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Abstract
We study here systems of distributed entities that can actively modify their communication network. This gives rise to
distributed algorithms that apart from communication can also exploit network reconfiguration to carry out a given task. Also,
the distributed task itself may now require a global reconfiguration from a given initial network Gs to a target network G f

from a desirable family of networks. To formally capture costs associated with creating and maintaining connections, we
define three edge-complexity measures: the total edge activations, themaximum activated edges per round, and themaximum
activated degree of a node. We give (poly)log(n) time algorithms for the task of transforming any Gs into a G f of diameter
(poly)log(n), while minimizing the edge-complexity. Our main lower bound shows that Ω(n) total edge activations and
Ω(n/ log n) activations per round must be paid by any algorithm (even centralized) that achieves an optimum of Θ(log n)

rounds. We give three distributed algorithms for our general task. The first runs in O(log n) time, with at most 2n active edges
per round, a total of O(n log n) edge activations, a maximum degree n − 1, and a target network of diameter 2. The second
achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations. It gives a target
network of diameter O(log n) and uses O(n) active edges per round. Our third algorithm shows that if we slightly increase
the maximum degree to polylog(n) then we can achieve o(log2 n) running time.

Keywords Distributed algorithms · Dynamic networks · Reconfiguration · Transformation · Polylogarithmic time · Edge
complexity

1 Introduction

1.1 Dynamic networks

The algorithmic theory of dynamic networks is a relatively
new area of research, concerned with studying the algorith-
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mic and structural properties of networked systems whose
structure changes with time. One way to classify dynamic
networks is based on who controls the network dynamics.
In passively dynamic networks the changes are external to
the algorithm, in the sense that the algorithm has no control
over them. Such dynamics are usually modeled by sequences
of events determined by an adversary scheduler. This is for
example the case when the computing entities must operate
in a dynamic environment, such as when being carried by a
set of transportation units. In other applications, the entities
can actively control the dynamics of their network, as is the
case in mobile or reconfigurable robotics and peer to peer
networks. Hybrid cases or cases of partial control are less
studied (cf. [15] for a relevant study).

Another level of classification comes from who controls
the algorithm. This gives rise to two main families of mod-
els. One is fully centralized, in which a central controller has
global view of the system. In case of active network dynam-
ics, the centralized algorithm typically designs a dynamic
network by exploiting its full knowledge about the sys-
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tem in a way that aims to optimize some given objective
function. If network dynamics are passive then the goal is
typically to achieve some global computation task, like fore-
most journeys or dissemination,whichmay either be possible
to compute offline under full information about the evolution
of the network or required to compute online under limited
or no knowledge about the future network structure. Similar
objectives hold for the fully distributed case, in which every
node in the network is an independent computing entity, like
an automaton or Turing machine, typically equipped with
computation and communication capabilities, and in the case
of active dynamics, with the additional capability to locally
modify the network structure, like activating a connection to
a new neighbor or eliminating an existing connection. One
may also consider partial distributed control, in which only k
out of n nodes are occupied by computing entities, but again
not much is known about this family of models.

1.2 An actively dynamic distributedmodel

In this paper, we consider an actively dynamic and fully dis-
tributed system. In particular, there are n computing entities
starting from an initial connected network drawn from a fam-
ily of initial networks. The entities are typically equipped
with unique IDs, can compute locally, can communicate with
neighboring entities, and can activate connections to new
neighbors locally or eliminate some of their existing con-
nections. All these take place in lock step through a standard
synchronousmessage passingmodel, extended to include the
additional operations of edge activations and deactivations
within each round.

The goal is, generally speaking, to program all the enti-
ties with a distributed algorithm that can transform the initial
network Gs into a target network G f from a family of target
networks. The idea is that starting from a Gs not necessarily
having a good property, like small diameter, the algorithm
will be able to “efficiently” reach a G f satisfying the prop-
erty. This gives rise to two main objectives, which in some
cases might be possible to satisfy at the same time. One is to
transform a givenGs into a desired targetG f and the other is
to exploit some good properties of G f in order to more effi-
ciently solve a distributed task, like computation of a global
function through information dissemination.

Even when edge activations are extremely local, mean-
ing that an edge uv can only be activated if there exists a
node w such that both uw and wv are already active, there is
a straightforward algorithmic strategy that can successfully
carry out most of the above tasks. In every round, all nodes
activate all of their possible new connections, which corre-
sponds to each node u connecting with all nodes vi that were
at distance 2 from u in the beginning of the current round.
By a simple induction, it can be shown that in any round r
the neighborhood of every node has size at least 2r , which

implies that a clique Kn is formed in O(log n) rounds. Such a
clique can then be used for global computations, like electing
the maximum UID as a leader, or for transforming into any
desired target network G f through eliminating the edges in
E(Kn) \ E(G f ). All these can be performed within a single
additional round.

Even though sublinear global computation and network-
to-network transformations are in principle possible through
the clique formation strategy described above, this algorith-
mic strategy still has a number of properties which would
make it impractical for real distributed systems. As already
highlighted in the literature of dynamic networks, (i.e., [21]),
activating and maintaining a connection does not come for
free and is associated with a cost that the network designer
has to pay for. Even if we uniformly charge 1 for every such
active connection, the clique formation incurs a cost ofΘ(n2)
total edge activations in the worst case and always produces
instances (e.g., when Kn is formed) with as many as Θ(n2)
active edges in which all nodes have degree Θ(n).

Our goal in this work is to formally define such cost mea-
sures associated with the structure of the dynamic network
and to give improved algorithmic strategies that maintain
the time-efficiency of clique formation, while substantially
improving the edge complexity as defined by thosemeasures.
In particular, we aim at minimizing the edge complex-
ity, given the constraint of (poly)logarithmic running time.
Observe at this point that without any restriction on the
running time, a standard distributed dissemination solely
through message passing over the initial network, would
solve global computation without the need to activate any
edges. However, linear running times are considered insuf-
ficient for our purposes (even when the goal is to solve
traditional distributed tasks). Moreover, strategies that do
not modify the input network cannot be useful for achiev-
ing network-to-network transformations.

1.3 Contribution

We define three cost measures associated with the edge com-
plexity of our algorithms. One is the total number of edge
activations that the algorithm performed during its course,
the second one is themaximum number of activated edges in
any round by the algorithm, and the third one is themaximum
activated degree of a node in any round, where the maximum
activated degree of a node is defined only by the edges that
have been activated by the algorithm.

Our ultimate goal in this paper is to give (poly)logarithmic
time algorithms which, starting from any connected network
Gs , transform Gs into a G f of (poly)logarithmic diameter
and at the same time elect a unique leader. Such algorithms
can then be composed with any algorithm B that assumes an
initial network of (poly)logarithmic diameter and has access
to a unique leader and unique ids. In case of a static network
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algorithm B, this for example yields (poly)logarithmic time
information dissemination and computation of any global
function on inputs. In case of an actively dynamic network
algorithm B, it gives (poly)logarithmic time transformation
into any target network from a given family which depends
on restrictions related to the edge complexity.

We restrict our focus on deterministic algorithms, that is,
the computational entities do not have access to any random
choices. Moreover, our algorithms never break the connec-
tivity of the network of active edges as this would result in
components that could never be reconnected basedon the per-
missible edge activations. Temporary disconnections within
a round may be permitted but can always be avoided by first
activating all new edges and then deactivating any edges for
the current round.

There is a clear tradeoff between time and edge complexity
and we formally capture that with the lower bounds pre-
sented in Sect. 7. In particular, we first prove that Ω(log n)

is a lower bound on time following from an upper bound of
2 on the distance of new connections and the Θ(n) worst-
case diameter of the initial network. Then we give an Ω(n)

lower bound on total edge activations and Ω(n/ log n) acti-
vations per round for any centralized algorithm that achieves
an optimalΘ(log n) time. Our main lower bound is a total of
Ω(n log n) total edge activations that any logarithmic time
deterministic distributed comparison based algorithm must
pay. This is in contrast to the Θ(n) total edges that would
be sufficient for a centralized algorithm and is due to the
distributed nature of the systems under consideration.

We then proceed to ourmain positive results. In particular,
we give three algorithms for transforming any initial con-
nected network Gs into a network G f of (poly)logarithmic
diameter and at the same time electing a unique leader. Each
of these algorithmsmakes a different contribution to the time
vs. edge complexity trade-off. All of our main algorithms are
built upon the following general strategy. For each of them,
we define a different gadget network and the algorithms are
developed in such away that they always satisfy the following
invariants. In any round of an execution, the network is the
union of committees being such gadget networks of varying
sizes and some additional edges including the initial edges
and other edges used to join the committees. Initially, every
node forms its own committee and the algorithms progres-
sively merge pairs or larger groups of committees based on
the rule that the committee with the greater UID dominates.
If properly performed, this ensures that eventually only one
committee remains, namely, the committee of the node umax

with maximum UID in the network. The diameter of all our
gadgets is (poly)logarithmic in their size, which facilitates
quick merging and ensures that the final committee of umax

satisfies the (poly)log(n) diameter requirement for G f . The
algorithms also ensure that, by the time the committee of

umax is the unique remaining committee, umax is the unique
leader elected.

Our algorithms must achieve (poly)logarithmic time and
they do so by satisfying the invariant that surviving com-
mittees always grow exponentially fast. This growth is
asynchronous in our algorithms for the following reason. In
a typical configuration (of a phase) the graph of mergings
forms a spanning forest F of committees such that any tree T
in F is rooted at the committee that will eventually consume
all committees in V (T ). Given that those trees may have dif-
ferent sizes (even up to V (T ) = Θ(n)), the rounds in which
various committees finish merging may be different, but we
can still show that their amortized growth is exponential.

Our first algorithm, called GraphToStar and presented
in Sect. 4, uses a star network as a gadget. Its running time is
O(log n) and it uses at most 2n active edges per round and
an optimal total of O(n log n) edge activations. The target
network G f that it outputs is a spanning star, thus, achieving
a final diameter of 2.

Our second algorithm, called GraphToWreath and
presented in Sect. 5, uses as a gadget a graph we call a
wreath which is the union of a ring and a complete binary
tree spanning the ring. The main improvement compared
to GraphToStar is that it maintains a bounded maxi-
mum degree throughout its course (given a bounded-degree
Gs). It does this at the cost of increasing the running time
to O(log2 n) and the number of total edge activations to
O(n log2 n). The active edges per round remain O(n). The
target network G f that it outputs is a complete binary
spanning tree (after deleting the original edges and the span-
ning ring), thus, the algorithm achieves a final diameter of
O(log n).

