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Abstract. The hard-sphere model is one of the most extensively studied models in statistical
physics. It describes the continuous distribution of spherical particles, governed by hard-core inter-
actions. An important quantity of this model is the normalizing factor of this distribution, called the
partition function. We propose a Markov chain Monte Carlo algorithm for approximating the grand
canonical partition function of the hard-sphere model in d dimensions. Up to a fugacity of \lambda < e/2d,
the runtime of our algorithm is polynomial in the volume of the system. Key to our approach is to
define a discretization that closely approximates the partition function of the continuous model. This
results in a discrete hard-core instance that is exponential in the size of the initial hard-sphere model.
Our approximation bound follows directly from the correlation decay threshold of an infinite regular
tree with degree equal to the maximum degree of our discretization. To cope with the exponential
blow-up of the discrete instance, we use block dynamics, a Markov chain that generalizes the more
frequently studied Glauber dynamics by grouping the vertices of the graph into blocks and updating
an entire block instead of a single vertex in each step. We prove rapid mixing of block dynamics,
based on disjoint cliques as blocks, up to the tree threshold of the univariate hard-core model. This
is achieved by adapting the spectral expansion method, which was recently used for bounding the
mixing time of Glauber dynamics within the same parameter regime.
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imate counting, spectral independence
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1. Introduction. Statistical physics models particle systems as probability dis-
tributions. One of the most fundamental and mathematically challenging models in
this area is the hard-sphere model, which plays a central role in understanding the
thermodynamic properties of monoatomic gases and liquids [7, 27]. It is a continu-
ous model that studies the distribution and macroscopic behavior of indistinguishable
spherical particles, assuming only hard-core interactions, i.e., no two particles can
occupy the same space.

We focus on computational properties of the grand canonical ensemble of the
hard-sphere model in a finite d-dimensional cubic region \BbbV = [0, \ell )d in the Euclidean
space. In the grand canonical ensemble, the system can exchange particles with its
surrounding based on a fugacity parameter \lambda , which is inverse to the temperature of
the system. For the rest of the paper, we make the common assumption that the
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HARD SPHERES VIA BLOCK DYNAMICS 2283

system is normalized such that the particles have unit volume. That means we fix
their radii to r = (1/vd)

1/d, where vd is the volume of a unit sphere in d dimensions.
A simple probabilistic interpretation of the distribution of particles in the grand

canonical ensemble is that centers of points that are drawn from a Poisson point
process on \BbbV with intensity \lambda , conditioned on the event that no two particles overlap
(i.e., every pair of centers has distance at least 2r). The resulting distribution over
particle configurations in \BbbV is called theGibbs distribution of the model. An important
quantity in such models is the so-called partition function Z(\BbbV , \lambda ), which can be seen
as the normalizing constant of the Gibbs distribution. Formally, it is defined as

Z(\BbbV , \lambda ) = 1 +
\sum 

k\in \BbbN >0

\lambda k

k!

\int 
\BbbV k

D
\Bigl( 
x(1), . . . , x(k)

\Bigr) 
d\nu d\times k,

where

D
\Bigl( 
x(1), . . . , x(k)

\Bigr) 
=

\Biggl\{ 
1 if d

\bigl( 
x(i), x(j)

\bigr) 
\geq 2r for all i, j \in [k] with i \not = j,

0 otherwise

and \nu d\times k is the Lebesgue measure on \BbbR d\times k. Commonly, two computational tasks are
associated with the grand canonical hard-sphere model: (1) approximating its parti-
tion function Z(\BbbV , \lambda ), and (2) approximately sampling from the Gibbs distribution.

Studying computational aspects of the hard-sphere model carries a historical
weight, as in the seminal work of Metropolis [38], the Monte Carlo method was in-
troduced to investigate a two-dimensional hard-sphere model. Approximate-sampling
Markov chain approaches have been mainly focused on the canonical ensemble of the
model, that is, the system does not exchange particles with its surrounding and thus
the distribution is defined over a fixed number of spheres [29, 32, 31]. Considering the
grand canonical ensemble, exact sampling algorithms have appeared in the literature
for the two-dimensional model without asymptotic runtime guarantees [33, 34, 42]. A
result that is more aligned with theoretical computer science was given in [26], where
the authors introduced an exact sampling algorithm for the grand canonical hard-
sphere model in d-dimensions. Their algorithm is based on partial rejection sampling
with a runtime linear in the volume of the system | \BbbV | when assuming a continuous
computational model and access to a sampler from a continuous Poisson point process.
Their approach is guaranteed to apply for \lambda < 2 - (d+1/2).

Besides such sampling results, there is an ongoing effort to improve the known fu-
gacity regime where the Gibbs measure is unique and correlations decay exponentially
fast [18, 12, 30, 39]. Note that for many discrete spin systems, such as the hard-core
model, correlation decay is closely related to the applicability of different methods for
efficient approximation of the partition function [49, 23, 52]. Recently, the correlation
decay bounds for the hard-sphere model were improved in [30] to \lambda < 2/2 - d, using
probabilistic arguments, and in [39] to \lambda < e/2d, based on an analytic approach.
A common feature of [30] and [39] is that they translated tools originally developed
in theoretical computer science for investigating the discrete hard-core model to the
continuous domain.

Our work is in line with the computational view on the hard-sphere model but
more algorithmic in nature. We investigate the range of the fugacity \lambda for which an
approximation of Z(\BbbV , \lambda ) can be obtained efficiently in terms of the volume of the
system | \BbbV | , assuming a discrete computational model. To this end, we state all running
time asymptotics in terms of | \BbbV | and treat the fugacity \lambda as a constant. Our main
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2284 FRIEDRICH, G \"OBEL, KREJCA, AND PAPPIK

result is that for all \lambda < e/2d there is a randomized algorithm for \varepsilon -approximating
the partition function in time polynomial in | \BbbV | and 1/\varepsilon .

Theorem 1.1. Let (\BbbV , \lambda ) be an instance of the continuous hard-sphere model with
\BbbV = [0, \ell )d. If there is a \delta \in (0, 1] such that

\lambda \leq (1 - \delta )
e

2d
,

then for each \varepsilon \in (0, 1] there is a randomized \varepsilon -approximation of Z(\BbbV , \lambda ) computable

in time polynomial in | \BbbV | 1/\delta 
2

and 1
\varepsilon .

Note that this bound on \lambda precisely coincides with the bound for uniqueness
of the Gibbs measure in the thermodynamic limit, established in [39]. For many
discrete spin systems, such as the hard-core model or general antiferromagnetic 2-state
spin systems, the region of efficient approximation of the partition function is closely
related to uniqueness of the Gibbs measure. More precisely, it can be shown that
the partition function of every graph of maximum degree \Delta can be approximated
efficiently if the corresponding Gibbs distribution on an infinite \Delta regular tree is
unique [36, 51]. A detailed discussion for the discrete hard-core model can be found
in the next subsection. In a sense, Theorem 1.1 can be seen as the algorithmic
counterpart of the uniqueness result for the continuous hard-sphere model in [39].
This answers an open question asked in [39].

The way we prove our result is quite contrary to [30] and [39]. Instead of trans-
lating discrete tools from computer science into the continuous domain, we rather
discretize the hard-sphere model. By this, existing algorithmic and probabilistic tech-
niques for discrete models become available, and we avoid continuous analysis.

Our applied discretization scheme is fairly intuitive and results in an instance of
the discrete hard-core model on a suitably constructed graph. The hard-core model
has been extensively studied in the computer science community. However, as the
resulting graph is exponential in the size of the continuous system | \BbbV | , existing ap-
proaches for approximating its partition function, such as Markov chain Monte Carlo
methods based on Glauber dynamics, are not feasible. We overcome this problem by
grouping the vertices of the graph into blocks and applying a Markov chain Monte
Carlo approach based on block dynamics, which update an entire block in each step
rather than a single vertex. By adapting a recently introduced technique for bound-
ing the mixing time of Markov chains based on local spectral expansion [3], we then
prove that if the blocks consist of disjoint cliques, the mixing time of the block dy-
namics does only depend on the number of blocks that are used. Using the fact that
the graph that results from our discretization scheme can always be partitioned into
O(| \BbbV | ) disjoint cliques, this yields a mixing time that is polynomial in the size of the
continuous system. Together with a known self-reducibility scheme based on cliques,
this results in the desired approximation algorithm.

Note that we aim for a rigorous algorithmic result for approximating the par-
tition function of the continuous hard-sphere model. To be in line with commonly
used discrete computational models, our Markov chain Monte Carlo algorithm does
not assume access to a continuous sampler but instead samples approximately from
a discretized version of the Gibbs distribution. Note that sampling from the con-
tinuous hard-sphere partition function cannot be done using a discrete computation
model as this would involve infinite floating-point precision. For practical matters,
our discretization of the Gibbs distribution can be seen as an approximation of the
original continuous Gibbs measure. However, a rigorous comparison between both
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HARD SPHERES VIA BLOCK DYNAMICS 2285

distributions based on total variation distance is not applicable, due to the fact that
one is discrete whereas the other is continuous in nature.

In subsections 1.1 to 1.3, we discuss our technical contributions in more detail
and explain how they relate to the existing literature. Finally, in subsection 1.4, we
discuss subsequent work and open problems.

1.1. Discretization and hard-core model. Our discretization scheme ex-
presses the hard-sphere partition function as the partition function of an instance
of the (univariate) hard-core model. An instance of the hard-core model is a tuple
(G,\lambda ) where G = (V,E) is an undirected graph and \lambda \in \BbbR >0. Its partition function
is defined as

Z(G,\lambda ) :=
\sum 

I\in \scrI (G)

\lambda | I| ,

where \scrI (G) denotes the independent sets of G. A common way to obtain an ap-
proximation for the partition function is by applying a Markov chain Monte Carlo
algorithm. This involves sampling from the Gibbs distribution \mu (G,\lambda ) of (G,\lambda ), which
is a probability distribution on \scrI (G) that assigns each independent set I \in \scrI (G) the
probability

\mu (G,\lambda )(I) =
\lambda | I| 

Z(G,\lambda )
.

Conditions for efficient approximation of the hard-core partition function have
been studied extensively in the theoretical computer science community. Due to
hardness results in [49] and [23], it is known that for general graphs of maximum
degree \Delta \geq 3 there is a critical parameter value \lambda c(\Delta ) = (\Delta  - 1)\Delta  - 1/(\Delta  - 2)\Delta such
that there is no FPRAS for the partition function of (G,\lambda ) for \lambda > \lambda c(\Delta ), unless
RP = NP. On the other hand, in [52] it was proven that there is a deterministic
algorithm for approximating the partition function of (G,\lambda ) for \lambda < \lambda c(\Delta ) that runs

in time | V | O(log(\Delta ))
. The critical value \lambda c(\Delta ) is especially interesting, as it precisely

coincides with the upper bound on \lambda for which the hard-core model on an infinite
\Delta -regular tree exhibits strong spatial mixing and a unique Gibbs distribution [52].
For this reason, it is also referred to as the tree threshold. This relation between
computational hardness and phase transition in statistical physics is one of the most
celebrated results in the area. Both the hardness results [24, 4] and the approximation
algorithms [45, 28] were later partially generalized for complex \lambda .

Note that the computational hardness above the tree threshold \lambda c(\Delta ) for general
graphs of maximum degree \Delta applies to both randomized and deterministic algo-
rithms. However, in the randomized setting, Markov chain Monte Carlo methods are
known to improve the runtime of the algorithm introduced in [52]. Those approaches
use the vertexwise self-reducibility of the hard-core model to construct a random-
ized approximation of the partition function based on an approximate sampler for
the Gibbs distribution. Commonly, a Markov chain on the state space \scrI (G), called
Glauber dynamics, is used to construct the sampling scheme. At each step, a vertex
v \in V is chosen uniformly at random. With probability \lambda /(1 + \lambda ) the chain tries
to add v to the current independent set and otherwise it tries to remove it. The
resulting Markov chain is ergodic and reversible with respect to the Gibbs distribu-
tion, meaning that it eventually converges to \mu (G,\lambda ). A sequence of results has shown
that for all \Delta \geq 3 there is a family of graphs with maximum degree \Delta such that
the Glauber dynamics are torpidly mixing for \lambda > \lambda c(\Delta ) [14, 25, 44]. Whether the
Glauber dynamics are rapidly mixing for the entire regime \lambda < \lambda c(\Delta ) remained a
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2286 FRIEDRICH, G \"OBEL, KREJCA, AND PAPPIK

long-standing open problem, until recently the picture was completed [3]. By relating
spectral expansion properties of certain random walks on simplicial complexes to the
Glauber dynamics, it was shown that the mixing time is polynomial in | V | below the
tree threshold. In a series of subsequent papers [11, 8, 2], the mixing time was further
improved for a broader class of spin systems by combining simplicial complexes with
entropy factorization and using the modified log-Sobolev inequality.

By mapping the hard-sphere model to an instance of the hard-core model we can
make use of the existing results about approximation and sampling below the tree
threshold. Roughly, our discretization scheme restricts the positions of sphere centers
to an integer grid, while scaling the radii of spheres and the fugacity appropriately.
For a hard-sphere instance (\BbbV , \lambda ) with \BbbV = [0, \ell )d the hard-core representation for
resolution \rho \in \BbbR \geq 1 is a hard-core instance (G\rho , \lambda \rho ) with G\rho = (V\rho , E\rho ). Each vertex
v \in V\rho represents a grid point in the finite integer lattice of side length \rho \ell . Two
distinct vertices in V\rho are connected by an edge in E\rho if the Euclidean distance of
the corresponding grid points is less than 2\rho r. Furthermore, we set \lambda \rho = \lambda /\rho d. We
provide the following result on the rate of convergence of Z(G\rho , \lambda \rho ) to the hard-sphere
partition function Z(\BbbV , \lambda ) in terms of \rho .

Lemma 1.2. Let (\BbbV , \lambda ) be an instance of the continuous hard-sphere model in d
dimensions. For each resolution \rho \geq 2

\surd 
d it holds that

1 - \rho  - 1e\Theta (| \BbbV | ln| \BbbV | ) \leq Z(\BbbV , \lambda )
Z(G\rho , \lambda \rho )

\leq 1 + \rho  - 1e\Theta (| \BbbV | ln| \BbbV | ).

Although proving this rate of convergence involves some detailed geometric ar-
guments, there is an intuitive reason why the partition functions converge eventually
as \rho \rightarrow \infty . Increasing the resolution \rho also linearly increases the side length of the
grid and the minimum distance that sphere centers can have. This is equivalent to
putting a grid into \BbbV with increasing granularity but fixing the radii of spheres in-
stead. However, only scaling the granularity of this grid increases the number of
possible configurations by roughly \rho d, which would cause the partition function of the
hard-core model to diverge as \rho \rightarrow \infty . To compensate for this, we scale the weight of
each vertex in the hard-core model by the inverse of this factor.

Using this discretization approach, the fugacity bound from Theorem 1.1 results
from simply considering \Delta \rho , the maximum degree of G\rho , and comparing \lambda \rho with the
corresponding tree threshold \lambda c(\Delta \rho ). Recall that we assume r = (1/vd)

1/d. A simple
geometric argument shows that \Delta \rho is roughly upper bounded by 2d\rho d for sufficiently
large \rho . Now, observe that

\lambda \rho =
\lambda 

\rho d
< \lambda c

\bigl( 
2d\rho d

\bigr) 
for \lambda < \rho d\lambda c

\bigl( 
2d\rho d

\bigr) 
. This follows from the fact that \rho d\lambda c

\bigl( 
2d\rho d

\bigr) 
converges to e/2d

from above for \rho \rightarrow \infty . Thus, the approximation bound from Theorem 1.1 and the
uniqueness bound in [39] coincide with the regime of \lambda , for which \lambda \rho is below the tree
threshold \lambda c(\Delta \rho ) in the limit \rho \rightarrow \infty .

The arguments above show that for a sufficiently high resolution \rho the partition
function of the hard-sphere model Z(\BbbV , \lambda ) is well approximated by the partition func-
tion of our discretization (G\rho , \lambda \rho ) and that (G\rho , \lambda \rho ) is below the tree threshold for
\lambda < e/2d. However, this does not immediately imply an approximation algorithm
within the desired runtime bounds. Based on Lemma 1.2, we still need to choose
\rho exponentially large in the volume | \BbbV | . Note that the number of vertices in G\rho is
roughly | V\rho | \in \Theta 

\bigl( 
\rho d| \BbbV | 

\bigr) 
. Even without explicitly constructing the graph, this causes
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problems, as the best bound for the mixing time of the Glauber dynamics is polyno-
mial in | V\rho | and thus exponential in | \BbbV | . Intuitively, the reason for this mixing time is
that the Glauber dynamics only change one vertex at each step. Assuming that each
vertex should be updated at least once to remove correlations with the initial state,
any mixing time that is sublinear in the number of vertices is unlikely. We circum-
vent this problem by applying dynamics that update multiple vertices at each step
but still allow each step to be computed efficiently without constructing the graph
explicitly.

