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Abstract
We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs
of maximum density. The density of a partition is the sum of the densities of the subgraphs, where
the density of a subgraph is its average degree, that is, the ratio of its number of edges and its
number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general
graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable.

In this paper we study the restriction of Dense Graph Partition to particular sparse and dense
graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as
on cubic graphs. On dense graphs on n vertices, it is polynomial-time solvable on graphs with
minimum degree n − 3 and NP-hard on (n − 4)-regular graphs. We prove that it is polynomial-time
4/3-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme
on graphs of minimum degree n − t for any constant t ≥ 4.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Math-
ematics of computing → Graph algorithms; Discrete Mathematics → Approximation algorithms

Keywords and phrases NP-hardness, approximation, density, graph partitioning, bipartite graphs,
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1 Introduction

The research around communities in social networks can be seen as a contribution to the
well establish research of clustering and graph partitioning. Graph partitioning problems
have been intensively studied with various measures in order to evaluate clustering quality,
see e.g. [17, 18, 10, 6] for an overview. In the context of social networks, a ‘community’ is a
collection of individuals who are relatively well connected compared to other parts of the
social network graph . A ‘community structure’ then corresponds to a partition of the whole
social network into communities.

We consider a classical definition of the density of a (sub)graph (see, for example,
[12, 15, 8]) given by its average degree, that is, the ratio between its number of edges and
its number of vertices. For this definition of density, there are several papers on finding the
densest subgraph. This problem was shown solvable in polynomial time by Goldberg [12] but
if the size of the subgraph is a part on the input, the problem called k-Densest Subgraph
becomes NP-hard even restricted to bipartite or chordal graphs [7]. The approximability of
k-Densest Subgraph was also studied, see [14, 9, 4].

In this paper, we study the problem Max Dense Graph Partition that models finding
a community structure, that is, finding a dense partition. More precisely, given an undirected
graph G, we aim to find a partition P = {V1, . . . , Vk}, k ≥ 1, of the vertices of G, such that
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2 Dense Graph Partitioning on sparse and dense graphs

sum of the densities of the subgraphs G[Vi] is maximized. We denote the sum of the densities
of the subgraphs G[Vi] by d(P), and call this the density of the partition P.

Note that the general concept of a community structure does not put any restriction
on the number of communities. We therefore address the problem Max Dense Graph
Partition of finding a partition of maximum density, without fixing the number of classes
of the partition. Indeed, when the number of classes is given, the problem is a generalization
of a partition into k cliques. By not fixing the number of classes, Max Dense Graph
Partition differs from partitioning into cliques: observe that while there exists a partition
into exactly k sets of density (n − k)/2 if and only if the input graph can be partitioned into
k cliques (see Lemma 2), there can be a partition into less than k sets with a density even
higher than (n − k)/2 even if the input cannot be partitioned into k cliques. As an example,
consider a complete graph of an even number n of vertices and turn four of the vertices
into an independent set by removing all edges among them. The resulting graph cannot be
partitioned into 3 cliques (at least one set contains two of the four independent vertices), but
it has a partition into two sets of equal cardinality with density (n − 2)/2 − 4/n.

Darley et al. [8] studied Max Dense Graph Partition, and its complement Min
Sparse Graph Partition. They defined the sparsity of a partition P as F (P) = |P|

2 + d(P)
and the problem Min Sparse Graph Partition as finding a partition of a given undirected
graph G such that the sparsity of the partition is minimized. Observe that Max Dense
Graph Partition and Min Sparse Graph Partition are dual in the sense that solving
the first one on a graph G is the same as solving the second one on the complement of
G. In [8] it is shown that both problems are NP-complete, and that there is no constant
factor approximation for Min Sparse Graph Partition unless P = NP . Moreover, a
polynomial time algorithm for Max Dense Graph Partition on trees is given. We point
out that their proof of NP-completeness is a polynomial-time reduction from k-Coloring.
By construction, the same reduction when starting from 3-Coloring on graphs of degree at
most 4 (proved NP-complete in [11]) yields as instance of Max Dense Graph Partition a
graph on n vertices and of minimum degree greater than n−4n4/5. Thus it follows that Max
Dense Graph Partition is NP-complete restricted to graphs of minimum degree n − 4n4/5.

Aziz et al. [2] studied the problem Fractional Hedonic Game, and more particularly
the Max Utilitarian Welfare problem as the simple symmetric version of the game
defined as follows. Let N be a set of agents, the utility of i ∈ N in a coalition S ⊆ N

is ui(S) = 1
|S|

∑
j∈S ui(j) where ui(j) is such that ui(j) ∈ {0, 1} for a simple game and

ui(j) = uj(i) for a symmetric one. For Max Utilitarian Welfare one tries to find a
partition C of N into coalitions that maximizes

∑
S∈C

∑
i∈S ui(S). This game can be seen

as a graph G where agents are vertices and there is an edge between two agents i and j if and
only if ui(j) = 1. In this context, ui(S) = 1

|S|
∑

j∈S ui(j) = 1
|S| degG[S](i). We deduce that∑

S∈C

∑
i∈S ui(S) = 1

|S|
∑

S∈C

∑
i∈S degG[S](i) = 1

|S|
∑

S∈C 2|E(S)| = 2 · d(C). Hence, the
problems Max Utilitarian Welfare and Max Dense Graph Partition are equivalent
to within a constant, which means that the 2-approximation for the former given in [2]
directly translates to the latter.

Our contributions. The following overview summarises the results achieved in this paper
concerning Max Dense Graph Partition (MDGP).

MDGP is trivially solvable on graphs of maximum degree 2, we prove its NP-hardness
for 3-regular (cubic) graphs.
We establish that on bipartite complete graphs an optimal partition consists of one part,
that is the whole graph. Moreover if the size of the two independent sets are relatively
prime numbers then this optimal solution is unique. We use this result to show that
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MDGP is NP-hard on dense bipartite graphs.
MDGP is trivial on complete graphs since the optimal solution is the whole graph as one
part of the partition. Moreover, as we previously explained, it is NP-hard on graphs of
minimum degree n − 4n4/5. We show that for graphs of minimum degree ≥ n − 3, the
problem is solvable in polynomial time and any optimal solution has two parts. Moreover
on (n − 4)-regular graphs, the problem becomes NP-hard.
We further give improves on the 2-approximation for MDGP on general graphs [2] for
specific sparse and dense graph classes. In particular, we show that MDGP admits a
polynomial-time 4/3-approximation on cubic graphs. Moreover we establish a polynomial-
time n−1

δ+1 -approximation, where δ is the minimum degree of the input graph (note that
this improves on the ratio of 2 for all δ > n−3

2 ). Also, we give an eptas (i.e. a (1 + ε)-
approximation for any ε > 0) on graphs of minimum degree n − t for any constant
t ≥ 4.

Our paper is organized as follows. Notations and formal definitions are given in Section 2.
The study of (dense) bipartite graphs is established in Section 3. Section 4 presents the
results on cubic graphs. In Section 5 we study dense graphs. Some conclusions are given at
the end of the paper.

2 Preliminaries

In this paper we assume that all graphs are undirected, without loops or multiple edges, and
not necessary connected. We use G = (V, E) to denote an undirected graph with a set V of
vertices and a set E of edges. We use |V | to denote the number of vertices in G, i.e., the
order of G, and we use |E| to denote the number of edges in G, i.e., the size of G. We denote
by degG(v) the degree of v ∈ V in G that is the number of edges incident to v and by DG(i)
the set of vertices of degree i in G. The maximum degree of G, denoted by ∆(G), is the
degree of the vertex with the greatest number of edges incident to it. The minimum degree
of G, denoted by δ(G), is the degree of the vertex with the least number of edges incident to
it. For any vertex v ∈ V , NG(v) is the set of neighbors of v in G and NG[v] = NG(v) ∪ {v}.
Moreover, NG(S) =

⋃
v∈S NG(v). For a graph G = (V, E) and a subset S ⊆ V we denote

by E(S) the set of the edges of G with both endpoints in S. For a given partition {A, B}
of V , we denote by E(A, B) = {uv ∈ E : u ∈ A, v ∈ B}. Further, G[S] denotes the graph
induced by S, defined as G[S] = (S, E(S)).