Our third algorithm, called GraphToThinWreath and
presented in Sect. 6, shows that if we slightly increase the
maximum degree to polylog(n) then we can achieve a run-
ning timeofo(log2 n) (more precisely,O(log2 n/ log logk n),
for some constant k ≥ 1).

If our model can be compared to models from the area
of overlay networks construction (see Sect. 2 for a discus-
sion on this matter), then GraphToWreath is, to the best
of our knowledge, the first deterministic bounded-degree
O(log2 n)-time algorithm and GraphToThinWreath is
thefirst deterministic polylog(n)-degreeo(log2 n)-time algo-
rithm for the problem of transforming any connected Gs into
a polylog(n) diameter G f .

2 Further related work

Temporal graphs.The algorithmic study of temporal graphs
was initiated by Berman [9] and Kempe et al. [17], who stud-
ied a special case of temporal graphs in which every edge can
be available at most once. The problem of designing a cost-
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efficient temporal graph satisfying some given connectivity
propertieswas introduced in [20]. Thedesign taskwas carried
out by an offline centralized algorithm starting from an empty
edge set. Subsequent work [14], motivated by epidemiology
applications, considered the centralized algorithmic problem
of re-designing a given temporal graph through edge dele-
tions in order to end up with a temporal graph with bounded
temporal reachability, thus keeping the spread of a disease to
a minimum. Our work is related to the temporal network (re-
)design problem but our model is fully distributed, allows for
both edge activations and deletions, and our families of tar-
get networks are different than those considered in the above
papers.
Distributed computation in passively dynamic networks.
Probably the first authors to consider distributed computation
in passively dynamic networks were Angluin et al. [4–6].
Their population protocol model, considered originally the
computational power of a population of n finite automata
which interact in pairs passively either under an eventual
fairness condition or under a uniform random scheduling
assumption. A variant of population protocols in which
the automata can additionally create or destroy connections
between themwas introduced in [21,25]. It was shown that in
that model, called network constructors, complex spanning
networks can be created efficiently despite the computational
weakness of individual entities. The closest to our approach
from this area is [26], in which the authors showed how
to transform any connected initial network into a spanning
line which can then be exploited to achieve global compu-
tation on input values and termination. The main difference
though is that in all these models pairwise interactions are
chosen asynchronously by a scheduler, and connections can
be created between any pair of nodes during their interac-
tion independently of the current network structure and the
distance between them.

Other papers [18,22,27] have studied distributed compu-
tation in worst-case dynamic networks using a traditional
message-passingmodel and typically operating through local
broadcast in the current neighborhood. Our communication
model is closer to those models but network dynamics there
are always passive and their main goal has been to revisit the
complexity of classical distributed tasks under a worst-case
adversarial network.

Finally the work by Casteigts et al. [12] is a unifying
framework for different dynamic network models and our
model falls more closely under the umbrella of the graph-
centric evolution discussed by the paper.
Construction of overlay networks. There is a rich litera-
ture on the distributed construction of overlay networks. A
typical assumption is that there is an overlay (active) edge
from a node u to a node v in a given round iff u has obtained
v’s UID through a message. Without further restrictions, the
overlay in round r would always correspond to the union of

r consecutive transitive extensions starting from the original
edge set. The main restriction imposed in the relevant liter-
ature is a polylogarithmic (in bits) communication capacity
per node per round, which also implies that in every round
O(log n) new overlay connections per node are permitted.

Our model and results, even though different in moti-
vation, in the complexity measures considered, and in the
restrictions we impose, appear to have similarities with some
of the developments in this area. Unlike our work, where
our complexity measures are motivated by the cost of cre-
ating and maintaining physical or virtual connections, the
algorithmic challenges in overlay networks are mainly due
to restricting the communication capacity of each node per
round to a polylogarithmic total number of bits.

Research in this area started with seminal papers such as
Chord of Stoica et al. [30] and the Skip graphs of Aspnes and
Shah [7]. Probably the first authors to have considered the
problem of constructing an overlay network of logarithmic
diameter were Angluin et al. [3]. Their algorithm is random-
ized with O((d + W ) log n) running time w.h.p., where W
is the maximum size of a unique UID. Then Aspnes and
Wu [8] gave a randomized O(log n) time algorithm for the
special case in which the initial network has outdegree 1.
A very recent work by Götte et al. [16] has improved the
upper bound of [3] to O(log3/2 n), w.h.p. It is a random-
ized algorithm which uses a core deterministic procedure
that has some similarities to our algorithmic strategy ofmain-
taining and merging committees (called “supernodes” there)
whose size increases exponentially fast. Their model keeps
the polylogarithmic restriction on communication and the
polylogarithmic maximum degree.

To the best of our knowledge, the only previous determin-
istic algorithm for the problem is the one by Gmyr et al. [15].
Our algorithmic strategies appear to have some similarities
to their “Overlay Construction Algorithm”, which in their
work is used as a subroutine for monitoring properties of a
passively dynamic network. Unlike our model, their model is
hybrid in the sense that algorithms have partial control over
the connections of an otherwise passively dynamic network.
Due to using different complexity measures and restrictions
it is not totally clear to us yet whether a direct compari-
son between them would be fair. Still, we give some first
observations. Their algorithm has the same time complexity,
i.e.,O(log2 n),with ourGraphToWreath algorithm,while
our GraphToStar algorithm achieves O(log n) and our
GraphToThinWreath o(log2 n). Their overlays appear
to maintain Θ(n log n) active connections per round, while
our algorithmsmaintain O(n). Theirmaximum active degree
is polylogarithmic, the same as GraphToThinWreath,
while GraphToStar uses linear and GraphToWreath
always bounded by a constant. Their model restricts the
communication capacity of every node to a polylogarithmic
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number of bits per round, whereas we do not restrict com-
munication.

Scheideler and Setzer [29] recently studied the (central-
ized) computational complexity of computing the optimum
graph transformation and gave NP-hardness results and a
constant-factor approximation algorithm for the problem.
Programmable matter. There is a growing interest in
studying the algorithmic foundations of systems that can
change their physical properties through local reconfigura-
tions [1,2,10,13,23]. A prominent such property is changing
their shape. Typical examples of systems in this area are
reconfigurable robotics, swarm robotics, and self-assembly
systems [11,19,28]. In most of these settings, modification of
structure can be represented as a dynamic network, usually
called shape, with additional geometric restrictions coming
from the shape and the local reconfiguration mechanism of
the entities. The goal is to transform a given initial shape
into a desired target shape through a sequence of valid local
moves. Our network transformation problem can be viewed
as a non-geometric abstraction of these geometric transfor-
mation problems. Apart from being motivated by this area,
we also hope that the abstract algorithmic principles of net-
work reconfiguration might promote our understanding of
the geometrically constrained cases.

3 Preliminaries

3.1 Model

An actively dynamic network is modeled in this work by a
temporal graph D = (V , E), where V is a static set of n
nodes and E ⊆ (V

2

) × N is a set of undirected time-edges. In
particular, E(i) = {e : (e, i) ∈ E} is the set of all edges that
are active in the temporal graph at the beginning of round
i . Since V is static, E(i) can be used to define a snapshot
of the temporal graph at round i , which is the static graph
D(i) = (V , E(i)).

The temporal graphD of an execution is generatedby local
operations performed by the nodes of the network, starting
from an initial graph Gs = D(1). Throughout this paper, Gs

is assumed to be connected. A node u can activate an edge
with node v in round i , if uv /∈ E(i) and there exists a node
w such that both uw and wv are active at the beginning of
round i . A node u can deactivate an edge with node v in
round i , provided that uv ∈ E(i). An active edge remains
active indefinitely unless a node that is incident to that edge
deactivates it. There is at most one active edge between any
pair of nodes, that is multiple edges are not allowed. If a
node attempts to activate an edge which is already active, the
action has no effect and the edge remains active; similarly
for deactivating inactive edges.Moreover, if a node u decides
to activate an edge with a node v in round i and v decides

to activate an edge with u in the same round, then only one
edge is activated between them. In case u and v disagree
on their decision about edge uv, then their actions have no
effect on uv. We define Eac(i) as the set of all edges that
were activated in round i and Edac(i) as the set of all edges
that were deactivated in round i . Then E(i + 1) = (E(i) ∪
Eac(i)) \ Edac(i).

We define set Ni
1(u) of node u, where v ∈ Ni

1(u) iff uv ∈
E(i) which means that set Ni

1(u) contains the neighbors of
node u in round i . Additionally, set Ni

2(u) of node u, where
w ∈ Ni

2(u) iff there exists v ∈ V s.t. v ∈ Ni
1(u) and v ∈

Ni
1(w) and w /∈ Ni

1(u). That is, set Ni
2(u) of node u in round

i contains the nodes at distance 2 which we will refer to as
potential neighbors. We will omit the i index for rounds,
when clear from context.

Each node u ∈ V is identical to every other node v but for
the unique identifier (UID) that each node possesses. Each
node u starts with a UID that is drawn from a namespace
U . The maximum UID is represented by O(log n) bits. An
algorithm is called comparison based if it manipulates the
UIDs of the network using comparison operations (<,>,=)

only. All of the algorithms and lower bounds presented in this
paper are comparison based.

The nodes represent agents equipped with computation,
communication, and edge-modification capabilities and they
operate in synchronous rounds. In each round all agents per-
form the following actions in sequence and in lock step: send
messages to their neighbors, receive messages from their
neighbors, activate edges with potential neighbors, deacti-
vate edges with neighbors, update their local state.

We note that a node may choose to send a different mes-
sage to different neighbors in a round and that the time needed
for internal computations is assumed throughout to be O(1).
Wedo not impose any restriction on the size of the localmem-
ory of the agents, still the space complexity of our algorithms
is within a reasonable polynomial in n.

3.2 Problem definitions and performancemeasures

In this paper, we are mainly interested in the following prob-
lems.

Leader election. Every node u in graph D = (V , E) has
a variable statusu that can be set to a value in {Follower,
Leader}. An algorithm A solves leader election if the algo-
rithm has terminated and exactly one node has its status set to
Leader while all other nodes have their status set to Follower.

Token dissemination. Given an initial graph D =
(V , E) where each node u ∈ V starts with some unique
piece of information (token), every node u ∈ V must termi-
nate while having received that unique piece of information
from every other node v ∈ V \ {u}. W.l.o.g. we will con-
sider that unique information to be the UID of each node
throughout the paper.
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Depth-d tree. Given any initial graph Gs from a given
family, the distributed algorithm must reconfigure the graph
into a target graph G f , such that G f is a rooted tree of depth
d with a unique leader elected at the root.

