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Abstract. Two actively researched problem settings in matchings un-
der preferences are popular matchings and the three-dimensional stable
matching problem with cyclic preferences. In this paper, we apply the
optimality notion of the first topic to the input characteristics of the
second one. We investigate the connection between stability, popular-
ity, and their strict variants, strong stability and strong popularity in
three-dimensional instances with cyclic preferences. Furthermore, we also
derive results on the complexity of these problems when the preferences
are derived from master lists.
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1 Introduction

Partitioning agents into desirable groups is one of the core problems of algorithmic
game theory. However, the lines between tractability and intractability are often
very thin; introducing ties, incomplete lists or slight variations to the preference
or group structures can make a previously tractable problem intractable. In this
work, we aim to further draw this line by studying popularity in three-dimensional
matching instances equipped with cyclic preferences.

1.1 Problem Setting

In a three-dimensional (3D) matching instance, we are given three sets of agents
A,B, and C, representing for example users, data sources, and servers [12] or as
it is commonly referred to in the literature [31, 34], men, women, and dogs. Each
agent in A,B, and C declares a subset of the agents in B,C, and A, respectively,
acceptable. A matching M consists of (a, b, c) ∈ A×B×C triples such that a finds
b acceptable, b finds c acceptable, and finally, c finds a acceptable; furthermore,
each agent appears in at most one triple in M .

In the problem variant we study, each agent possesses a strictly ordered
preference list. Cyclic preferences mean that agents in A have preferences over
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the acceptable agents in B, agents in B have preferences over the acceptable
agents in C, and finally, agents in C have preferences over the acceptable agents
in A. The standard problem is to decide whether such an instance admits a stable
matching. Two intuitive stability notions have been investigated in the literature:
a weakly stable matching does not admit a triple so that all three agents would
improve, while according to strong stability, a triple already blocks if at least one
of its agents improves, and the others in the triple remain equally satisfied.

The optimality criterion we study in this paper is popularity, which is a
well-studied concept in the context of two-sided matching markets. Given two
matchings M and M ′, matching M is more popular than M ′ if the number of
agents preferring M to M ′ is larger than the number of agents preferring M ′

to M . A matching M is called popular if there is no matching M ′ that is more
popular than M . Colloquially speaking, a popular matching is a matching that
would not lose a head-to-head election against any other matching if the agents
were allowed to vote between the matchings.

1.2 Related Work

We first review existing work on matchings under preferences in the three-
dimensional setting, and then highlight the most important improvements on
popular matchings.

Stability in 3 Dimensions After the introduction of stable matchings by
Gale and Shapley [17] and their celebrated algorithm to solve the problem in
bipartite graphs, the study of three-dimensional stable matchings was initiated
by Knuth [28], who asked about a generalization of stable matchings to triples.
Subsequently, Ng and Hirschberg [34] studied a stable matching variant with
three genders, where agents of one gender have a preference list over pairs of
the other two genders. The goal in this model is to find a set of disjoint triples
that is not blocked by any triple outside of it. Ng and Hirschberg [34] and
independently Subramanian [40] were able to prove that it is NP-complete to
decide whether such a three-dimensional stable matching exists. Their result was
then generalized by Huang [21], who incorporated ties and stronger notions of
stability, as well as restricted preference structures in this model. He showed that
all these variants stay NP-complete as well. Danilov [13] identified an even further
restricted preference structure that allows for a polynomial-time algorithm for
the existence problem.

3D-Stable Matchings with Cyclic Preferences One direction proposed by
Ng and Hirschberg [34] was to generalize their work to cyclic preferences. This
question lead to a family of papers. Biró and McDermid [6] showed that deciding
whether a weakly stable matching exists is NP-complete if preference lists are
allowed to be incomplete, and that the same complexity result holds for strong
stability even with complete lists. However, the combination of complete lists
and weak stability proved to be extremely challenging to solve.
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For this setting, Boros et al. [8] proved that each instance admits a weakly
stable matching for n ≤ 3, where n is the size of each agent set in the tripartition.
Eriksson et al. [14] later extended this result to n ≤ 4. Additionally, Pashkovich
and Poirrier [36] further proved that not only one, but at least two stable
matchings exist for each instance with n = 5. By this time, the conjecture on the
guaranteed existence of a weakly stable matching in 3D instances with complete
cyclic preferences became one of the most riveting open questions in the matching
under preferences literature [28, 31, 41]. Surprisingly, Lam and Plaxton [29]
recently disproved this conjecture by showing that weakly stable matchings need
not exist for an arbitrary n, moreover, it is NP-complete to determine whether a
given instance with complete lists admits a weakly stable matching.

The problem is relevant to applications as well, as shown by the papers of Cui
and Jia [12], Raveendran et al. [38], and Ma et al. [30], who all studied 3D-cyclic
stable matchings in the context of computer networks, as well as by the work
of Bloch et al. [7], who applied it to a Paris apartment assignment problem.
Additionally, Escamocher and O’Sullivan [15] set up constraint programming
models for the problem. They discussed instances where agents of the same class
have identical preference lists. This type of preference structure is also called
a master list. Besides them, Bredereck et al. [10] also investigated master lists
in the context of 3D stable matchings, and there is a large set of results on 2D
stable or popular matchings with master lists in the input [23, 24, 26, 33].

Popular Matchings The concept of a popular matching corresponds to the
notion of a weak Condorcet winner in voting. In the context of matchings it
was first introduced by Gärdenfors [18] for matching markets with two-sided
preferences, and then studied by Abraham et al. [1] in the house allocation
problem. Polynomial time algorithms to find a popular matching were given in
both settings. These papers inspired a plethora of work on popularity in the
house allocation problem. Most importantly, Sng and Manlove [39] extended the
model of Abraham et al. [1] with capacities on the houses, while McDermid and
Irving [32] studied a weighted variant.

In the classic two-sided preferences model, it was already noticed by Gärdenfors
[18] that all stable matchings are popular, which implies that in standard bipar-
tite stable matching instances, popular matchings always exist. In fact stable
matchings are the smallest size popular matchings, as shown by Biró et al. [4],
while maximum size popular matchings can be found in polynomial time as
well [22, 25].

Only recently Faenza et al. [16] and Gupta et al. [20] resolved the long-
standing open question that it is NP-complete to find a popular matching in a
non-bipartite matching instance.

Strongly Popular Matchings A further concept we study is that of a strongly
popular matching, corresponding to a strong Condorcet winner, i.e., a matching
that wins every head-to-head election. This concept was introduced by Biró
et al. [4], who showed that a strongly popular matching in roommates instances
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exists if and only if it is the unique stable matching. The open question whether
a strongly popular matching in a roommates instance with ties can be found
in polynomial time was recently answered positively by Brandt and Bullinger
[9], who observed that a strongly popular matching must be the unique mixed
popular matching. Strong popularity was very recently extended to b-matchings
as well by Király and Mészáros-Karkus [27].