A triangle graph is the cycle graph C3 or the complete graph K3. A diamond graph
has 4 vertices and 5 edges, it consists of a complete graph K4 minus one edge. A graph is
called cubic if all its vertices are of degree three. A graph is bipartite if its vertices can be
partitioned into two sets A and B such that every edge connects a vertex in A to one in B.
A complete bipartite graph is a special kind of bipartite graph where every vertex of A is
connected to every vertex in B. A graph on n vertices is δ-dense if its minimum degree is at
least δn. A set of instances is called dense if there is a constant δ > 0 such that all instances
in this set are δ-dense (this notion was introduced in [1] and called everywhere-dense).

The density d(G) of a graph G = (V, E) is the ratio between the number of edges and the
number of vertices in G, that is, d(G) = |E|

|V | . Moreover, for S ⊆ V , d(S) = d(G[S]) = |E(S)|
|S| .

We use P to denote a partition of the set V of vertices of G, that is, P = {V1, . . . , Vk}, where
∪k

i=1Vi = V , and Vi ∩ Vj = ∅ for each i, j ∈ {1, . . . , k}. Then the density of a partition P
of G is defined as d(P) =

∑k
i=1 d(G[Vi]), where G[Vi] is the subgraph of G induced by the

subset Vi of vertices, that is, G[Vi] = (Vi, Ei), Ei = {{u, v} : {u, v} ∈ E ∧ u, v ∈ Vi}.
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We study the problem of finding a partition P = {V1, . . . , Vk} of a given graph G, such
that k ≥ 1 and that, among all such partitions, d(P) is maximized. We refer to this problem
as Max Dense Graph Partition and we define its decision version as follows.

Dense Graph Partition
Input: An undirected graph G = (V, E), a positive rational number r.
Question: Is there a partition P such that d(P) ≥ r ?

Given an optimization problem in NPO and an instance I of this problem, we denote by
|I| the size of I, by opt(I) the optimum value of I, and by val(I, S) the value of a feasible
solution S of instance I. The performance ratio of S (or approximation factor) is r(I, S) =
max{ val(I,S)

opt(I) , opt(I)
val(I,S) } ≥ 1. For a function f , an algorithm is an f(|I|)-approximation, if for

every instance I of the problem, it returns a solution S such that r(I, S) ≤ f(|I|). Moreover
if the algorithm runs in polynomial time in |I|, then this algorithm gives a polynomial-time
f(|I|)-approximation. We consider in this paper only polynomial time algorithms. When f

is a constant α, the problem is polynomial-time α-approximable. When f = 1 + ε, for any
ε > 0, the problem admits a polynomial-time approximation scheme. When the running time
of an approximation scheme is of the form O(g(1/ε)poly(|I|) the problem has an efficient
polynomial-time approximation scheme (eptas).

Before we start studying specific graph classes, we observe the following helpful structural
properties that hold for Dense Graph Partition on general graphs.
▶ Remark 1. We can assume that for any optimal partition P and for any part Pi ∈ P , G[Pi]
is connected, since otherwise turning each connected component into its own part does not
decrease the density.

When discussing the density of a (sub)graph, it is often useful to think about how close
this subgraph is to being a clique. We therefore call a pair of non-adjacent vertices in a
(sub)graph a missing edge, and use the number of such missing edges to estimate the density
of the (sub)graph. With such estimations, it is easy to show that the following intuition
about favouring complete graphs as communities.

▶ Lemma 2. Among all partitions of G into t ≥ 2 parts, those where the parts correspond
to complete graphs, if there exists such, have the largest density.

Proof. Consider a partition of G into t parts {V1, . . . , Vt} of size n1, . . . , nt. If G[Vi] has oi

missing edges for any 1 ≤ i ≤ t, then the density of this partition is n−t
2 − o1

n1
− . . . − ot

nt
.

Consider a partition of G into t parts of size n′
1, . . . , n′

t such that each part induces a
complete graph for any 1 ≤ i ≤ t. Then the density of this partition is n−t

2 and thus it is
larger than the density of any partition in t parts where at least one edge is missing inside
G[Vi] for some 1 ≤ i ≤ t. ◀

A direct consequence of this is the following.

▶ Lemma 3. Let G = (V, E) be a graph and P be any partition of V . Then d(P) ≤ |V |
2 − |P|

2 .

3 Dense Bipartite Graphs

In this section we show that Max Dense Graph Partition has a trivial solution on
complete bipartite graphs. Moreover, using this result we show that the problem is NP-hard
on dense bipartite graphs.

In the first part, we consider a complete bipartite graph Gn,m with the two subsets that
are independent sets of size n and m and we first prove the following result.
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▶ Lemma 4. The density d(Gn,m) of a complete bipartite graph Gn,m is greater than or
equal to the density d(P) of any partition P of Gn,m.

Proof. The density of the complete bipartite graph Gn,m = (A, B, E), with |A| = n, |B| = m

is given by d(Gn,m) = nm
n+m

It suffices to show that d(Gn,m) is greater than or equal to the density of any partition
P = {V1, V2} that splits the set of vertices into exactly 2 nonempty subsets. Indeed, if this
holds and we have a partition P = {V1, . . . , Vk} where k ≥ 3, we can show recursively that
d(Gn,m) ≥ d(G[V1]) + d(G[V2 ∪ · · · ∪ Vk]) ≥ · · · ≥ d(G[V1]) + · · · + d(G[Vk]).

We first consider a partition P1 = {V1, V2} where A ⊆ V1. Without loss of generality we
may assume that V2 = B \ V1 contains m2 vertices from B. Then

d(P1) = n(m − m2)
n + m − m2

+ 0 ≤ nm

n + m

Now, consider a partition P1 = {V1, V2} such that each of the graphs G[Vi] contains
at least one edge, so let G[V1] = Gn1,m1 with 0 < n1 < n and 0 < m1 < m. Then
G[V2] = Gn−n1,m−m1 and

d(P1) = n1m1

n1 + m1
+ (n − n1)(m − m1)

n + m − n1 − m1
= nm(n1 + m1) − mn2

1 − nm2
1

(n + m − n1 − m1)(n1 + m1) ,

which yields

d(Gn,m) − d(P1) = (nm1 − mn1)2

(n + m − n1 − m1)(n1 + m1)(n + m) ≥ 0

◀

It follows that an optimal solution of any complete bipartite graph is the whole graph.
From the calculations in the previous proof, we can inductively deduce the following result.

▶ Corollary 5. For any complete bipartite graph G = (A, B, E) with |A| = n and |B| = m, a
partition P = {V1, . . . , Vk} of A ∪ B satisfies d(P) = nm

n+m if and only if G[Vi] = Gni,mi
with

ni ̸= 0 and mi ̸= 0 and ni

mi
= n

m for all i ∈ {1, . . . , k}.

Consequently, for any complete bipartite graph Gn,m, if n and m are relatively prime the
only optimal solution of Gn,m is the whole graph. Otherwise, several optimal solutions exist
and are characterized exactly by Corollary 5.

▶ Theorem 6. Dense Graph Partition is NP-hard on dense bipartite graphs.

Proof. We give a reduction from Dominating Set. Let G = (V, E) with V = {v1, . . . , vn}
and an integer k ≥ 1 be an instance of Dominating Set. Assume without loss of generality
that G is connected. We first construct a bipartite graph G′ = (V1, V2, E′), that is not dense,
and show how solving Dense Graph Partition on it solves Dominating Set on G. In a
second step, we show how to make G′ dense maintaining the reduction.

We construct G′ = (V1, V2, E′) as follows:
V1 = V ∪ {wj

i : 1 ≤ i ≤ n − k, 1 ≤ j ≤ k} ∪ {z}
V2 = V ′ ∪{xj

r : 1 ≤ r ≤ N, 1 ≤ j ≤ k}∪{zi : 1 ≤ i ≤ N −n} where V ′ = {v′
1, . . . , v′

n} and
N ∈ N is chosen as follows. Let c ∈ N be the smallest integer such that c(n−k+1)−1 > n

(note that 1 ≤ c ≤ n) and define N = c(n − k + 1) − 1. For this choice of N it follows
that the greatest common divisor of N and n − k + 1 is 1, and n < N ≤ 2n.
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v1
v2

v3 v4

v5

⇒

v1 v2 v3 v4 v5 w1
1 w1

2 w1
3 w2

1 w2
2 w2

3 z

v′
1 v′

2 v′
3 v′

4 v′
5 x1

1 x1
2 x1

3 x1
4 x1

5 x1
6 x1

7 x2
1 x2

2 x2
3 x2

4 x2
5 x2

6 x2
7

z1 z2

Figure 1 A graph G, instance of Dominating Set and the bipartite graph G′ obtained from G,
for k = 2 and n = 5.