Apart from studying the running time of our algorithms,
measured as their worst-case number of rounds to carry out a
given task, we also introduce the following edge complexity
measures.

Total edge activations. The total number of edge activa-
tions of an algorithm is given by

∑T
i=1 |Eac(i)|, where T is

the running time of the algorithm.
Maximum activated edges. It is defined as maxi∈[T ]

|E(i)\E(1)|, that is, equal to the maximum number of active
edges of a round, disregarding the edges of the initial net-
work.

Maximum activated degree. The maximum degree of a
round, if we again only consider the edges that have been
activated by the algorithm. Let Δ(G) denote the maximum
degree of a graph G. Then, formally, the maximum activated
degree is equal to maxi∈[T ] Δ(D(i)\D(1)), where the graph
difference is defined through the difference of their edge sets.

In this paper, instead ofmeasuring themaximum activated
degree we will focus on preserving the maximum degree of
input networks from specific families. For example, one of
our algorithms solves the Depth-d Tree problem on any input
network and, if the input network has bounded degree, then
it guarantees that the degree in any round is also bounded.

3.3 Basic subroutines

Wewill now provide algorithms that transform initial graphs
into graphs with small diameter and which will be used as
subroutines in our general algorithms. The first called Tree-
ToStar transforms any initial rooted tree graph into a spanning
star in O(log n) time with O(n log n) total edge activations
and O(n) active edges per round, provided that the nodes
have a sense of orientation on the tree (i.e., can distinguish
which of their neighbors is “closer” to the root of the tree). In
every round, each node activates an edge with the potential
neighbor that is its grandparent and deactivates the edge with
its parent. This process keeps being repeated by each node
until they activate an edge with the root of the tree.

Proposition 1 Let T be any tree rooted at u0 of depth d. If the
nodes have a sense of orientation on the tree, then algorithm
TreeToStar transforms T into a spanning star centered at u0
in �log d� ≤ log n rounds. TreeToStar has at most 2n − 3
active edges per round.

Our next algorithm called LineToCompleteBinaryTree
transforms any line into a binary tree in O(log n) time,
with O(n log n) total edge activations, O(n) active edges
per round and the degree of each node is at most 4, provided
that the nodes have a common sense of orientation. In each

round, each node activates an edge with its grandparent and
afterwards it deactivates its edge with its parent. This process
keeps being repeated by each node until they activate an edge
with the root of the tree or if their grandparent has 2 children.

Proposition 2 Let T be any line rooted at u0 of diameter d. If
the nodes have a sense of orientation on the line, then algo-
rithm LineToCompleteBinaryTree transforms T into a binary
tree centered at u0 in �log d� ≤ log n time. LineToComplete-
BinaryTree has at most 2n−3 active edges per round, n log n
total edge activations and bounded degree equal to 3.

3.4 General strategy for depth-d tree

All algorithms developed in this paper solve the Depth-d
Tree problem starting from any connected initial network
Gs from a given family. Our aim is to always achieve this in
(poly)logarithmic time while minimizing some of the edge-
complexity parameters. There is a natural trade-off between
time and edge complexity and each of our algorithms makes
a different contribution to this trade-off. In particular, by
paying for linear degree, our first algorithm manages to
be optimal in all other parameters. If we instead insist on
bounded degree, then our second algorithm shows that we
can still solve Depth-d Tree within an additional O(log n)

factor both in time and total edge activations. Finally, if the
bound on the degree is slightly relaxed to (poly)log(n), our
third algorithm achieves o(log2 n) time.

All three algorithms are built upon the same general strat-
egy that we now describe. For each of them we choose
an appropriate gadget network, which has the properties of
being “close” to the target network G f to be constructed
and of facilitating efficient growth. For example, the G f of
our first algorithm is a spanning star and the chosen gadget
is a star graph, while the G f of our second algorithm is a
complete binary tree and the chosen gadget is the union of a
ring and a complete binary tree spanning that ring (called a
wreath).

Our algorithms satisfy the following properties. The nodes
are always partitioned into committees, where each commit-
tee is internally organized according to the corresponding
gadget network of the algorithm and has a unique leader,
which is the node with maximum UID in that committee.
Initially, every node forms its own trivial committee and
committees increase their size by competing with nearby
committees. In particular, committees select and, if possible,
merge with the maximum-UID committee in their neighbor-
hood. Prior to merging, such selections may give rise to pairs
of committees, in which case merging is immediate, but also
to rooted trees of committees where all selections are ori-
ented towards the root and merging has to be deferred. In the
latter case, the winning committee will eventually be the root
of the tree, at which point all other committees of the tree will
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have merged to it. In all cases, merging must be done in such
a way that the gadget-like internal structure of the winning
committee is preserved. This growth guarantees that eventu-
ally there will be a single committee spanning the network.
At that point, the leader of that committee (which is always
the node with maximum UID in the network) is an elected
unique leader. Moreover, the gadget-like internal structure of
that committee can be quickly transformed into the desired
target network, due to the by-design close distance between
them. For example, in the algorithm forming a star no fur-
ther modification is required, while in the algorithm forming
a complete binary tree, a ring is eliminated from a wreath so
that only the tree remains.

Our algorithms are designed to operate in asynchronous
phases, with the guarantee that in every phase pairs of com-
mittees merge and trees of committees halve their depth.
This can be used to show that in all our algorithms a sin-
gle committee will remain within O(log n) phases. Each
phase lasts a number of rounds which is within a constant
factor of the maximum diameter of a committee involved
in it, which is in turn upper bounded by the diameter of
the final spanning committee. The latter is always equal to
the diameter of the chosen gadget as a function of its size.
The total time is then given by the product of the number of
phases and the diameter of the chosen gadget. For example,
in our first algorithm the gadget is a star and the running
time (in rounds) is O(1) · O(log n), in our second algo-
rithm the gadget is a wreath of diameter O(log n) and the
running time is O(log n) · O(log n) = O(log2 n), while in
our third algorithm the gadget is a modified wreath, called
ThinWreath, of diameter o(log n) and the running time is
o(log n) · O(log n) = o(log2 n). Given that every node acti-
vates at most one edge per round, the total number of edge
activations of our algorithms is within a linear factor of their
running time.

4 An edge optimal algorithm for general
graphs

Our first algorithm, called GraphToStar, solves the
Depth-d Tree problem, for d = 1. In particular, by using
a star gadget it transforms any initial graph Gs into a target
spanning star graph G f . Its running time is O(log n) and it
uses an optimal number of O(n log n) total edge activations
and O(n) active edges per round. Optimality is established
by matching lower bounds, presented in Sect. 7.

Algorithm GraphToStar
Each committeeC(u) is a star graphwhere the center node

u is the leader of the committee and all other nodes are fol-
lowers. The leader node of each committee is the node with
the greatest UID in that committee. The UID of each com-

mittee is defined by the UID of that committee’s leader. The
winning committee in the final graph, denoted C(umax ), is
the one with the greatest UID in the initial graph. Every node
starts as a leader and forms its own committee as a single
node. The original edges of Gs are assumed to be main-
tained until the last round of the algorithm and the nodes can
always distinguish them. The algorithm proceeds in phases,
where in every phase each committee C(u) executes in one
of the following modes, always executing in selection mode
in phase 1.

– Selection: If C(u) has a neighboring committee C(z)
such that U I Dz > U I Du and C(z) is not in pulling
mode, then, from its neighboring committees not in
pullingmode,C(u) selects the onewith the greatest UID;
call the latter C(v). It does this, by u first activating an
edge e1 with a potential neighbor in C(v). Then u acti-
vates an edge with v, deactivates the previous edge e1,
and C(u) enters either the merging or pulling mode. In
particular, ifC(v)did not select, thenC(u) andC(v) form
a pair and C(u) enters the merging mode. If on the other
hand C(v) selected some C(w), then C(u) enters the
pullingmode.Otherwise,C(u)did not select. IfC(u)was
selected then it enters the waiting mode, else it remains
in the selection mode. If C(u) has no neighboring com-
mittees, then it enters the termination mode.

– Merging: Given that in the previous phase the leader of
C(u) activated an edge with the leader of C(v), each fol-
lower x in C(u) activates the edge xv and deactivates the
edge xu. The result is that C(u) and C(v) have merged
into committee C(v), which remains a star rooted at v

now spanning all nodes in V (C(u)) ∪ V (C(v)). There-
fore, C(u) does not exist any more.

– Pulling: Given that in the previous phase the leader
of C(u) activated an edge with the leader of C(v) and
the leader of C(v) activated an edge with the leader of
C(w), u activates uw, deactivates uv, and C(u) remains
in pulling mode. If, instead, the leader of C(v) did not
activate in the previous phase, thenC(u) enters the merg-
ing mode. On the other hand, given that in the previous
phase the leader ofC(u) activated an edgewith the leader
of C(v) and in the current phase, committee C(v) does
not exist anymore, this means that v is currently in some
committeeC(w), and u activates uw andC(u) enters the
merging mode.

– Waiting: If C(u) has no neighboring committees, C(u)

enters the termination mode. If in the previous phase no
committee C(v) activated an edge with u, then C(u)

enters the selection mode. Otherwise C(u) remains in
the waiting mode.

– Termination: C(u) deactivates every edge in E(Gs) \
E(C(u)). In particular, each follower x in C(u) deacti-
vates all active edges incident to it but xu.
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Correctness

Lemma 1 Algorithm GraphToStar solves Depth-1 Tree.

Proof It suffices to prove that in any execution of the algo-
rithm, one committee eventually enters the terminationmode
and that this committee can only be C(umax ). If this holds,
then by the end of the termination phase C(umax ) forms a
spanning star rooted at umax and umax is the unique leader of
the network. This satisfies all requirements of Depth-1 Tree.

A committee dies (stops existing) only when it merges
with another committee by entering the merging mode. First
observe that there is always at least one alive committee.
This is C(umax ), because entering the merging mode would
contradict maximality of umax . We will prove that any other
committee eventually dies or grows, which due to the finite-
ness of n will imply that eventually C(umax )will be the only
alive committee.

In any phase, but the last one which is a termination phase,
it holds that every alive committee C(u) is in one of the
selection, merging, pulling, and waiting modes. If C(u) is in
the mergingmode, then by the end of the current phase it will
have died by merging with another committee C(v). It, thus,
remains to argue about committees in the selection, pulling,
and waiting modes.