1.2. Block dynamics. Most of the results that we discuss from now on apply to
the multivariate version of the hard-core model, that is, each vertex v \in V has its own
weight \lambda v. For a given graph G = (V,E) we denote the set of such vertex weights by
\lambda = \{ \lambda v\} v\in V and write (G,\lambda ) for the resulting multivariate hard-core instance. In the
multivariate setting, the contribution of an independent set I \in \scrI (G) to the partition
function is defined as the product of its vertex weights (i.e.,

\prod 
v\in I \lambda v), where the

contribution of the empty set is fixed to 1. Similar to the univariate hard-core model,
the Gibbs distribution assigns a probability to each independent set proportionally to
its contribution to the partition function. For a formal definition, see subsection 2.2.

As we discussed before, the main problem with approximating the partition func-
tion of our discretization (G\rho , \lambda \rho ) is that the required graph G\rho is exponential in
the volume of the original continuous system | \BbbV | . As the Glauber dynamics Markov
chain only updates a single vertex at each step, the resulting mixing time is usually
polynomial in the size of the graph, which is not feasible in our case.

We circumvent this problem by studying block dynamics, which are a natural
generalization of Glauber dynamics that allows for updating arbitrary sets of vertices
in each step. For a given graph G = (V,E), we call a set \Lambda = \{ \Lambda i\} i\in [m] \subseteq 2V a block
cover of size m if and only if its union covers all vertices V . We refer to the elements
of \Lambda as blocks. At each step, the block dynamics Markov chain \scrB (G,\lambda ,\Lambda ) chooses a
block \Lambda i \in \Lambda uniformly at random. Then, the current independent set is updated on
\Lambda i based on the projection of the Gibbs distribution onto \Lambda i and conditioned on the
current independent set outside \Lambda i. For a formal definition, see subsection 2.3.

In fact, block dynamics are defined for a much more general class of spin systems
than the hard-core model. However, due to the fact that each step of the Markov chain
involves sampling from a conditional Gibbs distribution, block dynamics are rarely
used as an algorithmic tool on its own. Instead, they are usually used to deduce rapid
mixing of other dynamics.

For spin systems on lattice graphs, close connections between the mixing time of
block dynamics and Glauber dynamics are known [37]. Such connections were, for
example, applied to improve the mixing time of Glauber dynamics of the monomer
dimer model on torus graphs [50]. Moreover, block dynamics were used to improve
conditions for rapid mixing of Glauber dynamics on specific graph classes, such as
proper colorings [13, 15, 16, 43] or the hard-core model [15, 43] in sparse random
graphs. A very general result for the mixing time of block dynamics was achieved in
[5], which proved that for all spin systems on a finite subgraph of the d-dimensional
integer lattice the mixing time of block dynamics is polynomial in the number of blocks
if the spin system exhibits strong spatial mixing. This result was later generalized
in [6] for the Ising model on arbitrary graphs. Very recently, block dynamics based
random equally sized blocks where used in [11] to prove entropy factorization and
improve the mixing time of Glauber dynamics for a variety of discrete spin systems
up to the tree threshold.
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In this paper, we will mainly focus on the setting of block dynamics based on a
so-called clique cover. For a given graph G = (V,E), we call a set \Lambda = \{ \Lambda i\} i\in [m] \subseteq 2V

a clique cover of size m if and only if its union covers all vertices V and each \Lambda i \in \Lambda 
induces a clique in G. More specifically, for our application it will be sufficient to
consider clique covers consisting of pairwise disjoint cliques \Lambda i. In this case, we call
\Lambda a disjoint clique cover.

Our main goal in this regard is to show sufficient conditions such that the mixing
time of block dynamics based on a disjoint clique cover is polynomial in the size of
that cover. To see why this is helpful, consider our discretization (G\rho , \lambda \rho ) for a given
resolution \rho \in \BbbR >0. Set a = 2\rho \surd 

d
r and divide the d-dimensional integer lattice of side

length \rho \ell into cubic regions of side length a. Every pair of integer points within such
a cubic region has Euclidean distance less than 2\rho r, meaning that the corresponding
vertices in G\rho are adjacent. Thus, each such cubic region forms a clique, resulting
in a clique cover of size (\rho \ell /a)d \in O(| \BbbV | ). This means there is always a clique cover
with size linear in | \BbbV | and independent of the resolution \rho . By showing that, for the
univariate hard-core model, the mixing time of block dynamics based on a disjoint
clique cover is polynomial in the size of that cover for all \lambda \rho < \lambda c(\Delta \rho ), we obtain a
Markov chain with mixing time polynomial in | \BbbV | independent of the resolution \rho .

Mixing of block dynamics based on a disjoint clique cover. We analyze
the mixing time of block dynamics, based on a disjoint clique cover. This is done
by investigating a notion of pairwise influence between vertices that has also been
used to establish rapid mixing of Glauber dynamics up to the tree threshold [3]. Let
PG[w] denote the probability of the event that a vertex w \in V is in an independent
set drawn from \mu (G,\lambda ). Further, let PG[w] denote the probability that w is not in
an independent set. We extend this abuse of notation to conditional probabilities, so
PG[\cdot | w ], for example, denotes the probability of some event conditioned on w not
being in an independent set. For a pair of vertices v, w \in V the influence \Psi G(v, w) of
v on w is defined as

\Psi G(v, w) =

\Biggl\{ 
0 if v = w,

PG[w | v ] - PG[w | v ] otherwise.

The following condition in terms of pairwise influence is central to our analysis.

Condition 1.3. Let (G,\lambda ) be an instance of the multivariate hard-core model.
There is a constant C \in \BbbR >0 and a function q : V \rightarrow \BbbR >0 such that for all S \subseteq V and
r \in S it holds that \sum 

v\in S

| \Psi G(r, v)| q(v) \leq Cq(r).

Note that this condition appeared before in [10], where it was used for bounding
the mixing time of Glauber dynamics for antiferromagnetic spin systems. Given
Condition 1.3, we obtain the following result for the mixing time of block dynamics
based on a disjoint clique cover.

Theorem 1.4. Let (G,\lambda ) be an instance of the multivariate hard-core model that
satisfies Condition 1.3. Let \Lambda be a disjoint clique cover for G of size m, and let
Zmax = maxi\in [m]\{ Z(G[\Lambda i], \lambda [\Lambda i])\} . The mixing time of the block dynamics \scrB (G,\lambda ,\Lambda ),
starting from \emptyset \in \scrI (G), is bounded by

\tau 
(\emptyset )
\scrB (\varepsilon ) \leq mO((2+C)C)ZO((2+C)C)

max ln

\biggl( 
1

\varepsilon 

\biggr) 
.
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Using a bound for the sum of absolute pairwise influences that was recently
established in [10], it follows that the univariate hard-core model satisfies Condi-
tion 1.3 up to the tree threshold. As a result, we know that the mixing time of block
dynamics is polynomial in m and Zmax for any clique cover of size m.

A side journey: Comparison to multivariate conditions. In fact, Theo-
rem 1.4 is sufficient for our application to the hard-sphere model. However, to set
Condition 1.3 into context with other conditions for rapid mixing of similar dynam-
ics, we compare it to a strict version of the clique dynamics condition, originally
introduced in [22]. The clique dynamics condition is a sufficient condition for rapid
mixing of clique dynamics, which is a Markov chain that was initially introduced in
the setting of abstract polymer model and which is closely related to block dynamics
based on a clique cover. It turns out that this strict version of the clique dynamics
condition directly implies Condition 1.3. This is especially interesting, as the clique
dynamics condition was initially introduced as a local condition (only considering the
neighborhood of each vertex) and is based on a coupling argument. However, we
show that it can as well be understood as a sufficient condition for the global decay
of pairwise influence with increasing distance between vertices.

Formally, we say that the strict clique dynamics condition is satisfied for an
instance of the multivariate hard-core model (G,\lambda ) if there is a function f : V \rightarrow \BbbR >0

and a constant \alpha \in (0, 1) such that, for all v \in V , it holds that\sum 
w\in N(v)

\lambda w

1 + \lambda w
f(w) \leq (1 - \alpha )f(v),

where N(v) is the neighborhood of v in G. This is a strict version of the clique
dynamics condition in that the original clique dynamics condition would correspond
to the case \alpha = 0 (i.e., the strict clique dynamics condition requires some strictly
positive slack \alpha ).

The result of our comparison is summarized in the following statement.

Lemma 1.5. Let (G,\lambda ) be an instance of the multivariate hard-core model. If
(G,\lambda ) satisfies the strict clique dynamics condition for a function f and a constant
\alpha , then it also satisfies Condition 1.3 for q = f and C = 1

\alpha .

Lemma 1.5 is proven by translating the calculation of pairwise influences to the
self-avoiding walk tree of the graph, based on a result in [10], and applying a recursive
argument on this tree. The technical details are given in section 5.

Despite being an interesting relationship between local coupling arguments and
global pairwise influence, Lemma 1.5 also implies that, from an algorithmic perspec-
tive, Theorem 1.4 can be used to produce similar results as those obtained in [22] for
abstract polymer models. Further, note that for the univariate model, using pairwise
influence yields strictly better results than any coupling approach in the literature.
This raises the question of whether a refined argument based on pairwise influences
can be used in the multivariate setting to improve on the clique dynamics condition,
leading to better approximation results on abstract polymer models.

1.3. Analyzing spectral expansion. As a core technique for obtaining
Theorem 1.4, we adapt an approach for bounding the mixing time that was recently
used to prove rapid mixing of Glauber dynamics for the entire regime below the tree
threshold for several applications, such as the hard-core model [3], general two-state
spin systems [10], and proper colorings [9, 17]. The idea is to map the desired distri-
bution to a weighted simplicial complex.
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A simplicial complex X over a groundset U is a set family X \subseteq 2U such that for
each \tau \in X every subset of \tau is also in X. We call the elements \tau \in X the faces of X
and refer to its cardinality | \tau | as dimensionality.

For a hard-core instance (G,\lambda ), the authors of [3] construct a simplicial complex
over a ground set U that contains two elements xv, xv \in U for each vertex v \in V . For
every independent set I \in \scrI (G), a face \tau I \in X is introduced such that xv \in \tau I if v \in I
and xv \in \tau I otherwise. The simplicial complex is completed by taking the downward
closure of these faces. Note that by construction all maximum faces of the resulting
complex are | V | -dimensional and there is a one-to-one correspondence between the
maximum faces and the independent sets in \scrI (G). By assigning each maximum face
\tau I \in X an appropriate weight, the Glauber dynamics can be represented as a random
walk on those maximum faces, which is sometimes referred to as the two-step walk
or down-up walk. Using a local-to-global theorem [1], the mixing time of this two-
step walk can then be bounded based on certain local expansion properties of the
simplicial complex X (see section 2 for the technical details). It is then proved that
such local expansion properties are well captured by the largest eigenvalue of the
pairwise influence matrix \Psi G, which is a | V | \times | V | matrix that contains the pairwise
influence \Psi G(v, w) for all v, w \in V . Finally, by bounding those influences a bound
on this largest eigenvalue of \Psi G is obtained. This analysis was later refined and
generalized in [10] to general two-state spin systems.

This method was independently extended in [9] and [17] to the non-Boolean do-
main by applying it to the Glauber dynamics for proper colorings. The main differ-
ences to the Boolean domain are that elements of the simplicial complex now represent
combinations of a vertex and a color. Furthermore, the bound on the local spectral
expansion was obtained by using a different influence matrix, which captures the ef-
fect of selecting a certain color for one vertex on the distribution of colors for another
vertex.

Although we are dealing with the hard-core model, which is Boolean in nature,
the way that we model block dynamics is mainly inspired by the existing work on
proper colorings [9]. Assume we have an instance of the multivariate hard-core model
(G,\lambda ) and let \Lambda be a clique cover for G of size m such that every pair of distinct
cliques is vertex-disjoint (i.e., \Lambda is a partition of G into cliques). We construct a
simplicial complex X based on a ground set U that contains one element xv \in U
for each vertex v \in V and one additional element \emptyset i for each clique \Lambda i \in \Lambda . We
introduce a face \tau I \in X for each independent set I \in \scrI (G) such that for every
\Lambda i \in \Lambda we have \emptyset i \in \tau I if \Lambda i \cap I = \emptyset and xv \in \tau I if \Lambda i \cap I = \{ v\} for some v \in \Lambda i.
The simplicial complex is completed by taking the downward closure of these faces.
As we discuss in subsection 3.1, all maximum faces of the resulting complex are m-
dimensional and there is a bijection between the maximum faces and the independent
sets of G. Furthermore, there is a natural partitioning \{ Ui\} i\in [m] of the ground set U ,
each partition Ui corresponding to a clique \Lambda i, such that every maximum face in X
contains exactly one element from each partition Ui.

By weighting each maximum face of X by the contribution of the corresponding
independent set to the partition function, the block dynamics based on \Lambda are equiv-
alent to the two-step walk on X. Thus, in order to bound the mixing time of the
block dynamics, it is sufficient to study the local expansion properties of X. To this
end, we adapt the influence matrix used for proper colorings in [9]. For x \in U , let
PG[x] denote the probability that x \in \tau I for an independent set I \in \scrI (G) drawn from
\mu (G,\lambda ) and corresponding maximum face \tau I \in X. Similarly as for defining pairwise
influences, we extend this notation to conditional probabilities. The clique influence
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matrix \Phi G,\Lambda contains an entry \Phi G,\Lambda (x, y) for each x, y \in U with

\Phi G,\Lambda (x, y) =

\Biggl\{ 
0 if x, y \in Ui for some i \in [m],

PG[y | x ] - PG[y] otherwise.

By using similar linear-algebraic arguments as in [9] we prove that the maximum
eigenvalue of \Phi G,\Lambda can be used to upper bound the local spectral expansion of X.
To obtain Theorem 1.4 it is then sufficient to relate Condition 1.3 to the maximum
eigenvalue of \Phi G,\Lambda . The following lemma establishes this connection.

Lemma 1.6. Let (G,\lambda ) be an instance of the multivariate hard-core model that
satisfies Condition 1.3 for a function q and a constant C. For every S \subseteq V and every
disjoint clique cover \Lambda of G[S] it holds that the largest eigenvalue of \Phi G[S],\Lambda is at most
(2 + C)C.

Note that our simplicial-complex representation is only given under the assump-
tion that the cliques in the clique cover \Lambda are pairwise disjoint. Indeed, this is a
necessary requirement to map the block dynamics to the two-step walk such that the
local-global theorem from [1] can be applied. Since our discretization of the hard-
sphere model will yield a graph with a small disjoint clique cover, this is sufficient
for our application. However, in fact the restriction to disjoint clique covers can be
overcome without significantly increasing the mixing time by using a Markov chain
comparison, which can be seen in the conference version of this paper [21].

We note that in subsequent papers, the method of using simplicial complexes to
bound the mixing time of Glauber dynamics was further refined to obtain improved
bounds on the mixing time [11, 8, 2]. We leave it as an open question for future work
if those refinements could also be applied in our setting to improve the running time
of our approximation algorithm for the hard-sphere partition function.

1.4. Subsequent work and open questions. Subsequent to the conference
version of this paper [21], various new results appeared that partially improve the
results in this work.

One of the most notable recent improvements is that Michelen and Perkins [40]
achieved a better bound for the regime of uniqueness of the Gibbs measure for Gibbs
point processes with repulsive pair potentials. Since the hard-sphere model is a
special case of such point processes, this leads to a broader uniqueness regime for
this model. Specifically, the improved bound in d-dimensional Euclidean space is
\lambda < e/((1  - 1/8d+1)2d). Based on this result, it was then shown in [41] that an effi-
cient approximate sampler for Gibbs point processes with repulsive finite-range pair
potentials is obtained by using a connection between rapid mixing of a local Markov
chain and strong spatial mixing of the point process. This leads to an efficient ap-
proximate sampler for the hard-sphere model and a randomized approximation of the
hard-sphere partition function in the same fugacity regime. In contrast to our result,
their algorithms require us to assume a continuous model of computation. Further,
note that the gap between our fugacity regime and the results in [41] is largest if the
number of dimensions d is small, and both bounds converge as d increases. Both the
improved bound for uniqueness of the Gibbs measure and the algorithmic results are
based on the notion of the potential-weighted connective constant. It is inspired by
the connective constant as studied in graph theory, which was previously used to ob-
tain better algorithmic bounds for the discrete hard-core model [48]. This raises the
question of whether studying the connective constant of our discretization G\rho could
yield a similar improvement of the fugacity regime for the approach presented in this
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paper. For this, we would require the connective constant of G\rho to be at least by a
constant factor small than its maximum degree \Delta \rho . Unfortunately, due to a result
in [46], this is not the case. This means that a similar improvement would require
studying a different structural property of G\rho than the connective constant.