E′ = Ed ∪ Ewx ∪ Ec ∪ Ez with
Ed = {{vi, v′

j} : {vi, vj} ∈ E} ∪ {{vi, v′
i} : 1 ≤ i ≤ n},

Ewx = {{wj
i , xj

r} : 1 ≤ i ≤ n − k, 1 ≤ r ≤ N − 1, 1 ≤ j ≤ k},
Ec = {{wj

i , v′
s} : 1 ≤ i ≤ n − k, 1 ≤ j ≤ k, 1 ≤ s ≤ n} ∪ {{vs, xj

r} : 1 ≤ s ≤ n, 1 ≤ r ≤
N, 1 ≤ j ≤ k} and
Ez = {{z, zj} : 1 ≤ j ≤ N − n} ∪ {{z, xj

r} : 2 ≤ r ≤ N, 1 ≤ j ≤ k} ∪ {{vi, zj} : 1 ≤ i ≤
n, 1 ≤ j ≤ N − n}

Notice that G′ is a bipartite graph with |V1| = n + 1 + k(n − k) and |V2| = (k + 1)N .
We show that there exits a dominating set of cardinality at most k in G if and only if

there exists a partition P of G′ with d(P) = (k + 1)d(Gn−k+1,N ).
Suppose there exists a dominating set D in G with |D| = k. Let D = {vi1 , . . . , vik

} and
N ′(vij

) = NG[vij
] \ (D ∪ NG({vi1 , . . . , vij−1}). Define the partition P = {P1, . . . , Pk+1} by:

Pj = {vij } ∪ {v′
r : vr ∈ N ′(vij )} ∪ {wj

r : 1 ≤ r ≤ n − k} ∪ {xj
r : 1 ≤ r ≤ N − |N ′(vij )|} for

1 ≤ j ≤ k and Pk+1 = V1 ∪ V2 \ (∪k
j=1Pj). With this definition, P is clearly a partition of

V1 ∪ V2, and each part Pj contains n − k + 1 vertices from V1 and N vertices from V2 for
each 1 ≤ j ≤ k + 1. Further, each Pj induces a complete bipartite graph Gn−k+1,N : All
vertices wj

r and xj
r are connected to each other, and to all vertices in V2 and V1, respectively,

by construction. Further, vij
is connected in G′ to all vertices in N ′(vij

); note here that
in G′ we connected vi to its “copy” v′

i for all 1 ≤ i ≤ n, which models the case that vij

dominates itself. For Pk+1, note that z is adjacent to all xj
i -vertices, and each zi is adjacent

to all vertices in V . Since D is a dominating set, each vertex from V ′ is contained in some
N ′(vij ), thus V2 \ (∪k

j=1Pj) only contains xj
i -vertices. Also, the Pj contain all wj

i vertices
and hence V1 \ (∪k

j=1Pj) only contains vertices from V .
Conversely, let P be a partition of G′ of density (k + 1)d(Gn−k+1,N ). Thus, Corollary 5

implies that the vertices for each set P ∈ P induce a complete bipartite graph Gr,s such that
r
s = |V1|

|V2| = k(n−k)+n+1
(k+1)N = n−k+1

N . Since the greatest common divisor of n − k + 1 and N is
one, this yields r ≥ n − k + 1 and s ≥ N and especially P can contain at most k + 1 sets.

For all wj
i and wt

ℓ, if j ̸= t, wj
i and wt

ℓ have n common neighbors, and since n < N there
is no part P ∈ P such that wj

i , wt
ℓ ∈ P . Moreover, for all i, j, wj

i and z have N − 1 common
neighbors so they also cannot be in the same P ∈ P . Hence, there are exactly k + 1 parts in
P that are complete bipartite graphs Gn−k+1,N .

For all 1 ≤ j ≤ k, denote by Pj the set containing the vertices wj
i for all 1 ≤ i ≤ n − k

and Pz the set containing z. To reach cardinality exactly n − k + 1, Pj ∩ V1 has to contain



C. Bazgan, K. Casel and P. Cazals 7

exactly one vertex from V for each 1 ≤ j ≤ k. Further, since for any i, v′
i is not adjacent to

z, V ′ ⊆ ∪k
j=1Pj . As each P ∈ P induces a complete bipartite graph in G′, D = V ∩ ∪k

j=1Pj

is a set of size k, such that each vertex in V ′ is adjacent to at least one vertex in D, so we
deduce that D is a dominating set of size k in G.

We extend the construction of the proof to create from G′ a dense bipartite graph
G′′ = (V ′′, E′′) by adding four sets of vertices V u

1 , V d
1 , V u

2 , V d
2 with |V u

1 | = |V d
1 | = kn|V1| =

kn(k(n−k)+n+1) and |V u
2 | = |V d

2 | = kn|V2| = knN(k+1). Further, we add edges to turn the
pairs (V u

1 , V u
2 ), (V d

1 , V d
2 ), (V u

1 , V1), and (V d
2 , V2) each into complete bipartite graphs. Observe

that with this construction G′′ has |V ′′| = (2kn + 1)(k(n − k) + n + 1) + (2kn + 1)N(k + 1) <

10k2n2 vertices and that all vertices have degree at least kn|V1| ≥ 1
2 k2n2 ∈ Θ(|V ′′|). (Note

that if k ≥ n
2 , G is a trivial yes-instance for Dominating Set.)

We claim that there exists a partition P ′ of G′′ with d(P ′) = (k+1)d(Gn−k+1,N )+2kn(k+
1)d(Gn−k+1,N ) if and only if there exists a dominating set of size k for G. Corollary 5 again
implies that this density for G′′ can only be achieved by a partition into complete bipartite
graphs Gr,s with r

s = (2kn+1)(k(n−k)+n+1)
(2kn+1)N(k+1) = n−k+1

N . The vertices in V d
1 are only adjacent to

vertices in V d
2 , and the vertices in V u

2 are only adjacent to vertices in V u
1 . Clustering these in

a ratio r
s results in clusters containing exactly all newly added vertices, and this can be done

with just two sets in total. What remains is to cluster the graph G′ into complete bipartite
graphs Gr,s such that r

s = |V1|
|V2| = k(n−k)+n+1

(k+1)N = n−k+1
N as before. ◀

4 Cubic Graphs

In this section, we study Dense Graph Partition on cubic graphs, show that it remains
NP-complete on this restricted graph class, but also give a polynomial time 4

3 -approximation
for its optimization variant Max Dense Graph Partition. We start with some general
observations on the structure of communities in cubic graphs.

▶ Definition 7. For P ⊆ V , the utility of a vertex v ∈ P is defined by uP (v) = d(S)
|P | , and

the utility of P is defined by u(P ) = uP (v) for any v ∈ P . For a partition P = {V1, . . . , Vk},
the utility of a vertex v in P is defined by uP(v) = uVi

(v) with i such that v ∈ Vi.

Considering these definitions, we can remark that:
For any subset P ⊆ V , and v, w ∈ P , uP (v) = uP (w).
If P = {v} then uP (v) = 0.
For any partition P of G,

∑
Vi∈P

d(Vi) =
∑

v∈V

uP(v).

▶ Lemma 8. Let G = (V, E) be a cubic graph without connected components that induce a
K4. For any partition P of G the following holds:

uP(v) ≤ 1
3 for all vertices v ∈ V

if P ∈ P is not a triangle, diamond or Case 1 in Figure 2 then u(P ) ≤ 1
4

Proof. Let P be a partition of G, P ∈ P and v ∈ P . Since G is cubic, d(P ) ≤ 3|P |
2|P | = 3

2 .
Then uP(v) ≤ 3

2|P | . If |P | ≥ 6, uP(v) ≤ 3
2·6 = 1

4 . For |P | = 5 it follows that uP(v) ≤ 7
25 < 1

3 ,
since a cubic graph on 5 vertices cannot have more than 7 edges. Also, since there exists
no K4 in G, the only graph on 5 vertices with 7 edges is Case 1 in Figure 2, and all other
graphs on 5 vertices have 6 or less edges which yields a utility of at most 6

25 < 1
4 .

