove this result, a number of novel graph theoretical
techniques are needed. In particular, Appendix B demonstrates an equivalence result between the

max-weight matching problem and a circulation-based maximization problem.*

1.1 Related Literature

Before providing some remarks on the existing market design literature, we note that this is not the
first paper to use graph theoretical tools and, in particular, min-cost/max-weight formulations to solve
matching problems. In the house allocation problem with dichotomous preferences, for example, Aziz
(2018) formalizes a bipartite graph and solves for a max-weight matching. His graph construction is
based on having houses on one side and agents on the other side of the market. This is in contrast to
the approach in this paper, where agents are cloned into copies of themselves. Furthermore, our graph
construction and the solution is more intricate since agents can be involved in multiple exchanges.
Because finding a maximal allocation is more involved in our problem and a potential manipulation

is more complex, graph theoretical tools are used to prove the non-manipulability result. This is not

See Remark 2 for a discussion. Note also that the dichotomous domain is much smaller than the strict preference
domain, but it is not a subset of the strict domain since indifference relations are allowed in the former but not in the latter
domain.

“The max-weight matching problem is considered in the main part of the paper since it is more intuitive and, moreover,
can be introduced using minimal notation.



needed in Aziz (2018) because he considers a less complex optimization problem.

The considered exchange market shares many features with some classical markets, previously
considered in the matching literature, including, e.g., housing markets (Scarf and Shapley, 1974; Ab-
dulkadiroglu and S6nmez, 1999; Aziz, 2018), organ markets (Roth et al., 2004; Bir6 et al., 2009; Ergin
et al., 2017), one-to-one matching problems (Gale and Shapley, 1962), and markets for school seats
(Abdulkadiroglu and Sonmez, 2003; Kesten and Unver, 2015). There are, however, substantial differ-
ences between these problems and the one considered in this paper. For example, our model allows
agents to be involved in multiple exchanges. In the school choice problem and the kidney exchange
problem, in contrast, students are allocated at most one school seat, and each patient-donor pair is
involved in at most one kidney exchange, respectively. Furthermore, in many matching problems
including, e.g., the school choice problem and the house allocation problem, agents’ (reported) pref-
erences are typically strict, and indifference relations are consequently not allowed (while the kidney
exchange problem is often defined on a dichotomous domain). Generalizations to allow for a weak
preference structure have recently been proposed by Alcalde-Unzu and Molis (2011) and Jaramillo
and Manjunath (2012). However, both these papers only allow agents to trade at most one object.

By organizing the considered type of time exchanges as a matching market, it will have the struc-
ture of a many-to-many matching market. Such markets have previously been considered by, e.g.,
Echenique and Oviedo (2006), Konishi and Unver (2006), and Hatfield and Kominers (2016). The
papers closest to the model investigated in this study are Athanassoglou and Sethuraman (2011), Aziz
(2016), Bir¢ et al. (2017a,b) and Manjunath and Westkamp (2019), which we describe next.

Athanassoglou and Sethuraman (2011) and Aziz (2016) consider a housing market where initial
endowments as well as allocations are described by a vector of fractions of the houses in the economy.
The fractional setting makes it possible to analyze, e.g., efficiency based on (first-order) stochastic
dominance, and it is demonstrated that the efficiency and fairness notions of interest conflict with
non-manipulability. Even if a similar impossibility is present in our model, the fractional setting is
analyzed using different axioms and mechanisms. In addition, Athanassoglou and Sethuraman (2011)
and Aziz (2016) are unable to find any positive results related to non-manipulability in their considered
reduced preference domains.

Biré et al. (2017a) consider, as does this paper, a model where agents are endowed with multiple
units of an indivisible and agent-specific good, searching for balanced allocations. In their reduced

preference domain, agents have responsive preferences over consumption bundles. In this reduced



domain, they demonstrate that, for general capacity configurations, no mechanism satisfies individ-
ual rationality, efficiency, and non-manipulability. Given this negative finding, they characterize the
capacity configurations for which individual rationality, efficiency and non-manipulability are com-
patible. They also demonstrate that, for these capacity configurations, their mechanism is the unique
mechanism that satisfies all three properties of interest. Hence, the main difference between this paper
and Bir6 et al. (2017a) is that they consider a different preference domain and, consequently, need a
different mechanism to escape the impossibility result.

Manjunath and Westkamp (2019) have independently considered a model of shift exchange that
is closely related to the one considered here. In terms of our application to time banks, the model
of Manjunath and Westkamp allows each agent to supply distinct services as opposed to our model
where each agent supplies the same service in multiple units. Like us, Manjunath and Westkamp
require exchange to be balanced and consider a responsive preference domain classifying individual
services as either unacceptable and acceptable. Since agents are allowed to be indifferent between
different services, their model is able to handle multiple copies of the same service. Manjunath and
Westkamp (2019) show that a priority mechanism over the set of all individually rational allocations
is efficient and strategy-proof. The main differences between our work and that of Manjunath and
Westkamp are that (a) their model is more general in that it allows agents to have distinct services
whereas each agent in our model has a specific service that comes in multiple copies, and (b) their
priority mechanism is only guaranteed to be Pareto-efficient while our mechanism satisfies the more
demanding efficiency criterion of maximality (and as we show in Example 3 allocations from the two
mechanisms can indeed be quite different). Finally, (c) for the non-manipulability result our proof

techniques are very different and are complementary.