Moreover, there are several new results when it comes to discretization-based ap-
proaches of approximation. In [20], we improve on Lemma 1.2 by providing stronger
bounds on the rate of convergence of the hard-core partition function of our discretiza-
tion. Specifically, we show that \Theta (| \BbbV | 2\varepsilon  - 1) points in the grid are in fact sufficient to
obtain a relative \varepsilon -approximation of the hard-sphere partition function, which is a
tight bound. This improved rate of convergence not only makes Glauber dynamics
applicable to the discretization, which simplifies the randomized algorithm presented
in this paper and improves its running time, but it also allows for the first determin-
istc approximation algorithm for the hard-sphere partition function with running time
quasi-polynomial in | \BbbV | . The existence of a fully polynomial deterministic approxi-
mation algorithm remains an open question (see [20] for a more detailed discussion).
Moreover, we generalize the discretization scheme presented in this paper to a broader
class of point processes that are characterized by hard-constraint interactions, such
as the continuous Widom--Rowlinson model [53], and we introduce an approach for
approximate sampling that is based on first drawing an independent set from the hard-
core distribution of the discretization G\rho and then adding small random perturbations
to the corresponding grid points.

In another follow-up paper [19], we study the possibility of using hard-core mod-
els on geometric random graphs based on random point sets for discretization. This
has several advantages compared to the fixed grid-like structure presented in this pa-
per. First, it allows for more general regions \BbbV in arbitrary Polish spaces whereas
the results in this paper are restricted to cubic regions in Euclidean space. Moreover,
it allows us to cover Gibbs point processes with arbitrary repulsive pair potentials.
However, in general, this approach requires a continuous model of computation and,
due to the random nature of the resulting graphs, it only yields a randomized ap-
proximation algorithm for the partition function of such a point process. Obtaining
efficient deterministic approximations for the partition functions of repulsive Gibbs
point processes remains an open problem.

2. Preliminaries. We denote the set of all natural numbers (including 0) by \BbbN 
and the set of all real numbers by \BbbR . For each n \in \BbbN , let [n] denote the interval
[1, n]\cap \BbbN . Further, for a graph G = (V,E), we write NG(v) for the open neighborhood
of a vertex v \in V (i.e., all w \in V with (v, w) \in E) and N [v] = NG(v) \cup \{ v\} for the
closed neighborhood. We might omit the graph if it is clear from the context.

2.1. Markov chains and spectral properties. For any (time-homogeneous)
Markov chain \scrM , we denote its state space by \Omega \scrM and its transition probabilities
by P\scrM . If \scrM has a unique stationary distribution, we denote it by \pi \scrM . Assume
| \Omega \scrM | = N \in \BbbN >0. It is well known that if \scrM is reversible with respect to \pi \scrM , this
implies that P\scrM has N real eigenvalues

1 = \beta 1(P\scrM ) \geq \beta 2(P\scrM ) \geq \cdot \cdot \cdot \geq \beta N (P\scrM ) \geq  - 1.

We write \beta \ast (P\scrM ) = max\{ \beta 1(P ), | \beta N (P )| \} for the largest absolute eigenvalue and call
1  - \beta \ast (P\scrM ) the spectral gap of P\scrM . We extend these notations to general matrices
A with real eigenvalues, e.g., we denote the largest eigenvalue by \beta 1(A).
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If \scrM is ergodic, we define its mixing time starting from some state x \in \Omega \scrM as

\tau 
(x)
\scrM (\varepsilon ) = inf\{ t \in \BbbN | dTV

\bigl( 
P t
\scrM (x, \cdot ), \pi \scrM 

\bigr) 
\leq \varepsilon \} ,

where P t
\scrM (x, \cdot ) is the distribution of \scrM on \Omega \scrM after t steps, starting from x, and

where dTV

\bigl( 
\cdot , \cdot 
\bigr) 
denotes the total variation distance. Recall that for any ergodic,

reversible Markov chain \scrM and every state x \in \Omega \scrM , it holds that

(2.1) \tau 
(x)
\scrM (\varepsilon ) \leq 1

1 - \beta \ast (P\scrM )
ln

\biggl( 
1

\pi \scrM (x) \cdot \varepsilon 

\biggr) 
.

For further details on Markov chains please refer to [35].

2.2. The multivariate hard-core model. Let G = (V,E) be an undirected
graph, and let \scrI (G) denote the set of independent sets in G; if the graph is clear
from the context, we only write \scrI . The multivariate hard-core model is a tuple (G,\lambda ),
where \lambda = \{ \lambda v\} v\in V is a set of weights, containing one weight \lambda v \in \BbbR >0 for each vertex
v \in V . The partition function of (G,\lambda ) is defined as

Z(G,\lambda ) :=
\sum 
I\in \scrI 

\prod 
v\in I

\lambda v.

The Gibbs distribution \mu (G,\lambda ) is a probability distribution on \scrI , assigning each inde-
pendent set I \in \scrI the probability

\mu (G,\lambda )(I) =

\prod 
v\in I \lambda v

Z(G,\lambda )
.

If the model (G,\lambda ) is clear, we only write Z and \mu .
Large parts of our analysis consider the Gibbs distributions and the partition

functions of induced subgraphs G[S] for S \subseteq V while keeping the weights of the
respective vertices in S. In this case, we might omit the set of weights and write
Z(G[S]) for Z(G[S], \lambda [S]) or \mu (G[S]) for \mu (G[S],\lambda [S]). Further, for any nonempty set

of vertices S \subseteq V , we define \mu 
(G)
| S to be the distribution of the independent sets in

\scrI (G[S]) induced by \mu (G). Formally, this means \mu 
(G)
| S assigns every independent set

I \in \scrI (G[S]) the probability

\mu 
(G)
| S (I) =

\sum 
I\prime \in \scrI (G)

1I\subseteq I\prime \mu (G)(I \prime ).

We associate every independent set I \in \scrI with a spin assignment \sigma (I) : V \rightarrow \{ 0, 1\} 
such that

\bigl( 
\sigma (I)

\bigr)  - 1
(1) = I. We extend this notation to restrictions on subsets S \subseteq V .

For any independent set I \in \scrI , the partial configuration on S corresponding to I

is a spin assignment \sigma 
(I)
| S : S \rightarrow \{ 0, 1\} such that

\bigl( 
\sigma 
(I)
| S
\bigr)  - 1

(1) = I \cap S. By abuse of

notation, we use these spin assignments as events (e.g., for conditioning on partial
configurations). Further, for all S \subseteq V let 0| S : S \rightarrow \{ 0\} be the partial configuration

that fixes all vertices in S not to be in the independent set (i.e., 0| S = \sigma 
(\emptyset )
| S ).

Finally, for each for v \in V , we write PG[v] to denote the probability of the event
that v \in I for I \sim \mu , and PG[v] to denote the probability of the event v /\in I for I \sim \mu .
Formally,

PG[v] = \mu 
(G)
| \{ v\} (\{ v\} ) and PG[v] = \mu 

(G)
| \{ v\} (\emptyset ).
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2.3. Block dynamics and block covers. For any graph G = (V,E), we call a
set \Lambda = \{ \Lambda i\} i\in [m] \subseteq 2V a block cover of G with size m \in \BbbN >0 if

\bigcup 
i\in [m] \Lambda i = V . We

refer to the elements of \Lambda as blocks.

Definition 2.1 (block dynamics). Let (G,\lambda ) be a multivariate hard-core model,
and let \Lambda be a block cover of G with size m. We define the block dynamics \scrB (G,\lambda ,\Lambda )
to be the following Markov chain with state space \scrI (G). Let (Xt)t\in \BbbN denote a (random)
sequence of states of \scrB (G,\lambda ,\Lambda ), where X0 is arbitrary. Then, for all t \in \BbbN and any
Xt = I with I \in \scrI (G), the transitions of \scrB (G,\lambda ,\Lambda ) are as follows:

1. choose i \in [m] uniformly at random ;

2. choose I+ \in \scrI (G[\Lambda i]) according to \mu | \Lambda i
( \cdot | \sigma (I)

| V \setminus \Lambda i
);

3. Xt+1 = (I \setminus \Lambda i) \cup I+ ;

The block dynamics Markov chain \scrB (G,\lambda ,\Lambda ) is ergodic with stationary distribu-
tion \mu , independent of the chosen block cover \Lambda . If \Lambda = \{ \{ v\} | v \in V \} , then the block
dynamics correspond to the Glauber dynamics. In this paper, we are mostly interested
in block dynamics based on a clique cover. Recall that, for a graph G = (V,E), a set
\Lambda = \{ \Lambda i\} i\in [m] \subseteq 2V is called a clique cover of G with size m \in \BbbN >0 if

\bigcup 
i\in [m] \Lambda i = V

and each \Lambda i \in \Lambda induces a clique in G. Further, we call \Lambda a disjoint clique cover if
every pair of distinct cliques in \Lambda is vertex-disjoint. Obviously, any clique cover is
also a block cover by definition.

2.4. Pairwise influence. Let v, w \in V and let S \subset V such that v, w /\in S. Fur-

ther, let \sigma | S = \sigma 
(I)
| S be a partial configuration on S corresponding to any independent

set I \in \scrI . The pairwise influence of v on w in G under condition \sigma | S is defined as

\Psi 
\sigma | S
G (v, w) =

\Biggl\{ 
0 if v = w,

PG

\bigl[ 
w
\bigm| \bigm| v, \sigma | S

\bigr] 
 - PG

\bigl[ 
w
\bigm| \bigm| v, \sigma | S

\bigr] 
otherwise.

For the case S = \emptyset , we also write \Psi G(v, w). Furthermore, we denote by \Psi 
\sigma | S
G and \Psi G

the corresponding (n - | S| )\times (n - | S| ) matrices.

2.5. Simplicial complexes and local spectral expansion. Let U denote a
set. A simplicial complex (over U) is a family of subsets X \subseteq 2U such that, for all
\tau \in X and all \tau \prime \subseteq \tau , it holds that \tau \prime \in X. We call the elements \tau \in X faces, and
we call | \tau | the dimension of a face \tau . We denote the set of all k-dimensional faces
in X by X(k). A simplicial complex is pure d-dimensional if and only if the set of
all inclusion-maximal faces is exactly X(d). Last, we say that a pure d-dimensional
simplicial complex is d-partite if and only if there is a partition \{ Ui\} i\in [d] such that,
for all i \in [d] and all \tau \in X(d), it holds that | Ui \cap \tau | = 1.

We extend the definition of a pure d-dimensional simplicial complex X to a
weighted simplicial complex (X,w) with a weight function w : X \rightarrow \BbbR >0 in the fol-
lowing inductive manner. Each face \tau \in X(d) is assigned a weight w(\tau ) \in \BbbR >0. Each
nonmaximal face \tau \prime \in X has the weight

w(\tau \prime ) =
\sum 

\tau \in X(d):\tau \prime \subset \tau 
w(\tau ).

We are interested in two types of Markov chains on a weighted pure d-dimensional
simplicial complex (X,w).

(1) The two-step random walk \scrV (X,w), which is a Markov chain on the state
space X(d). Let \tau t \in X(d) be the state of \scrV (X,w) at time t \in \BbbN ; then \tau t+1

is chosen according the following transition rule:
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1. choose x \in \tau t uniformly at random, let \tau \prime = \tau t \setminus \{ x\} , and
2. choose \tau t+1 \in \{ \tau \in X(d) | \tau \prime \subset \tau \} proportionally to their weights w(\tau ).

(2) The 1-skeleton of (X,w) is an edge-weighted graph with vertices VX =\bigl\{ 
x \in U

\bigm| \bigm| \{ x\} \in X
\bigr\} 
, edges EX =

\bigl\{ 
(x, y) \in V 2

X

\bigm| \bigm| \{ x, y\} \in X
\bigr\} 
, and weights

w(\{ x, y\} ). The skeleton walk on (X,w), denoted by \scrS (X,w), is the nonlazy
random walk on its 1-skeleton.

For a face \tau \in X, the link of \tau is a weighted pure (d - | \tau | )-dimensional simplicial
complex (X\tau , w\tau ), where X\tau = \{ \tau \prime \setminus \tau | \tau \prime \in X, \tau \subseteq \tau \prime \} and, for all \tau \prime \in X, we have
w\tau (\tau 

\prime ) = w(\tau \prime \cup \tau ).

Definition 2.2 (local expander). Let (X,w) be a weighted pure d-dimensional
simplicial complex, and let \alpha \in \BbbR >0. We say that a face \tau \in X is a local \alpha -expander
if and only if the second largest eigenvalue of its skeleton walk \scrS \tau = \scrS (X\tau , w\tau ) is at
most \alpha (i.e., \beta 2(P\scrS \tau ) \leq \alpha ). Further, we say (X,w) is a local (\alpha 0, . . . , \alpha d - 2)-expander
if and only if, for all k \in \{ 0\} \cup [d - 2], each face \tau \in X(k) is a local \alpha k-expander.

In [1] the authors relate local expansion and two-step walks. We use the following
formulation of their result.

Theorem 2.3 ([3, Theorem 1.3]). Let (X,w) be a weighted pure d-dimensional
simplicial complex. If (X,w) is a local (\alpha 0, . . . , \alpha d - 2)-expander, then for the second-
largest eigenvalue of the two-step walk \scrV = \scrV (X,w), it holds that

\beta 2(P\scrV ) \leq 1 - 1

d

\prod 
k\in \{ 0\} \cup [d - 2]

(1 - \alpha k).

3. Mixing time of block dynamics for clique covers.

3.1. Simplicial-complex representation. Let (G,\lambda ) be an instance of the
multivariate hard-core model and let \Lambda be a disjoint clique cover of size m. We
construct the simplicial-complex representation as follows. For each clique \Lambda i \in \Lambda , we
have a set Ui that consists of an element \emptyset i \in Ui and one element xv \in Ui for each
vertex v \in \Lambda i. The ground set of the simplicial complex is U =

\bigcup 
i\in [m] Ui. Further,

the complex X contains a face \tau I \in X for each independent set I \in \scrI where
\bullet for each i \in [m] and xv \in Ui, we have xv \in \tau I if and only if v \in I, and
\bullet for each i \in [m], we have \emptyset i \in \tau I if and only if I \cap \Lambda i = \emptyset .

Note that each independent set contains at most one vertex v \in \Lambda i for each clique in
the clique cover \Lambda i \in \Lambda . As \Lambda is a disjoint cover, each of the faces \tau I \in X contains
exactly one element from each Ui for i \in [m]. We complete X by taking the downward
closure of these faces. We make the following observation.

Observation 3.1. The simplicial-complex representation X for an instance of the
multivariate hard-core model (G,\lambda ) with disjoint clique cover \Lambda of size m is pure
m-dimensional and m-partite with partition \{ Ui\} i\in [m] as constructed above. Further,
there is a one-to-one correspondence between the independent sets of G and the
maximum faces X(m).

We continue by equipping X(m) with weights, which induces weights for all other
faces in X as well. For a face \tau I \in X(m), corresponding to the independent set I \in \scrI ,
we set w(\tau I) = \mu (I). We now observe the following relation to block dynamics.

Observation 3.2. Let (G,\lambda ) be an instance of the multivariate hard-core model,
and let \Lambda be a disjoint clique cover of G. Further, let (X,w) be the corresponding
simplicial-complex representation. It holds that the two-step walk \scrV (X,\lambda ) is equiv-
alent to the block dynamics \scrB (G,\lambda ,\Lambda ) in the sense that there is a bijection between
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both state spaces that preserves transition probabilities. Consequently, \scrV (X,\lambda ) is
ergodic and reversible and has a unique stationary distribution \pi \scrV (\tau I) = \mu (I) for
every maximum face \tau I \in X(m), corresponding to the independent set I \in \scrI (G).

Based on Observation 3.1, applying Theorem 2.3, we obtain a lower bound on the
spectral gap of \scrV = \scrV (X,w) in terms of local expansion. Moreover, for an independent
set I \sim \mu , it holds that

Pr[xv \in \tau I ] = PG[v] for all v \in V and Pr[\emptyset i \in \tau I ] = PG

\Biggl[ \bigcap 
v\in \Lambda i

v

\Biggr] 
for all i \in [m].

For simplicity, we also write PG[xv] and PG[\emptyset i] for these probabilities.

3.2. Bounding local expansion by clique influence. Let (G,\lambda ) be an in-
stance of the multivariate hard-core model with disjoint clique cover \Lambda of size m.
Further, let (X,w) be the resulting simplicial-complex representation with ground
set U and partition \{ Ui\} i\in [m]. The clique influence matrix \Phi G,\Lambda contains an entry
\Phi G,\Lambda (x, y) for each x, y \in U with

(3.1) \Phi G,\Lambda (x, y) =

\Biggl\{ 
0 if x, y \in Ui for some i \in [m],

PG[y | x ] - PG[y] otherwise.

Note that this definition includes the cases where x \in \{ \emptyset i | i \in [m]\} or y \in 
\{ \emptyset i | i \in [m]\} . The following lemma and its proof are an adapted version of [9,
Theorem 8].