Case analysis on the graphs of size 4 or less yields that the largest utility is achieved
for P being a triangle, which gives uP(v) = 1

3 . Further, if P is not a triangle or a diamond,
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case analysis on the graphs of size 4 or less shows that uP(v) is maximized when P is an
induced matching and its value is 1

4 . ◀

▶ Lemma 9. Let G be a cubic graph without connected components that induce a K4, and let
v1, v2, v3, v4 be vertices in G that induce a diamond. Then uP(v1)+uP(v2)+uP(v3)+uP(v4) ≤
5
4 for any partition P for G.

Proof. Let P be any partition of G. Let P1 ∈ P (resp. P2, P3 and P4) be the part that
contains v1 (resp. v2, v3 and v4). We distinguish several cases.
Case 1: The four vertices vi are in the same part P1. If P1 is a diamond, then d(P1) = 5

4
and thus uP(v1) + uP(v2) + uP(v3) + uP(v4) = 5

4 . If the four vertices are in a part P1 with
more than 4 vertices, by Lemma 8 the only subgraph that gives utility more than 1

4 per
vertex is the graph displayed as Case 1 in Figure 2. This graph yields a utility of 7

25 which
gives uP(v1) + uP(v2) + uP(v3) + uP(v4) = 28

25 < 5
4 .

Case 2: Three among the four vertices of the diamond are in the same part. Then the
fourth vertex has degree at most one in its part, thus by Lemma 8 its utility is at most 1

4 .
Further, also by Lemma 8, the utility of the other three vertices is at most 1

3 and we conclude
that uP(v1) + uP(v2) + uP(v3) + uP(v4) ≤ 1 + 1

4 = 5
4 .

Case 3: At most two of the four vertices are together in the same part. Then the two vertices
of degree three in the diamond have degree at most one in their part, thus by Lemma 8 we
deduce like in Case 2 that uP(v1) + uP(v2) + uP(v3) + uP(v4) ≤ 2 1

4 + 2 1
3 < 5

4 . ◀

▶ Lemma 10. Let G be a cubic graph on n vertices without connected components that
induce a K4, and let D be the set of diamonds in G and T the set of triangles in G that do
not belong to a diamond. For any partition P, d(P) ≤ 5

4 |D| + |T | + 1
4 (n − 3|T | − 4|D|).

Proof. By Lemma 8, the only vertices with utility more than 1
4 are those that are in

triangles, diamonds, or the unique neighbors of diamonds (in the sense of vertex v5 in Case 1
of Figure 2), and we know that the sum of the utilities of the vertices constituting a triangle
is at most 3 · 1

3 = 1. By Lemma 9, we further know that the sum of the utilities of the
vertices constituting a diamond is at most 5

4 . The unique neighbors of diamonds have a
utility of more than 1

4 if and only if they are in a part isomorphic to Case 1 of Figure 2,
which has a density of 7

5 < 5
4 + 1

4 . Thus, if S is the set of unique neighbors of diamonds, then
the sum of the utilities of the vertices in the diamonds in D and the vertices in S is at most
5
4 |D| + 1

4 |S|. All remaining vertices have a utility of at most 1
4 by Lemma 8. We deduce that

d(G) ≤ 5
4 |D| + 1

4 |S| + |T | + 1
4 (n − 3|T | − 4|D| − |S|) = 5

4 |D| + |T | + 1
4 (n − 3|T | − 4|D|). ◀

v1

v2

v3

v4

v5

Case 1 Case 2 Case 3

Figure 2 Different cases of Lemma 9
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vx

vx
xy1z1

vx
xy2z2

vx
xy3z3

Figure 3 Subgraph containing one vertex of
type 1, vx, and its neighbors in G

vx
xyz

vy
xyz

vx

vz
xyz

Figure 4 Subgraph containing one vertex of
type 1, vx, and three of type 2

We show that Dense Graph Partition is NP-complete even for cubic graphs by giving
a reduction from Exact Cover By 3-Sets where each element appears in exactly 3 sets,
denoted Restricted Exact Cover By 3-Sets, known to be NP-hard by [13].

Restricted Exact Cover By 3-Sets (RX3C)
Input: A set X of elements with |X| = 3q and a collection C of 3-element subsets of X

where each element appears in exactly 3 sets.
Question: Does C contain an exact cover for X, i.e. a subcollection C ′ ⊆ C such that
every element occurs in exactly one member of C ′ ?

The following definition gives the construction to reduce RX3C to Dense Graph Partition.

▶ Definition 11. Let I = (X, C) be an instance of RX3C. We define the construction σ

transforming the instance I into the graph G := σ(I) where G = (V, E) is build as follows
(see Figures 3 and 4):

for each element x ∈ X, add the vertex vx to V (called vertices of type 1 or black vertices).
for each subset of the collection {x, y, z} ∈ C, add the vertices vx

xyz, vy
xyz, vz

xyz to V

(called vertices of type 2 or white vertices).
add the edges {vx

xyz, vy
xyz}, {vx

xyz, vz
xyz} and {vy

xyz, vz
xyz} to E

add the edges {vx
xyz, vx}, {vy

xyz, vy} and {vz
xyz, vz} to E

Notice that G is a cubic graph on |X| vertices of type 1 and 3|X| vertices of type 2.

Case distinction on the subgraphs in σ(I) shows:

▶ Lemma 12. For G = (V, E) = σ(I) and any P ⊆ V , it holds that u(P ) ≥ 1
4 if and only if

G[P ] is isomorphic to one of the following three graphs:
a triangle where all the vertices are of type 2 and then u(P ) = 1

3 .
an edge between two type 2 vertices or between two vertices of different types and then
u(P ) = 1

4 .
the subgraph described in Figure 4 and then u(P ) = 1

4 .

Proof. Let P ⊆ V such that u(P ) ≥ 1
4 . We show in the following that there are exactly three

possible subgraphs G[P ] such that u(P ) ≥ 1
4 . G obviously does not contain a connected

component that is a K4. Also, observe that by its construction, G does not contain C4 as
subgraph, since there are no two vertices u, v ∈ V that have more than one common neighbor.
Note that this also implies that G is diamond-free.

As G is cubic, |E(G[P ])| ≤ 3
2 |P | and so d(P ) ≤ 3

2 |P | · 1
|P | = 3

2 . Since 1
4 ≤ u(P ) ≤ 3

2|P |
then |P | ≤ 6. We study the five following cases:
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Case |P | = 6: Since u(P ) = |E(P )|
62 ≥ 1

4 , we have |E(P )| ≥ 9. Since G[P ] cannot be cubic
(G is connected and |V | > 6), a subgraph with |P | = 6 and |E(P )| ≥ 9 does not exist.
Case |P | = 5: Since u(P ) = |E(P )|

52 ≥ 1
4 , we have |E(P )| ≥ 7. Since G contains no K4,

the only possibility for this is the graph displayed as Case 1 in Figure 9. Since G is also
diamond-free, such a subgraph does not exist.
Case |P | = 4: Since u(P ) = |E(P )|

42 ≥ 1
4 , we have |E(P )| ≥ 4. Since G does not contain a

C4 the only possibility for G[P ] is the subgraph described in Figure 4.
Case |P | = 3: Since u(P ) = |E(P )|

32 ≥ 1
4 , we have |E(P )| ≥ 3 and thus P is a triangle

where all the vertices are of type 2 and u(P ) = 1
3 .

Case |P | = 2: Since u(P ) = |E(P )|
22 ≥ 1

4 , we have |E(P )| ≥ 1 and thus S is an edge
between two type 2 vertices or between two vertices of different types and u(P ) = 1

4 .
◀

▶ Remark 13. The case-analysis in the proof of Lemma 12 also shows that for any subset
P ⊆ V of the vertices of the graph σ(I), if v is of type 2 then uS(v) ≤ 1

3 , otherwise uS(v) ≤ 1
4 .

With these observations about the construction of σ(I), we are able to prove our NP-
completeness result.

▶ Theorem 14. Dense Graph Partition is NP-complete on cubic graphs.