1.2 Qutline of the Paper

The remaining part of the paper is outlined as follows. Because exchange problems related to tuition
exchange and the Erasmus program are well-documented in the matching literature (see, e.g., Bird,
2017; Delacrétaz, 2019; Dur and Kesten, 2018; Dur and Unver, 2019), Section 2 will introduce a
problem that has received much less attention, namely the timebanking problem. This section gives
a detailed introduction to timebanking and provides some descriptive statistics of the time banks
associated with TimeBanks USA. Section 3 introduces the general theoretical exchange framework

and some basic definitions. Section 4 introduces priority mechanisms. The main results are presented



in Section 5. Section 6 discusses the main findings of the paper. Finally, Section 7 concludes the

paper. All proofs are relegated to the Appendix.

2 Timebanking

Even if concepts closely related to timebanking dates back to the 19th century, timebanking was
popularized and pioneered in the 1990s by Edgar Cahn and Martin Simon in the United States and the
United Kingdom, respectively. However, it took another 20 years before the concept of timebanking
had a serious impact in society. Dash and Sandhu (2018) report that the first time bank in the United
Kingdom was set up in 1996, but only 2,200 persons had joined a time bank by 2003. Eight years
later, after additional experimentation, learning, and expansion, there were around 30,000 registered
members in the United Kingdom, 30,000 registered members in the United States, and an additional
100,000 members scattered across 34 countries (Cahn, 2011). This number has continued to grow. In
2014, there were around 35,000 members in the United Kingdom and even more in the United States.?

As explained in the Introduction, a time bank is a group of individuals and/or organizations in a
local community that set up a common platform to trade services among themselves. For example, a
gardener who supplies two hours of time may, for example, receive two hours of child care in return
for his gardening services. Ozanne (2010) reported that the most commonly exchanged services
included gardening, giving lifts, befriending, do-it-yourself jobs, dog walking, and computer training.
Members of a time bank earn one time credit for each time unit they supply to members of the bank.
The earned credit can be spent to receive services from other members of the bank.°

In most time banks, a broker is employed to manage the bank, maintain the database, record trans-
actions, recruit new members, etc. (Seyfang, 2003, 2004; Williams, 2004). A “matching system” helps
the broker to coordinate requests for services with those who can provide them. In some time banks,
this “system” is simple and the broker manually matches requests with offers (Seyfang, 2003). A few
large time banks, including TimeBanks USA and Timebanking UK, have developed their own com-
puter software where members can see what other members offer and keep track of their own activity.
For example, the software used by TimeBanks USA (called Community Weaver 3) allows members to
register their talents in 11 different categories including, e.g., education, transportation, business ser-

vices, recreation, and companionship. Each of these categories also has subcategories. The category

>These figures are from Boyle and Bird (2014) or www.timebanks.org (retrieved 2019-02-05).
8Very few time banks are not based on a “one-for-one” time system, meaning that members of the time bank need not
get one unit of time back for each unit of time they supply (Croall, 1997).



“education,” for example, contains subcategories such as advocacy, computers, languages, finances,
and tutoring. When a member has registered her talents, she can start offering her services and begin
making requests. An offer is a formal registration on the online platform that enables other members
to see and request her talents. If a member approves a request, she receives the agreed amount of time
credits and the member who receives the service is credited by the same amount of time credits.
Even if some time banks take advantage of computer software, it is difficult to coordinate longer
trading cycles as members only can see their own activity. As a consequence, time bank members are
naturally restricted to bilateral exchanges. Furthermore, it may be an obstacle for time bank members
to report too “detailed” preferences if they potentially can be involved in multiple exchange cycles.
This is also one of the reasons for considering a reduced preference domain (informally described in
the Introduction and formally defined in Section 3.2) whereby each time bank member partitions the
other members of the bank (or, equivalently, the services they provide) into two disjoint subsets con-
taining acceptable and unacceptable members, and specify an upper time bound for each acceptable
member. The former condition reflects that an agent is not necessarily interested in all services pro-
vided in the bank. The latter condition captures the idea that an agent may, for example, be interested
in at most one haircut but can accept up to 10 hours of babysitting. This preference domain clearly
facilitates time bank members’ ability to report their preferences, and it captures certain aspects of
existing time banks, e.g., that members classify their services in various categories and that members

request certain categories of services.

2.1 Timebanking and Society

The types of services provided by members of time banks, as exemplified above, are typically available
and priced on competitive markets. Given this observation, it is natural to ask: what role do time banks
play in society and what explains the existence of time banks in a society where monetary transfers
are available?

One potential explanation may be the documented fact (Collom, 2007; Seyfang, 2003; Seyfang
and Smith, 2002) that time banks are very successful in attracting participants from socially excluded
groups and low-income communities, e.g., people on benefit programs, from low-income households,

etc.” That is, because most time bank members have small social networks and, in many cases, also

"Most studies in the existing literature, consequently, focus on socially excluded and low-income groups. An exception
is Ozanne (2010) where it is demonstrated that time banks have provided high benefits in the form of social, human, physical
and cultural capital also within affluent groups.



lack both income and employment, timebanking is one way to be included in a social network and to
increase welfare. Another way of expressing this observation is that persons from socially excluded
groups often have a scarcity of traditional means of payment (i.e., “money”), but can gain access to an
alternative currency by joining a time bank (i.e., “time credits”). This will increase their purchasing
power. In fact, Collom (2007) has documented that the single most important reason for joining a
time bank is to expand purchasing power through an alternative currency.