We first argue about committees in the pulling mode.
Denote their set by Cpull . Observe that, in any given phase,
the committees in pulling mode form a forest F , where each
C(u) ∈ Cpull belongs to a pulling tree T of F . Any such
pulling tree mimicks the execution of the TreeToStar algo-
rithm (fromProposition 1) on the leaders of committeesC(u)

and satisfies the invariant that its root committeeCr is always
in the waiting mode and Cr ’s children are in the merging
mode. In every phase, Cr ’s children merge with Cr and their
children become the new children of Cr and enter the merg-
ing mode. It follows that all non-root committees in T will
eventually merge with Cr . Thus, all committees in pulling
mode eventually die.

It remains to argue about committees in the selection and
waiting modes. We start from the waiting mode. Any com-
mittee C(u) in waiting mode is a root of either a pulling
tree in the forest F or of a star of committees in which all
leaf-committees are merging with C(u). In both cases, C(u)

eventually exits the waiting mode and enters the selection
mode. This happens as soon as all other committees in its
pulling tree or star have merged to it, thus C(u) has grown
upon its exit.

Now, a committee C(u) in the selection mode can enter
any other mode. As argued above, if it enters the merging or
pullingmodes it will eventually die and if it enters thewaiting
mode it will eventually grow. Thus, it suffices to consider the
case in which it remains in the selection mode indefinitely.
This can only happen if all current and future neighboring
committees ofC(u), including the ones to eventually replace

neighbors in pulling mode, have a UID smaller than U I Du .
But each of these must have selected a neighboring C(w),
such thatU I Dw > U I Du , otherwise it would have selected
C(u). Any such selection results in C(w) (or a z, such that
U I Dz > U I Dw in case w belongs to a tree) becoming a
neighbor ofC(u), thus contradicting the indefinite localmax-
imality of U I Du . 	

Time complexity

Let us move on to proving the time complexity of our
algorithm. At the beginning, we are going to ignore the num-
ber of rounds within a phase, and we are just going to study
the maximum number of phases before a single committee
is left. We define |C(u)s | to be the size of committee C(u) in
phase s, which is the number of nodes in committee C(u) in
phase s.

Lemma 2 Consider committee C(u) that is in waiting mode
between phases s and s + j . If the size of every committee in
phase s is at least 2k , then the size of committee C(u) once
it enters the selection mode in phase s + j + 1 is at least
2k+ j−2.

Proof AnycommitteeC(u) inwaitingmode is a root of either
(i) a pulling tree in the forest F or (ii) a star of committees
in which all leaf-committees are merging with C(u).

For case (i): root committee C(u) is always in waiting
mode and every other committeeC(v)of T is either in pulling
or merging mode. It follows that all non-root committees
C(v) in the pulling tree will eventually merge with C(u) in
some phase s+ j .W.l.o.g. assume that every committeeC(v)

that belongs to the pulling tree T entered pulling or merging
mode in phase s and every committeeC(v)will have merged
with committee C(v) by phase s+ j . Every committee C(v)

will stay in pulling mode for i < j phases and in merging
mode for 1 phase. Consider the leaders v of every committee
C(v) and note that while in pulling mode, the leaders are
mimicking the execution of the TreeToStar algorithm, where
the leader of C(u) is the root of the tree, and the leaders
of C(v) are the non-root nodes of the tree. We know by
Proposition 1, that the running time of the algorithm is log d,
whered is the depthof the tree.Thus, if every committeeC(v)

enters the pulling mode in phase s and the last committee
C(v) to exit the pulling mode is in phase s + i , s + i − s =
log d �⇒ i = log d. This means that the depth of tree T is
2i . Since the depth of the pulling tree T is 2i , the tree T must
contain at least 2i committees.Additionally note that after the
last committee C(v) exits the pulling mode is in phase s+ k,
in phase s + k + 1 it enters the merging mode and in phase
s + k + 2 every committee C(v) has merged with committee
C(u). Thus, s+ i+2 = s+ j �⇒ i = j−2 and the size of
C(u) in phase s + j + 1 is |C(u)s+ j+1| ≥ 2k ∗ 2i = 2k+ j−2.

For case (ii): root committee C(u) is in waiting mode
and has at least one leaf committee in phase s. After the
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leaf committee merges in 1 phase, committee C(u) has size
|C(u)s+1| ≥ |C(u)s | + |C(u)s | ≥ 2k + 2k = 2k+1. 	

Lemma 3 If committee C(u) stays in the selection mode for
p ≥ 4 consecutive phases, then C(u) has a neighboring
committee C(v) ∈ Cpull that belongs to a pulling tree T for
at least p phases.

Proof Let us assume that committee C(u) stays in the selec-
tion mode for p ≥ 4 consecutive phases while having a
neighbor C(v) that does not belong to pulling tree T .

– If C(v) does not belong to a pulling tree in phase k, then
it cannot be in pulling mode.

– If C(v) is in selection mode in phase k and C(v) does
not selectC(u) andC(u) does not selectC(v), thenC(v)

has a neighbor C(w) where U I Dw > U I Dv > U I Du

and C(v) selected C(w). Then C(v) enters the merging
mode in phase k + 1 and gets merged with C(w). In
phase k + 2 committee C(w) becomes a neighbor of
C(u) and C(w) enters the selection mode. Therefore,
sinceU I Dw > U I Du ,C(u)would selectC(w) in phase
k+2, and enter either the pulling ormergingmode. Thus,
a contradiction.

– If C(v) is in waiting mode in phase k, it cannot be the
root of a pulling tree, and is the root of a star. Therefore
in phase k + 1 it will enter the selection mode and based
on the analysis of the previous paragraph, in phase k + 3
C(u) will exit the selection mode. Thus, a contradiction.

	

Lemma 4 Let us assume that the minimum size of a commit-
tee in phase s is 2k . If committee C(u) stays in the selection
mode from phase s to phase s + p, where p ≥ 4, then in
phase s + p + 1 it will select or get selected by a committee
C(v) of size at least 2k+p−2.

Proof From Lemma 3 it follows that, since C(u) is in the
selection mode for at least 4 phases, there exists a neighbor
C(v) that belongs to a pulling tree T . W.l.o.g. assume that
C(w) is the root of the pulling tree T and C(w) has been in
waiting mode between phases s and s + p. Note also that in
phase s+ p+1, committeesC(u) andC(w) are neighboring
committees and both are in selection mode. Thus, C(u) will
exit the selection mode in phase s + p + 1, because either
C(u)will select C(w) or C(w)will select C(u). Since C(w)

was in waiting mode for p phases, the size ofC(w) is at least
2k+p−2 (based on Lemma 2). 	

Lemma 5 Assume that the minimum size of every committee
in phase s is 2k and that every committee will have exited
the selection mode in phase s + p at least once. The size of
all winning committees (committees that still exist) in phase
s + p + 1 is at least 2k+p−2.

Proof Trivially, if p ≤ 4 the winning committee has size at
least 2k+1 in phase p+1 since it has merged with at least one
other committee. From Lemma 4 it follows that if p ≥ 4 the
winning committee between C(w) and C(u) will have size
at least 2k+p−2 in phase s + p + 1. 	

Lemma 6 After O(log n) phases, there is only a single com-
mittee left in the graph.

Proof We trivially assume that committee C(umax ) has size
|C(umax )1| = 1 in phase 1. Based on Lemma 5, after
O(log n) phases, C(umax ) has size |C(umax )O(log n)| ≥
21+O(log n)−c ≥ 2log n ≥ n. Therefore, committee C(umax )

must contain every single node of G. 	

Lemma 7 Each phase consists of at most 2 rounds.

Proof Based on the description of the algorithm, the selection
phase lasts 2 rounds and the rest of the phases last 1 round.	

Edge complexity

It is very simple to prove the edge complexity for the
algorithm. Note that in each round i each node activates at
most 1 edge and based on Lemma 6 the algorithm runs for
O(log n) phases which means that there are O(n log n) total
edge activations. Furthermore, if a node had activated an edge
u in round i , and it activates another edge v in round i + 1,
then it deactivates edge u. Therefore, each node cannot have
more than 2 active edges that it has activated itself at any time
and sincewe have n nodes in the network, there can ever be at
most 2n active edges per round. Since the structure of every
committee is a star, the maximum activated degree is O(n).

Theorem 1 For any initial connected graph Gs, the
GraphToStar algorithm solves the Depth-1 Tree problem
in O(log n) time with at most O(n log n) total edge acti-
vations, O(n) active edges per round and O(n) maximum
activated degree.

5 Minimizing themaximum degree on
general graphs

In this section we will create an algorithm that minimizes the
maximum activated degree to a constant but has O(log2 n)

running time and O(n log2 n) total edge activations.
For this algorithm, our committees must have at least

Ω(log n) diameter in order to have a constant degree and
therefore merging two different committees in constant time
while keeping a specific structure proves to be complicated.
The new gadget of our committees is going to be a graph we
callwreath. Awreath graph is a graph that has both a ring sub-
graph and a complete binary tree subgraph. We are going to
use the edges of the ring subgraph to merge committees and
the binary tree subgraph to exchange information between

123



194 O. Michail et al.

u

Fig. 1 A wreath graph with 8 nodes. The ring subgraph consists of
the normal (black) and dashed (blue) edges. The complete binary tree
consists of the dotted (red) and dashed (blue) edges. Node u is the root
of the complete binary tree

the nodes of the graph. First, let us define the structure of the
wreath graph.

Definition 1 [Wreath graphs] A graph D = (V , E) belongs
to the class of wreath graphs if it has two subgraphs Dr =
(V , Er ) and Db = (V , Eb), where Dr belongs to the class
of ring graphs, Db belongs to the class of complete binary
tree graphs, and E = Er ∪ Eb.

The O(log n) diameter that the wreath graph possesses
will allow the leaders of committees C(u) to communicate
with neighboring committees C(v) in O(log n) time. Addi-
tionally, the merging phase of each pair of committees will
require only O(log n) time. The algorithm is almost identi-
cal to the GraphToStar as far as the high level strategy is
concerned. Committees select neighboring committees and
merge with them. The main difference is that when a tree
with root v is formed, we cannot use the pulling mode since
this would increase the degree significantly. We provide an
example of two committees merging in Fig. 2. In this exam-
ple, committeeC(u) ismergingwith committeeC(v) and the
merging happens through nodes x and y, see Fig. (a). The
committees on each tree merge in a single ring that includes
all committees in O(1) time (ring merging mode), see Fig.
(b),(c). After this, v deactivates one of its incident edges in
order to create a line subgraph, see Fig. (d). Once this hap-
pens, each node on the line executes an asynchronous version
of the LineToCompleteBinaryTree subroutine in O(log n)

time using the orientation of the new ring, where root v is the
root of the line. Once the subroutine is finished, the complete
binary tree subgraph of the wreath graph is ready. There-
fore we have managed to merge a tree graph of multiple
committees into a single committee. Fig. 2 does not include
the asynchronous version of the LineToCompleteBinaryTree
subroutine since it is quite involved to illustrate.