Proof. Let I = (X, C) be an instance of RX3C. We claim that I = (X, C) is a yes-instance
of RX3C if and only if I ′ = (G, d) with G = σ(I) and d = 7|X|

6 is a yes-instance of Dense
Graph Partition.

Let C ′ ⊆ C be an exact cover for X of size |X|
3 . Consider the following partition P

with 5|X|
3 parts: for any c ∈ C ′, c = {x, y, z}, we define three parts of size 2, {vx, vx

xyz},
{vy, vy

xyz}, {vz, vz
xyz} and for any c /∈ C ′, c = {x, y, z}, we define the following part of size

3, {vx
xyz, vy

xyz, vz
xyz}. Since C ′ is an exact cover, P is a partition for G and its density is

3
2 · |X|

3 + 2
3 |X| = 7

6 |X|.
Let P ′ be a partition of G of density d(P ′) = 7

6 |X|. Firstly, we show that P ′ has
necessarily the following shape: 2|X|

3 parts of size 3 containing only vertices of type 2 forming
a triangle in G and |X| parts of size 2 containing one vertex of type 1 and one of type 2
adjacent in G (see Figures 3 and 4). From Remark 1, we can assume that all parts induce
connected subgraphs.

We first show that d(P ′) = 7|X|
6 implies that there are at least 2|X|

3 parts in P ′ corre-
sponding to triangles in G. Assume by contradiction that P ′ has 2|X|

3 − ℓ triangles, with
ℓ > 0. Since G has 4|X| vertices, there are 2|X| + 3ℓ vertices that do not belong to a part
in P ′ that corresponds to a triangle in G. By Lemma 12 the utility of these last vertices is
smaller than or equal to 1

4 . Then the density of P ′ is

d(P ′) ≤ 2|X|
3 − ℓ + (2|X| + 3ℓ) · 1

4 = 7|X|
6 − ℓ

4 <
7|X|

6

This contradicts the choice of P ′ such that d(P ′) = 7|X|
6 , hence there are at least 2|X|

3
triangles in P ′.

Now, we will prove that there are at most 2|X|
3 parts in P ′ corresponding to triangles in

G. Assume by contradiction that P ′ has 2|X|
3 + ℓ triangles, with ℓ > 0. Since there are 3|X|

vertices of type 2 and among these vertices 3 · ( 2|X|
3 + ℓ) belong to a triangle then |X| − 3ℓ

vertices of type 2 do not belong to a triangle. Each neighbor of a vertex vx of type 1 is of
type 2, so if the utility of vx is positive, then there exists a vertex of type 2, vx

xyz, neighbor
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of vx, that is in the same part as vx and vx
xyz does not belong to a triangle. Moreover, as all

type 1 vertices have no common neighbors, for each type 1 vertex with positive utility, there
is a type 2 vertex that is not in a triangle. Since there are at most |X| − 3ℓ type 2 vertices
that do not belong to a triangle, there are at most |X| − 3ℓ type 1 vertices with positive
utility. Then the density of P ′ is at most

d(P ′) ≤ 2|X|
3 + ℓ + |X| − 3ℓ

4 + |X| − 3ℓ

4 ≤ 7|X|
6 − ℓ

2 <
7|X|

6

This contradicts the choice of P ′ such that d(P ′) = 7|X|
6 , and then there are exactly 2|X|

3
triangles in P ′.

We will show now that d(P ′) = 7|X|
6 implies that all type 1 vertices are in a part that is

a matching with a type 2 vertex. There are |X| type 1 vertices and |X| type 2 vertices that
are not in some triangle in P ′. Since there are exactly 2|X|

3 parts in P ′ forming a triangle
and the utility of each other vertex is smaller than or equal to 1

4 , to reach a density of 7|X|
6 it

is necessary that each of the 2|X| vertices outside the parts that are triangles has a utility of
exactly 1

4 . To reach this utility, by Lemma 12 there are two possibilities, the graph described
in Figure 4 and an edge. Since there are exactly |X| vertices of type 1 and |X| vertices of
type 2 outside the triangles in P ′, and vertices of type 1 only have neighbors of type 2, the
only possibility for all these vertices to have utility 1

4 is if each type 1 vertex is matched with
one type 2 vertex.

Consider now the following subcollection C ′′ ⊆ C: for each triple vx
xyz,vy

xyz,vz
xyz that does

not belong to a triangle, we add the set {x, y, z} to C ′′. The subcollection C ′′ is a cover since
each type 1 vertex is a neighbor of one of these vertices and it is an exact cover since there
are exactly |X|

3 3-element subsets that do not belong to a triangle. ◀

Our observations about the maximum utility of certain vertices can also be used to show
the following positive result.

▶ Theorem 15. Max Dense Graph Partition is polynomial-time 4
3 -approximable on

cubic graphs.

Proof. Let I = G be a cubic graph, instance of Max Dense Graph Partition. If G

contains connected components isomorphic to K4, create a part for each such component, as
this is the optimum way to partition these sets. So assume that G contains no connected
component isomorphic to K4, and let D be the set of all diamonds in G, and T the set of
all triangles that do not belong to a diamond. Diamonds (resp. triangles) can be found in
polynomial time simply by enumerating all 4-tuples (resp. 3-tuples) of vertices and checking
if they induce a diamond (resp. triangle) as subgraph. Let G′ be the graph obtained from G

after removing the vertices of D and T . Let M be the set of edges that constitute a maximum
matching of G′. Let G′′ be the graph obtained from G′ after removing the vertices of M .
Since M is a maximal matching, the vertices in G′′ form an independent set.

We show in the following that |V (G′′)| ≤ |V (G)|
4 .

For each v ∈ V we associate a function t(v) and initialize it with t(v) = 1. When removing
the diamonds and triangles from G in order to get G′ we update the function t as follows:

For every diamond {u1, u2, u3, u4} ⊆ V that is deleted from V , let u1 and u3 be the
vertices with neighbors outside of the diamond (if these vertices still exist) and let
v1 and v3 be these neighbors (with the possibility that v1 = v3). We update the
function t : t(v1) := t(v1) + t(u1) + t(u2) and t(v3) := t(v3) + t(u3) + t(u4) (thus
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t(v1) := t(v1) + t(u1) + t(u2) + t(u3) + t(u4) if v1 = v3). If v1 or v3 were already deleted,
we delete their associated t function.
For every triangle {u1, u2, u3} ⊆ V that is deleted from V , let v1 (resp. v2 and v3) be the
neighbor of u1 (resp. u2 and u3) outside of the triangle (if these vertices exist). We update
the function t : t(v1) := t(v1) + t(u1), t(v2) := t(v2) + t(u2) and t(v3) = t(v3) + t(u3). If
v1, v2 or v3 do not exist, we delete their associated t function.

Observe that after updating t for any v ∈ V (G′), if v ∈ DG′(3) then t(v) ≥ 1, if v ∈ DG′(2)
then t(v) ≥ 2, if v ∈ DG′(1) then t(v) ≥ 3 and if v ∈ DG′(0) then t(v) ≥ 4. In order to
justify this, observe that the t function associated to vertices in V (G′) cannot decrease. If a
vertex v is of degree 3 − i in G′, 1 ≤ i ≤ 3, then there are at least i adjacent edges to distinct
vertices in triangles or diamonds that were removed from G and increase t(v). Each time
when a neighbor of a vertex v from a diamond or a triangle is removed then t(v) increases
by at least one. Then, in G′, each vertex v of degree 3 − i has t(v) ≥ i + 1.

Let n′
i be the number of vertices of degree i in G′. By the previous remark, we have∑

v∈V (G′)

t(vi) ≥ 4n′
0 + 3n′

1 + 2n′
2 + n′

3 (1)

Since G′ is a subcubic triangle-free graph and M a maximum matching in G′, using a
result of Munaro [16], we get

|V (M)| ≥ 9
10n′

3 + 3
5n′

2 + 3
10n′

1 (2)

We show now that 4|V (G′′)| ≤
∑

v∈V (G′)
t(vi). In fact, combining |V (G′)| = n′

0+n′
1+n′

2+n′
3

with inequality (2) gives |V (G′′)| ≤ n′
0 + 7

10 n′
1 + 2

5 n′
2 + 1

10 n′
3. Thus, 4|V (G′′)| ≤ 4n′

0 +
28
10 n′

1 + 8
5 n′

2 + 4
10 n′

3 ≤ 4n′
0 + 3n′

1 + 2n′
2 + n′

3 ≤
∑

v∈V (G′)
t(vi) using inequality (1). Then

4|V (G′′)| ≤
∑

v∈V (G′)
t(vi) and since |V (G)| ≥

∑
v∈V (G′)

t(vi) we get |V (G′′)| ≤ 1
4 V (G).