Another potential explanation is deeply rooted in the philosophy of timebanking. As stated by
one of its proponents Cahn (2000), different fairness and equality notions are embedded in the five
core values of timebanking: assets, redefining work, reciprocity, social networks, and respect. For
example, and as explained above, one of the fundamental ideas in timebanking is that one hour of
service generates one time credit regardless of the provider or the nature of the service performed.
Consequently, even if services provided by time bank members are valued and priced differently on
competitive markets, the timebanking philosophy prescribes that human beings share fundamental
equality and their services should therefore be “priced” equally (through a one-for-one time exchange
system).

Furthermore, an integral part of these core values is to extend social networks, increase informal
neighborhood support, and develop reciprocal relationships (Cahn, 2000). One way to reach these
goals is to provide a marketplace that is “less anonymous” than competitive markets and to more
explicitly set up a market where people can meet physically and exchange services. In fact, Seyfang
(2003) found that persons join time banks to meet other members, to help other members, to get
more involved in the local neighborhood, etc. Similar motives are recorded by, e.g., Collom (2007)
and Caldwell (2000). Related to this, Boyle et al. (2006) showed that time banks not only help their
members to extend their social networks but also that time banks are an effective way of developing

reciprocal relationships between members in the bank.

2.2 Organization and Descriptive Statistics of TimeBanks USA

To the best of our knowledge, there exists no public database that provides detailed statistics about
time banks worldwide. To give the reader at least some idea about, e.g., the size and number of
transactions in a time bank, this section provides some descriptive statistics of TimeBanks USA, the

largest time bank operating in the United States.® The data are from the period April 1, 2015 (when

8 All data and documentation related to TimeBanks USA stated in this section are available in the Online Appendix.



Community Weaver 3 was launched) to January 15, 2019 (when we collected the data).

TimeBanks USA currently has 107 branches in the United States spread out over 33 states, and it
also operates in Australia, Canada, France, Greece, Guatemala, Israel, New Zealand, South Africa,
South Korea, and the United Kingdom (see Table 1). Even if not all registered branches are active,
Table 2 provides some more detailed information about the active branches. As can be seen from
the table, a time bank located in the United States has on average around 100 members and has,
on average, performed 1,958 trades since April 2015. These trades involved on average 7,736 time
units per branch, meaning that each time exchange was, on average, for 3.95 hours. As also can be
seen from Table 2, the average time bank in the United States had 115.1 registered active offers and
115.5 active requests on January 15, 2019. The figures from Table 2, therefore, roughly translates to
each member, in an active branch, having, on average, had one active offer and one active request on

January 15, 2019.

Table 1: Descriptive data of TimeBanks USA.

Country Number of branches ~ Active branches ~ Represented in states/provinces/regions
USA 107 84 33 out of 50
New Zealand 30 28 7 out of 16
Canada 11 9 5 out of 10
Other countries 8 7 -

* The data were collected from www. timebanks.org on 2019-01-15 and are available in the Online Appendix.

Table 2: Mean summary statistics for the active time banks in Table 1.

Country Number of members ~ Number of exchanges ~ Number of hours exchanged  Active offers  Active requests
USA 98.9 (105.9) 1,957.8 (5,034.9) 7,736.0 (25,509.6)  115.1 (748.9) 115.5 (746.6)
New Zealand 158.7 (189.7) 1,913.4 (2,798.6) 10,568.9 (29,138.0) 25.9(23.7) 28.2(28.1)
Canada 64.1 (64.9) 187.1 (255.3) 600.9 (1,019.7) 344 (41.6) 27.9 (38.9)
Other countries 113.7 (233.5) 1,464.3 (3,623.4) 5,401.7 (13,694.3) 1.6 (2.1) 2.0 (3.0

* All values are mean values (standard deviation within brackets).

3 The Model and Basic Definitions

This section introduces the exchange problem together with some definitions and axioms.

3.1 Agents, Bundles, and Allocations

Let N = {1,...,n} denote the finite set of agents. Each agent i € N is endowed with ¢; € N units

of a good (or service) which can be used to exchange goods (or services) with agents in N. One

10



can, for example, think of these goods as positions at education institutions, tuition waivers, or time
units. Let ¢ = (¢1,...,t,) denote the vector of endowments. Because the exact nature of the goods
is of secondary interest, the problem will be described in terms of the number of goods that an agent
receives from and provides to other agents in N. Let x;; denote the number of goods that agenti € N
receives from agent j € N, or, equivalently, the number of goods that agent j provides to agent 1.
Here, z;; represents the number of goods that agent 7 € N receives from herself. It is assumed that
x;; belongs to the set Ny of non-negative integers that includes 0.

The goods that agent ¢+ € N receives from the agents in N can be described by the bundle x; =
(241, . .., Zin). The bundle where agent i € N keeps his initial endowment is denoted by w; (where
wj; = t; and w;; = 0 for j # 4). An allocation = (1, ..., z,) is a collection of n bundles (one for
each agent in V).

An allocation is feasible if:

n
> wy = tiforalli€ N, (D
j=1
n
> xj = tiforallie N. )
j=1

This means any agent ¢ receives the same number of goods from other agents that the agent supplies to
other agents (recall that an agent can keep parts of his initial endowment). In this sense, any feasible
allocation satisfies the balancedness conditions (1) and (2). In the remaining part of the paper, it is

understood that any allocation is feasible. Let F denote the set of all feasible allocations.