Algorithm GraphToWreath
The structure of each committee/node is the same as the
GraphToStar algorithm apart from the fact that each

committee C(u) is a wreath graph. Every node is able to dis-
tinguish between the edges of the binary tree and the edges
of the ring by marking them and it can also distinguish its
clockwise neighbor and counterclockwise neighbor on the
ring. Our algorithm proceeds in phases, where in every phase
each committeeC(u) executes in one of the followingmodes,
always executing in selection mode in phase 1.

– Selection: If C(u) has a neighboring committee C(z)
such that U I Dz > U I Du and C(z) is not in Ring
MergingmodeorTreeMergingmode then, from its neigh-
boring committees not in ring merging or tree merging
mode,C(u) selects the onewith the greatest UID; call the
latter C(v). If C(u) selected C(v) or C(u) was selected,
C(u) enters the Ring Merging mode. If C(u) did not
select anyone and it was not selected by anyone, it stays
in the selection mode. If C(u) has no neighboring com-
mittees, C(u) enters the termination mode.

– Ring Merging: Given that in the previous phase, C(u)

selected C(v), committee C(u) merges its ring compo-
nent with the ring component of C(v) by the following
method: Let k ∈ C(u) and l ∈ C(v), such that edge kl is
active. k activates an edge with the clockwise neighbor
of l, call it l1, and l activates an edge with the clockwise
neighbor of k, call it k1. Then they deactivate edges kk1,
ll1, and kl. The two rings have now merged into a single
ring.
Given that in the previous phase, C(u) was selected by
C(k), committee C(k) merges its ring component with
the ring component ofC(u).C(u) enters the treemerging
mode.

– TreeMerging:Every node x inC(u) executes one round
of an asynchronous version of the LineToCompleteBina-
ryTree algorithm, which extends the LineToComplete-
BinaryTree algorithm with extra wait states. If there
exists node x that has not terminated the asynchronous
LineToCompleteBinaryTree algorithm,C(u) stays in the
Tree Merging mode. If all nodes x have terminated the
asynchronous LineToCompleteBinaryTree algorithm, all
nodes x have now merged with committee C ′(u) whose
leader is the root of the complete binary tree and C ′(u)

enters the selection mode. C(u) does not exist anymore.
– Termination: Each follower x in C(u) deactivates every

edge apart from the edges that define the spanning com-
plete binary tree of C(u).

5.1 Low level description of modes

In this subsection, we are going to describe the low level
details of each mode since the communication process is
muchmore complicated than the GraphToStar algorithm.
Selection. Consider committee C(u). Each follower x in
committeeC(u) sends amessage {myU I Dx ,maxNeighbor
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(a)
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(b)
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(c)
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Fig. 2 Example where committee C(u) is merging with committee
C(v) and the merging happens through nodes x and y. Figure (a) shows
the initial connections. Figure (b) shows that ringmergingprocesswhere
x and y activate edges with the counterclockwise neighbors of each
other. Figure (c) shows the deactivation of edges from x and y in order

to form the cycle which includes the black and blue edges. Figure (d)
shows that node v deactivates its incident edge (dotted line) in order to
turn the cycle into a line where the asynchronous version of the Line-
ToCompleteBinaryTree subroutine will be executed

x y

u v

Fig. 3 Every follower in C(u) sends a message with the information
of its neighboring committees to leader u via the complete binary tree.
For example, follower x sends the information for committee C(v)

U I D,maxNeighbor Diameter} to its leader u via the
binary tree subgraph, see Fig. 3. Variable myU I Dx con-
tains the U I D of node x , maxNeighborU I D contains the
U I D of the neighboring committee with the greatest U I D
among all neighboring committees that x has an edge with,
and maxNeighbor Diameter contains the diameter of that
committee.

After committee leader u receives all triplets, u knows the
U I D of all neighboring committees. If∃maxNeighborU I D
> U I Du , C(u) selects the neighboring committee C(v)

with the greatestmaxNeighborU I D and broadcasts a mes-
sage to x to initiate the connection with that committee.

Since, it is possible that multiple followers x sent the
same maxNeighborU I D, u picks the one with the greatest
U I Dx . If �maxNeighborU I D > U I Du , committeeC(u)

does not select another committee. Eitherway, after the selec-
tion, u waits to see whether another committee has selected
C(u). Committee leader u knows the maximumwaiting time
since it just received the maximum diameter of all neighbor-
ing committees.

After follower x receives the initiation message, it sends
a connection message to the leader v of the neighbouring
committee C(v) via followers x and y though the binary tree
subgraphs. See Fig. 4. After leader v receives all possible
requests, it sends back an approval message to all nodes y
with a timestamp that defines in which round the merging
should happen. See Fig. 5.

Therefore every committee C(u) can understand which
committee C(v) it has selected and whether any committees
C ′(v)have selectedC(u). Thismeans thatC(u)knowswhich
mode it should enter after the selection phase.
Ring merging. Assume that multiple committees C(v1),

C(v2), . . . ,C(vi ) for i = 1, . . . , n−1 have selected commit-
tee C(u) in the selection phase, via followers y1, y2, . . . , yi
respectively, whose neighbour x ∈ C(u) will initiate
the connection. See Fig. 6(a) for an example. Followers
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x y

u v

Fig. 4 Leader u sends a message to follower x to initiate a connection
with committee v. Follower x sends the request to follower y who
propagates it to leader v

x y

u v

Fig. 5 Leader v sends the approval message to follower y to initiate
the merging with committee u

y1, y2, . . . , yi , x execute the following steps in order to com-
plete the ring merging mode.

– Follower x sends a message to followers y1, y2, . . . , yi
to rearrange themselves into an inner-circle by activating
edges {x, y1}, {y1, y2}, {y2, y3}, . . . , {yi−1, yi }, {yi , x}
and deactivating edges {y1, x}, {y2, x}, . . . , {yi , x}. See
Fig. 6(b).

– Each follower activates an edgewith the clockwise neigh-
bor of its inner-circle outgoing neighbor. See Fig. 6(c).

– Each follower deactivates an edge with its clockwise
neighbor, as well as the edges of the inner-circle. See
Fig. 6(d).

Note that the orientation of the new ring is the same as the
orientation of committeeC(u) and all nodes in the committee
have the same orientation.
Tree merging. Note that we cannot use the LineToCom-
pleteBinary tree algorithm from Sect. 3.3 to merge the tree
component of the committees since that algorithm assumes
that every node starts the execution at the same time. But
in our case, we have multiple committees that are merging
together with different sizes and therefore the nodes are not
synchronized. Thus, we introduce an asynchronous version
of the algorithm where nodes can start the execution at dif-
ferent rounds.

Every node x executes the asynchronous LineToCom-
pleteBinaryTree algorithmwhich works as follows. If node x
was a committee leader, then leaderx = true else leaderx =
f alse. The acronym E A stands for Edge Activations and
DEA stands for Edge Deactivations.

Algorithm 1 Asynchronous LineToCompleteBinaryTree
�state : E A, DEA, awake, leader
�ini tial state o f node : E A = 0, DEA = 0, Awake = f alse
if node receives awake signal OR leader = true then

Awake = true
end if
if awake = true then

Broadcast awake
if grandparent has only 1 child then

if E Amy = DEAmy = E A f ather = DEA f ather then
Activate edge wi th grandparent
E Amy + +

end if
if E Amy = DEAmy + 1 = E Achild then

Deactivate edge wi th parent
DE Amy + +

end if
end if

end if

We are going to give an intuition on how this algorithm
works. First, the leader of each committee broadcasts an
awake signal to its own committee. Once a node awakes,
it starts executing the asynchronous LineToCompleteBina-
ryTree algorithm. Since nodes have different waking points,
we cannot use the synchronous LineToCompleteBinaryTree
that requires synchronized clocks from each node. There-
fore, we are going to use other properties that are present
for every node in the synchronous LineToCompleteBinary-
Treewhich are: (i) Every node x has the same total number of
activations as its parent. (ii) Every node has the same number
of total activations as total deactivations. The asynchronous
version tries to mimic that by having every node activate an
edge, only when its parent has the same total number of edge
activations as itself. Similarly, for the deactivations, every
node checks that its child has the same deactivations as itself
before deactivating an edge. This way, the synchronous Line-
ToCompleteBinaryTree is simulated by the asynchronous
version.

Correctness

Lemma 8 Algorithm GraphToWreath solves Depth-log n
Tree.

Proof It suffices to prove that in any execution of the algo-
rithm, one committee eventually enters the terminationmode
and that this committee can only be C(umax ) where umax is
the highestU I D in the network. If this holds, then by the end
of the termination phase C(umax ) forms a complete binary
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Fig. 6 Example where 3
committees
C(v1),C(v2),C(v3) have
selected committee C(u). Figure
(a) shows the initial connection.
In figure (b) committees
rearrange themselves into an
inner-circle. In figure (c) each
committee activates an edge
with the clockwise neighbor of
its inner-circle outgoing
neighbor. In figure (d) each
committee deactivates an edge
with its clockwise
neighbor(based on the
committee orientation), as well
as the edges of the inner-circle

(a) (b)

(c) (d)

spanning tree rooted at umax and umax is the unique leader
of the network. This satisfies all requirements of Depth-log n
Tree.

A committee dies only when it merges with another com-
mittee by entering the tree merging mode. First observe that
there is always at least one alive committee. This isC(umax ),
because when it enters the tree merging mode, it is always
the root of the complete binary tree. We will prove that any
other committee eventually dies or grows, which due to the

finiteness of n will imply that eventuallyC(umax )will be the
only alive committee.

In any phase, but the last one which is a termination phase,
it holds that every alive committee C(u) is in one of the
selection, ring merging, and tree merging modes. If C(u) is
in the ring merging mode then it will enter the tree merging
mode and if its leader is not the root of the complete binary
tree, then by the end of the current phase it will have died by
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merging with another committee C ′(u). It, thus, remains to
argue about committees in the selection mode.

Now, a committee C(u) in the selection mode can enter
the tree merging mode. As argued above, if it enters the ring
merging and tree merging modes in sequence it will either
die or it will eventually grow. Thus, it suffices to consider the
case in which it remains in the selection mode indefinitely.
This can only happen if all current and future neighboring
committees of C(u) have a UID smaller than U I Du . But
each of these must have selected a neighboring C(w), such
thatU I Dw > U I Du , otherwise it would have selectedC(u).
Any such selection, results in C(w) becoming a neighbor of
C(u), thus contradicting the indefinite local maximality of
U I Du . 	