Popularity in 3 Dimensions Brandt and Bullinger [9] showed that it is
intractable to find a popular partition into sets of at most size three, even if the
ranking of all sets by all agents is the same. This however is different from the
3D-cyclic model in both the structure of the preferences, since the agents in their
model have a preference list over subsets of size 2 or 3, as well as in the structure
of the solution, since they allow sets of size 2 and 3. Both Brandt and Bullinger
[9] and Lam and Plaxton [29] mentioned the 3D-cyclic popular matching problem
as an interesting future research direction.

2 Preliminaries

We now define the notation we use and the problems we investigate in this paper.

2.1 Input and Output Formats

Input and Notation We are given three sets of agents A,B, and C. We denote
by V = A∪B ∪C the set of all agents and we call A,B, and C the agent classes
of our instance. Further we assume that |A| = |B| = |C| = n. Each agent in A
has a strict preference list over a subset of agents in B, each agent in B has a
strict preference list over a subset of agents in C, and finally, each agent in C
has a strict preference list over a subset of agents in A. These preference lists
define for each agent x a strict order �x, which we call the preference list of x
and say that x finds the agents in �x acceptable. For any two agents y, z such
that y �x z, we say that x prefers y to z.

Master Lists When defining master lists, we use the terminology from the book
of Manlove [31]. We say that the preferences of agents in X ⊆ V are derived
from a master list if there is a master preference list from which the preferences
of each x ∈ X can be obtained by deleting some agents. This means that the
preferences might be incomplete, but the relative preferences between acceptable
agents are the same in each �x, where x ∈ X. We say that an instance is derived
from a k-master list for k ∈ {1, 2, 3} if the preferences of k of the agent classes of
our instance are derived from a master list.

Matchings A matching M is a subset of A × B × C, such that each agent
appears in at most one triple and for each (a, b, c) ∈ M , a finds b acceptable,
b finds c acceptable, and c finds a acceptable. If (a, b, c) ∈ M , we also write



Three-Dimensional Popular Matching with Cyclic Preferences 5

M(a) = b,M(b) = c, and M(c) = a. If an agent x does not appear in any triple
in M , we write M(x) = x and say that the agent x is unmatched. For convenience
in notation we assume that for any agent x, x itself appears at the end of �x.
The preference relation � naturally extends to the comparison of two triples by
an agent who is in both triples.

2.2 Optimality Concepts

Weak and Strong Stability A triple t = (a, b, c) is said to be a strongly
blocking triple to matching M if each of a, b, and c prefer t to their respective
triples in M . Practically, this means that a, b, and c could abandon their triples
to form triple t on their own, and each of them would be strictly better off in t
than in M . If a matching M does not admit any strongly blocking triple, then
M is called a weakly stable matching. Similarly, a triple t = (a, b, c) is called a
weakly blocking triple if at least two agents in the triple prefer t to their triple in
M , while the third agent does not prefer her triple in M to t. This means that
at least two agents in the triple can improve their situation by switching to t,
while the third agent does not mind the change. A matching that does not admit
any weakly blocking triple is referred as strongly stable. By definition, strongly
stable matchings are also weakly stable, but not the other way round. Observe
that it is impossible to construct a triple t that keeps exactly two agents of a
triple equally satisfied, while making the third agent happier, since the earlier
two agents need to keep their partners to reach this, which then already defines
the triple as one already in M .

Weak and Strong Popularity Given an agent x and two matchings M and
M ′, we define

votex(M ′,M) =


1, if M ′(x) �x M(x)

0, if M ′(x) = M(x)

−1, if M(x) �x M ′(x)

i.e., votex(M ′,M) represents whether the agent x would prefer to be in M ′ or
in M . We call M ′ more popular than M if

∆(M ′,M) :=
∑
x∈V

votex(M ′,M) ≥ 1

i.e., if M ′ would win against M in a head-to-head election. Matching M is called
popular if no matching is more popular than M . Using this we can now define
the popular matching problem in 3 dimensions.

3d-cyclic popular matching with incomplete lists (3dpmi)

Input: Sets A,B,C with a cyclic preference structure.
Question: Does a popular matching exist?

Further we also study the corresponding verification problem.
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3d-cyclic popular matching verification with incomplete lists
(3dpmvi)

Input: Sets A,B,C with a cyclic preference structure and a matching M .
Question: Is M popular?

The notion of popularity can be strengthened even further to what is commonly
referred to as a strongly popular matching. A matching M is strongly popular
if it is more popular than all other matchings M ′. It is easy to see that each
instance can admit at most one strongly popular matching. Now we can define
the problems of existence and verification for a strongly popular matching.

3d-cyclic strongly popular matching with incomplete lists
(3dspmi)

Input: Sets A,B,C with a cyclic preference structure.
Question: Does a strongly popular matching exist?

3d-cyclic strongly popular matching verification with incom-
plete lists (3dspmvi)

Input: Sets A,B,C with a cyclic preference structure and a matching M .
Question: Is M strongly popular?

If we want to indicate that the preference lists are complete, i.e., every agent in
A ranks all agents in B, every agent in B ranks all agents in C, and every agent
in C ranks all agents in A, we omit the i from the end of the problem name.

A∪B-Popularity Our last optimality concept relies on a recent real application,
described by Bloch et al. [7] who analyzed the Paris public housing market. In
their work, A consists of various housing institutions such as the Ministry of
Housing, B is the set of households looking for an apartment, and finally, C
contains the social housing apartments that are to be assigned to these households.
Institutions have preferences over household-apartment pairs, and households
rank the available apartments in their order of preference. One characteristic
feature of this application is that apartments are treated as objects without
preferences, because they should be matched through the institutions.

Here we will study a restricted variant, listed as one of the three most typical
interpretations of the institutions’ preferences by Bloch et al. [7]: institutions
have preferences directly over the households, no matter which apartment they
are matched to. This problem setting translates into a 3-dimensional matching
instance, where agents in C only have the constraint to be matched to an
acceptable agent from A, while classes A and B submit preferences over acceptable
agents in classes B and C, respectively. While Bloch et al. [7] focused on the
existence of a Pareto optimal solution, here we define popularity for such instances.