3.2 Preferences and Preference Domains

A preference relation for agent ¢ € N is a complete and transitive binary relation R; over feasible
bundles such that x; R;z; whenever agent ¢ finds bundle x; at least as good as bundle 2. Let P
and I; denote the strict and the indifference part of R;, respectively. Let R; denote the set of all
preference relations of agent ¢ € N. A (preference) profile R is a list of individual preferences
R = (Ry,...,R,). The general domain of profiles is denoted by R = Ry X --- X R,,. A profile
R € R may also be written as (R;, R—;) when the preference relation R; of agent i € N is of

particular importance.

°In the timebanking application, one can think of ;; as a representation of standardized time units, e.g., 0 minutes for
zero units, 30 minutes for one unit, 60 minutes for two units, etc.
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A restricted preference domain R = 7@1 X -+ X 7% C R will be considered for our main
results. As explained in the Introduction, this restricted domain is based on the idea that any preference

relation R; € 7~€Z

(a) partitions the set of agents N\ {4} into two disjoint sets containing acceptable and unacceptable
agents (i.e., agents that provide acceptable and unacceptable goods), denoted by A;(R;) C
N\ {i} and U;(R;) = N \ (4;(R;) U {i}), respectively, and;

(b) associates with each acceptable agent j € A;(R;) an upper bound ¢;; € Ny on the number of

goods that agent ¢ at most would like to receive from agent j.

Here, one may interpret (a) as agent i’s “horizontal preference” over acceptable and unacceptable
agents, and (b) as agent 7’s “vertical preference” representing the maximal demand of each good
provided by an acceptable agent. Then, for agent i € N, the preference relation R; belongs to R; if

for any allocations x and y:
(i) w;Px; if z;, > 0 for some k € U;(R;) or x;; > t;; for some j € A;(R;),
(i) x;1l;y; if both w; Pyx; and w; P;y;,
(iii) yi P if yiRiw;, viRiw; and 3o 4, (r,) Yij > D je Au(Ry) Tij> OF
(iv) y; Lz, if y; Rjw;, x; Ryw; and ZjeAi(Ri) Yij = ZjeAi(Ri) Tij.

The first condition states that an agent strictly prefers not to be involved in an exchange if (a) the
agent receives goods from unacceptable agents or (b) the number of goods provided by an acceptable
agent exceeds the upper bound. The second condition means that an agent is indifferent between any
two bundles where (a) and/or (b) holds. The last two conditions reflect a monotonicity property and
state that an agent weakly prefers bundles with weakly more acceptable agents whenever bundles do
not contain any unacceptable agents and as long as the bounds #;; are not exceeded for the acceptable

agents contained in the bundle.

Remark 1. For the restricted domain R, a report R; for agent i € N is given by a set of acceptable
agents A;(R;) together with an upper bound ¢;; for each j € A;(R;). An equivalent formulation of the
reported preference for agent ¢ € N is a vector t; = ({1, ..., 1) € N§j where ¢;; = t;. Then ¢;; = 0
stands for j € U;(R;), i.e., agent 7 is willing to accept at most zero units from agent j. Whether the

first or the second formulation is used is just a matter of choice. (|
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Remark 2. For any agent i € N and R; € 7~22-, the preference R; is dichotomous over single agents
because agents are partitioned into agents that provide acceptable and unacceptable goods. The prefer-
ence R; is polychotomous over bundles in the following way: forany h = 0,1, ..., min{¢;, > JEAN(R:) tij} =
m, all allocations z and y such that z;; < ¢;; and y;; < ¢;; for all j € A;(R;), zix = 0 = v, for all
k€ Ui(R) and 3 c 4, (r,) Yij = h = X_jea,(r,) %ij are ranked indifferent by R;. Let Z(h) denote
this indifference class. Then under R; all allocations in Z(m) are strictly preferred to all allocations in
Z(m — 1), and in general, for h = 1,...,m, under R; all allocations in Z(h) are strictly preferred to
all allocations in Z(h — 1). Thus, R; contains m + 2 indifference classes (where Z(0) = {w;} and w;
is strictly preferred to all allocations where the agent receives goods from unacceptable agents or the
number of goods provided by an acceptable agent exceeds the upper bound). In this sense, preferences
belonging to R; are polychotomous over bundles (where the upper bounds are incorporated) and at

the same time dichotomous over single agents. O

3.3 Axioms and Mechanisms

Recall that F denotes the set of all feasible allocations. Allocation x € F is individually rational
if, for all i € N, z;R;w;.Allocation x € F Pareto dominates allocation =’ € F if x;R;x} for all
i € N and x; Pz} for some j € N. An allocation is efficient if it is not Pareto dominated by any
feasible allocation. An allocation @ is maximal at Rif Y ;e Do ic a;(r) Tij = DoieN 2ojeds (ki) T
for all individually rational allocations z’. All individually rational and maximal allocations at profile
R € R are gathered in the set X(R) C F. Note that X'(R) # () for all R € R and that any = € X'(R)
is efficient.'?

A mechanism ¢ with domain R chooses for any profile R € R a feasible allocation o(R) € F.
Mechanism ¢ is manipulable at profile R € R by an agent i € N if there exists R! such that
R = (R,,R_;) € R, and for z = ¢(R) and ' = @(R') we have «Piz;. If mechanism ¢ is not

manipulable by any agent ¢ € N at any profile R € R, then  is non-manipulable (on the domain R).