Time complexity
Let us move on to proving the time complexity of our

algorithm. At the beginning, we are going to ignore the num-
ber of rounds within a phase, and we are just going to study
the maximum number of phases before a single committee
is left.

Lemma 9 After O(log n) phases, there is only a single com-
mittee left in the graph.

Proof Note that there is a direct correspondence between
the modes in the GraphToWreath algorithm and the
GraphToStar algorithm.

Both selection modes are used to decide the selec-
tions between the neighboring committees. The difference
between the two algorithms is that each selection phase has
a different running time. In particular, The GraphToStar
selection phase required 2 rounds while the selection phase
of the GraphToWreath requires O(log n) rounds due to
the diameter of the Wreath graph that each committee has.
Therefore Lemma 3 that talks about the selection waiting
time still holds.

The ring mode is always an intermediate phase between
the selection phase and the tree merging phase that lasts for
O(1) rounds. The purpose of this mode is to turn the tree
T created by the committees in the selection phase into a
cycle so that the LineToCompleteBinaryTree subroutine can
work. The pulling mode in the GraphToStar implements
the TreeToStar subroutine, while the tree merging mode in
the GraphToWreath implements the asynchronous ver-
sion of the LinetoCompleteBinaryTree. Both subroutines are
used to merge the Trees T of depth t created by the commit-
tees in O(log t) time and recall from the basic subroutines
subsection that the TreeToStar and the LineToComplete-
BinaryTree have the same running time. Therefore both
algorithms require the same amount of phases. Therefore
Lemmas 2, 4 and 5 that show the growth of each committee
still hold.

Note that there is no merging or waiting mode in the
GraphToWreath since those modes have also been imple-
mented by the merging tree mode.

Since all modes that have been implemented in the
GraphToWreath have equivalent modes in the GraphTo
Star with similar running times and growths for the com-
mittes, the GraphToWreath algorithm requires at most
O(log n) phases. 	

Lemma 10 Each phase in theGraphToWreath algorithm,
requires at most O(log n) rounds.

Proof First, we argue that the selection phase requires
O(log n) rounds since each committeeC(u) has to exchange
information with its neighboring committees in order to
decide which committee C(w) it is going to merge with and
whether any other committeeC(v)will decide to merge with
C(u). This requires time that is upper bounded by the diam-
eter of each committee. Based on the low level description of
the selection mode, the leader of committee C(u) learns the
U I D of every neighboring committee in log d rounds and
initiates the connection with the chosen neighboring com-
mitteeC(w) in another log d rounds, where d is the diameter
of committee C(u). Another log dw rounds are required in
order for committee C(w) to accept and initiate the connec-
tionwith committeeC(u), where dw is the diameter ofC(w).
Since log d ≤ log n and log dw ≤ log n, the selection mode
requires O(log n) rounds.

The ring merging phase requires O(1) rounds since every
committee has to merge its ring component with committees
C(v) and the running time does not depend on the size of
each committee participating.

Each tree merging mode implements one round of the
asynchronous LineToCompleteBinaryTree. Note here that
the asynchronous version of this algorithm has the same run-
ning time as the synchronous version if we consider round
0 to be the first round in which all nodes are awake. Addi-
tionally, since every committee leader broadcasts the awake
message to its own committee, the time needed for all nodes
to be awake is log(max d) < log n. Thus, the running time of
the asynchronousLineToCompleteBinaryTree is O(log n).	

Edge complexity

The analysis for the total edge activations is simple. The
algorithm runs for O(log2 n) rounds and each node activates
at most 1 edge per round. Therefore the total edge activations
are O(n log2 n).

Let us consider the maximum incident edges that a node
can have, excluding the edges of the initial graph. Each node
has up to 2 edges for the ring component of the wreath
and 2 for the binary tree component of the wreath graph.
Based on the low level description of the GraphToWreath
algorithm, a node can have 1 active edge used for the ring
merging phase. Additionally, it can have 2 active edges for
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the execution of the LineToCompleteBinaryTree. Therefore
the number of active edges per round is O(n) and the maxi-
mum degree of each node is 7 + c, where c is the degree of
each node in the original graph.

Theorem 2 For any initial connected graph with constant
degree, theGraphToWreath algorithm solvesDepth-log n
Tree problem in O(log2 n) time with O(n log2 n) total edge
activations, O(n) active edges per round and O(1)maximum
activated degree.

6 Trading the degree for time

In this section, we provide another algorithm aiming at
O(

log n
log log n ) time for the merging but we are going to allow

the maximum degree to reach O(log2 n). This requires a new
graph for the committees where the diameter of the shape is
O(

log n
log log n ), so that the communication within the commit-

tees is O(
log n

log log n ) and a new way to merge the committees in

O(
log n

log log n ) time. For this algorithm only, we also make the
assumption that all nodes know the size of the initial graph.
This yields an interesting open problem on whether we can
modify the algorithm so that it will not require knowledge of
the initial network.

The new graph is very similar to the Wreath graph and
we call it ThinWreath. The main difference is that instead
of having a complete binary tree component, it has a com-
plete polylogarithmic degree tree component with diameter
O(

log n
log log n ). The O(

log n
log log n ) diameter that the ThinWreath

graph possesses will allow the leaders of neighboring com-
mittees to communicate in O(

log n
log log n ) time.

Algorithm GraphToThinWreath
The structure of each committee is the same as in

GraphToStar algorithm, apart from the fact that each com-
mittee C(u) is a ThinWreath graph. We also assume that the
nodes know the size of the initial graph. Our algorithm pro-
ceeds in phases, where in every phase each committee C(u)

executes in one of the following modes, always executing in
selection mode in phase 1.

– Selection: If C(u) has a neighboring committee C(z)
such thatU I Dz > U I Du and C(z) is in selection mode,
then, C(u) selects its neighboring committee with the
greatest UID; call the latterC(v). IfC(u)was selected by
another committee, C(u) enters the Matchmaker mode.
If C(u) was not selected and C(u) selected C(v), C(u)

enters the Matched mode. If C(u) did not select anyone
and it was not selected by anyone, it stays in the selection
mode. If C(u) has no neighboring committees, it enters
the termination mode.

– Matchmaker: If multiple committees had selectedC(u)

in the previous phase, committee C(u) matches those
committees in pairs. If the number of committees that
selected C(u) is odd, one committee is matched with
C(u). C(u) enters the Matched mode.

– Matched: If committee C(u) selected committee C(v)

in the last selection phase, committee C(u) is matched
with another committee. CommitteeC(u) enters theRing
Merging mode.

– Ring Merging: Given that in the previous phase, C(u)

was matched with C(v), committee C(u) merges its
ring component with the ring component of C(v) where
the winning committee is C(u) if U I Du > U I Dv ,
otherwise C(v) is the winning committee. Either way,
committee C(u) enters the Leader Merging mode.

– LeaderMerging:Given that in the previous mode, com-
mittee C(u) lost to committee C(w), the leader of C(u)

activates an edge with the leader of C(w). If committee
C(w) has lost to some other committeeC(z) in the previ-
ous phase, C(u) enters the Tree Merging mode. If C(u)

did not lose to any other committee, C(u) enters the Tree
Merging mode where u is the root.

– Tree Merging: The leader of C(u) executes one round
of the asynchronous LineToCompletePolylogarithmic-
Tree algorithm, which is similar to the asynchronous
LineToCompleteBinaryTree algorithm with a termina-
tion criterion of log n children instead of 2. If there exists
node x that has not terminated the asynchronous LineTo-
CompletePolylogarithmicTree algorithm, C(u) stays in
the Tree Merging mode. If all nodes x have terminated
the asynchronous LineToCompletePolylogarithmicTree
algorithm, all nodes x ∈ C(u) have now merged with
committee C ′(u) whose leader of C(u) is the root of the
complete polylogarithmic tree andC ′(u) enters the selec-
tion mode. Committee C(u) does not exist anymore.

– Termination: Each follower x ∈ C(u) deactivates every
edge apart from the edges that define the complete poly-
logarithmic spanning tree subgraph.

6.1 Low level description of themodes

We will now describe the low level operation of the modes.
The selection and ring merging modes are identical to the
equivalent modes of the GraphToWreath algorithm and
therefore will not be described here.

Matchmaker. Before we begin the description of this
mode, we would like to give some insight on the Match-
maker/Matched modes and what they are trying to achieve.
After the selectionmode, the graph of committees consists of
directed trees, directed lines and pairs. We want to break up
the directed trees into lines and pairs since directly merging
the committees using the directed treesmight result in having
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a final committee with linear degree due to the structure of
the directed tree. We break up the committees by pairing up
the multiple committees C(v) that have selected committee
C(u). The difficulty here arises from the fact that commit-
tees C(v) are not neighbours and they have to use committee
C(u) in order to become neighbours by activating edges on
C(u). While doing this, we have to make sure that these edge
activations don’t violate the maximum degree of O(log n).

In this mode, we know that at least one committee C(v)

has selected committee C(u). Leader u sends a synchro-
nisation message with a timestamp to all leaders v which
dictates when the Matched mode algorithm should begin.
This timestamp is equal to 3 · d where d is the diameter of
the neighbouring committee with the highest UID among all
neighbouring committees of C(u). This guarantees that the
message can reach every leader v in 2 · d time and d time
for the v leaders to send the message back to their followers.
After this, committee C(u) enters the Matched mode.
Matched. In this mode, after leader v receives the synchro-
nizationmessage from leader u, leader v sends the timestamp
to follower y to begin the Matched algorithm. Once follower
y receives themessage, it starts executing the following algo-
rithm on the round specified by the timestamp. Followers
x ∈ C(u) are responsible for Matching followers y.

Algorithm 2 Matched
�state : round, Matched
�ini tial state o f node : round = request , Matched =
{1,myU I D},
if round == request then

Send Matched to f ollower x
end if
if round == receive then

Receive Matched ′ = {Match,U I D} f rom f ollower x
if Match == 0 then

Activate edge wi th parent o f x
Deactivate edge wi th x

end if
if Match == 1 then

myMatch = C(U I D)

round = terminate
end if

end if
if round == terminate then

Terminate wi th committee myMatch as i ts Matched
committee
end if
if round == request then

round = receive
else

round = request
end if

Follower x acts as a matchmaker in this mode. In every
round, each follower yi asks the current neighbour x to
be matched with another follower y j . If multiple follow-
ers yi send a Matched message, follower x matched them

in pairs, using their UIDs in ascending order and sends
Matched = {1,U I D} back to each follower yi whereU I D
is the committee that each follower yi is matched with. See
Figs. 7(c),7(d). If only one follower yi sends a Matched
message then follower x sends back Matched = 0,U I D to
inform it that no matches are present. See Figs. 7(a). After
that follower yi moves on to the next level of the polyloga-
rithmic tree by activating an edge with the parent of follower
x and looks again for a match. See Fig. 7(b).