Matching M ′ is A ∪B-more popular than matching M if∑
x∈A∪B

votex(M ′,M) ≥ 1,
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Existence Verification
incomplete complete incomplete complete

Popularity NP-h. Theorem 1 ? NP-c. Theorem 2 ?
Strong Popularity NP-h. Theorem 3 ? NP-c. Theorem 4 ?
A ∪B-Popularity NP-h. Theorem 5 ∈P Theorem 6 ? ∈P Theorem 6

Table 1. Overview of the complexity results shown in Section 4. The columns refer to
the cases with incomplete and complete lists, respectively. Question marks denote open
problems—these are briefly discussed in Section 6.

i.e., if M ′ would win against M in a head-to-head election where only agents in
A ∪ B are allowed to vote. Analogously, we call a matching M A ∪ B-popular
if there is no matching that is A ∪ B-more popular than M . This definition
tallies the votes of each household and institution, but treats apartments as
objects. To overcome the technical difficulty of one institution handling more
than one apartment and to give a vote to the institution in the decision over
each apartment, we can simply clone the institutions as many times as many
apartments they oversee.

2.3 Our Contribution

We provide structural results and a complexity analysis of the aforementioned
popular matching problems. First we show in Section 3 that several implications
from the 2-sided matching world do not hold. In 3 dimensions, stable matchings
are not necessarily popular and strongly popular matchings are not necessarily
stable.

Then in Section 4 we turn to the complexity of verifying and computing a
popular, strongly popular, or A ∪B-popular matching when lists are complete,
and show that the defined verification and search problems for all variants except
A ∪ B-popularity verification are NP-hard. We complement these results with
positive ones for A ∪B-popularity with complete lists. Table 1 summarizes our
results.

Following this we investigate instances derived from master lists in Section 5,
and show that in general for 3-master lists and 2-master lists popular matchings
do not exist. Finally, in Section 6 we list some interesting problems that are left
open by this work. Our hardness proofs have been delegated to the Appendix.

3 Structural Results

As a first step we investigate the relations between stability and popularity. In
the traditional stable marriage and roommates problems, stable matchings form
a subset of popular matchings [18]. Moreover, if a strongly popular matching
exists, then it must be the unique popular matching and also the unique stable
matching in the instance [4].
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a1 : b1, b2, b3 a2 : b3, b2, b1 a3 : b1, b3, b2

b1 : c2, c1, c3 b2 : c3, c2, c1 b3 : c3, c2, c1

c1 : a2, a1, a3 c2 : a2, a1,a3 c3 : a1, a3, a2

Fig. 1. Compact representation of the preferences in Lemma 1. Agent a1 has the
preference list b1 �a1 b2 �a1 b3. The triples in M are underlined. Bold font denotes the
more popular matching M ′.

First we show that in 3 dimensions, neither kind of stability implies popularity
by presenting an instance with a strongly stable matching that is not popular.

Lemma 1. There is an instance I of 3dpmi with a matching M such that M
is strongly stable but not popular.

Proof. Consider the preference profiles depicted in Figure 1. First we prove that
the matching M = {(a1, b1, c1), (a2, b2, c2), (a3, b3, c3)} is strongly stable. As we
observed in Section 2.2, at least two agents in a weakly blocking triple must
improve their match. There are only 6 possible improvements to M : b1 switches
to c2, c1 switches to a2, a2 switches to b3, b2 switches to c3, a3 switches to b1,
and finally, c3 switches to a1. It is easy to check that no two of these will keep
the third agent involved at least as satisfied as she is in M .

However, the matching M ′ = {(a1, b2, c3), (a2, b3, c1), (a3, b1, c2)} is more
popular, since all agents except for {a1, b3, c2} prefer it to M . ut

Secondly we show that for 3-dimensional instances, even strong popularity
does not imply weak stability.

Lemma 2. There is an instance I of 3dspmi with a matching M such that M
is strongly popular but not weakly stable.

Proof. Consider the preference profiles depicted in Figure 2 and the matching
M := {(a1, b1, c1), (a2, b2, c2), (a3, b3, c3)}. As can be easily seen, M is not weakly
stable, since (a1, b2, c3) is a strongly blocking triple.

Matching M is however strongly popular. Assume indirectly that there is
a matching M ′ such that M is not more popular than M ′. The only three
agents who can possibly improve are a1, b2, and c3, because the remaining 6
agents are matched to their first choice. If all three of them improve in M ′, then
(a1, b2, c3) ∈ M ′, and all possible matchings for the remaining 6 agents match
at least 4 of them to an agent who is not their top choice. The other possibility
is that at least one of a1, b2, and c3 remains in the same triple in M ′ as she
was in M . Due to symmetry, we can assume without loss of generality that this
agent is a1, and thus, (a1, b1, c1) ∈ M ′. The only agent who can improve from
this point on is b2, and she must switch to c3. This M ′ can be only finished
by taking (a2, b2, c3), (a3, b3, c2) ∈ M ′ or by taking (a3, b2, c3), (a2, b3, c2) ∈ M ′,



Three-Dimensional Popular Matching with Cyclic Preferences 9

a1 : b2, b1, b3 a2 : b2, b3, b1 a3 : b3, b2, b1

b1 : c1, c2, c3 b2 : c3, c2, c1 b3 : c3, c2, c1

c1 : a1, a2, a3 c2 : a2, a1, a3 c3 : a1, a3, a2

Fig. 2. Representation of the preferences in Lemma 2. The triples in M are underlined
and the strongly blocking triple is in bold.

both of which make only b2 better off, and exactly 3 out of these 6 agents worse
off than they were in M . Thus M is strongly popular. ut

Our third result shows that in an instance with complete lists, a strongly
popular matching can only be blocked by strongly blocking triples.

Lemma 3. In an instance I of 3dspm, a strongly popular and weakly stable
matching M is also strongly stable.

Proof. Consider a triple t = (a, b, c) and assume that t strongly blocks M . Since
M is weakly stable, one of the three agents needs to have the same partner
in t and in M . Without loss of generality we assume that this agent is b, and
thus b and c were matched in M as well. Let (a, β, γ), (α, b, c) ∈ M be triples
in M . Since (a, b, c) is a strongly blocking triple to M , we know that a �c α. The
matching M ′ = M \ (a, β, γ) \ (α, b, c) ∪ (α, β, γ) ∪ (a, b, c) leads to at least two
agents, a and c, preferring M ′ to M , and at most two agents, α and γ, preferring
M to M ′. This contradicts the assumption that M was strongly popular. ut

4 NP-Hardness Results

In this section we prove hardness for all our problems with incomplete lists,
except for A∪B-popularity verification. We also show that A∪B-popularity can
be verified and an A ∪B-popular matching can be found in polynomial time if
preference lists are complete. For a structured summary of these results, please
consult Table 1.

4.1 Popularity

We start by showing that it is NP-hard to determine whether an instance with
incomplete lists admits a popular matching. For this we use a restricted, but still
NP-complete variant of 3sat, known as (2,2)-e3-sat [3].