4 Priority Mechanisms

Any priority mechanism uses a priority-ordering. This ordering may be deduced from a lottery or from

a schematic update based on previous allocation rounds. Let 7 : N — N be an exogenously given

01f 2 is not efficient, then there exists an individually rational allocation 2’ such that 2} R;x; for all i € N and :E; Pjz;
for some ] € N. Butthen 3, x>0 ca.(r)) Tis < Dien 2jea,(r,) Tij Meaning that z is not maximal, which is a
contradiction.
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priority-ordering where the highest-ranked agent is ¢ € N with 7(¢) = 1, the second-highest-ranked
agentis i’ € N with 7(i") = 2, and so on.

Given R € R, i € N and Z* C X(R), allocation z € Z* belongs to the set X*Z" (R) if z; Rz
forall ' € Z*, i.e., if allocation x is weakly preferred to any allocation in the set Z* under preference
R;. In the special case where the set Z* is based on the choice made by some agent i’ # i for some
profile R € R, i.e., where Z* = X*"Z""(R) for some Z** C X(R), the set XY»Z" (R) is denoted by
X7(R).

Definition 1. An allocation 2 € X (R) is agent-i-optimal at profile R € R if x € X»¥(B)(R).

Note the difference between the sets X»*(®)(R) and X»Z"(R). The former set contains all agent i’s
most preferred allocations in the set X'(R) whereas the latter set contains all agent i’s most preferred

allocations in a subset Z* of X'(R).

Definition 2. Let 7 be a priority-ordering and N = {iy,...,4,} be such that 7(ix) = k for all
k=1,...,n. Thenz € X(R) is a 7-priority allocation at profile R € R if:

(i) z belongs to X X(F)(R),

(ii) = belongs to X'**-1(R) forallk =2,...,n.
One way to think about the set of priority allocations is the following. First, the highest-ranked agent
identifies all his most preferred allocations in the set X'(R). Then, the agent with the second-highest
priority identifies all his most preferred allocations in the set identified by the highest-ranked agent;
then, the agent with the third-highest priority identifies all his most-preferred allocations in the set

identified by the second highest ranked agent, and so on. Formally, this means that, if x is a w-priority

allocation, then:
x € Xnin-1(R) C Xin—1#n—2(R) C ... C X2 (R) C XY B)(R) C X(R). (3)

Note that a priority allocation is agent-i-optimal for the agent i € N with 7(i) = 1. Moreover, all

agents in IV are, by construction, indifferent between all allocations in the set X'»n—1(R).

Definition 3. A mechanism ¢ is a priority mechanism if there exists a priority-ordering 7 such that

for all profiles R € R the mechanism  selects a m-priority allocation from the set X' (R).

Since a priority mechanism always makes a selection from the set X'(R), it chooses an individually

rational, maximal, and balanced allocation (which is efficient).
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5 Results

As we show in Section 6, it is impossible to construct an individually rational, efficient, and non-
manipulable mechanism on the general domain R. Our first main result demonstrates that this impos-

sibility can be avoided on the restricted domain R if exchanges are based on a priority mechanism.
Theorem 1. Any priority mechanism with domain R is non-manipulable.

In most settings, proving non-manipulability of a priority mechanism is rather straightforward, see,
e.g., Svensson (1994). In our setting with multiple objects and potentially different number of objects,
the scope for manipulation is much larger. The maximal set of allocations changes in a complex
manner if one agent reports something slightly different. A key observation in establishing non-
manipulability of the priority mechanism is that it is enough to ensure that no agent can ever gain by
stating that she wants fewer units from an acceptable agent than she actually desires. This significantly
reduces the possible scope of manipulations.

In order to show that no agent can ever gain by reducing the number of desired copies from an
acceptable agent, we formulate a circulation flow network corresponding to the allocation in the prior-
ity mechanism (see Appendix B for details). This enables us to keep track of changes from potential
manipulations using the circulation formulation. It is straightforward to see that the overall value in
the associated optimization problem will decrease, since the feasible set shrinks. It is, however, a
non-trivial argument to show that also the agent who reduces her capacity will not increase the flow
through her nodes. For details of the argument and the construction of the circulation flow network,
see Appendix B.

In Proposition 1 below, it is demonstrated that a priority mechanism can be formulated as a max-
weight matching problem with vertex and edge capacities. Thereby we know that there exists an effi-
cient way of computing the allocations chosen by the priority mechanism. The max-weight matching
problem is a special case of the well-known network flow problem; thus, it is somewhat easier to
describe than the circulation flow network formulation introduced in Appendix B. To formulate the
max-weight matching problem, a bipartite graph needs to be defined, with edge capacities and vertex

quotas. The edge weights will be introduced later.

Definition 4. For any profile R € R, the bipartite graph ¢ = (N, M, E,u, q) is defined by two
disjoint sets of vertices, NV and M, a set of edges, E, a profile of capacities u = (u(%, l))(i,l)eE on

each edge, and a profile of quotas on the vertices ¢ = (¢(4));cv. These are defined by:
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Figure 1: Edge capacity 1 is color-coded by gray, while capacity 2 is denoted by black edges. The
edges connecting two copies of the same agent are marked by dashed lines. The four vertices on the
left have quota 1, while the four vertices on the right have quota 2.