Lemma 3.3. Let (G,\lambda ) be an instance of the multivariate hard-core model with
a disjoint clique cover \Lambda of size m. Further, let (X,w) be the resulting simplicial-
complex representation. Denote by \scrS = \scrS (X,w) be the skeleton walk on (X,w), and
let \Phi G,\Lambda be the clique influence matrix as defined in (3.1). Then

(3.2) \beta 2(P\scrS ) \leq 
1

m - 1
\beta 1(\Phi G,\Lambda ).

Proof. We first take a detailed look at the entries of the transitions P\scrS . Note
that by definition \Omega \scrS = U and P\scrS (x, x) = 0 for all x \in U . Further, it holds for each
x \in U that \sum 

z\in U :
z \not =x

w(\{ x, z\} ) =
\sum 
z\in U :
z \not =x

PG[x, z] =
\sum 
i\in [m]

\sum 
z\in Ui:
z \not =x

PG[x, z]

=
\sum 

i\in [m]:
x/\in Ui

\sum 
z\in Ui

PG[x, z] = (m - 1)PG[x],

where the third equality comes from the fact that for all i \in [m] and every pair
x, z \in Ui it holds that PG[x, z] = 0. Thus, we get for each y \in U with y \not = x the
transition probability

P\scrS (x, y) =
w(\{ x, y\} )\sum 

z\in U :
z \not =x

w(\{ x, z\} )
=

PG[x, y]

(m - 1)PG[x]
=

1

m - 1
PG[y | x ].

Note that this especially implies P\scrS (x, y) = 0 if x, y \in Ui for some i \in [m].
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LetD be the matrix withD(x, x) = 1
mPG[x] for each x \in U and 0 everywhere else,

and let d be the vector of its diagonal, that is, for all x \in U , we have d(x) = D(x, x).
Note that \scrS satisfies the detailed-balance equations with d, that is, it is reversible
with respect to d. Thus, A = D1/2P\scrS D

 - 1/2 is symmetric. This implies that for each
eigenvector z of A with eigenvalue \beta there is a left eigenvector zTD1/2 = (D1/2z)T

and a right eigenvector D - 1/2z of P\scrS for the same eigenvalue \beta . Thus, if z\prime = D - 1/2z
is such a right eigenvector of P\scrS , then Dz\prime = DD - 1/2z = D1/2z yields a (transposed)
left eigenvector for the same eigenvalue.

We investigate the eigenvalues of P\scrS more carefully. Consider the column vector
1 with 1(x) = 1 for all x \in U . Note that 1 is a right eigenvector of P\scrS for eigenvalue
1, which is the maximum eigenvalue, since P\scrS is a transition matrix. We denote by
\pi = (D1)

T
the corresponding left eigenvector with \pi (x) = 1

mPG[x] for all x \in U .
Further, we define a set of column vectors \{ 1i\} i\in [m] and a set of row vectors \{ \pi i\} i\in [m]

such that for each i \in [m] and each x \in U it holds that

1i(x) =

\Biggl\{ 
1 if x \in Ui,

0 otherwise,
and \pi i(x) =

\Biggl\{ 
1
mPG[x] if x \in Ui,

0 otherwise.

Note that for each i, j \in [m], i \not = j, and each x \in Ui it holds that
\sum 

y\in Uj
P\scrS (x, y) =

1
m - 1 and

\sum 
y\in Ui

P\scrS (x, y) = 0. Thus, for all i \in [m], we have P\scrS 1i =
1

m - 1 (1 - 1i). It
follows that

P\scrS 

\biggl( 
1

m
1 - 1i

\biggr) 
=

1

m
1 - 1

m - 1
(1 - 1i) =  - 1

m(m - 1)
1+

1

m - 1
1i

=  - 1

m - 1

\biggl( 
1

m
1 - 1i

\biggr) 
,

which shows that for each i \in [m] the vector 1
m1  - 1i is a right eigenvector with

eigenvalue  - 1
m - 1 . Similarly, the vector

\bigl( 
D
\bigl( 

1
m1 - 1i

\bigr) \bigr) T
= 1

m\pi  - \pi i is a left eigenvector
for this eigenvalue.

We use these vectors to construct an eigenbasis of P\scrS . Let i \in [m], and consider
the set

S = \{ 1\} \cup 
\bigcup 

j\in [m]:
j \not =i

\biggl\{ 
1

m
1 - 1j

\biggr\} 
.

Note that S is a set of m linearly independent right eigenvectors of P\scrS . By the
relation between eigenvectors of P\scrS and A, we construct a set SA = \{ D1/2| zz \in S\} of
independent eigenvectors of A. As A is symmetric, such a set can always be extended
to an eigenbasis SA of A, such that the vectors in SA\setminus SA are orthogonal to the vectors

in SA. This gives us an eigenbasis S = \{ D - 1/2z| z \in SA\} of right eigenvectors of P\scrS .
We proceed by relating the eigenvalues of P\scrS to the eigenvalues of \Phi G,\Lambda , using S.

Note that both P\scrS and \Phi G,\Lambda are (n+m)\times (n+m) matrices. We first show (Claim 1)
that all vectors of S are in the kernel of \Phi G,\Lambda . Since | S| = m+1 and since the vectors
of S are linearly independent, the kernel of \Phi G,\Lambda has a dimension of at least m + 1.
Thus, \Phi G,\Lambda has at least m + 1 eigenvectors associated with the eigenvalue 0. Then
(Claim 2) we show that all vectors of S \setminus S, which are the remaining eigenvectors
of P\scrS in our consideration, are also right eigenvectors of \Phi G,\Lambda but with eigenvalues
scaled by (m - 1). Last (Claim 3), we conclude that (3.2) holds.
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Claim 1. Let z \in S, and let 0 denote the vector with 0(x) = 0 for all x \in U . If
z = 1, then \Phi G,\Lambda z = 0 because for all j \in [m] and every x \in Uj it holds that

\Phi G,\Lambda 1(x) =
\sum 

k\in [m]:
k \not =j

\sum 
y\in Uk

(PG[y | x ] - PG[y])

=
\sum 

k\in [m]:
k \not =j

\sum 
y\in Uk

PG[y | x ] - 
\sum 

k\in [m]:
k \not =j

\sum 
y\in Uk

PG[y] = 0.

If z = 1j for some j \in [m], again, we have \Phi G,\Lambda z = 0 because for all k \in [m] and
every x \in Uk it holds that

\Phi G,\Lambda 1j(x) =
\sum 

l\in [m]:
l \not =k

\sum 
y\in Ul

\Phi G,\Lambda (x, y)1\{ k = j, l = j\} = 0.

Claim 2. We first show that all vectors z \in S \setminus S are orthogonal to 1
m\pi  - \pi j for

all j \in [m]. Let z \in S \setminus S. First, note that

\pi z = (D1)
T
z = 1TDz =

\Bigl( 
D1/21

\Bigr) T
D1/2z = 0,

where the last equality is due to D1/21 \in SA and D1/2z \in SA \setminus SA. Similarly, we
obtain for each j \in [m] with j \not = i that\biggl( 

1

m
\pi  - \pi j

\biggr) 
z =

\biggl( 
D1/2

\biggl( 
1

m
1 - 1j

\biggr) \biggr) T

D1/2z = 0.

Finally, note that 1
m\pi  - \pi i can be obtain as a linear combination from \pi and the

vectors 1
m\pi  - \pi j for j \not = i, implying that it is orthogonal to z as well.

Assume that z has eigenvalue \beta . We define the matrix \Pi = 1\pi and the matrices
\Pi j = 1j\pi j for j \in [m] and note that

\Phi G,\Lambda = (m - 1)P\scrS  - m

\left(  \Pi  - 
\sum 
j\in [m]

\Pi j

\right)  .

Since z is orthogonal to all vectors 1
m\pi  - \pi j for j \in [m], we have for every k \in [m]

and x \in Uk that\left(  \left(  \Pi  - 
\sum 
j\in [m]

\Pi j

\right)  z

\right)  (x) =
\sum 
y\in U

\sum 
j\in [m]

\biggl( \biggl( 
1

m
\Pi (x, y) - \Pi j(x, y)

\biggr) 
z

\biggr) 
(y)

=
\sum 
j\in [m]

\biggl( 
1

m
\pi  - \pi j

\biggr) 
z = 0.

This implies that (\Pi  - 
\sum 

j\in [m] \Pi j)z = 0, and thus it holds that

\Phi G,\Lambda z = (m - 1)P\scrS z = (m - 1)\beta z.
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Claim 3. Recall that \beta 1(P\scrS ) = 1 and that all eigenvectors of P\scrS from S \setminus \{ 1\} 
have a negative eigenvalue. We make a case distinction with respect to the sign of
\beta 2(P\scrS ) = \beta . If \beta > 0, then there is an eigenvector z \in S \setminus S corresponding to \beta , as the
eigenvalues of vectors from S \setminus \{ 1\} are negative. By Claim 2, there is an eigenvalue \beta \prime 

of \Phi G,\Lambda such that \beta = \beta \prime /(m - 1). Since \beta \prime \leq \beta 1(\Phi G,\Lambda ), (3.2) holds.
If \beta \leq 0, then (3.2) follows immediately, as the kernel of \Phi G,\Lambda is nontrivial and,

thus, \beta 1(\Phi G,\Lambda ) \geq 0. This concludes the proof.

3.3. Bounding clique influence. We prove an upper bound for \beta 1(\Phi G\prime ,\Lambda ) for
all induced subgraphs G\prime of G and every disjoint clique cover \Lambda of G\prime , given that
(G,\lambda ) satisfy Condition 1.3.

Lemma 3.4. Let (G,\lambda ) be an instance of the multivariate hard-core model that
satisfies Condition 1.3 for a function q and a constant C. For every S \subseteq V and every
disjoint clique cover \Lambda of G[S] it holds that the largest eigenvalue of \Phi G[S],\Lambda is at most
(2 + C)C.

In the proof of Lemma 1.6, we apply the following lemma that was already used
in [10].

Lemma 3.5. Let n \in \BbbN , let A \in \BbbC n\times n, and let \rho (A) denote the spectral radius
of A. Assume that there is a \xi \in \BbbR and a p : [n] \rightarrow \BbbR >0 such that for all i \in [n] it
holds that

\sum 
j\in [n]| A(i, j)| p(j) \leq \xi p(i). Then \rho (A) \leq \xi .

Since in [10] the above lemma is only stated and proven for a specific matrix
A \in \BbbC n\times n, we restate the proof for completion.

Proof of Lemma 3.5. Let P \in \BbbR n\times n with P (i, i) = p(i) for all i \in [n] and
P (i, j) = 0 for all i \not = j. Observe that\sum 

j\in [n]

| A(i, j)| p(j) \leq \xi p(i)

implies
\bigm\| \bigm\| P - 1AP

\bigm\| \bigm\| 
\infty \leq \xi . Consequently, we have \rho (A) = \rho 

\bigl( 
P - 1AP

\bigr) 
\leq \xi .

Note that, by Lemma 3.5, Condition 1.3 implies \beta 1

\bigl( 
\Psi G[S]

\bigr) 
\leq C for all S \subseteq V .

We show that Condition 1.3 implies the existence of a \xi from Lemma 3.5 such
that for all induced subgraphs G\prime of G and every disjoint clique cover \Lambda of G\prime there
is a function p that satisfies the conditions of Lemma 3.5 for \Phi G\prime ,\Lambda . To this end, we
use the following lemmas.

Lemma 3.6. Let (G,\lambda ) be an instance of the multivariate hard-core model with
disjoint clique cover \Lambda of size m. Further, let (X,w) be the corresponding simplicial-
complex representation with ground set U and partition \{ Ui\} i\in [m]. For all i, j \in [m]
and x \in Ui it holds that

\Phi G,\Lambda (x, \emptyset j) =  - 
\sum 
v\in \Lambda j

\Phi G,\Lambda (x, xv).

Proof. By definition,

\Phi G,\Lambda (x, \emptyset j) = PG

\biggl[ \bigcap 
w\in \Lambda j

w

\bigm| \bigm| \bigm| \bigm| x\biggr]  - PG

\biggl[ \bigcap 
w\in \Lambda j

w

\biggr] 
=  - 

\biggl( 
PG

\biggl[ \bigcup 
w\in \Lambda j

w

\bigm| \bigm| \bigm| \bigm| x\biggr]  - PG

\biggl[ \bigcup 
w\in \Lambda j

w

\biggr] \biggr) 
.
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Note that for any pair of vertices from the same clique w1, w2 \in \Lambda j with w1 \not = w2

the events that w1 is in an independent set and that w2 is in an independent set are
disjoint. Thus, we obtain

 - 
\biggl( 
PG

\biggl[ \bigcup 
w\in \Lambda j

w

\bigm| \bigm| \bigm| \bigm| x\biggr]  - PG

\biggl[ \bigcup 
w\in \Lambda j

w

\biggr] \biggr) 
=  - 

\sum 
w\in \Lambda j

(PG[w | x ] - PG[w])

=  - 
\sum 
w\in \Lambda j

\Phi G,\Lambda (x,w).

Lemma 3.7. Let (G,\lambda ) be an instance of the multivariate hard-core model with
disjoint clique cover \Lambda of size m. Further, let (X,w) be the corresponding simplicial-
complex representation with ground set U and partition \{ Ui\} i\in [m]. For all i, j \in [m]
with i \not = j and all v \in \Lambda i, w \in \Lambda j it holds that

\Phi G,\Lambda (xv, xw) = PG[v]\Psi G(v, w).

Proof. By the law of total probability,

\Phi G,\Lambda (xv, xw) = PG[w | v ] - PG[w]

= PG[w | v ] - PG[w | v ]PG[v] - PG[w | v ]PG[v]

= PG[v](PG[w | v ] - PG[w | v ])
= PG[v]\Psi G(v, w).

Lemma 3.8. Let (G,\lambda ) be an instance of the multivariate hard-core model with
disjoint clique cover \Lambda of size m. Further, let (X,w) be the corresponding simplicial-
complex representation with ground set U and partition \{ Ui\} i\in [m]. For all i, j \in [m]
with i \not = j and every w \in \Lambda j it holds that

\Phi G,\Lambda (\emptyset i, xw) =
\sum 
v\in \Lambda i

PG[v]\Psi 
0| \Lambda i\setminus \{ v\} 
G (v, w) =

\sum 
v\in \Lambda i

PG[v]\Psi Gv
(v, w),

where Gv = G[V \setminus (\Lambda i \setminus \{ v\} )].
Proof. Let \emptyset i denote the complementary event to \emptyset i, meaning that some vertex

u \in \Lambda i is an independent set drawn from the Gibbs distribution. By the law of total
probability,

\Phi G,\Lambda (\emptyset i, xw) = PG[w | \emptyset i ] - PG[w]

= PG[w | \emptyset i ] - PG[w | \emptyset i ]PG[\emptyset i] - PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \emptyset i \Bigr] PG

\Bigl[ 
\emptyset i
\Bigr] 

= PG

\Bigl[ 
\emptyset i
\Bigr] \Bigl( 
PG[w | \emptyset i ] - PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \emptyset i \Bigr] \Bigr) 

= PG

\Bigl[ \bigcup 
u\in \Lambda i

u
\Bigr] \Bigl( 
PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcap 

u\in \Lambda i

u
\Bigr] 
 - PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcup 

u\in \Lambda i

u
\Bigr] \Bigr) 

.

Because the events that two distinct vertices from the same clique are in an indepen-
dent set are disjoint, we get

PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcup 

u\in \Lambda i

u
\Bigr] 
=
\sum 
v\in \Lambda i

PG[w | v ] PG[v]

PG

\bigl[ \bigcup 
u\in \Lambda i

u
\bigr] and
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PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcap 

u\in \Lambda i

u
\Bigr] 
= PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcap 

u\in \Lambda i

u
\Bigr] PG

\bigl[ \bigcup 
v\in \Lambda i

v
\bigr] 

PG

\bigl[ \bigcup 
u\in \Lambda i

u
\bigr] 

=
\sum 
v\in \Lambda i

PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcap 

u\in \Lambda i

u
\Bigr] PG[v]

PG

\bigl[ \bigcup 
u\in \Lambda i

u
\bigr] .

Thus, we obtain

PG

\Bigl[ \bigcup 
u\in \Lambda i

u
\Bigr] \Bigl( 
PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcap 

u\in \Lambda i

u
\Bigr] 
 - PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcup 

u\in \Lambda i

u
\Bigr] \Bigr) 

=
\sum 
v\in \Lambda i

PG[v]
\Bigl( 
PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcap 

u\in \Lambda i

u
\Bigr] 
 - PG[w | v ]

\Bigr) 
.

Note that for each v \in \Lambda i it holds that

PG

\Bigl[ 
w
\bigm| \bigm| \bigm| \bigcap 

u\in \Lambda i

u
\Bigr] 
= PG

\biggl[ 
w

\bigm| \bigm| \bigm| \bigm| v,\bigcap u\in \Lambda i\setminus \{ v\} 
u

\biggr] 
.