In short, followers yi might start at different levels of the
polylogarithmic tree of C(u). In each round, they activate an
edgewith the next level until they find amatch at their current
level. Note that all followers yi will find a match, since they
have a common destination which is the root of committee
C(u).

Let us nowconsider themaximumactivated degree of each
follower x during the Matched algorithm. In each round,
followers yi might activate an edge with follower x while
coming through the lower levels. Each follower x has at most
log n children and it is not possible for more than 1 follower
yi to come through each child since, if one child hadmultiple
requests from followers yi , they would get matched together
and terminate as in Fig. 7(d). Therefore the maximum acti-
vated degree of each follower x can increase by at most log n.
Finally note that at this point, the graph of committees con-
sists of directed lines and pairs.
Leader Merging. In this mode, provided that committee
C(v) has smaller UID than C(u), leader v activates an edge
with leader u by activating edges on the polylogarithmic trees
of C(v) and C(u). This process is bound by the diameter of
the committees. If we focus on any directed lines in the graph
of committees, we can see that we have created a path that
consists only of the leaders of the committees in the directed
line.
Tree merging. Every committee leader v executes the asyn-
chronous LineToCompletePolylogarithmicTree algorithm
which is the same as the asynchronous LineToCompleteBi-
naryTree algorithm except that termination criteria requires
that the grandfather of each node has log n children instead
of 2 children.

Note here that the whole merging process is finished for
this phase. Our final graph consists of a ring graph created by
the ring merging process and a collection of wreath graphs
with leader u as the root, created by the Leader/Tree merg-
ing process. Because of the Tree merging process, there is a
polylogarithmic tree consisting of leaders u and v with diam-
eter O(

log n
log log n ). Additionally each leader v is the root of its

own polylogarythmic treewith diameter O(
log n

log log n ) from the
previous phase. Therefore the diameter of the collection of
wreath graphs is O(

log n
log log n ).
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Fig. 7 Figures showing the
Matched mode. Figure (a,b)
show that committee C(v) goes
up one level on the binary tree
of committee C(u) if follower y
finds no match through follower
x . On the other hand, figures
(c,d) show that if two
committees are in the same
round on the same follower x ,
they get matched together
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6.2 GraphToThinWreath proof

For this algorithm’s proof, it is not possible to use the same
strategy as the previous algorithms. This is because, whilewe
can prove that this algorithm also requires O(log n) phases as
the previous algorithms, all of our modes require O(

log n
log log n )

but for the tree merging mode which requires O(log n) and
therefore similar analysis would yield O(log2 n) running
time. Our new strategy is to show that after O(log n) rounds
in which at least one committee is in the tree merging mode
in each round, there is only a single committee left in the
graph.

Correctness

Lemma 11 Algorithm GraphToThinWreath solves the
Depth- log n

log log n Tree problem.

Proof Since the selection mode of the GraphToThin
Wreath algorithm is identical with the GraphToWreath
algorithm, we argue that there will be a single committee left
in the final graph. This committee consists of a ring subgraph
and multiple thinwreath subgraphs. Based on the low level
description of the tree merging mode, the diameter of the
graph is O(

log n
log log n ). 	


Time complexity

Lemma 12 After O(log n) tree merging rounds, there is only
a single committee left in the graph.

Proof We define a tree merging round to be a round in which
at least one committee is in the tree merging mode. For the

purposes of this proof, we are going to consider each tree
merging round to be its own phase. Consider the rounds in
which a committee is in the tree merging mode. Observe that
in any such round, the leaders of those committees form a
forest F, where each committee belongs to a tree of F. Any
such tree executes the asynchronous LineToCompletePoly-
logarithmicTree algorithm. This structure is identical to the
structure in the pulling mode of the GraphToStar algo-
rithm. The only difference between the pulling mode and
the tree merging mode is that they are running different algo-
rithms. But, the asynchronous LineToCompletePolylogarith-
micTree and the TreeToStar algorithm have the same running
time and both of themmerge the trees of committees into sin-
gle committees. Therefore the two algorithms will have the
same number of rounds. Based on Lemma 6, there at most
O(log n) phases for the GraphToStar algorithm to termi-
nate and every phase includes at most one round of pulling
mode and subsequently there are at most O(log n) rounds of
pulling mode. Therefore the GraphToThinWreath algo-
rithm can have at most O(log n) tree merging rounds before
a single committee is left in the graph. 	


Lemma 13 The GraphToThinWreath algorithm has

O(
log2 n
log log n ) running time.

Proof In order for a committee to enter the tree merg-
ing mode, it has to go through some or all of the other
modes of the algorithm which have O(

log n
log log n ) running time

since all of them are bound by the diameter of the com-
mittee. Therefore, for every tree merging round, there can
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be at most O(
log n

log log n ) rounds from the other modes. Then
based on Lemma 12, the running time of the algorithm is

O(
log n

log log n ) · O(log n) = O(
log2 n
log log n ). 	


Edge complexity
Let us consider the maximum possible edges added on

each node throughout each phase. Based on the low level
description of the modes, each mode adds at most O(log n)

number of edges to eachnode. FromLemma12,we implicitly
know that there can be at most log n phases until the algo-
rithm terminates. Therefore, the maximum degree of each
node is O(log2 n). Similarly, since in every round, each node
activates at most 1 edge, the maximum edges activated are

O(n · log2 n
log log n ). Finally, since in every mode, every edge acti-

vation is followed by a deactivation, the maximum number
of activated edges in O(n).

Theorem 3 For any initial connected graph with polylog-
arithmic degree, the GraphToThinWreath algorithm

solvesDepth- log n
log log n Tree in O(

log2 n
log log n ) timewith O(n log2 n)

total edge activations, O(n) active edges per round and O(1)
maximum activated degree.

7 Lower bounds for the depth-logn tree
problem

We will now shift our focus into proving lower bounds for
our model. We are going to provide lower bounds for both a
centralized model and a distributed one because we want to
show that there is an important difference between the two
of them.

7.1 Centralized lower bounds

In the centralized setting, everything we have previously
defined in themodel subsection stays the same but now every
node also has complete knowledge of the graph and a cen-
tralized controller can decide what each node will do in each
round.

We begin by defining the potential of a UID to a node
v. The potential describes how far the UID is from node v.
We are going to use this definition to measure how fast the
identifier can be transmitted throughout the graph.

Definition 2 We define the potential of a U I Du to v as its
minimum “distance” from v. The distance is defined as fol-
lows: Consider all nodes w in the network that knowU I Du .
Compute the length of the shortest path between each node
w and node v. The minimum length among all shortest paths
is the distance between U I Du and node v. We denote the
potential of U I Du to v by φu,v .

Note that in any initial graph D = (V , E), ∀u, v ∈
V , φu,v ≤ n − 1. Consider any pair of nodes u, v, where

φu,v = k. There are two ways to reduce φu,v in each round
i :

• Information Propagation. Consider all nodes w that
currently know U I Du . Compute the shortest path between
all pairs of w and v and pick node w that yields the smallest
shortest path. Nodew can sendU I Du to one of its neighbors
y that belong to the shortest path between w and v to reduce
φu,v by 1.

• Reduce Shortest Paths. Consider all nodes w that cur-
rently know U I Du . Compute the shortest path between all
pairs of w and v and pick node w that yields the smallest
shortest path with si ze = k. Now consider all pairs of nodes
x, y that are potential neighbors and also belong to the short-
est path between w and v. Activating xy between one pair
of x, y reduces φu,v by 1. Activating multiple xy between
different pairs in one round can reduce φu,v even more but at
most by k/2.

Observation 1 In order for an algorithm to solve the Depth-
log n Tree Problem, ∀u, v ∈ V , φu,v ≤ log n.

Lemma 14 Any transformation strategy based on this model
requiresΩ(log n) time to solve the Depth-log n tree problem
if the initial graph Gs is a spanning line.

Proof Consider a spanning line where, for simplicity, we call
the node that resides at the “left” endpoint of the line u and
the node that resides at the “right” endpoint of the line v.
According to Observation 1, in order for an algorithm to
solve the Depth-log n tree problem, φu,v ≤ log n. In the
initial graph, φu,v = n − 1. We know that by using edge
activations, we can reduce φu,v by half in each round, and
by using Information Propagation we can reduce φu,v by
1 in each round. Therefore in order for φu,v = log n, any
algorithm would require at least Ω(log n) rounds. 	

Lemma 15 Any transformation strategy based on this model
that solves the Depth-log n Tree problem in O(log n) time
requires Ω(n) edge activations.

Proof Let us again consider a spanning line as the initial
graph. W.l.o.g. let us assume that the size of the network is
odd. Let us call u the node that is the “left” end point of the
line and v the “right” endpoint of the line.

Let us assume that in some round i , where i ≤ log n,
that φu,v ≤ log n. We can produce the following equation
based on the two rules that allow us to reduce the potential:
I ni tial Potential−#EdgeActivations−#MessagesSent
≤ log n. The maximum value of MessagesSent is log n and
I ni tial Potential = n−1 and ifwe add those in the previous
equation we get #EdgeActivations ≥ n − 1 − 2 log n and
therefore, in order for φu,v ≤ log n at least n − 1 − 2 log n
edges have to have been activated. 	
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Lemma 16 Any transformation strategy based on this model
that solves the Depth-log n Tree problem in O(log n) time,
requires Ω(n/ log n) edge activations per round.

Proof From Lemma 15 we know that in order to have φu,v =
0, in log n time, there must be at least EdgeActivations =
n edge activations. Now, since we are trying to find the
minimum number of edge activations per round possi-
ble, we can easily do this by dividing the total number
of edge activations with the number of rounds. Therefore
EdgeActivationsPer Round ≥ EdgeActivations

Rounds ≥ Ω(n)
log n . 	


Since we have just proven that Ω(n) edge activations are
required in order to solve the Depth-log n problem given any
initial graph, we are now going to prove that Θ(n) edges are
sufficient in order to solve it. First, we are going to informally
prove it for the special case of the spanning line graph and
afterwards we are going to prove it for general graphs.