O N={1,...,n},
i M={n+1,n+2,...,n+n},
Gii) E={(i,n+j) € Nx M:je Aj(R;)orj =i},

(iv) for all ¢ € N and each edge (i,n + j) € E where j € A;(R;) we set u(i,n + j) = t;; and

u(i,n +1i) = t;, and;
(v) foralli € N, we set q(i) = t;.

Example 1. Let N = {1,2,3,4}, ¢ = ¢t = landt3 = t4 = 2. Let R € R be such that
Al(Rl) = AQ(RQ) = {3,4} (With 1?13 = 1?14 = 1?23 = {24 = 1) and Ag(Rg) = A4(R4) = {1,2}

(with 31 = t32 = t41 = t42 = 2). The constructed graph g is depicted in Figure 1. O

The interpretation of the graph g is that the agents in M should be regarded as copies of the agents
in N and in particular, agent n + ¢ € M is the copy of agent ¢ € N. Furthermore, agents : € N
and n 4+ j € M are connected by an edge if and only if agent j is acceptable for agent 7 or if j = 1.
A matching x specifies for each (i,/) € FE a non-negative integer x;; € Np. Any matching x is
equivalent to an allocation in the usual sense: i = Zj(n44), Tij = Ti(ntj) forall j € A;(R;), and
xi; = 0 for all j € U;(R;). Because an allocation will be defined by the matching values x;; on the
edges, our construction guarantees that agent n + 5 € M can only provide goods to an agent ¢ € N if
agent ¢ finds the good provided by agent j acceptable or if agent j is his own copy. Finally, the upper
bound on the matching value from agent n + j to agent ¢ where j € A;(R;) is equal to the upper

bound that represents the number of goods agent ¢ at most would like to receive from agent j.
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Recall that the balancedness conditions (1) and (2) must hold for any allocation. In the language
of matching problems, this means that the required matching value is dictated by equations (1) and

(2) which must be reformulated for the bipartite setting as follows:

Y @iy = q(i) foralli € N, (1)
JEA(R;)U{i}

> Zjiury = q(i) foralli € N. 2)
i€ A (Ry)U{i}

These conditions are fulfilled by any matching, because they express the perfectness condition in the
matching instance.

A natural interpretation of the bipartite graph is therefore that agents in M supply goods to the
demanding agents in N. To obtain a maximal outcome, it is important to prevent matchings between
agents in NV and their own copies in M whenever there are other feasible flows or, equivalently, to
prevent agents from supplying goods to their own copies whenever it is feasible to supply goods to
other distinct agents (by the balancedness conditions, any agent supplying goods to other agents also
receives equally many goods in return from acceptable agents). This can be achieved by introducing
an artificial weight whenever agents supply their own goods to themselves. Let, for this purpose, w;;
denote the weight associated when agent [ € M supplies goods to agent ¢, and let, in particular, for

each (i,1) € E:

-1 ifl=n+i
wj = “)
0 otherwise.
For a given profile R € R, a given graph g = (N, M, E,u, q) and given weights w = (wit) (i, e ks
the (artificial) weight is maximized at any allocation = € F that solves the following maximization

problem:

max Y wyzy s.t. conditions (1), (2)), 2 € No and xyy < u(i, 1) forall (i,1) € E.  (5)
(i)eE

An allocation x € F is a maximizer if it is a solution of the maximization problem (5). Let V(R, w) C

F denote the set of all maximizers at profile R € R for given weights w = (wit) (i,1)e p- For notational
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convenience, the value of an allocation x at weight w is given by V(z,w) = > (i)eE Wil®il.
Lemma 1. If allocation z belongs to V(R, w) at profile R € R, then z € X(R).

The set of maximizers V(R,w) is non-empty for any profile R € R since V(R,w) C X(R) and
X (R) is non-empty and finite for all R € R. However, as stated above, agents need not be indifferent
between all allocations in the set V(R, w) since V(R,w) C X (R). Hence, in order to define a priority
mechanism based on a solution to maximization problem (5), a refined selection from the set V(R, w)
is necessary which will be based on the priority-ordering 7.

We will modify the weights w in order to take the priority-ordering 7 into account. Let &g € (0, 1)

and &;_1 = (1 +1t;)g; foreachi € {1,...,n}. By construction of ¢;, it follows that:!!
n
1>e0>e > Y tggp>0foralli€{0,...n— 1}, (6)
k=i+1

To guarantee a larger allocation to agents with higher priorities, the weight associated with an edge in
the matching instance will be monotonically increasing with higher priorities. More specifically, let
for each (i,1) € E:
-1 ifl=n-+1i
Wi =
Ex(;) Otherwise.
The above construction means that the agent with the highest priority (i.e., the agent with (i) =
1) will receive the highest edge weight (for edges (i,1) € E\{(i,n + i)}), the agent with the second-
highest priority (i.e., the agent with 7(¢) = 2) will receive the second-highest edge weight, and so
on.
Our second main result demonstrates that a mechanism that selects an allocation from the set
of maximizers for each profile in R and any given priority-ordering is a priority mechanism. From

Theorem 1, it is already known that such a mechanism is non-manipulable on the domain R.

Proposition 1. For a given priority-ordering 7, a mechanism ¢ selecting for each profile R € R an

allocation from V(R, W) is a priority mechanism based on 7.

Ty see this, note that £,_1 = (1 4 tn)en > tnen since €, > 0 and, consequently, e,—2 = (1 + tn_1)en—1 =
€n—1+ th—1En—1 > then + tn—16n—1. Condition (6) then follows by repeating these arguments.
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6 Discussion and Extensions

This section discusses essentially single-valued cores and random mechanisms under two separate
headings.!?> The section also contains a discussion of possible extensions of the model related to, e.g.,

more general preferences and trading networks.