Further, because v being in the independent set implies that no other vertex u \in \Lambda i

can be in the independent set too, it also holds that

PG[w | v ] = PG

\biggl[ 
w

\bigm| \bigm| \bigm| \bigm| v,\bigcap u\in \Lambda i\setminus \{ v\} 
u

\biggr] 
.

Consequently, we conclude that

\Phi G,\Lambda (\emptyset i, xw) =
\sum 
v\in \Lambda i

PG[v]\Psi 
0| \Lambda i\setminus \{ v\} 
G (v, w) =

\sum 
v\in \Lambda i

PG[v]\Psi Gv
(v, w).

Lemma 3.9. Let (G,\lambda ) be an instance of the multivariate hard-core model, and
let v \in V and w \in NG(v). Then PG[w] \leq  - \Psi G(v, w) = | \Psi G(v, w)| .

Proof. Since w \in NG(v), it holds that \Psi G(v, w) =  - PG[w | v ]. By Z(G) \geq 
Z(G[V \setminus \{ v\} ]) we conclude that

PG[w | v ] = \lambda w
Z(G[V \setminus NG[w]])

Z(G[V \setminus \{ v\} ])
\geq \lambda w

Z(G[V \setminus NG[w]])

Z(G)
= PG[w],

which proves the claim.

We now prove the main lemma of this subsection.

Proof of Lemma 1.6. To simplify notation, set G\prime = G[S] and m = | \Lambda | . Let
(X,w) be the simplicial-complex representation of (G\prime , \lambda [S]) with clique cover \Lambda and
let U be the corresponding ground set of (X,w) with partition \{ Ui\} i\in [m].

As we aim to prove our claim using Lemma 3.5, we need to construct a function
p : U \rightarrow \BbbR >0 such that for all x \in U it holds that\sum 

y\in U

| \Phi G\prime ,\Lambda (x, y)| p(y) \leq (2 + C)Cp(x).

To this end, we set p(xv) = q(v) for all v \in S and p(\emptyset i) =
\sum 

v\in \Lambda i
PG\prime [v]q(v) for all

i \in [m]. By Lemma 3.9 we have for all i \in [m] and w \in \Lambda i that\sum 
v\in \Lambda i

PG\prime [v]q(v) \leq PG\prime [w]q(w) +
\sum 

v\in NG\prime (w)

| \Psi G\prime (w, v)| q(v),
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which, by Condition 1.3, implies

p(\emptyset i) < (1 + C)q(w).(3.3)

Without loss of generality, assume x \in Ui for some i \in [m]. Recall that by
definition \Phi G\prime ,\Lambda (x, y) = 0 for all y \in Ui. By Lemma 3.6, we obtain

\sum 
y\in U

| \Phi G\prime ,\Lambda (x, y)| p(y) =
\sum 

j\in [m]:
j \not =i

\left(  | \Phi G\prime ,\Lambda (x, \emptyset j)| p(\emptyset j) +
\sum 
w\in \Lambda j

| \Phi G\prime ,\Lambda (x, xw)| p(xw)

\right)  

=
\sum 

j\in [m]:
j \not =i

\left(  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
w\in \Lambda j

\Phi G\prime ,\Lambda (x, xw)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| p(\emptyset j) +
\sum 
w\in \Lambda j

| \Phi G\prime ,\Lambda (x, xw)| p(xw)

\right)  
\leq 
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

| \Phi G\prime ,\Lambda (x, xw)| (p(\emptyset j) + p(xw)),

where the last step follows from the triangle inequality. Further, by our choice of p
and by (3.3), we obtain\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

| \Phi G\prime ,\Lambda (x, xw)| (p(\emptyset j) + p(xw)) < (2 + C)
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

| \Phi G\prime ,\Lambda (x, xw)| q(w).

We proceed with a case distinction based on x. Assume that x = xv for some
v \in \Lambda i. By Lemma 3.7, we have

(2 + C)
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

| \Phi G\prime ,\Lambda (xv, xw)| q(w) = (2 + C)PG\prime [v]
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

| \Psi G\prime (v, w)| q(w)

\leq (2 + C)
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

| \Psi G\prime (v, w)| q(w).

Using that the cliques are disjoint and applying Condition 1.3, we get

(2 + C)
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

| \Psi G\prime (v, w)| q(w) \leq (2 + C)
\sum 
w\in S

| \Psi G\prime (v, w)| q(w) \leq (2 + C)Cq(v)

= (2 + C)Cp(xv).

Now, assume that x = \emptyset i. By Lemma 3.8, we have

(2 + C)
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

| \Phi G\prime ,\Lambda (\emptyset i, xw)| q(w) = (2 + C)
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
v\in \Lambda i

PG\prime [v]\Psi G\prime 
v
(v, w)

\bigm| \bigm| \bigm| \bigm| \bigm| q(w)
\leq (2 + C)

\sum 
v\in \Lambda i

PG\prime [v]
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

\bigm| \bigm| \Psi G\prime 
v
(v, w)

\bigm| \bigm| q(w),D
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where the last step follows from the triangle inequality and G\prime 
v = G\prime [S \setminus (\Lambda i \setminus \{ v\} )] =

G[S \setminus (\Lambda i \setminus \{ v\} )]. As the cliques are disjoint and G\prime 
v is a subgraph of G, we apply

Condition 1.3 to obtain

(2 + C)
\sum 
v\in \Lambda i

PG\prime [v]
\sum 

j\in [m]:
j \not =i

\sum 
w\in \Lambda j

\bigm| \bigm| \Psi G\prime 
v
(v, w)

\bigm| \bigm| q(w)
= (2 + C)

\sum 
v\in \Lambda i

PG\prime [v]
\sum 

w\in S\setminus (\Lambda i\setminus \{ v\} )

\bigm| \bigm| \Psi G\prime 
v
(v, w)

\bigm| \bigm| q(w)
\leq (2 + C)

\sum 
v\in \Lambda i

PG\prime [v]Cq(v)

= (2 + C)C
\sum 
v\in \Lambda i

PG\prime [v]q(v)

= (2 + C)Cp(\emptyset i),

which concludes the proof.

3.4. Canonical paths in skeleton walks. The previous section shows that we
can bound local expansion of the simplicial-complex representation of a disjoint clique
cover based on pairwise influence between vertices. However, note that Theorem 2.3
only yields a nontrivial bound if all \alpha k are sufficiently small. Since we only obtain such
bounds on \alpha k if k is small, we introduce a more crude bound on the second largest
eigenvalue of the skeleton walk by applying the canonical-path method. Although the
resulting bound is worse if k is small compared to m, it is guaranteed to be less than
1, which is sufficient to cover the cases where using pairwise influence fails.

We start by giving a short overview on the canonical-path method. Let \scrM be a
Markov chain that is reversible with respect to its stationary distribution \pi \scrM . Let
E(\scrM ) = \{ (x, y) \in \Omega 2

\scrM | x \not = y, P\scrM (x, y) > 0\} denote the edges of the Markov
chain excluding self-loops, and let E\ast (\scrM ) = \{ (x, y) \in \Omega 2

\scrM | P\scrM (x, y) > 0\} be
the set of edges including self-loops. For each (x, y) \in E\ast (\scrM ), we set Q\scrM (x, y) =
\pi \scrM (x)P\scrM (x, y). The idea of the canonical-path method is to construct a path \gamma =
(x0 = x, x1, . . . , xl = y) for every x, y \in \Omega \scrM with x \not = y using the edges in E(\scrM )
(i.e., (xi - 1, xi) \in E(\scrM ) for all i \in [l]). We denote by E(\gamma xy) the set of edges that
are used by the path \gamma xy and by | \gamma xy| the length of a path. Further, we call a set of
paths \Gamma = \{ \gamma xy | x, y \in \Omega \scrM , x \not = y\} canonical if and only if it contains exactly one
path for each x, y \in \Omega \scrM with x \not = y, and its congestion is defined to be

\rho (\Gamma ) = max
(w,z)\in E(\scrM )

1

Q\scrM (w, z)

\sum 
x,y\in \Omega \scrM :

(w,z)\in E(\gamma xy)

| \gamma xy| \pi \scrM (x)\pi \scrM (y).

Theorem 3.10 ([47, Theorem 5]). For any reversible Markov chain \scrM and
every set of canonical paths \Gamma for \scrM it holds that

\beta 2(P\scrM ) \leq 1 - 1

\rho (\Gamma )
.

By applying the canonical-path method to the skeleton walk, we obtain the fol-
lowing lemma.
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Lemma 3.11. Let (G,\lambda ) be an instance of the multivariate hard-core model with
disjoint clique cover \Lambda of size m, and let Zmax = maxi\in [m]\{ Z(G[\Lambda i])\} . Further, let
(X,w) be the resulting simplicial-complex representation, and let \scrS = \scrS (X,w) be the
skeleton walk on (X,w). Then \beta 2(P\scrS ) \leq 1 - 1

12Z2
max

.

Proof. As discussed in the proof of Lemma 3.3, P\scrS is reversible with respect to its
stationary distribution \pi \scrS , where \pi \scrS (x) =

1
mPG[x]. Thus, Q\scrS (x, y) =

1
m(m - 1)PG[x, y].

We start by constructing the paths \Gamma = \{ \gamma xy | x, y \in U, x \not = y\} . To this end, let p
be a fixed-point-free permutation of [m]. Our construction goes as follows:

\bullet \gamma \emptyset i\emptyset j
= (\emptyset i, \emptyset j) for i \not = j,

\bullet \gamma xv\emptyset i
= (xv, \emptyset i), \gamma \emptyset ixv

= (\emptyset i, xv) for all v \in V with v /\in \Lambda i,
\bullet \gamma xvxw = (xv, \emptyset i, \emptyset j , xw) for v \in \Lambda j , w \in \Lambda i with i \not = j,
\bullet \gamma xy = (x, \emptyset p(i), y) for x, y \in Ui.

Let E(\Gamma ) =
\bigcup 

\gamma \in \Gamma E(\gamma ) and note that for all x \not = y we have | \gamma xy| \leq 3. It suffices to
upper bound

\rho (\Gamma ) \leq 3 max
e\in E(\Gamma )

1

Q\scrS (e)

\sum 
x,y\in U :

e\in E(\gamma xy)

\pi \scrS (x)\pi \scrS (y).

We derive such an upper bound by partitioning E(\Gamma ) into the three following
types of edges:

\bullet A = \{ (xv, \emptyset i) \in E(\Gamma ) | v /\in \Lambda i\} ,
\bullet B = \{ (\emptyset i, xv) \in E(\Gamma ) | v /\in \Lambda i\} ,
\bullet C = \{ (\emptyset i, \emptyset j) \in E(\Gamma ) | i \not = j\} .

We make a case distinction with respect to these types.
Case A. Let (xv, \emptyset i) \in A and without loss of generality assume v \in \Lambda j for j \not = i.

If p(j) \not = i, then (xv, \emptyset i) is only used by paths that start at xv and go to any element
in Ui (including \emptyset i). Further, if p(j) = i, then it is also used by paths from xv to any
y \in Uj with y \not = xv. Thus, we obtain

1

Q\scrS (xv, \emptyset i)
\sum 

x,y\in U :
(xv,\emptyset i)\in E(\gamma xy)

\pi \scrS (x)\pi \scrS (y) \leq 
m(m - 1)

m2

1

PG[\emptyset i | v ]

\left(    \sum 
y\in Ui

PG[y] +
\sum 
y\in Uj :
y \not =xv

PG[y]

\right)    
\leq 2

PG[\emptyset i | v ]
,

where the second inequality comes from the fact that we have
\sum 

y\in Uk
PG[y] =

PG[
\bigcup 

y\in Uk
y] = 1 for all k \in [m]. By the submultiplicativity of Z,

PG[\emptyset i | v ] =
Z(G[V \setminus (N [v] \cup \Lambda i)])

Z(G[V \setminus N [v]])
\geq Z(G[V \setminus (N [v] \cup \Lambda i)])

Z(G[V \setminus (N [v] \cup \Lambda i)])Z(G[\Lambda i \setminus N [v]])

\geq 1

Z(G[\Lambda i])
.

We obtain the bound

1

Q\scrS (xv, \emptyset i)
\sum 

x,y\in U :
(xv,\emptyset i)\in E(\gamma xy)

\pi \scrS (x)\pi \scrS (y) \leq 2Z(G[\Lambda i]).(3.4)
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Case B. For (\emptyset i, xv) \in B, by symmetry, this case is analogous to Case A. Thus,
we get

1

Q\scrS (\emptyset i, xv)

\sum 
x,y\in U :

(\emptyset i,xv)\in E(\gamma xy)

\pi \scrS (x)\pi \scrS (y) \leq 2Z(G[\Lambda i]).(3.5)

Case C. Finally, consider (\emptyset i, \emptyset j) \in C. If p(j) \not = i and p(i) \not = j, then this edge
is only used by paths from xv to xw for any pair v \in \Lambda j , w \in \Lambda i and for the direct
transition from \emptyset i to \emptyset j . If p(j) = i, then it is also used by paths from any xv for
v \in \Lambda j to \emptyset j . Symmetrically, if p(i) = j, then it is also used by paths from \emptyset i to xv

for v \in \Lambda i. Thus, we obtain

1

Q\scrS (\emptyset i, \emptyset j)
\sum 

x,y\in U :
(\emptyset i,\emptyset j)\in E(\gamma xy)

\pi \scrS (x)\pi \scrS (y)

\leq m(m - 1)

m2

1

PG[\emptyset i, \emptyset j ]

\Biggl( \sum 
v\in \Lambda j :
w\in \Lambda i

PG[v]PG[w] + PG[\emptyset i]PG[\emptyset j ]

+ PG[\emptyset j ]
\sum 
v\in \Lambda j

PG[v] + PG[\emptyset i]
\sum 
v\in \Lambda i

PG[v]

\Biggr) 

\leq 4

PG[\emptyset i, \emptyset j ]
.

Now, observe that

PG[\emptyset i, \emptyset j ] =
Z(G[V \setminus (\Lambda i \cup \Lambda j)])

Z(G)
\geq Z(G[V \setminus (\Lambda i \cup \Lambda j)])

Z(G[V \setminus (\Lambda i \cup \Lambda j)])Z(G[\Lambda i])Z(G[\Lambda j ])

=
1

Z(G[\Lambda i])Z(G[\Lambda j ])
.

Thus,

1

Q\scrS (\emptyset i, \emptyset j)
\sum 

x,y\in U
s.t. (\emptyset i,\emptyset j)\in E(\gamma xy)

\pi \scrS (x)\pi \scrS (y) \leq 3Z(G[\Lambda i])Z(G[\Lambda j ]).(3.6)

Combining (3.4)--(3.6) we get \rho (\Gamma ) \leq 12Z2
max. By Theorem 3.10 this implies

\beta 2(P\scrS ) \leq 1 - 1
12Z2

max
, which concludes the proof.

Note that Lemmas 1.6, 3.3, and 3.11 only consider the skeleton walk on the com-
plex (X,w). However, in order to bound the local expansion, we need to investigate
the skeleton walk on all links (X\tau , w\tau ) for every face \tau \in X(k) with 0 \leq k \leq m  - 2.
To achieve this, we map the link for any such face to the simplicial complex repre-
sentation of a smaller instance, such that we can apply Theorem 2.3. To this end, we
introduce the following lemma.

Lemma 3.12. Let X be a pure d-dimensional simplicial complex for d \geq 2, let
w and w\prime be two weight functions for X, and let \scrS = \scrS (X,w) and \scrS \prime = \scrS (X,w\prime ).
Further, if there is an r \in \BbbR >0 such that for all maximum faces \tau \in X(d) we have
w\prime (\tau ) = rw(\tau ), then \scrS = \scrS \prime and, in particular, \beta 2(P\scrS ) = \beta 2(P\scrS \prime ).
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Proof. We prove this statement by showing equality of the state spaces and tran-
sition probabilites. The fact that \Omega \scrS = \Omega \scrS \prime follows directly from the fact that both
walks are on the 1-skeleton of the same complex. Now, let \tau \prime \in X be any face of X.
Note that

w\prime (\tau \prime ) =
\sum 

\tau \in X(d):
\tau \prime \subseteq \tau 

w\prime (\tau ) = r
\sum 

\tau \in X(d):
\tau \prime \subseteq \tau 

w(\tau ) = rw(\tau \prime ).

Thus, the weights of all faces differ by the same factor r. Let \{ x\} , \{ y\} \in X with
x \not = y. If \{ x, y\} /\in X, then P\scrS (x, y) = 0 = P\scrS \prime (x, y). Otherwise, if \{ x, y\} \in X, then

P\scrS \prime (x, y) =
w\prime (\{ x, y\} )\sum 

\{ z\} \in X:
\{ x,z\} \in X

w\prime (\{ x, z\} )
=

rw(\{ x, y\} )
r

\sum 
\{ z\} \in X:
\{ x,z\} \in X

w(\{ x, z\} )
= P\scrS (x, y).

As both \scrS and \scrS \prime have self-loop probabilities of 0, it follows P\scrS = P\scrS \prime . This implies
\beta 2(P\scrS ) = \beta 2(P\scrS \prime ).