(2,2)-e3-sat

Input: A set X of variables and a set C of clauses of size exactly 3 such
that each variable appears in exactly two clauses in positive form
and in exactly two clauses in negative form.

Question: Is there a satisfying assignment for C?
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Theorem 1. It is NP-hard to decide whether a 3dpmi instance admits a popular
matching, even if each agent finds four other agents acceptable. This holds even
if the preferences are derived from a 2-master list.

In order to state NP-completeness instead of NP-hardness, we would have to
prove that 3dpmvi is polynomial-time solvable. However we can show that this
is problem is computationally intractable as well.

Theorem 2. It is NP-complete to decide whether a given 3dpmvi instance with
a matching M admits a matching that is more popular than M . This holds even
if the preferences are derived from a 1-master list.

4.2 Strong Popularity

Next we show that it is also NP-hard to find a strongly popular matching and to
verify whether a given matching is strongly popular. For this we reduce from the
problem of finding a perfect matching in a 3D-cyclic matching instance without
preferences, shown to be NP-complete by Garey and Johnson [19].

perfect 3d-cyclic matching
Input: Sets A,B,C with cyclic acceptability relations.
Question: Does a perfect matching exist?

Theorem 3. It is NP-hard to determine whether a given 3dspmi instance admits
a strongly popular matching. This holds even if the preferences are derived from
a 2-master list.

A slightly modified version of the proof implies that 3dspmvi is also compu-
tationally intractable.

Theorem 4. It is NP-complete to decide whether a given 3dspmvi instance
admits a matching M ′ such that M is not more popular than M ′. This holds
even if the preferences are derived from a 2-master list.

4.3 A ∪ B-Popularity

Finally we turn to the application-motivated variant of our problem and show
that computing a matching that is A ∪ B-popular, i.e., it does not lose any
head-to-head election where only agents in A ∪B can vote, is NP-hard as well.
We reduce from the problem of finding a popular matching in a bipartite graph
with one side having strict preferences and the other side either having a tie or
strict preferences, which was shown to be NP-complete by Cseh et al. [11].

popular matching with one-sided ties
Input: A bipartite graph G = (U ∪ W,E), for each u ∈ U a strict

preference list over its neighbors in W , for each w ∈W either a
strict preference list or a preference list containing a single tie
over its neighbors in U .

Question: Does G admit a popular matching?
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Theorem 5. It is NP-hard to decide whether a 3dpmi instance admits an A∪B-
popular matching.

Interestingly enough the problem becomes easy with complete lists.

Theorem 6. Both verifying A ∪B-popularity and computing an A ∪B-popular
matching in a 3dpm instance I can be done in linear time.

Proof. From I we construct two house allocation instances with one-sided pref-
erences, IA := (A,B, (�a)a∈A) and IB := (B,C, (�b)b∈B). We will show that
I admits a popular matching if and only if both IA and IB admit a popular
matching.

First assume that I admits a popular matching M . Using this we now
construct the two matchings, MA := {(a,M(a) | a ∈ A} in IA and MB :=
{(b,M(b) | b ∈ B} in IB. Without loss of generality assume that MA is not
popular in IA and let M ′A be the more popular matching. It is easy to see that
the matching {a,M ′A(a),M(M ′A(a)) | a ∈ A} is also more popular than M in I.

If IA and IB admit popular matchings MA and MB, respectively, then the
matching {a,MA(a)MB(MA(a)) | a ∈ A} is clearly popular in I.

This immediately yields a linear time algorithm for finding an A ∪B-popular
matching and verifying whether a matching is A ∪ B-popular matching, since
popular matchings in house allocation instances can be found and verified in
linear time as shown by Abraham et al. [1].

5 Master Lists

Now we turn to studying the problem of computing a popular matching in
instances with preferences derived from master lists. Examples of real-life ap-
plications of master lists occur in resident matching programs [5], dormitory
room assignments [37], cooperative download applications such as BitTorrent [2],
and 3-sided networking services [12]. Even though the presence of a master list
usually simplifies stable matching problems and warrants that a solution exists
and it is easy to find [23, 35], here we show that for 3-dimensional popular
matchings, instances with master lists tend to admit no popular matching at all.
This observation is aligned with what has already been shown by the Condorcet
paradox, possibly the first example for the non-existence of a weak majority
winner.

5.1 3-Master List

First we show that an instance derived from a 3-master list has no popular
matching if there are at least 3 agents per class.

Theorem 7. A 3dpm instance derived from a 3-master list has no popular
matching if n ≥ 3.
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Proof. Let M be a maximal matching (otherwise the matching is trivially not
popular) and let (ai, bi, ci), (aj , bj , cj), (ak, bk, ck) ∈ M be three disjoint triples.
Without loss of generality we can assume that ai �c aj �c ak. We will now
distinguish two cases. First assume that one of

– bj ≺a bk ≺a bi;
– bk ≺a bi ≺a bj ;
– bi ≺a bj ≺a bk

holds, i.e., the ranking of the three agents in B is ‘reversed’ compared to the
ranking of the agents in A they are matched to. Then the matching M ′ result-
ing from replacing the triples {(ai, bi, ci), (aj , bj , cj), (ak, bk, ck)} by the triples
{(ak, bi, ci), (ai, bj , cj), (aj , bk, ck)} in M is more popular, since two of ai, aj , ak
(as can be seen by the two ≺a) and cj , ck prefer M ′, while only two agents are
against M ′.

For the second case, we can assume that one of

– bj �a bk �a bi;
– bk �a bi �a bj ;
– bi �a bj �a bk

holds, i.e., the ranking of the agents in B is cyclically shifted from
the ranking of the agents in A. Now we construct matching M ′

by replacing the triples {(ai, bi, ci), (aj , bj , cj), (ak, bk, ck)} by the triples
{(ai, bk, cj), (aj , bi, ck), (ak, bj , ci)} in M . Since b is sorted, two agents in A, cj
and ck, and the agent in b who was previously matched to the worst of the three
agents in C prefer their partner in M ′ to their partner in M . Thus M ′ is more
popular than M , and therefore no popular matching exists in this instance. ut

For the sake of completeness, we remark that for n ≤ 2, all perfect matchings
in a 3dpm instance derived from a 3-master list are trivially popular.

Interestingly, Escamocher and O’Sullivan [15] were able to show that instances
derived from a 3-master list have exponentially many stable matchings, so
Theorem 7 shows a stark contrast between stability and popularity in three-
dimensional cyclic matching.

5.2 2-Master List

In the spirit of Theorem 7, we can also show that even if only the preferences in
A and B are derived from a master list, no popular matching exists if there are
more than four agents in each of the three classes.

Theorem 8. In an instance of 3dpm derived from a 2-master list, no popular
matching exists if n ≥ 5.