6.1 Essentially Single-Valued Cores

Theorem 1 establishes that, in the considered exchange problem, there exist mechanisms which are
individually rational, efficient, and non-manipulable on the domain R. This is surprising as a number
of previous impossibility results for the combination of these axioms have been established by apply-
ing an essentially single-valued cores result by Sonmez (1999). Below, we connect his result to the
considered exchange problem.

Given R € R, the core of R, denoted by C (R), consists of all feasible allocations € F which are
not dominated via some coalition and some allocation meaning that there exists no ) = S C N and
y € F such that (i) y; R;x; forall ¢ € S, (ii) y; Pjz; for some j € S and (iii) {j € N : y;; #0} C S
for all i € S. The core of R is essentially single-valued if for all z,y € C(R) we have x;1;y; for all
i € N. Note that, if C(R) = (), then the core of R is essentially single-valued.

Let R' denote the set of all profiles R € R such that for all i € N and all j € A;(R;) we
have t;; = 1 and t; = 1 (i.e., any agent demands at most one unit of any acceptable good, and
any agent supplies at most one unit of their goods). This corresponds to the classical dichotomous
domain by Bogomolnaia and Moulin (2004). Then it is easy to check that the domain R! satisfies
Assumptions A and B of Sonmez (1999).!3 Hence, his main result applies, which shows the following:
if there exists an individually rational, efficient, and non-manipulable mechanism, then for any profile
where the core is non-empty we have (a) the core is essentially single-valued and (b) the mechanism
chooses a core allocation. However, here for any R € 7~21, if the core of R is non-empty, then
the set of individually rational and efficient allocations is essentially single-valued (and the core is

essentially single-valued).'"* But then any priority mechanism chooses a core allocation. Note that

12We are grateful to the referees and the Co-Editor for bringing our attention to random mechanisms.

BIn our framework (without externalities), Assumption A says that for any allocation = we have z;I;w; if and only if
x; = w; and Assumption B says that whenever for two allocations x and y with z; P;y; and x; R;w;, there exists a preference
relation R} such that z; R;w; R.y;.

“Note that for any R € RY, if the set of individually rational and efficient allocations is not essentially single-valued,
then any two individually rational and efficient allocations, which are not regarded indifferent by all agents, dominate (via
some coalition) each other and the core must be empty: more formally, for R € R and any two individually rational and
efficient allocations x and y for which not z;I;y; forall i € N, for S = {i € N : z;; = 0} we have foralli € S, z; R;y;,
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Proposition 1 of Sonmez (1999) shows that, when the core of each profile is externally stable, then
any selection from the core correspondence is non-manipulable.!> External stability implies that the
core is non-empty for any profile, but here, if the core is non-empty, then the set of individually
rational and efficient allocations is essentially single-valued. As this is often not the case, the core is
often empty and Proposition 1 of Sénmez (1999) cannot be used to show the non-manipulability of
priority mechanisms.

Once non-unitary endowments are allowed, the domain R does not satisfy Assumption B of Son-

mez (1999). This is illustrated in the next example.

Example 2. We use the instance introduced in Example 1, i.e., N = {1,2,3,4}, t; = to = 1,
t3 =ty = 2, and R € R is such that A;(R;) = Ay(Ry) = {3,4} (with ty3 = t14 = g3 = fg4 = 1)
and As(R3) = A4(Ry) = {1,2} (with 31 = 30 = t41 = t4o = 2). If agent 3 comes before agent
4 in the priority-order m, then (3, 3,12,0) is the unique 7-priority allocation (where this stands for
agent 1 receiving one unit from agent 3, agent 2 receiving one unit from agent 3, agent 3 receiving
one unit from both agent 1 and agent 2, and agent 4 keeping his endowment). If agent 4 comes
before agent 3 in the priority-order 7, then (4,4,0,12) is the unique 7-priority allocation. Note
that (3,3,12,0)P3(3,4, 1,2)Psws but there exists no R4 such that (3,3,12,0)PjwsP5(3,4,1,2).
The latter conclusion follows since (3,3,12,0)Pjws implies 1 € A3(Rj) and ¢4, > 1, and thus
(3,4,1,2)Pjws. Hence, Assumption B is violated for the domain R and, at the same time, any prior-

ity mechanism is individually rational, efficient, and non-manipulable. U

The above example also shows that, in general, we do not have dichotomous preferences in the domain
R. We may have many distinct indifference classes for preferences in the domain R and yet, by
Theorem 1, there exists an individually rational, efficient, and non-manipulable mechanism.

Finally, it is demonstrated that a priority mechanism with the same order may select different allo-
cations when choosing from the set of individually rational and efficient allocations (as in Manjunath

and Westkamp, 2019).

Example 3. Let N = {1,2,3,4} andt; =ty = t3 = t; = 1. Let R € R be such that A;(Ry) = {2},
AQ(RQ) = {3}, A3(R3) = {1,4}, and A4(R4) = {3} (With 1?12 = 523 = 7?31 = 1?34 = 7?43 = 1).