3.5. Bounding the mixing time. We now have everything to state and prove
our main theorem on the mixing time of block dynamics.

Theorem 1.4. Let (G,\lambda ) be an instance of the multivariate hard-core model that
satisfies Condition 1.3. Let \Lambda be a disjoint clique cover for G of size m, and let
Zmax = maxi\in [m]\{ Z(G[\Lambda i], \lambda [\Lambda i])\} . The mixing time of the block dynamics \scrB (G,\lambda ,\Lambda ),
starting from \emptyset \in \scrI (G), is bounded by

\tau 
(\emptyset )
\scrB (\varepsilon ) \leq mO((2+C)C)ZO((2+C)C)

max ln

\biggl( 
1

\varepsilon 

\biggr) 
.

Proof. By (2.1) it is sufficient to lower bound the spectral gap of P\scrB by 1
poly(Zmax)

and 1
poly(m) to prove our claim. Further, transforming the chain into a lazy ver-

sion only results in constant overhead in the mixing time. Thus, we focus on lower-
bounding 1 - \beta 2(P\scrB ), which is equivalent to upper-bounding \beta 2(P\scrB ).

Next, let (X,w) be the simplicial-complex representation based on \Lambda with ground-
set U and partitions \{ Ui\} i\in [m], and let \scrV = \scrV (X,w) denote the two-step walk on
(X,w). By Observation 3.2, we have \beta 2(P\scrB ) = \beta 2(P\scrV ) and it suffices to obtain an
upper bound on \beta 2(P\scrV ).

To this end, we aim to apply Theorem 2.3, which involves upper-bounding lo-
cal expansion of the simplicial-complex representation. Let C be the constant for
which (G,\lambda ) satisfies Condition 1.3. We proceed by proving that (X,w) is a local
(\alpha 0, . . . , \alpha m - 2)-expander, where

\alpha k \leq min

\biggl\{ 
1 - 1

12Z2
max

,
(2 + C)C

m - k  - 1

\biggr\} 
for 0 \leq k \leq m - 2.(3.7)

We start by arguing both bounds for the case k = 0. Then we generalize our arguments
for the cases k \in [m - 2].

Case k = 0. Let \scrS = \scrS (X,w) be the local skeleton walk on (X,w). By definition,
we have \alpha 0 = \beta 2(P\scrS ). Note that the first bound \alpha 0 \leq 1 - 1

12Z2
max

follows directly from

Lemma 3.11. To prove the second bound, we apply Lemma 3.3, which gives us

\alpha 0 \leq \beta 1(\Phi G,\Lambda )

m - 1
.

By Lemma 1.6, we conclude that \alpha 0 \leq (2+C)C
m - 1 .
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Case k \in [m  - 2]. By definition, we have to show for all \tau \in X(k) that the
skeleton walk \scrS \tau = \scrS (X\tau , w\tau ) on the link (X\tau , w\tau ) satisfies

\beta 2(P\scrS \tau 
) \leq min

\biggl\{ 
1 - 1

12Z2
max

,
(2 + C)C

m - k  - 1

\biggr\} 
.

We construct a subset of vertices S \subseteq V such that

S =
\bigcup 
x\in \tau 

\Biggl\{ 
N [v] if x = xv for some v \in V ,

\Lambda i if x = \emptyset i for some i \in [m].

Let G\prime = G[V \setminus S] be the subgraph induced by V \setminus S and let \lambda \prime = \lambda [V \setminus S] be
the corresponding vertex weights. Further, let \Lambda \prime = \{ \Lambda i \setminus S | i \in [m] \wedge \tau \cap Ui = \emptyset \} 
and note that \Lambda \prime is a disjoint clique cover of the multivariate hard-core instance
(G\prime , \lambda \prime ). Let (X \prime , w\prime ) be the corresponding simplicial-complex representation and let
\scrS \prime = \scrS (X \prime , w\prime ) be the skeleton walk on (X \prime , w\prime ). Note that X \prime = X\tau and that for
every maximum face \tau \prime \in X\tau (m - | \tau | ) it holds that

w\tau (\tau 
\prime ) = w(\tau \prime \cup \tau )

=
1

Z(G,\lambda )

\left(  \prod 
w\in V \setminus S

\lambda w1xw\in \tau \prime 

\right)  \Biggl( \prod 
v\in S

\lambda v1xv\in \tau 

\Biggr) 

=
1

Z
\bigl( 
G\prime , \lambda \prime \bigr) 

\left(  \prod 
w\in V \setminus S

\lambda \prime 
w1xw\in \tau \prime 

\right)  Z
\bigl( 
G\prime , \lambda \prime \bigr) 

Z(G,\lambda )

\Biggl( \prod 
v\in S

\lambda v1xv\in \tau 

\Biggr) 
= w\prime (\tau \prime )Z

\bigl( 
G\prime , \lambda \prime \bigr) w(\tau ),

where Z
\bigl( 
G\prime , \lambda \prime \bigr) w(\tau ) > 0. Thus, by Lemma 3.12, we obtain \beta 2(P\scrS \tau 

) = \beta 2(P\scrS \prime ).
To upper bound \beta 2(P\scrS \prime ), observe that
\bullet | \Lambda \prime | = m - | \tau | = m - k,
\bullet max\Lambda \prime 

i\in \Lambda \prime \{ Z(G[\Lambda \prime 
i])\} \leq Zmax, and

\bullet G\prime is and induced subgraph of G.
Thus, analogous to the case k = 0, applying Lemma 3.11 yields

\alpha k \leq 1 - 1

12max\Lambda \prime 
i\in \Lambda \prime \{ Z(G[\Lambda \prime 

i])\} 2
\leq 1 - 1

12Z2
max

.

Together, Lemmas 1.6 and 3.3 result in

\alpha k \leq (2 + C)C

| \Lambda \prime |  - 1
=

(2 + C)C

m - k  - 1
.

From (3.7) and Theorem 2.3, we conclude

\beta 2(P\scrV ) \leq 1 - 1

m

\prod 
0\leq k\leq m - 2

\biggl( 
1 - min

\biggl\{ 
1 - 1

12Z2
max

,
(2 + C)C

m - k  - 1

\biggr\} \biggr) 

= 1 - 1

m

\prod 
0\leq k\leq m - 2

max

\biggl\{ 
1

12Z2
max

, 1 - (2 + C)C

m - k  - 1

\biggr\} 
.
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2308 FRIEDRICH, G \"OBEL, KREJCA, AND PAPPIK

Let k0 = m - 2(2 + C)C  - 1 and observe that for k \leq k0 it holds that

1 - (2 + C)C

m - k  - 1
\geq 1

2
>

1

12
\geq 1

12Z2
max

.

Thus, we have

1

m

\prod 
0\leq k\leq m - 2

max

\biggl\{ 
1

12Z2
max

, 1 - (2 + C)C

m - k  - 1

\biggr\} 

\geq 1

m

\left(  \prod 
0\leq k\leq k0

\biggl( 
1 - (2 + C)C

m - k  - 1

\biggr) \right)  \left(  \prod 
k0<k\leq m - 2

1

12Z2
max

\right)  
=

1

m

\biggl( 
1

12Z2
max

\biggr) m - 2 - k0 \prod 
0\leq k\leq k0

\biggl( 
1 - (2 + C)C

m - k  - 1

\biggr) 

=
1

m

\biggl( 
1\surd 

12Zmax

\biggr) 4(2+C)C - 2 \prod 
0\leq k\leq k0

\biggl( 
1 - (2 + C)C

m - k  - 1

\biggr) 
.

Further, because ln(1 - x) \geq  - x
1 - x for x < 1, we have

ln

\left(  \prod 
0\leq k\leq k0

\biggl( 
1 - (2 + C)C

m - k  - 1

\biggr) \right)  =
\sum 

0\leq k\leq k0

ln

\biggl( 
1 - (2 + C)C

m - k  - 1

\biggr) 

\geq 
\sum 

0\leq k\leq k0

 - (2 + C)C/(m - k  - 1)

1 - (2 + C)C/(m - k  - 1)

=  - (2 + C)C
\sum 

0\leq k\leq k0

1

m - (2 + C)C  - k  - 1

=  - (2 + C)C
\sum 

(2+C)C\leq j\leq m - (2+C)C - 1

1

j

\geq  - (2 + C)C ln(m).

We obtain

\beta 2(P\scrV ) \leq 1 - 1

m

\biggl( 
1\surd 

12Zmax

\biggr) 4(2+C)C - 2

e - (2+C)C ln(m)(3.8)

= 1 - 
\biggl( 

1

m

\biggr) (2+C)C+1\biggl( 
1\surd 

12Zmax

\biggr) 4(2+C)C - 2

and thus

1 - \beta 2(P\scrB ) \geq 
1

O
\Bigl( 
Z

4(2+C)C - 2
max m(2+C)C+1

\Bigr) .
As C is assumed to be a constant, this implies the desired mixing time.

4. Univariate model: Mixing up to uniqueness. We consider the univariate
hard-core model, often just referred to as the hard-core model, in which all vertices
v \in V have the same weight \lambda v = \lambda for some \lambda \in \BbbR >0. We denote an instance of this
model by (G,\lambda ).
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We define \lambda c(\Delta ) = (\Delta  - 1)\Delta  - 1

(\Delta  - 2)\Delta to be the critical weight of the hard-core model.

As we discussed in the introduction, \lambda c(\Delta ) is the threshold for correlation decay on
general graphs and a tight upper bound for rapid mixing of Glauber dynamics.

We show that the univariate model (G,\lambda ) satisfies Condition 1.3 for all \lambda \leq \lambda c(\Delta ).
To do so, we use the following recently established result.

Lemma 4.1 ([10, Theorem 5]1). Let (G,\lambda ) be an instance of the univariate hard-
core model and assume that the maximum degree of G is bounded by \Delta . If there is a
constant \delta > 0 such that \lambda \leq (1  - \delta )\lambda c(\Delta ), then there is a constant C \in O

\bigl( 
1
\delta 

\bigr) 
such

that for all S \subseteq V it holds that
\bigm\| \bigm\| \Psi G[S]

\bigm\| \bigm\| 
\infty \leq C.

This implies the following result immediately.

Lemma 4.2. Let (G,\lambda ) be an instance of the univariate hard-core model and as-
sume that the maximum degree of G is bounded by \Delta . If there is a constant \delta > 0 such
that \lambda \leq (1 - \delta )\lambda c(\Delta ), then (G,\lambda ) satisfies Condition 1.3 for a constant C \in O

\bigl( 
1
\delta 

\bigr) 
.

Proof. By Lemma 4.1, there is a C \in O
\bigl( 
1
\delta 

\bigr) 
such that, for all S \in V and r \in S, it

holds that \sum 
v\in S

\bigm| \bigm| \Psi G[S](r, v)
\bigm| \bigm| \leq \bigm\| \bigm\| \Psi G[S]

\bigm\| \bigm\| 
\infty \leq C.

Thus, Condition 1.3 is satisfied for the same constant C and q(v) = 1 for all v \in V .

The following claim is a direct consequence of Theorem 1.4 and Lemma 4.2.

Corollary 4.3. Let (G,\lambda ) be an instance of the univariate hard-core model and
assume that the maximum degree of G is bounded by \Delta . Let \Lambda be a disjoint clique cover
for G of size m, and let Zmax = maxi\in [m]\{ Z(G[\Lambda i])\} . If there is a constant \delta > 0
such that \lambda \leq (1  - \delta )\lambda c(\Delta ), then the mixing time of the block dynamics \scrB (G,\lambda ,\Lambda ),
starting from \emptyset \in \scrI (G), is bounded by

\tau 
(\emptyset )
\scrB (\varepsilon ) \leq mO(1/\delta 2)Z

O(1/\delta 2)
max ln

\biggl( 
1

\varepsilon 

\biggr) 
.

5. Multivariate model: Comparison to clique dynamics condition. In
this section, we relate Condition 1.3 to a strict version of the clique dynamics condi-
tion, first introduced in [22].

Definition 5.1 (strict clique dynamics condition). An instance of the multivari-
ate hard-core model (G,\lambda ) satisfies the strict clique dynamics condition for a function
f : V \rightarrow \BbbR >0 and a constant \alpha \in (0, 1) if and only if for all v \in V it holds that

\sum 
w\in N(v)

\lambda w

1 + \lambda w
f(w) \leq (1 - \alpha )f(v).

We show that the strict clique dynamics condition is sufficient to imply Condi-
tion 1.3. This yields a mixing-time bound for block dynamics based on the strict
clique dynamics condition and also bounds the eigenvalues of the pairwise influence
matrix, which might be of independent interest. To obtain our result, we translate
the original instance (G,\lambda ) to the self-avoiding-walk tree and apply a recursive proof
on this tree.

1In fact, the statement is part of the proof of [10, Theorem 5].
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2310 FRIEDRICH, G \"OBEL, KREJCA, AND PAPPIK

Influence in self-avoiding-walk trees. For any instance of the multivariate
hard-core model (G,\lambda ) and any vertex r \in V , let \BbbT (G, r) denote the tree of self-
avoiding walks as defined in [52], which is constructed as follows. Assume there is a
total order of vertices in v1, . . . , vn, where n = | V | . A self-avoiding walk of length
l \geq 2 is a simple path vi1 , vi2 , . . . , vil in G. Further, a closed self-avoiding walk
vi1 , . . . , vil - 1

, vij of length l \geq 3 consists of a self-avoiding walk vi1 , . . . , vil - 1
of length

l  - 1 and an appended vertex vij such that j \in [l  - 2] and (vil - 1
, vij ) \in E. That is,

the edge (vil - 1
, vij ) closes a cycle vij , vij+1

, . . . , vil - 1
. The graph \BbbT (G, r) consists of

all closed self-avoiding walks with vi1 = r, and all self-avoiding walks with vi1 = r
and vil having degree 1 in G. Note that any vertex v \in V with v \not = r might have
multiple copies in \BbbT (G, r).

For any root r \in V , the multivariate hard-core model (G,\lambda ) is translated to a
multivariate hard-core model on \BbbT (G, r) as follows. Let vi1 , . . . , vil - 1, vij be a closed
self-avoiding walk. We fix vij always to be in the independent set (fix spin to 1) if
ij+1 > il - 1, and we fix it always to be excluded from the independent (fix spin to 0)
otherwise. We call such vertices fixed copies. For each v \in V , let C\BbbT (G,r)(v) denote
the set of all unfixed copies of v in \BbbT (G, r). We write C(v) if the tree \BbbT (G, r) is clear
from the context. In the multivariate hard-core model on \BbbT (G, r), each such copy\widehat v \in C\BbbT (G,r)(v) has weight \lambda \widehat v = \lambda v.

This way of translating (G,\lambda ) to the tree of self-avoiding walks for some root
r \in V was shown to have a variety of useful properties. One of them is that pairwise
influences are preserved in the following sense.

Lemma 5.2 ([10, Lemma 8]). Let (G,\lambda ) be an instance of the multivariate hard-
core model. For all r, v \in V and T = \BbbT (G, r) it holds that

\Psi G(r, v) =
\sum 

\widehat v\in CT (v)

\Psi T (r, \widehat v).
Lemma 5.2 states that it suffices to discuss the pairwise influence on the self-

avoiding walk tree instead of the original graph. This allows us to use the following
multiplicative property for pairwise influence along paths in tree graphs.

Lemma 5.3 ([3, Lemma B.2]). Let T = (V,E) be a tree and (T, \lambda ) be a multi-
variate hard-core model on T . Further, let v, w \in V be a pair of distinct, nonadjacent
vertices, and let u \in V with u \not = v and u \not = w be any vertex on the unique path between
v and w. Then

\Psi T (v, w) = \Psi T (v, u)\Psi T (u,w).

Bounding pairwise influence via the strict clique dynamics condition.
We start by proving that the influence of the root on a certain layer in the self-
avoiding-walk tree exhibits the following exponential decay in terms of depth. For a
tree T and integer k let LT (k) \subseteq \widehat V denote the set of vertices in T at layer k \in \BbbN .

Lemma 5.4. Let (G,\lambda ) be a multivariate hard-core model, and let r \in V . Fur-

thermore, let T = \BbbT (r,G) and let \widehat V =
\bigcup 

v\in V CT (v). Assume that (G,\lambda ) satisfies the
strict clique dynamics condition for a function f and a constant \alpha , and define the
function \widehat f : \widehat V \rightarrow \BbbR >0 with \widehat f(\widehat v) = f(v) for all \widehat v \in CT (v) and v \in V . Then for all
k \in \BbbN >0 it holds that \sum 

w\in LT (k)

| \Psi T (r, w)| \widehat f(w) \leq (1 - \alpha )kf(r).
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Proof. Note that if (G,\lambda ) satisfies the strict clique dynamics condition for a func-
tion f and a constant \alpha , then the corresponding multivariate hard-core instance on
T satisfies the strict clique dynamics condition for \widehat f and the same constant \alpha . Based
on that, we prove our claim by induction on k.