Proof. Without loss of generality we can assume that classes A and B each
have a master list, and consider a matching M . Let the rankings for B and C
be b1 �a · · · �a bn and c1 �b · · · �b cn, respectively. For any γ ∈ {a, b, c} let
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γi⊕ 1 = γ(i−1 mod n). Intuitively, the ⊕ operation takes one step up on the list of
agents in a class, and if it is applied to the first agent in the class, then it jumps
to the last agent. Now we compare the matching that consists of triples in the
form (ai,M(ai)⊕ 1,M(M(ai)⊕ 1)⊕ 1), i.e., we cyclically shift up the agents in
B and C. In this operation, all agents in A except for the agent matched to b1,
and all agents in B except for the agent matched to c1 improve. Thus at least
2n − 2 agents improve and at most n + 2 agents receive a worse partner than
in M . Therefore if n ≥ 5, then M was not popular. ut

For the sake of completeness we elaborate on the case of instances with n ≤ 4.
Firstly, for n ≤ 2, it is easy to see that there is at least one popular matching
in each 3dpm instance derived from a 2-master list. Instances with n = 3 and
n = 4 can be yes- and no-instances as well. Since the input size is constant, even
iterating through all matchings and checking each of them for popularity delivers
a polynomial-time algorithm to decide whether a given instance admits a popular
matching.

5.3 1-Master List

A result analogous to Theorems 7 and 8 is unlikely to exist if only one agent class
is equipped with a master list. Instead, we give a characterization for strongly
popular matchings in instances derived from a 1-master list with complete lists.
This characterization also immediately gives us a linear time algorithm to find and
verify a strongly popular matching in these instances. The analogous questions
for popularity are discussed as open problems in Section 6.

Theorem 9. In an 3dspm instance derived from a 1-master list, a matching is
strongly popular if and only if all agents without a master list are matched to
their top choice.

Proof. Without loss of generality we can assume that class A is equipped with a
master list. Let M be a matching that assigns all agents in B and C their top
choice. Let M ′ be any other matching and let (ai, bj , ck) ∈M ′. In order to prove
that M is more popular than M ′, we first distinguish three cases.

– If M(ai) = bj , then voteai(M
′,M) + votebj (M ′,M) + voteck(M ′,M) ≤ 0

follows from bj and ck being matched to their top choice in M .
– If bj �a M(ai), then one of bj and ck has to be matched to a different partner

in M ′ and we get voteai(M
′,M)+votebj (M ′,M)+voteck(M ′,M) ≤ 1−1 = 0.

– If M(ai) �a bj , then voteai(M
′,M) + votebj (M ′,M) + voteck(M ′,M) ≤

−1− 1 = −2.

We also know that any matching changing only the partners of agents in B
and C, but not in A, would trivially be less popular than M . Thus, for M ′, the
last case needs to occur at least once, since all the agents in A have the same
preference list. All in all we get that ∆(M ′,M) ≤ −2 for all M ′, and therefore
M is strongly popular.
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For the opposite direction, we assume that the matching M does not assign all
agents in B and C their top choice. Without loss of generality assume that there
is an agent bi ∈ B such that bi’s top choice is ci, yet M(bj) = ci. So we assume
that (ai, bj , ci), (aj , bi, cj) ∈ M . Next consider the matching that is created by
swapping bj and bi, i.e., by removing (ai, bj , ci), (aj , bi, cj) from M and adding
(ai, bi, ci), (aj , bj , cj) to M . If bi �a bj , then ai and bi improve, while aj and bj
get worse. Similarly, if bi ≺a bj , then aj and bi improve, while ai and bj get worse.
Thus M was not strongly popular. ut

6 Open Problems

Our work leaves three important questions open. The first, related to our results
in Section 4, is the complexity of our problems with regard to complete preference
lists. The technique of introducing so-called ‘boundary dummy-agents’ of Lam
and Plaxton [29] for showing hardness with complete lists for the stable matching
problem does not seems to be applicable for popularity, since the presence of
blocking edges if an agent is matched below her ‘boundary’ does not restrict the
set of popular matchings. Thus in order to reduce either from the problem with
incomplete lists or from a separate problem altogether, a new technique might
be needed.

Related to this is also the complexity of verifying whether a matching is
A ∪B-popular with incomplete lists. Due to the inherent hardness of computing
weight-optimal or even perfect matchings in 3 dimensions, we conjecture that
this problem is NP-complete as well.

The third open problem, in case the problem of finding a popular matching
with complete lists turns out to be intractable, is that of finding a popular
matching in a 3dpm derived from a 1-master list. Here, as opposed to instances
derived from 2- and 3-master lists, popular matchings can exist. Interestingly
enough the structure of these popular matchings seems to be quite limited, since
in any situation the agents with the master list could be ’shifted up’ to generate
a matching that is more popular for at least n− 1 agents, similarly as we argued
in the proof of Theorem 8. This might lead to results similar to the classification
of popular matchings in house allocation instances by Abraham et al. [1]—for
instance, if there is a perfect matching M and agents bi, bk ∈ B and cj , cl ∈ C
with l > k ≥ j > i such that cj �bi M(bi) and cl �bj M(bl), then M is not
popular. Other results of this type might pave the path to a full classification of
popular matchings in these instances.
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7 Appendix

First we present an instance of 3dspm and show that it admits no popular
matching. This instance will come handy later, in the proof of Theorem 1.

Observation 1 The instance I of 3dspm obtained by removing any agent from
an instance with 3 agents per class and a 3-master list admits a popular matching.

Proof. Without loss of generality assume that at least one agent has been removed
from A and that A is the class of smallest cardinality. We distinguish two cases.

– If |A| = 1, then we can put all three top choices as the only triple in our
matching. Improving the situation of any agent would lead to the respective
top choice agent of the same class to be unmatched which would cancel out
their votes. The matching is thus popular.

– If |A| = 2, we can include all top choices and all second choices as our
two triples. By enumerating all possible matchings it can be seen that this
matching is popular. ut

Theorem 1. It is NP-hard to decide whether a 3dpmi instance admits a popular
matching, even if each agent finds four other agents acceptable. This holds even
if the preferences are derived from a 2-master list.

Proof. We reduce from (2,2)-e3-sat.

Construction Let X = {x1, . . . , xn} be the set of variables and C be the set of
clauses. We first define the sets of agents A,B,C of our 3dmpi instance. For each
clause ϕ = {xi, xj , xk}, where xi might be in either positive or negative form, we
add nine agents

– three variable agents aϕi , a
ϕ
j , a

ϕ
k in A;

– three dummy agents bϕ1 , b
ϕ
2 , b

ϕ
3 in B;

– three dummy agents cϕ1 , c
ϕ
2 , c

ϕ
3 in C.