Consider a spanning line with nodes u1, u2, . . . , u j for
j = 1, 2, . . . , n. For simplicity, assume that u1 is the “left”
endpoint of the line, u2 is the neighbor of u1 etc, u3 is a
neighbor ofu2 etc. In each round i , we activate edgeu j , u j+2i

∀ {u j |( j mod (2i ) = 1)∧( j+2i ≤ n)}. After log n rounds,
the diameter of the shape is equal to log n. Let us nowproceed
to analyzing the total edge activations. By definition of the
algorithm, in each round i , n

2i
edges are activated. Since the

algorithm runs for log n rounds, we have
∑log n

i=1
n
2i

= n − 1
total edge activations. We call this algorithm CutInHalf.

Theorem 4 Given any initial graph D = (V , E), the Depth-
log n problem can be solved in O(log n) time, withΘ(n) total
edge activations.

Proof Since we are in a centralized setting, we are first going
to perform some global computations that are going to output
the specific edges that have to be activated in order for the
diameter of the shape to drop to log n. We consider any initial
graph D = (V , E) and we pick an arbitrary node called u.
First, we compute a spanning tree that starts from node u.
Afterwards we compute an Eulerian tour starting from u.
This way we can create a virtual ring D′ = (V ′, E ′) that
has |V ′| ≤ 2|V | and |E ′| ≤ 2|E |. Now in this ring, node u
deactivates one of its incident edges and the graph is now a
line. We can now execute the CutInHalf algorithm to solve
the Depth-log n Tree problem in O(log n) time, with Θ(n)

total edge activations. 	


7.2 Distributed lower bound

In this part, we are going to show that there is a difference
in the minimum total edge activations required for solving
the Depth-log n problem between the centralized and the
distributed model. At this point, we would like to remind
the reader that an algorithm is called comparison based if

it manipulates the UIDs of the network using comparison
operations (<,>,=) only. Our main theorem will show that
any deterministic distributed comparison based algorithm
requiresΩ(n log n) total edge activations to solve the Depth-
log n Tree problem in O(log n) time. Consider two nodes,
called u and v , that have received increasing order UIDs
that are larger than both u and v during the execution of a
deterministic comparison based algorithm. Since nodes are
only allowed to compare UIDs between them, the results of
the comparison of u and v are exactly the same and thus, u
and v must have the same behaviour until they find a dif-
ferent result by comparing receiving UIDS. We are going to
use this behaviour to show that any algorithm must activate
Ω(n log n) total edge activations.

Definition 3 LetU = u1, u2, . . . , uk be a sequence of UIDs
of length k. We say that U is an increasing order sequence
if, for all i, j, 1 ≤ i, j ≤ k, we have i ≤ j iff ui ≤ u j .

Definition 4 Let A be a comparison-based algorithm execut-
ing on an increasingorder ringgraph.Let i and j be twonodes
in the ring graph. We say that i and j are in corresponding
states if the UIDs that they both have received from counter-
clockwise neighbors are a decreasing order sequence and the
UIDs they have received are an increasing order sequence
and vice versa. Two nodes in corresponding states in round
i must have the same behaviour during the execution of an
algorithm in round i

Definition 5 We define the increasing order ring R as fol-
lows. Suppose we have an increasing order sequence U of
UIDs to be assigned on a ring with n nodes. We assign the
smallest UID from U = u1, u2, . . . , uk to an arbitrary node
and we continue assigning increasing UIDs clockwise (or
counterclockwise). We call this an increasing order ring.

Definition 6 We define a round of an execution/algorithm to
be active if at least one message is sent in it or an edge is
activated in it.

Definition 7 We define the k-expo-neighborhood of node i
in ring R of size n, where 0 ≤ k ≤ n/2, to consist of the
2 · 2k + 1 nodes i − 2k, . . . , i + 2k , that is, those that are
within distance at most 2k from node i (including i itself).

Lemma 17 Consider an increasing order ring of size n. Let
dmin be the initial distance between node d and the node
with the minimum UID called d0. Let dmax be the initial
distance between node d and the node with maximum UID
called dn−1. Let i and j be two nodes in A, where imin, imax

is the minimum distance between i and d0, dmax respec-
tively, and jmin, jmax is the minimum distance between j
and d0, dmax respectively. Let A be a comparison-based
algorithm executing in the ring. Then, nodes i and j must
be in corresponding states for at least k rounds, where
2k = min(max(imin, imax ),max( jmin, jmax )).
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Proof Note here that nodes i and j are in corresponding states
as long as (((φd0,i > 0) ∨ (φdn−1,i > 0)) ∧ ((φd0, j > 0)
∨(φdn−1, j > 0)). In simple terms, i and j are in correspond-
ing states as long as both of them do not know both U I Dd0
and U I Ddn−1 which follows from Definition 4. This means
that i and j will stop being in corresponding states once
one of them learns both d0 and dmax . By definition, 2k is
the potential between i, j and d0, dmax and we know that
the potential of a UID can only be decreased by information
propagation and reducing shortest paths, where information
propagation reduces the potential by at most 1 per round
and reducing shortest paths reduces it by half. Thus, since
the initial potential is 2k , by applying the potential reduc-
tion methods, any algorithm would need at least k − log k
rounds so that (((φd0,i = 0) ∨(φdn−1,i = 0)) ∧ ((φd0, j = 0)
∨(φdn−1, j = 0)). 	

Observation 2 Any transformation strategy based on this
model that solves the Depth-log n Tree problem in O(log n)

time in an increasing order ring, requires at least log n active
rounds.

Theorem 5 Any deterministic distributed algorithm that
solves the Depth-log n Tree problem in O(log n) time,
requires Ω(n log n) total edge activations.

Proof Consider an increasing order ring R with n nodes and
algorithm A that solves the Depth-log n problem. Consider
the node with the greatest UID in the network, called umax ,
the node with the smallest UID in the network, called u1, and
the antipodal node of umax called uc.

First of all, note that in the first round, all nodes except
from u1 and umax are in corresponding states. We can gener-
alize this statement by using Lemma 17 to state that in round
i , each node whose i-expo-neighborhood does not include
both u1,umax is in a corresponding state with each such node.
Therefore those nodes behave the same way e.g. if in round
i , one of those c nodes activates an edge, then all c nodes
activate an edge. For this proof, we define a round of algo-
rithm A to be live if the c nodes activate at least one edge in
it, we also define a round of algorithm A to be asleep if none
of the c nodes activate an edge in it.

We already know that we need at least log n active rounds
to connect umax with uc from Lemma 2. Our goal here is to
prove that log n of those active rounds also have to be live
rounds.

For simplicity, we define the set C where node u ∈ C if u
is in the same corresponding state as uc (including uc), the
set Awhere node u ∈ A if u is not in the same corresponding
state as uc.

Consider an arbitrary round i , where the shortest path
between umax and uc is |P| = k. This shortest path can be
split into two different paths. The one called PA that includes
nodesu ∈ A and the one called PC that includes nodes v ∈ C .

Essentially, the potential φumax ,a ≥ |PC | since otherwise,
some node v ∈ C would know U I Dumax which is impossi-
ble by definition of set C . Let us divide our analysis between
asleep and live rounds and study how much the potential can
be reduced in each round.

• Asleep rounds. In each asleep round a, only nodes u ∈
A can activate edges and |PC | can only be reduced by at most
l + 1 where l is the total number of live rounds before round
a. We can reduce it l by having u ∈ A activating an edge with
each potential neighbor v ∈ C , and reduce it 1 by having u
send U I Dumax to all v ∈ C .

• Live rounds. In each live round l, all nodes can activate
an edge sowe can reduce |PC | by l+1 by following the above
strategy and additionally, use edge activations between nodes
v ∈ C so that |PC | is reduced by at most half.

Note here, that Asleep rounds are not enough to reduce the
potential to 0 in order to solve theDepth-log n problem.After
O log(n) asleep rounds, φumax ,a ≥ I ni tial Potential −
(log n)(l + 1) = n

2 − (log n)(l + 1). Therefore we need
at least log n live rounds to solve the Depth-log n problem.

We are now examining how many edges are activated in
each live round. Before we do that, we list some abbrevia-
tions: CN : the number of nodes in the original graph, N RL:
number of nodes that were removed in previous live rounds,
N RA: number of nodes removed in previous asleep rounds.
Recall that in each live round l , at least 1 node v ∈ C acti-
vates an edge and by Lemma 17, all nodes v ∈ C activate
an edge. The number of nodes v ∈ C in round i are |u| ≥
#CN − N RL− N RA = (n− 2)− (

∑l−1
i=1 2

i )(
∑a

i=1 −i(l −
1)) − a(l − 1). The number of edges activated in each round
l are at least |C | ≥ |u|. Therefore the total number of
edge activations in live rounds after log n rounds is at least
(n−2)−(

∑log n
i=1 2i )(

∑log n
i=1 −i(l−1))−a(l−1) = Θ(log n).

	


8 Conclusion and open problems

In this work we considered a distributed model for actively
dynamic networks. The model can achieve global dis-
tributed computation and network reconfiguration in (poly)
logarithmic time, but trivial solutions incur an impractical
cost, which is related to the creation and maintenance of
edges in the dynamic network generated by the algorithm.We
defined natural cost measures associated with the edge com-
plexity of actively dynamic algorithms. It turns out that there
is a natural trade-off between the time and edge complexity
of algorithms. By focusing on the apparently representa-
tive task of transforming any initial network from a given
family into a target network of (poly)logarithmic diameter,
which can then be exploited for global computation or fur-
ther reconfiguration, we obtained non-trivial insight into this
trade-off.
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Our model is inspired by recent developments in the algo-
rithmic theory of dynamic networks and in the theory of
reconfigurable robotics. Still, it turns out to be very close to
the interesting area of overlay network construction. It is not
clear yet what is the formal relationship between the polylog-
arithmic restriction on communication in overlay networks
and our efforts to minimize the total number of edge activa-
tions in our algorithms. This remains an interesting question
for future research.

There is also a number of technical questions specific
to our model and the obtained results. We do not know
yet what are the ultimate lower bounds on time for dif-
ferent restrictions on the maximum degree. For maximum
degree bounded by a constant our best upper bound is
O(log2 n) and if bounded by (poly)log(n) this drops slightly
by an O(log log n) factor. Can any of these be improved to
O(log n), that is, matching the Ω(log n) lower bound on
time? It would also be valuable to investigate randomized
algorithms for the same problems, like those already devel-
oped in overlay networks.

Finally, there are many variants of the proposed model
and complexity measures that would make sense and might
give rise into further interesting questions and developments.
Such variants include anonymous distributed entities which
are possibly restricted to treat their neighbors identically even
w.r.t. actions (e.g., through local broadcast) and alternative
potential neighborhoods, e.g., activating edges at larger dis-
tances.
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