Base case: k = 1. Note that LT (1) = NT (r). Further, we have for each w \in NT (r)
by definition

| \Psi T (r, w)| = | PT [w | r ] - PT [w | r ]| \leq \lambda w

1 + \lambda w
.

Thus, by the strict clique dynamics condition, we obtain\sum 
w\in LT (1)

| \Psi T (r, w)| \widehat f(w) \leq \sum 
w\in LT (1)

\lambda w

1 + \lambda w

\widehat f(w) \leq (1 - \alpha ) \widehat f(r) = (1 - \alpha )f(r),

which proves the case k = 1.
Induction step: k > 1. Assume that the statement holds for k  - 1. For every

u \in LT (k  - 1), let Tu denote the subtree rooted at u, and let LTu
(l) denote the

vertices at layer l \in \BbbN in Tu. Note that the sets LTu(1) for u \in LT (k  - 1) are a
partition of LT (k). By Lemma 5.3, we get\sum 

w\in LT (k)

| \Psi T (r, w)| \widehat f(w) = \sum 
u\in LT (k - 1)

\sum 
w\in LTu (1)

| \Psi T (r, w)| \widehat f(w)
=

\sum 
u\in LT (k - 1)

| \Psi T (r, u)| 
\sum 

w\in LTu (1)

| \Psi T (u,w)| \widehat f(w).
Further, for every u \in LT (k  - 1) it holds that LTu

(1) \subset NT (u), and for all w \in LTu
(1)

we have

| \Psi T (u,w)| = | PT [w | u ] - PT [w | u ]| \leq \lambda w

1 + \lambda w
.

Thus, by the strict clique dynamics condition, we get\sum 
u\in LT (k - 1)

| \Psi T (r, u)| 
\sum 

w\in LTu (1)

| \Psi T (u,w)| \widehat f(w) < \sum 
u\in LT (k - 1)

| \Psi T (r, u)| 
\sum 

w\in NT (u)

\lambda w

1 + \lambda w

\widehat f(w)
\leq (1 - \alpha )

\sum 
u\in LT (k - 1)

| \Psi T (r, u)| \widehat f(u).
By the induction hypothesis, we obtain

(1 - \alpha )
\sum 

u\in LT (k - 1)

| \Psi T (r, u)| \widehat f(u) \leq (1 - \alpha )(1 - \alpha )k - 1f(r) = (1 - \alpha )kf(r),

which concludes the proof.

Now, we use this layerwise decay in the self-avoiding-walk tree to prove that
Condition 1.3 is satisfied.

Lemma 5.5. Let (G,\lambda ) be an instance of the multivariate hard-core model. If
(G,\lambda ) satisfies the strict clique dynamics condition for a function f and a constant
\alpha , then it also satisfies Condition 1.3 for q = f and C = 1

\alpha .
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Proof. Note that if (G,\lambda ) satisfies the strict clique dynamics condition, the same
holds for the instance (G[S], \lambda [S]) for the same function f and constant \alpha .

Assume G[S] is connected and let G\prime = G[S]. Further, let T = \BbbT (r,G\prime ) and\widehat S =
\bigcup 

v\in S CT (v), and define the function \widehat f : \widehat S \rightarrow \BbbR >0 as in Lemma 5.4. Recall that,
by definition, \Psi G\prime (r, r) = 0. By Lemma 5.2, we get\sum 

v\in S

| \Psi G\prime (r, v)| f(v) =
\sum 

v\in S\setminus \{ r\} 

| \Psi G\prime (r, v)| f(v)

=
\sum 

v\in S\setminus \{ r\} 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\widehat v\in CT (v)

\Psi T (r, \widehat v)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| f(v)

\leq 
\sum 

v\in S\setminus \{ r\} 

\sum 
\widehat v\in CT (v)

| \Psi T (r, \widehat v)| \widehat f(\widehat v).
Note that the sets CT (v) for v \in S \setminus \{ r\} are a partition of \widehat S \setminus \{ r\} . Recall that

LT (k) \subset \widehat S denotes the vertices in T at layer k \in \BbbN , and observe that the sets LT (k)

for k \in \BbbN >0 are a partition of \widehat S \setminus \{ r\} as well. Thus, we have\sum 
v\in S\setminus \{ r\} 

\sum 
\widehat v\in CT (v)

| \Psi T (r, \widehat v)| \widehat f(\widehat v) \leq \sum 
k\in \BbbN >0

\sum 
w\in LT (k)

| \Psi T (r, w)| \widehat f(w).
By Lemma 5.4, we obtain the desired bound:\sum 

k\in \BbbN >0

\sum 
w\in LT (k)

| \Psi T (r, w)| \widehat f(w) \leq f(r)
\sum 

k\in \BbbN >0

(1 - \alpha )k =
1

\alpha 
f(r).

Now, assume G[S] is not connected. Set G\prime to be the largest connected component
in G[S] that contains r and let S\prime \subset S be the set of vertices in G\prime . The claim
follows from applying the proof above to G\prime with vertex set S\prime and by observing that
\Psi G[S](r, v) = 0 for all v \in S \setminus S\prime .

Lemma 1.5 immediately implies with Theorem 1.4 the following result for the
mixing time of block dynamics under a strict clique dynamics condition.

Corollary 5.6. Let (G,\lambda ) be an instance of the multivariate hard-core model.
Let \Lambda be a given disjoint clique cover for G of size m, and let Zmax = maxi\in [m]

\{ Z(G[\Lambda i])\} . If (G,\lambda ) satisfies the strict clique dynamics condition for a function f
and a constant \alpha , then the mixing time of the block dynamics \scrB = \scrB (G,\lambda ,\Lambda ), starting
from \emptyset \in \scrI (G), is bounded by

\tau 
(\emptyset )
\scrB (\varepsilon ) \leq mO(1/\alpha 2)Z

O(1/\alpha 2)
max ln

\biggl( 
1

\varepsilon 

\biggr) 
.

Finally, Lemma 1.5 together with Lemma 3.5 implies the following result.

Corollary 5.7. Let (G,\lambda ) be an instance of the multivariate hard-core model
that satisfies the strict clique dynamics condition for a function f and a constant \alpha .
For every S \subseteq V it holds that \beta 1

\bigl( 
\Psi G[S]

\bigr) 
\leq 1

\alpha .

6. The monoatomic hard-sphere model. We study the grand canonical en-
semble of the monoatomic hard-sphere model in a d-dimensional finite cubic region
\BbbV = [0, \ell )d of Euclidean space with side length \ell \in \BbbR \geq 1. We write | \BbbV | = \ell d for the
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volume of \BbbV . The hard-sphere model describes the distribution of identical particles,
represented as d-dimensional balls in \BbbV . This distribution is governed by a fugacity
parameter \lambda \in \BbbR >0, describing the contribution of each particle to the chemical po-
tential, and hard-core interactions between particles, meaning that no two particles
are allowed to overlap. For simplicity, it is common to assume particles to have vol-
ume 1, meaning that their radius is r = (1/vd)

1/d, where vd denotes the volume of a
unit sphere in d dimensions.

A probabilistic interpretation of grand canonical ensemble is that the centers of
particles are distributed according to a Poisson point process on \BbbV with activity \lambda ,
conditioned on the fact that particles are nonoverlapping (i.e., each pair of distinct
centers has distance at least 2r). Note that this implies that particles are indistin-
guishable, meaning that exchanging the positions of two particles results in exactly
the same configuration of the system. We aim for approximating the grand canonical
partition function, which can be seen as the normalizing constant of the resulting
distribution of system states. As a reminder, the partition function can formally be
defined as

Z(\BbbV , \lambda ) = 1 +
\sum 

k\in \BbbN >0

\lambda k

k!

\int 
\BbbV k

D
\Bigl( 
x(1), . . . , x(k)

\Bigr) 
d\nu d\times k,

where

D
\Bigl( 
x(1), . . . , x(k)

\Bigr) 
=

\Biggl\{ 
1 if d

\bigl( 
x(i), x(j)

\bigr) 
\geq 2r for all i, j \in [k] with i \not = j,

0 otherwise

and \nu d\times k is the Lebesgue measure on \BbbR d\times k.

6.1. Hard-core representation. To apply our result for block dynamics to the
continuous hard-sphere model, we will approximate it by an instance of the hard-core
model. The main idea of this discretization is to restrict the centers of spheres to
vertices in an integer grid, while scaling the fugacity \lambda and the radius r appropriately.
The resulting discrete hard-sphere model can easily be transformed into a hard-core
instance. We proceed by formalizing the direct transformation from the continuous
hard-sphere model instance to the discrete hard-core model.

Let (\BbbV , \lambda ) be an instance of the continuous hard-sphere model with \BbbV = [0, \ell )d.
Recall that we fixed the radius r = (1/vd)

1/d. Let \BbbG (n) = \BbbZ d \cap [0, n)d be a finite
integer grid of side length n \in \BbbN >0. For any \rho \in \BbbR >0 such that \rho \ell \in \BbbN >0, the hard-
core representation of (\BbbV , \lambda ) with resolution \rho is a hard-core model (G\rho , \lambda \rho ) with
G\rho = (V\rho , E\rho ) and

\bullet there is a vertex vx \in V\rho for each grid point x \in \BbbG (\rho \ell ),
\bullet there is an edge (vx, vy) \in E\rho for any pair of grid points x, y \in \BbbG (\rho \ell ) with

x \not = y and d(x, y) \leq 2\rho r, and
\bullet \lambda \rho = \rho  - d\lambda .

Note that in the above definition d(x, y) denotes the Euclidean distance.
We will use the following convergence result for the partition function of the

hard-core representation in terms of the resolution \rho to approximate the hard-sphere
partition function.

Lemma 6.1. Let (\BbbV , \lambda ) be an instance of the continuous hard-sphere model in d
dimensions. For each resolution \rho \geq 2

\surd 
d it holds that

1 - \rho  - 1e\Theta (| \BbbV | ln| \BbbV | ) \leq Z(\BbbV , \lambda )
Z(G\rho , \lambda \rho )

\leq 1 + \rho  - 1e\Theta (| \BbbV | ln| \BbbV | ).
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Proof. Note that it suffices to bound the additive error | Z(\BbbV , \lambda ) - Z(G\rho , \lambda \rho )| .
Because Z(\BbbV , \lambda ) \geq 1, this directly results in the desired multiplicative bound.

In order to obtain an additive bound, we start by transforming Z(G\rho , \lambda \rho ) to a
form that is more similar to the form of Z(\BbbV , \lambda ).

Let \BbbV = [0, \ell )d and let \varphi (\rho ) : \BbbG (\rho \ell ) \rightarrow \BbbV with (x1, . . . , xd) \mapsto \rightarrow \varphi (\rho )(x) = (x1/\rho , . . . ,
xd/\rho ). Note that, for all x(i), x(j) \in \BbbG (\rho \ell ) it holds that

d
\Bigl( 
x(i), x(j)

\Bigr) 
\geq 2\rho r \updownarrow d

\Bigl( 
\varphi (\rho )

\Bigl( 
x(i)
\Bigr) 
, \varphi (\rho )

\Bigl( 
x(j)

\Bigr) \Bigr) 
\geq 2r.

Thus, we see that

Z(G\rho , \lambda \rho ) =
\sum 

I\in \scrI (G\rho )

\lambda | I| 
\rho 

= 1 +
\sum 

k\in \BbbN >0

\sum 
I\in \scrI (G\rho )
| I| =k

\lambda k
\rho 

= 1 +
\sum 

k\in \BbbN >0

\lambda k
\rho 

k!

\sum 
(x(1),...,x(k))
\in (\BbbG (\rho \ell ))k

D
\Bigl( 
\varphi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . , \varphi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 

= 1 +
\sum 

k\in \BbbN >0

\lambda k

k!

\sum 
(x(1),...,x(k))
\in (\BbbG (\rho \ell ))k

\biggl( 
1

\rho 

\biggr) d\cdot k

D
\Bigl( 
\varphi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . , \varphi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 
.(6.1)

We continue by rewriting

\sum 
(x(1),...,x(k))
\in (\BbbG (\rho \ell ))k

\biggl( 
1

\rho 

\biggr) d\cdot k

D
\Bigl( 
\varphi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . , \varphi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 

for any fixed k \in \BbbN >0. Let \varphi (\rho )(\BbbG (\rho \ell )) \subseteq \BbbV denote the image of \varphi (\rho ), and let
\Phi (\rho ) : \BbbV \rightarrow \varphi (\rho )(\BbbG (\rho \ell )) with

(x1, . . . , xd) \mapsto \rightarrow 
\biggl( 
\lfloor \rho x1\rfloor 
\rho 

, . . . ,
\lfloor \rho xd\rfloor 
\rho 

\biggr) 
.

Further, for all k \in \BbbN >0 and all
\bigl( 
x(1), . . . , x(k)

\bigr) 
\in 
\bigl( 
\varphi (\rho )(\BbbG (\rho \ell ))

\bigr) k
, let

W
(\rho )

x(1),...,x(k) =
\Bigl\{ \Bigl( 

y(1), . . . , y(k)
\Bigr) 
\in \BbbV k

\bigm| \bigm| \bigm| \forall i \in [k] : \Phi (\rho )
\Bigl( 
y(i)
\Bigr) 
= x(i)

\Bigr\} 
=

\biggl( \Bigl( 
\Phi (\rho )

\Bigr)  - 1\Bigl( 
x(1)

\Bigr) \biggr) 
\times \cdot \cdot \cdot \times 

\biggl( \Bigl( 
\Phi (\rho )

\Bigr)  - 1\Bigl( 
x(k)

\Bigr) \biggr) 
.

Note that the sets W
(\rho )

x(1),...,x(k) partition \BbbV k into (d \times k)-dimensional hypercubes of

side length 1/\rho . Thus, for all
\bigl( 
x(1), . . . , x(k)

\bigr) 
\in 
\bigl( 
\varphi (\rho )(\BbbG (\rho \ell ))

\bigr) k
, it holds that

\nu d\times k
\Bigl( 
W

(\rho )

x(1),...,x(k)

\Bigr) 
=

\biggl( 
1

\rho 

\biggr) d\cdot k

.
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By this and by the definition of a Lebesgue integral for elementary functions, we
obtain\sum 

(x(1),...,x(k))
\in (\BbbG (\rho \ell ))k

\biggl( 
1

\rho 

\biggr) d\cdot k

D
\Bigl( 
\varphi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . , \varphi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 

=
\sum 

(x(1),...,x(k))
\in (\BbbG (\rho \ell ))k

\nu d\times k

\biggl( 
W

(\rho )

\varphi (\rho )(x(1)),...,\varphi (\rho )(x(k))

\biggr) 
\cdot D
\Bigl( 
\varphi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . , \varphi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 

=
\sum 

(x(1),...,x(k))
\in (\varphi (\rho )(\BbbG (\rho \ell )))

k

\nu d\times k
\Bigl( 
W

(\rho )

x(1),...,x(k)

\Bigr) 
\cdot D
\Bigl( 
x(1), . . . , x(k)

\Bigr) 

=

\int 
\BbbV k

D
\Bigl( 
\Phi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . ,\Phi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 
d\nu d\times k.

Substituting this expression back into (6.1) yields

Z(G\rho , \lambda \rho ) = 1 +
\sum 

k\in \BbbN >0

\lambda k

k!

\int 
\BbbV k

D
\Bigl( 
\Phi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . ,\Phi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 
d\nu d\times k.

We now express | Z(\BbbV , \lambda ) - Z(G\rho , \lambda \rho )| in terms of the absolute difference of the
integrals for all k \in \BbbN >0. It holds that\bigm| \bigm| \bigm| \bigm| \int 

\BbbV k

D
\Bigl( 
x(1), . . . , x(k)

\Bigr) 
d\nu d\times k  - 

\int 
\BbbV k

D
\Bigl( 
\Phi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . ,\Phi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 
d\nu d\times k

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
\BbbV k

\bigm| \bigm| \bigm| D\Bigl( x(1), . . . , x(k)
\Bigr) 
 - D

\Bigl( 
\Phi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . ,\Phi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) \bigm| \bigm| \bigm| d\nu d\times k.

Let N (\rho ) \subseteq \BbbV k be such that for all
\bigl( 
x(1), . . . , x(k)

\bigr) 
\in N (\rho ) we have that

D
\Bigl( 
x(1), . . . , x(k)

\Bigr) 
\not = D

\Bigl( 
\Phi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . ,\Phi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 
.

As D is an indicator function, it holds that\int 
\BbbV k

\bigm| \bigm| \bigm| D\Bigl( x(1), . . . , x(k)
\Bigr) 
 - D

\Bigl( 
\Phi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . ,\Phi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) \bigm| \bigm| \bigm| d\nu d\times k = \nu d\times k
\Bigl( 
N (\rho )

\Bigr) 
.