For each variable xi ∈ X we include twelve agents

– two agents ai1, a
i
2 in A;

– six agents bi1, b
i
2, b

i,+
1 , bi,−1 , bi,+2 , bi,−2 in B;

– four agents ci,+1 , ci,−1 , ci,+2 , ci,−2 in C.

Next we define our preference lists.

– For any clause ϕ and any clause agent aϕi such that xi appears is positive

form in ϕ, we define the preference list to be bi,+1 � bi,+2 � bϕ1 � b
ϕ
2 � b

ϕ
3 .

– For any clause ϕ and any clause agent aϕi such that xi appears is negative

form in ϕ, we define the preference list to be bi,−1 � bi,−2 � bϕ1 � b
ϕ
2 � b

ϕ
3 .

– For any bϕm with m ∈ {1, 2, 3} we add the list cϕ1 � c
ϕ
2 � c

ϕ
3 .
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– Lastly for any cϕm, with xi, xj , and xk being the variables that appear either
in positive or negative form in ϕ such that i < j < k, we add the list
aϕi � a

ϕ
j � a

ϕ
k .

Note that this implies that all the clause and dummy agents belonging to one
clause form a sub-instance derived from a 3-master list. Thus following Theorem 7
and Observation 1, in any popular matching at least one of the clause agents
needs to be matched to a non-dummy agent.

Next for the variable gadget of any variable xi we define the following prefer-
ence lists.

– Agent ai1 receives the preference list bi2 � bi1.
– Agent ai2 receives the preference list bi1 � bi2.
– Agent bi1 receives the preference list ci,−2 � ci,+2 .

– Agent bi2 receives the preference list ci,+1 � ci,−1 .

– Agent bi,+1 receives the preference list ci,+1 .

– Agent bi,−1 receives the preference list ci,−1 .

– Agent bi,+2 receives the preference list ci,+2 .

– Agent bi,−2 receives the preference list ci,−2 .

Furthermore we call ϕ+, ψ+ the clauses where xi appears in positive form, and
ϕ−, ψ− the clauses where xi appears in negative form and turn to the preferences
of the variable agents in C.

– For the agent ci,+1 we add the preference list aϕ
+

i � aψ
+

i � ai1.

– For the agent ci,−1 we add the preference list aϕ
−

i � aψ
−

i � ai2.

– For the agent ci,+2 we add the preference list aϕ
+

i � aψ
+

i � ai2.

– For the agent ci,−2 we add the preference list aϕ
−

i � aψ
−

i � ai1.

Note that in this construction the relative order of the preferences in B and C is
the same, thus the preferences are subsets of an instance derived from a 2-master
list. For a representation of the construction in the variable gadget, see Figure 3.

⇒ We first assume that the (2,2)-e3-sat instance is satisfiable and Φ is a
satisfying assignment. We now show how to construct a popular matching M .

– For any variable xi that is set to true in Φ and appears in
positive form in the clauses ϕ and ψ we include the triples
(a2, b2, c

i,−
1 ), (a1, b1, c

i,−
2 ), (aϕi , b

i,+
2 , ci,+2 ), and (aψi , b

i,+
1 , ci,+1 ).

– If xi is set to false in Φ and appears in negative form in the clauses ϕ
and ψ we include the triples (a2, b1, c

i,+
2 ), (a1, b2, c

i,+
1 ), (aϕi , b

i,−
2 , ci,−2 ), and

(aψi , b
i,−
1 , ci,−1 ).

– For any clause ϕ where two variables xi, xj are unsatisfied, we add the triples
(aϕi , b1, c1) and (aϕj , b2, c2).

– For any clause ϕ with one variable xi unsatisfied we add the triple (aϕi , b1, c1).
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bi,−1

bi,+1bi,+2

bi,−2

bi2

bi1
ai2

ai1

ci,−1

ci,+1ci,+2

ci,−2

Fig. 3. The figure represents the clause gadget in the proof of Theorem 1. The vertices
denote the agents, with vertices of the same color belonging to the same class. Solid
edges leaving a vertex represent the first choice of the corresponding agent, whereas
dotted edges represent the second choice.

Now all we are left to do is to show that M is popular. First, we already know
from Lemma 1 that each matching in each clause gadget is popular if one does
not match an additional aϕi to some agent in the clause gadget. If aϕi would get
matched to some agent in the clause gadget, the matching will get worse for aϕi ,

bi,±1/2, and ci,±1/2 (depending on how the matching is constructed), while at most

three agents in the clause gadget can improve. Furthermore any perfect matching
M ′ in the variable gadget is not more popular , since switching ai1 or bi1 to M ′

increases the rank of one of them, while it decreases the rank of the other one
compared to M . If the matching M ′ in the variable gadget is not perfect, at least
two of the ai1/2 or bi1/2 are now unmatched and matching ci,±1/2 to any variable

gadget would also unmatch two of the variable dummies, leading to M being
preferred by at least one more agent over M ′. Finally matching agents aϕi and

aψi to the respective other b±1/2 would make two agents happier and two agents

unhappier, thus also not leading to a more popular matching. Therefore in any
matching M ′ for any agent who prefers M ′ to M there is at least one (unique)
agent who prefers M to M ′, which implies that M is popular.

⇐ Next assume that we are given a popular matching M . Now we make two
observations.
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– For any clause ϕ, at least one agent aϕi has to be matched to her variable
gadget, since otherwise following Theorem 7 the matching could not be
popular, because the agents in the clause gadget are all derived from a master
list.

– Now assume that there is a variable gadget where both at least one of bi,−1
and bi,−2 as well as at least one of bi,+1 and bi,+2 are matched to clause gadgets.
Then without loss of generality ai1 and bi1 are unmatched in M . Since M is
popular, it has to be maximal and thus ci,−1 is matched to some aϕi and two

agents bϕk , c
ϕ
k are unmatched. Taking the triples (ai1, b

i
1, c

i,−
1 ) and (aϕi , b

ϕ
k , c

ϕ
k )

improves the matching for ai1, b
i
1, b

ϕ
k , c

ϕ
k and makes it worse for ci,−1 , bi,−1 , aϕi .

Thus M could not have been popular.

Therefore for each variable, M matches either only bi,−1 and bi,−2 or bi,+1 and bi,+2
to their respective clause gadgets and since each clause gadget has to be matched,
this implies that we can construct a satisfying assignment. ut

Theorem 3. It is NP-hard to determine whether a given 3dspmi instance admits
a strongly popular matching. This holds even if the preferences are derived from
a 2-master list.

Proof. We reduce from perfect 3d-cyclic matching.