Consider the partition P = D ∪T ∪M ∪V (G′′) in the sense that P contains a set for each
diamond in D, one set for each triangle in T , one set for each edge in the matching M and one
set for each vertex in V (G′′). Then d(P) = 5

4 |D|+|T |+ 1
2 |M | ≥ 5

4 |D|+|T |+ 1
4 (n−3|T |−4|D|−

n
4 ) since |V (G′′)| ≤ 1

4 V (G). By Lemma 10 we know that opt(I) ≤ 5
4 |D| + |T | + 1

4 (n − 3|T | −
4|D|). Then opt(I)

d(P) ≤
5
4 |D|+|T |+ 1

4 (n−3|T |−4|D|)
5
4 |D|+|T |+ 1

4 (n−3|T |−4|D|− n
4 ) =

1
4 |D|+ 1

4 |T |+ n
4

1
4 |D|+ 1

4 |T |+ 3n
16

= 1 + n
4|D|+4|T |+3n ≤ 1 + 1

3 .

Then opt(I)
d(P) ≤ 4

3 . ◀

5 Dense Graphs

In this section we consider graphs G = (V, E) on n vertices such that G can be viewed
as G = H where H is a graph of small maximum degree. Note that the edges of H are
exactly the missing edges of G. We first consider graphs G = (V, E) on n vertices such that
δ(G) ≥ n − 3, that is G = H where H has ∆(H) = 2 and has q ≤ n edges and show that
Max Dense Graph Partition is solvable in polynomial time on these graphs.

▶ Lemma 16. For any graph G on n vertices such that δ(G) ≥ n − 3, its density d(G) is
greater than or equal to the density of any partition P of G into t ≥ 3 parts.

Proof. The density of G is given by d(G) =
n(n−1)

2 −q

n = n−1
2 − q

n . From Lemma 2, among
all partitions of G into t ≥ 3 parts, those where the parts correspond to complete graphs
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have the largest density. The density of such a partition into t parts of size n1, . . . , nt is n−t
2 .

Thus, the density of G is at least as large as the density of this last partition since t ≥ 3 and
q ≤ n (note here that a graph with minimum degree n − 3 has at most n missing edges). ◀

Observe that in the proof of the previous lemma when q = n and t = 3, the density of a
partition in 3 parts corresponding to complete subgraphs and the density of the entire graph
are the same. This previous lemma implies that for any graph G such that δ(G) ≥ n − 3,
there exists a partition into one or two parts of maximum density.

▶ Lemma 17. For any graph G on n vertices such that δ(G) ≥ n − 3, in any partition for G

into two parts, the sum of missing edges in the two parts is at least o, where o is the number
of odd cycles in G.

Proof. Let C be an odd cycle in G (the graph of missing edges in G). Since C is not bipartite,
there is no partition {V1, V2} of V such that all the edges of C have one endpoint in V1 and
one endpoint in V2. Hence, for any partition {V1, V2} at least one of the missing edges from
C is inside G[V1] ∪ G[V2]. ◀

▶ Lemma 18. Among all partitions into 2 parts of fixed size containing x missing edges, the
one containing all missing edges in the largest part has the best density.

Proof. Consider two partitions {V1, V2} and {V ′
1 , V ′

2} such that |V1| = |V ′
1 | = n1 and

|V2| = |V ′
2 | = n2 with n1 ≤ n2 and G[V1] (resp. G[V2]) containing x1 (resp. x2) missing

edges and G[V ′
1 ] (resp. G[V ′

2 ]) containing 0 (resp. x = x1 + x2) missing edges. The densities
for these partitions are:

d({V1, V2}) = n−2
2 − x1

n1
− x2

n2
, and

d({V ′
1 , V ′

2}) = n−2
2 − x

n2
.

Since x = x1 + x2 and n1 ≤ n2, it follows that d({V1, V2}) ≤ d({V ′
1 , V ′

2}). ◀

▶ Lemma 19. Among all partitions into 2 parts containing 0 (resp. x) missing edges in the
smaller (resp. larger) part, the one with a maximum number of vertices in the largest part
has the best density.

Proof. Consider two partitions {V1, V2} and {V ′
1 , V ′

2} such that |V1| = n1, |V2| = n2 with
n1 ≤ n2 and |V ′

1 | = n′
1, |V ′

2 | = n′
2 with n′

1 ≤ n′
2 and G[V1] (resp. G[V2]) containing 0 (resp. x)

missing edges and G[V ′
1 ] (resp. G[V ′

2 ]) containing 0 (resp. x) missing edges. Moreover suppose
n2 ≤ n′

2. The densities for these partitions are:
d({V1, V2}) = n−2

2 − x
n2

, and
d({V ′

1 , V ′
2}) = n−2

2 − x
n′

2
.

Since n2 ≤ n′
2, it follows that d({V1, V2}) ≤ d({V ′

1 , V ′
2}). ◀

▶ Theorem 20. Max Dense Graph Partition is solvable in polynomial time on graphs G

with n vertices with δ(G) ≥ n − 3.

Proof. Let G be a graph of minimum degree n − 3. We first define a partition {V1, V2} of
the vertices of G by giving vertices color 1 or 2, in the sense that V1 (resp. V2) contains
vertices of color 1 (resp. 2). An example is given in Figure 5. We assign color 2 to each
vertex of degree n − 1. Since the minimum degree in G is n − 3, the graph H of missing
edges is a collection of paths and cycles. We color the vertices on paths or cycles with an
even number of vertices alternating by 1 and 2. For vertices on paths or cycles with an odd
number of vertices we also color them alternating by 1 and 2, always starting with color 2.
Thus cycles of odd size have two adjacent vertices of color 2.
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V2

V1

Figure 5 Construction of V1 and V2 in Theorem 20

Let o be the number of odd cycles in H. The partition {V1, V2} defined by our 2-coloring
contains o missing edges in V2 and |V2| is maximized among all such partitions. Its density
is equal to n−2

2 − o
n2

, where n2 = |V2|. Denote by dn−1 the number of vertices of G of
degree n − 1 and by po the number of paths with an odd number of vertices (even length)
among the missing edges. The sets V1 and V2 contain the same number of vertices of degree
n − 2 that are extremities of a path with an even number of vertices in H. The set V2
contains po more vertices of degree n − 2, that are extremities of a path with an odd number
of vertices, than V1. The set V2 contains o more vertices of degree n − 3 than V1. Thus
n1 = 1

2 (n − dn−1 − po − o) and n2 = 1
2 (n + dn−1 + po + o). We claim that there is no partition

into two parts that has a higher density.
By Lemma 17, any partition into two sets contains at least o missing edges inside the

two parts. By construction we have maximized the number of vertices in the part with the
missing edges among all partitions with the minimum number o of missing edges, i.e., there is
no partition into two parts {V ′

1 , V ′
2} with o missing edges all contained in V ′

2 and |V ′
2 | > |V2|.

Hence, by Lemmas 18 and 19, it remains to show that any partition {V ′
1 , V ′

2} with o + x > o

missing edges for some x > 0 has a smaller density than {V1, V2}.
Let {V ′

1 , V ′
2} be a partition with o + x > o missing edges for some x > 0 and assume

w.l.o.g. that |V ′
1 | ≤ |V ′

2 |. By definition of the partition {V1, V2}, it follows that |E(H)| =
2n1 − po + o (note that all non-edges have to either be among the o missing edges in
the partition or in the cut between V1 and V2). In the partition {V ′

1 , V ′
2}, it follows that

|E(H)| ≤ 2|V ′
1 | − r1 + (o + x), where r1 is the number of vertices in V ′

1 adjacent to only one
edge in H. In the cut between V ′

1 and V ′
2 , each vertex in V ′

1 is adjacent to at most two such
edges. Combining these two bounds on |E(H)| yields

2n1 − po ≤ 2|V ′
1 | − r1 + x . (3)

We claim that r1 ≥ po − x. To see this, observe that every path of odd length either results
in a vertex in V ′

1 adjacent to only one edge in E(H) (r1) or in a missing edge. Also, every
cycle of odd length creates at least one missing edge. Thus the number of missing edges
o + x for {V ′

1 , V ′
2} is at least po − r1 + o. Reordering this yields the claimed

r1 ≥ po − x . (4)

Inequalities (3) and (4) yield 2n1 − po ≤ 2|V ′
1 | − po + 2x and thus n1 − |V ′

1 | ≤ x. Since
{V ′

1 , V ′
2} is a partition it follows that |V ′

2 | = n − |V ′
1 | ≤ n − n1 + x = n2 + x.