We construct a superset of N (\rho ), for which we calculate the Lebesgue measure.
First, note that N (\rho ) = \emptyset for k = 1, as in this case D

\bigl( 
x(1)

\bigr) 
= D

\bigl( 
\Phi (\rho )

\bigl( 
x(1)

\bigr) \bigr) 
= 1 for

all x(1) \in \BbbV . Further, let K =
\bigl( 
\ell 
\surd 
d/(2r)

\bigr) d
. Note that, for all k > K, it holds that at

least two particles have distance less than 2r, meaning that such a configuration has
always overlapping particles and N (\rho ) = \emptyset . We are left with considering 2 \leq k \leq K.

We observe that, for all
\bigl( 
x(1), . . . , x(k)

\bigr) 
\in \BbbV k such that

D
\Bigl( 
x(1), . . . , x(k)

\Bigr) 
\not = D

\Bigl( 
\Phi (\rho )

\Bigl( 
x(1)

\Bigr) 
, . . . ,\Phi (\rho )

\Bigl( 
x(k)

\Bigr) \Bigr) 
,

there is a pair of points x(i), x(j) for i, j \in [k] such that i \not = j and

d
\Bigl( 
x(i), x(j)

\Bigr) 
< 2r \leq d

\Bigl( 
\Phi (\rho )

\Bigl( 
x(i)
\Bigr) 
,\Phi (\rho )

\Bigl( 
x(j)

\Bigr) \Bigr) 
or
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d
\Bigl( 
x(i), x(j)

\Bigr) 
\geq 2r > d

\Bigl( 
\Phi (\rho )

\Bigl( 
x(i)
\Bigr) 
,\Phi (\rho )

\Bigl( 
x(j)

\Bigr) \Bigr) 
.

As for every point x(i) \in \BbbV , it holds that

d
\Bigl( 
x(i),\Phi (\rho )

\Bigl( 
x(i)
\Bigr) \Bigr) 

\leq 
\surd 
d

\rho 
,

there is a pair of points x(i), x(j) for i, j \in [k] such that i \not = j and\bigm| \bigm| \bigm| 2r  - d
\Bigl( 
x(i), x(j)

\Bigr) \bigm| \bigm| \bigm| \leq 2

\surd 
d

\rho 
.

For all i, j \in [k] with i \not = j let S
(\rho )
i,j \subseteq \BbbV k be the set of points

\bigl( 
x(1), . . . , x(k)

\bigr) 
\in \BbbV k

such that this is the case. Then

\nu d\times k
\Bigl( 
N (\rho )

\Bigr) 
\leq \nu d\times k

\left(  \bigcup 
1\leq i<j\leq k

S
(\rho )
i,j

\right)  \leq 
\sum 

1\leq i<j\leq k

\nu d\times k
\Bigl( 
S
(\rho )
i,j

\Bigr) 
.

By Fubini's theorem, noting that S
(\rho )
i,j only depends on i and j, we get

\nu d\times k
\Bigl( 
S
(\rho )
i,j

\Bigr) 
=

\int 
\BbbV k

1

\Biggl\{ \bigm| \bigm| \bigm| 2r  - d
\Bigl( 
x(i), x(j)

\Bigr) \bigm| \bigm| \bigm| \leq 2

\surd 
d

\rho 

\Biggr\} 
d\nu d\times k

= \ell d(k - 2)

\int 
\BbbV 2

1

\Biggl\{ \bigm| \bigm| \bigm| 2r  - d
\Bigl( 
x(i), x(j)

\Bigr) \bigm| \bigm| \bigm| \leq 2

\surd 
d

\rho 

\Biggr\} 
d\nu d\times 2

\leq \ell d(k - 1) \cdot 

\left(  \Biggl( 2r + 2

\surd 
d

\rho 

\Biggr) d

 - 

\Biggl( 
2r  - 2

\surd 
d

\rho 

\Biggr) d
\right)  ,

where the last equality comes from the fact that r was chosen as the radius of a ball
of volume 1 in d dimensions. By the assumption \rho \geq 2

\surd 
d and the binomial theorem,

we further bound\Biggl( 
2r + 2

\surd 
d

\rho 

\Biggr) d

 - 

\Biggl( 
2r  - 2

\surd 
d

\rho 

\Biggr) d

=

d\sum 
i=0

2 \cdot 1\{ i is odd\} 
\biggl( 
d

i

\biggr) \bigl( 
2r
\bigr) d - i

\Biggl( 
2

\surd 
d

\rho 

\Biggr) i

=
2
\surd 
d

\rho 

d\sum 
i=1

2 \cdot 1\{ i is odd\} 
\biggl( 
d

i

\biggr) \bigl( 
2r
\bigr) d - i

\Biggl( 
2

\surd 
d

\rho 

\Biggr) i - 1

\leq 2
\surd 
d

\rho 

d\sum 
i=1

2 \cdot 1\{ i is odd\} 
\biggl( 
d

i

\biggr) \bigl( 
2r
\bigr) d - i

1i - 1

\leq 2
2
\surd 
d

\rho 

\bigl( 
2r + 1

\bigr) d
.

Using this bound for \nu d\times k(S
(\rho )
i,j ), we obtain

\nu d\times k
\Bigl( 
N (\rho )

\Bigr) 
\leq k2 \cdot 2 \cdot \ell d(k - 1) \cdot 2

\surd 
d

\rho 
\cdot (2r + 1)

d
.
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Thus, we get

| Z(\BbbV , \lambda ) - Z(G\rho , \lambda \rho )| \leq 
K\sum 

k=2

\lambda k

k!
\nu d\times k

\Bigl( 
N (\rho )

\Bigr) 
\leq 1

\rho 

K\sum 
k=2

\lambda k

k!
k2 \cdot 4\ell d(k - 1) \cdot 

\surd 
d \cdot (2r + 1)

d
.

We simplify the bound further by

1

\rho 

K\sum 
k=2

\lambda k

k!
k2 \cdot 4\ell d(k - 1) \cdot 

\surd 
d \cdot (2r + 1)

d \leq 1

\rho 
K2 \cdot 4\ell d(K - 1) \cdot 

\surd 
d \cdot (2r + 1)

d
K\sum 

k=2

\lambda k

k!

\leq 1

\rho 
K2 \cdot 4\ell d(K - 1) \cdot 

\surd 
d \cdot (2r + 1)

d
e\lambda ,

where the last inequality follows from the Taylor expansion of ex at 0.
Overall, we bound

| Z(\BbbV , \lambda ) - Z(G\rho , \lambda \rho )| \leq 
1

\rho 
K2 \cdot 4\ell d(K - 1) \cdot 

\surd 
d \cdot (2r + 1)

d
e\lambda 

\leq 1

\rho 
e\Theta (Kd ln(\ell )+ln(r+1)+e\lambda ).

Observe that r \in O(1) and e\lambda \in O(1). Further, for r = (1/vd)
1/d it holds that

K \in O
\bigl( 
\ell d
\bigr) 
. Thus we have

| Z(\BbbV , \lambda ) - Z(G\rho , \lambda \rho )| \leq 
1

\rho 
e\Theta (\ell 

d ln(\ell d)) =
1

\rho 
e\Theta (| \BbbV | ln(| \BbbV | )),

which concludes the proof.

6.2. Approximation bound. We aim for applying Corollary 4.3 to the hard-
core representation of the hard-sphere model. In order to do so, we need a bound on
the maximum degree \Delta \rho of the graph G\rho for any sufficiently large resolution \rho . Let
bd(s) denote the number of integer grid points in a d-dimensional sphere of radius s
centered at the origin. Note that the number of neighbors of a vertex vx \in V\rho for any
grid point x \in \BbbG (\rho \ell ) is upper bounded by bd(2\rho r). We use the following bound on bd.

Lemma 6.2. Let \gamma \in (0, 1] and s \in \BbbR >0. For all \rho \geq 
\bigl( 
2
\surd 
d
\bigr) d
/(\gamma s) it holds that

bd(\rho s) \leq (1 + \gamma ) \cdot vd \cdot (\rho s)d.
Proof. We start by considering a sphere of radius \rho s+

\surd 
d at the origin. Note that

this enlarged sphere contains for each grid point (x1, . . . , xd) in the original sphere
the cubic region [x1, x1 + 1]\times \cdot \cdot \cdot \times [xd, xd + 1] of volume 1. Thus, the volume of the
enlarged sphere is a trivial upper bound on the number of grid points in the original
sphere.

Formally, we get

bd(\rho s) \leq vd \cdot 
\Bigl( 
\rho s+

\surd 
d
\Bigr) d

,

which we rewrite as

vd \cdot 
\Bigl( 
\rho s+

\surd 
d
\Bigr) d

= vd \cdot (\rho s)d + vd \cdot 
\sum 
i\in [d]

\biggl( 
d

i

\biggr) 
(\rho s)

d - i
\surd 
d
i
.
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Further, note that for our choice of \rho it holds that \rho s \geq 1. Thus, we get

vd \cdot (\rho s)d + vd \cdot 
\sum 
i\in [d]

\biggl( 
d

i

\biggr) 
(\rho s)

d - i
\surd 
d
i
\leq vd \cdot (\rho s)d + vd \cdot (\rho s)d - 1 \cdot 2d

\surd 
d
d

= vd \cdot (\rho s)d \cdot 
\biggl( 
1 +

1

\rho s

\Bigl( 
2
\surd 
d
\Bigr) d\biggr) 

.

We conclude the proof by noting that
\bigl( 
2
\surd 
d
\bigr) d
/\rho s \leq \gamma .

As we fixed r = (1/vd)
1/d we can immediately conclude that for every \gamma \in (0, 1]

there is some \rho \gamma \in \Theta (1/\gamma ) such that for all \rho \geq \rho \gamma it holds that

\Delta \rho \leq (1 + \gamma )(2\rho )
d
.

Finally, the following general lemma will help us to turn a sampling scheme for
\mu (G\rho ,\lambda \rho ) into a randomized approximation of Z(G\rho , \lambda \rho ).

Lemma 6.3 ([22, Lemma 13]). Let (G,\lambda ) be an instance of the multivariate hard-
core model and let \Lambda be a clique cover of size m with Zmax = maxi\in [m]\{ Z(G\rho [\Lambda i])\} .
Further, for i \in [m] let Vi = V \setminus 

\bigcup 
j<i \Lambda j. For every \varepsilon \in (0, 1] there are s \in 

\Theta 
\bigl( 
mZmax/\varepsilon 

2
\bigr) 
and \varepsilon s \in \Theta (\varepsilon /(mZmax)) such that a randomized \varepsilon -approximation of

Z(G,\lambda ) can be computed by drawing s samples \varepsilon s-approximately from \mu (G[Vi]) for
each i \in [m].

Note that sampling from \mu (G[Vi]) means sampling from \mu (G) for i = 0 and ignoring
all cliques \{ \Lambda j\} j<i for i \geq 1.

Theorem 1.1. Let (\BbbV , \lambda ) be an instance of the continuous hard-sphere model with
\BbbV = [0, \ell )d. If there is a \delta \in (0, 1] such that

\lambda \leq (1 - \delta )
e

2d
,

then for each \varepsilon \in (0, 1] there is a randomized \varepsilon -approximation of Z(\BbbV , \lambda ) computable

in time polynomial in | \BbbV | 1/\delta 
2

and 1
\varepsilon .

Proof. Set \gamma = \delta /2 and \varepsilon \prime = \varepsilon /3. By combining Lemmas 1.2 and 6.2, we know
that we can choose a resolution \rho \in \Theta 

\bigl( 
e| \BbbV | ln| \BbbV | /(\varepsilon \prime \gamma )

\bigr) 
= \Theta 

\bigl( 
e| \BbbV | ln| \BbbV | /(\varepsilon \gamma )

\bigr) 
such that

1 - \varepsilon \prime \leq Z(\BbbV , \lambda )
Z(G\rho , \lambda \rho )

\leq 1 + \varepsilon \prime and(6.2)

\Delta \rho \leq (1 + \gamma )(2\rho )
d
.(6.3)

Note that (1 - \varepsilon \prime )2 \geq 1 - \varepsilon and (1+\varepsilon \prime )2 \leq 1+\varepsilon . Thus, (6.2) implies that it is sufficient
to \varepsilon \prime -approximate Z(G\rho , \lambda \rho ). We start by arguing that we can apply Corollary 4.3 to
Z(G\rho , \lambda \rho ). Then, we construct a disjoint clique cover and show that each step of the
block dynamics based on that cover can be computed efficiently. Finally, we will use
Lemma 6.3 to get the desired approximation.

To apply Corollary 4.3, we need to show that \lambda \rho \leq (1 - \delta \prime )\lambda c(\Delta \rho ) for some
\delta \prime \in (0, 1]. To this end, we choose \delta \prime = \delta /2. Due to (6.3) we know that

\lambda c(\Delta \rho ) =
(\Delta \rho  - 1)\Delta \rho  - 1

(\Delta \rho  - 2)\Delta \rho 
\geq 

\Bigl( 
(1 + \gamma )(2\rho )

d  - 1
\Bigr) (1+\gamma )(2\rho )d - 1

\Bigl( 
(1 + \gamma )(2\rho )

d  - 2
\Bigr) (1+\gamma )(2\rho )d

.
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Now, note that

\lambda \leq (1 - \delta )
e

2d
\leq 

1 - \delta 
2

1 + \delta 
2

e

2d
=

1 - \delta \prime 

1 + \gamma 

e

2d
\leq (1 - \delta \prime )\rho d

\Bigl( 
(1 + \gamma )(2\rho )

d  - 1
\Bigr) (1+\gamma )(2\rho )d - 1

\Bigl( 
(1 + \gamma )(2\rho )

d  - 2
\Bigr) (1+\gamma )(2\rho )d

,

where the last inequality comes from the fact that x (x - 1)x - 1

(x - 2)x converges to e from

above as x \rightarrow \infty . Dividing by \rho d yields \lambda \rho = \rho  - d\lambda \leq (1 - \delta \prime )\lambda c(\Delta \rho ).
We now construct the disjoint clique cover that we are going to use. This is done

by dividing the grid \BbbG (\rho \ell ) into cubic regions of side length a = \lfloor 2\rho \surd 
d
v
 - 1/d
d \rfloor . Formally,

for a tuple (i1, . . . , id) \in \BbbN d, let

\BbbH i1,...,id = \{ (x1, . . . , xd) \in \BbbG | \forall j \in [d] : ija \leq xj < (ij + 1)a\} .

Note that for every pair of grid points x, y \in \BbbH i1,...,id it holds that d(x, y) < 2\rho v
 - 1/d
d =

2\rho r. Thus, the set of vertices, corresponding to grid points in \BbbH i1,...,id , form a clique
in G\rho . We obtain a clique cover \Lambda of size m = | \Lambda | \in O

\bigl( 
(\rho \ell /a)d

\bigr) 
= O(| \BbbV | ). Further,

it holds that

Zmax \leq 1 + ad\lambda \rho = 1 + ad\rho  - d\lambda \in O(1).

By Corollary 4.3, the block dynamics based on \Lambda have mixing time that is logarithmic
in 1/\varepsilon s for any sampling error \varepsilon s \in (0, 1] and polynomial in | \Lambda | . The latter implies

that the mixing time is also polynomials in | \BbbV | 1/\delta 
2

.
We proceed by arguing that we can compute each step efficiently. Note that we

cannot construct the graph explicitly, as it would be far too large for our choice of
resolution \rho . However, by identifying each vertex by its corresponding grid point,
deciding whether there is an edge between two vertices or if a vertex belongs to a
certain clique can be done by comparing integers up to size O(\rho \ell ), which can be done
in O(ln(\rho \ell )) = O(| \BbbV | ln| \BbbV | ). Choosing a clique from the clique cover can be done
by choosing d integers up to size O(\ell ). Now, assume the current state of the block
dynamics Markov chain is I \in \scrI (G\rho ). For a given clique \Lambda i \in \Lambda , we can sample from

\mu | \Lambda i
( \cdot | \sigma (I)

| V \setminus \Lambda i
) by the following procedure.

(1) With probability 1
Z(G\rho [\Lambda i])

set I+ = \emptyset . Otherwise, draw x \in \BbbH i uniformly

at random, where \BbbH i is the region of the grid corresponding to \Lambda i, and set
I+ = \{ vx\} .

(2) If I \cup I+ \in \scrI (G\rho ), output I+. Otherwise, restart from (1).
Simple calculations show that this rejection sampler results in the desired output
distribution. Note that (1) involves computing Z(G\rho [\Lambda i]) = 1+| \Lambda i| \rho  - d\lambda and sampling
d integers up to size O(a), which can be done in O(ln(a)) = O(| \BbbV | ln| \BbbV | ). Moreover, we
never reject I+ in (2) if I+ = \emptyset , which happens with probability at least 1/Z(G\rho [\Lambda i]).
Thus, the number of restarts is dominated by a geometric random variable with
success probability 1/Z(G\rho [\Lambda i]) and we almost surely require O(Z(G\rho [\Lambda i])) = O(1)
trials.

We now know that we can sample \varepsilon s-approximately from \mu (G\rho ,\lambda \rho ) in time poly-

nomial in | \BbbV | 1/\delta 
2

and ln(1/\varepsilon s). Applying Lemma 6.3 proves the theorem.
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