Construction Assume we are given a perfect 3d-cyclic matching instance
I with sets A0 = {a1, . . . , an}, B0 = {b1, . . . , bn}, and C0 = {c1, . . . , cn}. For our
3dspmi instance, we create a copy of each of the three classes, A′0 = {a′1, . . . , a′n},
B′0 = {b′1, . . . , b′n}, and C ′0 = {c′1, . . . , c′n} and we set A = A0 ∪A′0, B = B0 ∪B′0,
and C = C0 ∪ C ′0.

Next we turn to the preferences. For each agent x ∈ A0∪B0∪C0 let nx1 , . . . , n
x
k

be her set of acceptable agents in I in an arbitrary order, such that the relative
order between all agents of one class is the same Just as in Theorem 8, we take
the indices modulo n and as such take n+ 1 = 1.

– For any ai ∈ A0 we create the preference list b′i �ai n
ai
1 �ai · · · �ai n

ai
k .

– For any a′i ∈ A′0 we create the preference list only consisting of b′i.
– For any bi ∈ B0 we create the preference list nbi1 �ai · · · �bi n

bi
k .

– For any b′i ∈ B′0 we create the preference list c′i �b′i c
′
i+1.

– For any ci ∈ C0 we create the preference list nci1 �ci · · · �ci n
ci
k .

– For any c′i ∈ C ′0 we create the preference list ai �c′i a
′
i−1.

⇒ First assume that I admits no perfect matching. We then show that
the matching M = {(ai, b′i, c′i) | ai ∈ A0} is strongly popular. Let M ′ be a
matching different from M . For any i ∈ [n], we define the vertex set Xi =
{ai, a′i,M ′(ai),M ′(M ′(ai)), b′i, c′i} and also votei(M

′) =
∑
x∈Xi

votex(M ′,M).

By the definition of popularity it holds that vote(M ′,M) =
∑n
i=1 votei(M

′).
Now we can distinguish four cases, based on whether ai and a′i are unmatched or
matched to b′i.
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– If M ′(ai) = b′i, then it holds that votei(M
′) = 0.

– If M ′(ai) = ai, then it is easy to see that votei(M
′) ≤ −2.

– Otherwise if M ′(ai) 6= b′i and M ′(a′i) = b′i, then a′i,M
′(ai), and M ′(M ′(ai))

prefer M ′ to M , while the rest of Xi prefers M to M ′, which results in
votei(M

′) = 0.
– If M ′(ai) 6= b′i and M ′(a′i) = a′i, then M ′(ai) and M ′(M ′(ai)) prefer M ′ to
M , while the rest of Xi prefers M to M ′, which results in votei(M

′) ≤ −1.

Since M ′ 6= M , M ′(ai) 6= b′i has to hold for at least one ai ∈ A0. However since
no perfect matching exists, there has to be an agent ai ∈ A not matched to an
agent in B0. From this follows that either M ′(ai) = ai or M(a′i) = a′i has to hold
if this ai is matched to b′i, which would imply that votei(M

′) < 0. Therefore we
get that vote(M ′,M) =

∑n
i=1 votei(M

′) < 0 and thus M is strongly popular.

⇐ For the other direction assume that I admits a perfect matching M ′0 and
consider the two matchings M = {(ai, b′i, c′i) | ai ∈ A0} and M ′ = M ′0 ∪
{a′i, b′i, c′i+1}. First it is easy to see that for any i ∈ [n], all of ai, b

′
i, c
′
i prefer M

to M ′ while bi, ci, and a′i prefer M ′ to M . Thus neither M nor M ′ is strongly
popular.

Now assume that M ′ is a matching different from M . Let votei be as in the
previous case. If M ′(ai) = b′i, then nothing changes for the agents in Xi and thus
votei(M

′) = 0. If M ′(ai) = ai, then we get votei(M
′) ≤ −2 and if M ′(ai) ∈ B0,

we get votei(M
′) ≤ 0. Thus the matching M ′ was not strongly popular either

and therefore no strongly popular matching exists. ut

Theorem 4. It is NP-complete to decide whether a given 3dspmvi instance
admits a matching M ′ such that M is not more popular than M ′. This holds
even if the preferences are derived from a 2-master list.

Proof. This immediately follows from the proof of Theorem 3 by setting M =
{(ai, b′i, c′i) | ai ∈ A0}. The membership in NP follows from the fact that any
matching that is not more popular than M serves as a witness. ut

Theorem 2. It is NP-complete to decide whether a given 3dpmvi instance with
a matching M admits a matching that is more popular than M . This holds even
if the preferences are derived from a 1-master list.

Proof. Here membership in NP immediately follows from the fact that any
matching that is more popular than M serves as a witness, since it can be
computed in polynomial time whether a matching is more popular than a given
matching. We reduce from perfect 3d-cyclic matching and show how to
modify the proof of Theorem 3.

Construction We again assume we are given a perfect 3d-cyclic match-
ing instance I with classes A0 = {a1, . . . , an}, B0 = {b1, . . . , bn}, and C0 =
{c1, . . . , cn}. Without loss of generality we assume that n is odd. For our
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3dspmi instance, we create a copy of each of the three sets, A′0 = {a′1, . . . , a′n},
A′′0 = {a′′1 , . . . , a′′n}, B′0 = {b′1, . . . , b′n}, B′′0 = {b′′1 , . . . , b′′n}, C ′0 = {c′1, . . . , c′n},
and C ′′0 = {c′′1 , . . . , c′′n}, and we set A = A0 ∪ A′0 ∪ A′′0 , B = B0 ∪ B′0 ∪ B′′0 , and
C0 ∪ C ′0 ∪ C ′′0 .

Next we turn to the preferences. For any agent x ∈ A0∪B0∪C0 let nx1 , . . . , n
x
k

be their set of her acceptable agents in I in some arbitrary order, such that the
relative order between all agents of one class is the same.

– For any ai ∈ A0 we create the preference list b′i �ai n
ai
1 �ai · · · �ai n

ai
k .

– For any a′i ∈ A′0 we create the preference list only consisting of b′i.
– For any a′′i ∈ A′′0 we create the preference list consisting of bi �a′′i b

′′
i .

– For any bi ∈ B0 we create the preference list c′′i �bi n
bi
1 �bi · · · �bi n

bi
k .

– For any b′i ∈ B′0 we create the preference list c′i �b′i c
′
i+1.

– For any b′′i ∈ B′′0 we create the preference list only consisting of c′′i+1.
– For any ci ∈ C0 we create the preference list nci1 �ci · · · �ci n

ci
k .

– For any c′i ∈ C ′0 we create the preference list a′i−1 �c′i ai.
– For any c′′i ∈ C ′′0 we create the preference list a′′i−1 �c′′i a′′i if i is odd and
a′′i �c′′i a

′′
i−1 if i is even.