By Lemmas 18 and 19, the best case of missing edges for {V ′
1 , V ′

2} is that they all are in
the larger part V ′

2 , hence the density of {V ′
1 , V ′

2} is at most n−2
2 − o+x

|V ′
2 | . With |V ′

2 | ≤ n2 + x,
we can bound d(V ′

1 , V ′
2) ≤ n−2

2 − o+x
n2+x . Since H is of degree at most 2, we know that there

cannot be more missing edges than vertices in a part, thus in particular o ≤ n2. This last
observation allows to bound d(V ′

1 , V ′
2) ≤ n−2

2 − o+x
n2+x ≤ n−2

2 − o
n2

= d(V1, V2), thus the
density of {V ′

1 , V ′
2} is not larger than the density of {V1, V2}. ◀



C. Bazgan, K. Casel and P. Cazals 15

Figure 6 The construction of G′ in Definition 23

In the rest of the section we consider graphs G = (V, E) on n vertices, (n − 4)-regular,
that is G = H where H is a cubic graph. We show that Dense Graph Partition is
NP-hard on (n − 4)-regular graphs, by showing a reduction from Min UnCut on cubic
graphs, that is the complement of Max Cut. This last problem on cubic graphs was proved
NP-hard and even not polynomial-time 1.003-approximable, unless P=NP [3].

Min UnCut
Input: A graph G = (V, E), an integer k.
Question: Does G contain a partition of V into two parts A, B such that the number
of edges with both endpoints in the same part is at most k?

Since we reduce from Min UnCut on cubic graphs, we use the following straightforward
observation on any partition in such graphs.

▶ Lemma 21. For any cubic graph G and any {A, B} partition of V , we have |A|+ 2
3 ·|E(B)| =

|B|+ 2
3 · |E(A)|, where E(A), resp. E(B), is the set of edges with both endpoints in A, resp B.

Since we did not find a reference for the following result in the literature we propose a
short proof.

▶ Lemma 22. Let G = (V, E) be a cubic graph. There exists a partition {A, B} of G with a
cut of size at least |V | and it can be found in polynomial time.

Proof. Let P = {A, B} be a partition of V . Consider the following operation: if there is a
vertex v ∈ A (resp. B) with at least two neighbors in A (resp. B) then A = A \ {v} (resp.
B = B \ {v}) and B = B ∪ {v} (resp. A = A ∪ {v}). Since the graph is cubic, this operation
increases the number of edges between A and B by at least one. Since the number of edges is
finite, we can repeat this operation until we obtain a partition P ′ = {A′, B′} with no vertex
v ∈ A′ (resp. B′) with at least two neighbors in A′ (resp. B′). Since the graph is cubic,
if every vertex in A′ (resp. B′) has at most one neighbor in A′, then it has at least two
neighbors in B′ (resp. A′). Consequently P ′ has a cut of size at least 2(|A′|+|B′|)

2 = |V |. ◀

▶ Definition 23. Let I = (G, k) be an instance of Min UnCut where G = (V, E) is
a cubic graph. We define the construction σ transforming the graph G into the graph
G′ := (V ′, E′) = σ(G) (see Figure 6) as follows:

let G0 = (V0, E0) be the union of n2−n
6 copies of K3,3 (see remark below). Thus G0 is

a cubic bipartite graph with n2 − n vertices and V0 is the union of two independent sets
L, R such that |L| = |R|.
let G1 = (V ∪ V0, E ∪ E0).
let G′ = G1.
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▶ Remark 24. Note that we can assume that the number of vertices of a cubic graph G is a
multiple of 6. Since G is cubic, n is a multiple of 2. If n is not a multiple of 3, we consider
the instance Itriple defined as follows: Gtriple is the union of 3 copies of G and ktriple = 3k,
and thus in the new instance Itriple the graph has 3n vertices. Note that the number of
edges with both endpoints in the same part is 3k in Gtriple if and only if it is k in G.

Let n = |V |, m = |E|, n′ = |V ′| and m′ = |E′|. Observe that n′ = n2, and G′ is a
(n′ − 4)-regular graph.

Proof. Since the graph G is cubic, |E(A, B)| = 3 · |A| − 2 · |E(A)| = 3 · |B| − 2 · |E(B)|. We
can deduce that |A| + 2

3 · |E(B)| = |B| + 2
3 · |E(A)| ◀

▶ Theorem 25. Dense Graph Partition is NP-complete on (n − 4)-regular graphs with
n vertices.

Proof. Let I = (G = (V, E), k) be an instance of Min UnCut, where G is a cubic graph.
Consider the following instance I ′ of Dense Graph Partition on the graph G′ = σ(G)
and d = n2

2 − 1 − 2k
n2 . We claim that I = (G, k) is a yes-instance of Min UnCut if and only

if I ′ = (G′, d) is a yes-instance of Dense Graph Partition.

Let {A, B} be a partition of V whose uncut value is at most k. Since V0 = L ∪ R, where
L, R are independent sets in G0 such that |L| = |R|, the sets L, R form two cliques of the
same size in G′. Let A′ = A ∪ L and B′ = B ∪ R and P = {A′, B′} be a partition of G′.

Let MA′ and MB′ be the set of missing edges in G′[A′] and G′[B′], respectively. Due to
the construction of G′, there is no missing edge between A and L and between B and R.
Thus all missing edges are inside G′[A ∪ B], i.e. |MA′ | + |MB′ | ≤ k. Thus, the density of the
partition P is:

d(P) = |A′| − 1
2 − |MA′ |

|A′|
+ |B′| − 1

2 − |MB′ |
|B′|

= n2 − 2
2 − |MA′ |

|A′|
− |MB′ |

|B′|

We will prove in the following that d(P) ≥ d = n2

2 − 1 − 2k
n2 that is equivalent to proving

that |MA′ |
|A′| + |MB′ |

|B′| ≤ 2(|MA′ |+|MB′ |)
|A′|+|B′| .

Consider the difference

2(|MA′ | + |MB′ |)
|A′| + |B′|

−
(

|MA′ |
|A′|

+ |MB′ |
|B′|

)
=

= 1
|A′| + |B′|

(
2|MA′ | + 2|MB′ | − |A′| + |B′|

|A′|
|MA′ | − |A′| + |B′|

|B′|
|MB′ |

)
=

= 1
|A′| + |B′|

1
|A′|

1
|B′|

(|A′||B′||MA′ | + |A′||B′||MB′ | − |B′|2|MA′ | − |A′|2|MB′ |) =

= 1
|A′| + |B′|

1
|A′|

1
|B′|

(|A′| − |B′|)(|B′||MA′ | − |A′||MB′ |)

Wlog we can consider that |A′| ≥ |B′|, that implies |B′| ≤ n2

2 . From Lemma 21 for the
cubic graph G1 and partition {A′, B′}, we have |A′| + 2

3 · |MB′ | = |B′| + 2
3 · |MA′ |. Using that

|A′| = n2 − |B′| and |MA′ | = k − |MB′ |, we have n2 − |B′| + 2
3 · |MB′ | = |B′| + 2

3 · (k − |MB′ |)
and thus |MB′ | = 3

4 (2|B′| + 2
3 k − n2).