Then X' (R) = {(2,3,1,0)}, i.e., there is a unique individually rational and maximal allocation which

and for some j € S, z; Pjy;, i.e., v dominates y with the coalition .S (and the same argument applies for y in the role of x
and z in the role of y). Thus, the core of R is empty.
13See also Demange (1987) for an important study of non-manipulable cores.
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is chosen by any priority mechanism. However, the allocation (0, 0,4, 3) is individually rational and
efficient which is selected by any priority mechanism which chooses from the whole set of individually
rational and efficient allocations and where agent 4 occupies the first position in the priority-order (and
such a priority mechanism would not necessarily result in a maximal allocation). Note that the same

argument applies if a priority mechanism chooses from the set of all feasible allocations. (|

6.2 Random Mechanisms

Priority mechanisms are unfair in the sense that the agent in the first position of the priority-ordering
receives, for any profile R, his most-preferred bundle among all allocations in X'(R) (but this is not
the case for the agent in last position of the priority-ordering). To establish fairness, one may consider
random allocations and random mechanisms, which we define briefly below.

A random allocation for R is a probability distribution p over F. For all x € F, let p(x) denote
the probability of allocation z. The support of p is given by the allocations which are chosen with
positive probability by p, i.e. supp(p) = {z € F : p(x) > 0}. Then p is ex-post individually rational
for R if for all x € supp(p), x is individually rational. Analogously, ex-post maximality and ex-post
efficiency are defined. For two random allocations p and ¢, we say that p stochastically [?;-dominates
q (where we write equivalently p; stochastically R;-dominates g;), denoted by p; Rquz-, ifforally € F

we have:

D O D ()

zeF 1w Riy; zeF 1z Riy;

Then pindqi if pindqi and not qindpi. A random mechanism ¢ chooses for any profile R € Ra
random allocation for R. The random mechanism ¢ is ex-post individually rational if, for any profile
R, the random allocation is ex-post individually rational for R. Analogously, ex-post maximality and
ex-post efficiency are defined for random mechanisms.

Let now ™ denote a deterministic priority mechanism using 7 as a priority-ordering and II denote

the set of all priority-orderings. Then let RP = ) %go” denote the random priority mechanism

mell
putting equal priority on each priority-ordering. Because deterministic priority mechanisms are in-
dividually rational, maximal and efficient, the random priority mechanism is ex-post individually
rational, ex-post maximal and ex-post efficient.

For random mechanisms, axioms are often defined in terms of stochastic dominance. The random

21



mechanism is sd-non-manipulable if, for all R, R" € R such that R’ = (R}, R_;) for some i € N,
we have ¢;(R)R:%¢;(R'). The random mechanism is sd-efficient if, for all R € R, there exists no
random allocation p for R such that p; R{%¢;(R) for all i € N and p; P#%%;(R) for some j € N.

For a random allocation p and agent j, let [pj]*jj denote the probabilities which p; induces on
any x;; € Ny with j # [. This takes into account that we only consider individual rational allocations,
since all probabilities in [pj]_jj are zero for allocations involving agent j sending a service to herself.
The random mechanism is sd-fair (subject to individual rationality) if for all R € R and all ¢, € N,
o1(R) R 6;(R)) 7.

Now, from our results we obtain the following corollary.
Corollary 1. The random priority mechanism is sd-non-manipulable, sd-efficient and sd-fair.

In Corollary 1, sd-non-manipulability and sd-fairness are quite obvious, whereas sd-efficiency is more
surprising and relies on the fact that preferences are dichotomous over single agents (see also Bogo-
molnaia and Moulin, 2004).!6 Besides random priority mechanisms, it would be interesting whether
there are any other “nice” random mechanisms which are not simply a mixing of deterministic mech-

anisms. This question is left for future research.

6.3 Extensions

This section contains discusses three possible extensions of the considered model.!”

6.3.1 More General Preferences

One may argue that the upper bounds on how many units of the good agent 7 at most would like to
receive from agent j is extreme in the following sense. Suppose that there are two agents, called 1
and 2, such that t; = ¢t = 3. Now, if for profile R we have t;2 = 2, then (22,11) Pyw; P1(222,111)
meaning that agent 1 would strictly prefer his endowment to receiving three units of the good from
agent 2. One may argue that agent 1 has a preference such that (22,11)P;(222,111)Pywy, i.e.,
receiving two units of the good from agent 2 is optimal, but receiving three units is still better than his
endowment. This would correspond to agent 1 having a “peak” at two units and a maximum at three

units.

!5This is not true in general. Bogomolnaia and Moulin (2001) show that ex-post efficiency (or ex-post maximality) on
the strict domain does not imply sd-efficiency when agents have unitary endowments.
"We thank the referees and the Co-Editor for suggesting these extensions.
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It is easy to see that including such preferences would result in a manipulable mechanism (if the
mechanism is efficient and individually rational). Suppose, for instance, that agent 2 has the following
preference (222, 111)P(22,11) Powsy. Then 2z = (222,111) and 2’ = (22, 11) are the two individual
rational and efficient allocations at the preference profile (P, P»). Thus, any mechanism that chooses
an individual rational and efficient allocation must choose either 2 or 2’. Suppose now that allocation
x is chosen. Then agent 1 can report Pj as (22, 11) P{w; P (222, 111) and the mechanism must choose
allocation 2, since this is the only individual rational and efficient allocation at (Pj, P»). This is a
successful manipulation by agent 1. A symmetric argument, where agent 2 can manipulate, can be
made if allocation 2’ is chosen. This impossibility is not surprising; see, for instance Konishi et al.
(2001) where agents are endowed with multiple types o