We now show that the matching M = {(ai, b′i, c′i) | ai ∈ A0} ∪ {(a′′i , bi, c′′i ) | bi ∈
B0} is popular if and only if no perfect matching exists in I.

⇒ First assume that there is no perfect matching and let M ′ be a matching
different from M . We distinguish two cases.

In the first case we assume that every b′′i is matched to c′′i+1. For any bi there
are now two cases.

– For any bi that is matched to an agent in C0, we let aj = M ′(M ′(bi)) and
Xi = {bi, b′′i , c′′i+1, a

′′
i , aj , a

′
j , b
′
j , c
′
j ,M

′(bi)}.
– For any bi with M ′(bi) = bi we can get a unique bijection to an agent aj

with M ′(aj) ∈ {aj , b′j}, i.e., agents from A0 whose matching partner is not
from B0. In this case we again set Xi = {bi, b′′i , c′′i+1, a

′′
i , aj , a

′
j , b
′
j , c
′
j}.

As in the proof of Theorem 3 we define votei(M
′) =

∑
x∈Xi

votex(M ′,M)

and see that vote(M ′,M) =
∑n
i=1 votei(M

′).
Now let i ∈ [n] be odd and assume that M ′(bi) ∈ C0. Then since b′′i is matched

to c′′i+1 and a′′i must be matched to b′′i , we get that at most b′′i , c
′′
i+1, a

′
j , c
′
j ,M

′(bi)
might prefer M ′ to M , while bi, aj , a

′′
i , b
′
j prefer M to M ′, which leads to

votei(M
′) ≤ 1. Similarly if i ∈ [n] is even and M ′(bi) ∈ C0, we conclude

that votei(M
′) ≤ −1.

For i ∈ [n] is odd and M ′(bi) = bi we observe that since a′′i must be matched
to b′′i , agents c′′i+1 and b′′i prefer M ′ to M , while bi and a′′i prefer M to M ′. By
the same reasoning as in Theorem 1 we also get that the sum of votes among
aj , a

′
j , b
′
j , c
′
j is at most 0 and thus votei(M

′) ≤ 0. This argumentation also extends
to an even i with votei(M

′) ≤ −1. Since no matching is perfect, there must be at
least one bi with M ′(bi) = bi and we get

∑n
i=1 votei(M

′) ≤ −1+
∑n
i=1(−1)n ≤ 0.

Therefore in this case M ′ is not more popular than M .
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We now arrived to the second case, in which there is some b′′i who is not
matched to c′′i+1. Let i1, . . . , ik be the sorted list of the indices of such agents
in B′′. Further for any ij , we define Xij analogously to Xi in the previous case.

Now for any ij , if bij is matched to an agent in C0, we set al = M ′(M ′(bij ))
and get that at most a′l, b

′
l, and M ′(bij ) could get better, while bij , al, b

′
l, a
′′
i would

get worse, which leads to votei(M
′) ≤ −1.If bij is not matched to an agent in

C0, then there are two cases.

– If M ′(b′′ij−1) = c′′ij , then a′′ij and bij must prefer M to M ′, while b′′ij and c′′ij+1

are at most indifferent. Combined with the observation that the vote of the
other agents cannot be positive, we get votei(M

′) ≤ −2.
– However if M ′(b′′ij−1) 6= c′′ij , then either nothing changes in the matching or

the only agent who can still improve is a′l. However if a′l improves, then al
and bl must get worse, which implies that votei(M

′) ≤ −1.

This implies that
∑ij+1
`=ij

vote`(M
′) is at most 0 if ij + 1 = ij+1 or∑ij+1

`=ij
vote`(M

′) ≤
∑k
j=1 1 + voteij (M ′) ≤ 0 if ij = 1 6= ij+1. Thus we get

that vote(M ′,M) =
∑k
j=1

∑ij+1
`=ij

vote`(M
′) ≤ 0 and therefore M is popular.

⇐ If there is a perfect matching M0 we can take the matching M ′ = M0 ∪
{(a′i, bi, c′i+1), (a′′i , b

′′
i , c
′′
i+1) | i ∈ [n]} and observe that every ai, bi, b

′
i, a
′′
i , and c′′i

with an even i prefer M to M ′, while every ci, c
′
i, b
′′
i , a
′
i and c′′i with an odd i

prefer M ′ to M . Since n is odd, this implies that vote(M ′,M) ≥ 1 and therefore
M ′ is more popular than M . ut

Theorem 5. It is NP-hard to decide whether a 3dpmi instance admits an A∪B-
popular matching.

Proof.

Construction The construction of the proof is very similar to the NP-hardness
proof of Biró and McDermid [6, Theorem 1]. We reduce from the problem of
finding a popular matching in bipartite instances with ties. More formally given a
bipartite graph G = (U ∪W,E) such that each agent in U has a strict preference
list over a subset of agents in W and each agent in W either has a strict preference
list or a single tie. This problem was proven to be NP-hard by Cseh et al. [11].
Let W t be the set of agents in W who have a tie in their preference list. We set

– A = {ai | ui ∈ U} to be a copy of U ;
– B = {bi | wi ∈W} to be a copy of W ;
– C = {ci | wi ∈W t} ∪ {cij | wi ∈W \W t, uj ∈ U}.

Now we turn to the preferences.

– Each ai ∈ A has the same preference list as the corresponding ui ∈ U .
– If wi ∈ W t, then bi’s preference list is ci alone, while ci’s preference list is

the preference list of wi.
– Further if wi /∈W t, we add the agents cij in the order of the respective uj

as the preference list of bi and add aj as the single element of cij ’s list.
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Correctness First we notice that there is a one-to-one correspondence of match-
ings in our original graph and in our constructed 3dpmi instance. For a matching
M in G, we can construct the matching M := {(aj , bi, cij) | (mj , wi) ∈M,wi /∈
W t} ∪ {(aj , bi, ci) | (mj , wi) ∈ M,wi ∈ W t} and vice versa. We will show that
M is popular if and only if M is A ∪B-popular.

First assume thatM is not popular. Then there is a more popular matchingM ′.
If mi prefers M ′ to M , then ai also prefers M ′ to M since the preference lists
are the same. An analogous statement holds for wi /∈W t. If wi ∈W t and wi is
matched in both M and M ′ then wi will also be indifferent between M and M ′,
and if wi is matched in M ′ but not in M then wi will also prefer M ′ to M . Thus
M ′ is also more A ∪B-popular than M .

The same argument also holds for a matching in the A ∪B-popular instance
that is not popular, and thus M is popular if and only if M is A ∪ B-popular.
Consequently our instance has a popular matching if and only if the instance we
reduced to has a A ∪B-popular matching. ut
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