Thus,

|B′||MA′ | − |A′||MB′ | = |B′|(k − |MB′ |) − (n2 − |B′|)|MB′ | = |B′|k − n2|MB′ | =
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= |B′|k − n2 3
4

(
2|B′| + 2

3k − n2
)

=
(

|B′| − n2

2

) (
k − 3n2

2

)
Since |B′| ≤ n2

2 and k ≤ n
2 ≤ 3n2

2 we can conclude that

2(|MA′ | + |MB′ |)
|A′| + |B′|

−
(

|MA′ |
|A′|

+ |MB′ |
|B′|

)
≥ 0

Thus, the partition P = {A′, B′} has the density d(P) ≥ d = n2

2 − 1 − 2k
n2 .

Let P ′ be a partition of G′ of density d(P ′) ≥ d = n2−2
2 − 2k

n2 . We will prove that P ′ has
exactly two parts A′ and B′ such that A = A′ ∩ V and B = B′ ∩ V is a partition of G whose
uncut value is at most k.

Suppose that |P ′| ≥ 3. Then, using Lemma 3, we have d(P ′) ≤ n2−|P′|
2 ≤ n2−3

2 = n2−2
2 − 1

2 .
Since k ≤ n

2 and n ≥ 6 then 2k
n2 < 1

2 . Then d(P ′) < n2−2
2 − 2k

n2 = d which is a contradiction.
Then |P ′| < 3.

Suppose that |P ′| = 1. Since G′ is (n2 − 4)-regular, its density is d(P ′) = n2−1
2 − 3

2 =
n2−2

2 − 1 < n2−2
2 − 2k

n2 = d which is a contradiction. Then |P ′| > 1. We conclude that
|P| = 2.

Let A′ and B′ be the two parts of P. Let MA′ , resp. MB′ , be the set of missing edges
in G′[A′], resp. G′[B′]. Observe that if |MA′ | + |MB′ | ≤ k then |MA| + |MB | ≤ k and then
there is a cut of size at least k between A and B in G. What it remains to prove is that
|MA′ | + |MB′ | ≤ k.

As a first step we will show the following inequality we need later |MA′ |+|MB′ |
n2
2 +

|M
A′ |+|M

B′ |
3

≤
|MA′ |
|A′| + |MB′ |

|B′| . In order to prove this, we consider the following difference

|MA′ |
|A′|

+ |MB′ |
|B′|

− |MA′ | + |MB′ |
|A′|+|B′|

2 + |MA′ |+|MB′ |
3

By removing the denominator we get

|MA′ ||B′|
(

|A′| + |B′|
2 + |MA′ | + |MB′ |

3

)
+ |MB′ ||A′|

(
|A′| + |B′|

2 + |MA′ | + |MB′ |
3

)
−(|MA′ | + |MB′ |)|A′||B′| =

= |MA′ ||B′|
(

|B′|
2 + |MA′ |

3 + |MB′ |
3 − |A′|

2

)
+ |MB′ ||A′|

(
|A′|
2 + |MB′ |

3 + |MA′ |
3 − |B′|

2

)
From Lemma 21 for the cubic graph G1 and partition {A′, B′}, we have |A′| + 2

3 |MB′ | =
|B′| + 2

3 |MA′ |, which implies that |A′|
2 = |B′|

2 + |MA′ |
3 − |MB′ |

3 and |B′|
2 = |A′|

2 + |MB′ |
3 − |MA′ |

3
and then we get that the previous equality becomes

= |MA′ ||B′|
(

|B′|
2 + |MA′ |

3 + |MB′ |
3 −

(
|B′|

2 + |MA′ |
3 − |MB′ |

3

))

+|MB′ ||A′|
(

|A′|
2 + |MB′ |

3 + |MA′ |
3 −

(
|A′|
2 + |MB′ |

3 − |MA′ |
3

))
=

= |MA′ ||B′|2|MB′ |
3 + |MB′ ||A′|2|MA′ |

3
Since |MA′ |, |MB′ |, |A′| and |B′| are positive integers then |MA′ |

|A′| + |MB′ |
|B′| − |MA′ |+|MB′ |

n2
2 +

|M
A′ |+|M

B′ |
3

≥ 0.

We conclude that |MA′ |+|MB′ |
n2
2 +

|M
A′ |+|M

B′ |
3

≤ |MA′ |
|A′| + |MB′ |

|B′| .
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Finally, we show that |MA′ | + |MB′ | ≤ k using the previous inequality. Let x =
|MA′ | + |MB′ |. In order to finalize the proof, we suppose that x > k and we will arrive at a
contradiction, that is d(P ′) < d. Consider the following difference

d − d(P ′) = n2 − 2
2 − 2k

n2 −
(

n2 − 2
2 − |MA′ |

|A′|
− |MB′ |

|B′|

)
= |MA′ |

|A′|
+ |MB′ |

|B′|
− 2k

n2

Since x
n2
2 + x

3
≤ |MA′ |

|A′| + |MB′ |
|B′| then

d − d(P ′) ≥ x
n2

2 + x
3

− 2k

n2 =
x · n2 − k · n2 − 2x·k

3
( n2

2 + x
3 ) · n2

Since x and k are integers, then x ≥ k + 1, and by removing the denominator, we get

≥ (k + 1) · (n2 − 2
3 · k) − k · n2 = n2 − 2

3 · k2 − 2
3 · k

Since k ≤ n
2 it follows that n2 − 2

3 · k2 − 2
3 · k > 0. This finally gives d(P ′) < d, a

contradiction to the choice of P ′ as partition with density at least d, and we hence conclude
that |MA′ | + |MB′ | ≤ k.

Overall, it follows that if d(P ′) ≥ n
′
−2
2 − 2k

n2 then there is a partition {A, B} with an
uncut of size at most k. ◀

At the end of this section we show that a partition into a bounded number of cliques
provides a good approximation for graphs of large minimum degree.

▶ Theorem 26. Dense Graph Partition is polynomial-time n−1
δ(G)+1 -approximable on

graphs G with n vertices.

Proof. Let G be a graph on n vertices with minimum degree δ = δ(G), instance of Max
Dense Graph Partition. If δ ≥ n − 3, we can give an optimum solution in polynomial
time by Theorem 20. So assume δ ≤ n − 4. By Lemma 3, any partition P for the vertices of
G satisfies d(P) ≤ n−1

2 . Using Brooks’ theorem [5], G is (n − δ − 1)-colorable, and further,
such a coloring can be computed in polynomial time. (Note that δ ≤ n − 4 implies that G

is not a complete graph or a circle, the two exceptions in Brooks’ theorem where one more
color is needed.) Using such a coloring, G can be partitioned into n − δ − 1 cliques. Then the
density of this partition is n−(n−δ−1)

2 = δ+1
2 . Comparing this value with the upper bound of

n−1
2 on the optimum shows that this partition into n − δ − 1 cliques gives a polynomial-time

n−1
δ+1 -approximation for Dense Graph Partition. ◀

Notice that if δ(G) > n−3
2 , the ratio given in Theorem 26 improves upon the current best

ratio of 2 for Dense Graph Partition on general graphs. This approximation can further
be used to show the following.

▶ Theorem 27. There is an efficient polynomial-time approximation scheme for Max Dense
Graph Partition on graphs G with n vertices and δ(G) = n − t, where t is a constant,
t ≥ 4.

Proof. Let I = G be a graph on n vertices and δ(G) = n − t, instance of Max Dense
Graph Partition. We establish in the following an eptas. Given ε > 0, consider two cases.

If n ≥ t − 1 + t−2
ε , then let P be a partition that corresponds to a (t − 1)-coloring of G

such that each part is a clique in G as in the proof of Theorem 26. Then d(P) = n−t+1
2 ≥

n+1− nε+ε+2
1+ε

2 ≥ n−1
2(1+ε) ≥ opt(I)

1+ε , where the last inequality opt(I) ≤ n−1
2 comes from Lemma 3.
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Otherwise, that is n < t − 1 + t−2
ε , enumerate all the partitions of G and consider the

best one. Since the number of partitions of G is the Bell number of order |V | = n, Bn, and
Bn ≤ nn, we get an optimal solution in time (1/ε)O(1/ε). ◀

6 Conclusion

In order to have a better understanding of the complexity of Max Dense Graph Partition
it would be nice to study it on other graph classes. It was proved to be polynomial-time
solvable on trees, but the complexity on graphs of bounded treewidth remains open. Moreover
no result exists on split graphs. Concerning approximation, no lower bound was established, it
would be nice to improve the 2-approximation algorithm or to show that no polynomial-time
approximation scheme exist on general instances.
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