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An adjacent vertex distinguishing (AVD-) total coloring of a graph G is a total coloring such 
that any two adjacent vertices u and v have distinct sets of colors, that is, C(u) �= C(v), 
where C(v) is the set of colors of the edges incident to v and the color of v . The adjacent 
vertex distinguishing (AVD)-total chromatic number of a graph G , χ ′′

a (G) is the minimum 
integer k such that there exists an AVD-total coloring of G using k colors. It is known that 
χ ′′

a (G) ≥ � + 1, where � is the maximum degree of the graph. The AVD-total coloring 
conjecture states that for any graph G , χ ′′

a (G) ≤ � + 3. In this paper, we study AVD-total 
coloring in split graphs. We verify the AVD-total coloring conjecture for split graphs and 
classify certain classes of split graphs according to their AVD-total chromatic number.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

All the graphs considered in this paper are finite, simple, and undirected. The graph obtained by deleting the vertices 
of a set C = {u1, u2, . . . , uk} together with all the edges incident with these vertices is denoted by G − C . Similarly, the 
graph obtained by deleting the edges of a set D = {e1, e2, . . . , et} is denoted by G − D . The degree of a vertex v in G is 
the number of edges incident to the vertex v , and it is denoted by dG (v). The maximum degree of a graph G is denoted 
by �(G) and �(G) = max{dG(v) : v ∈ V (G)}. Throughout the paper, � denotes the maximum degree of graph G . A set of 
vertices is called independent if no two vertices in the set are adjacent, and a set of vertices is called a clique if every two 
vertices in the set are adjacent. The clique number of a graph G , denoted by ω(G), is the maximum integer k such that a 
clique of size k is contained as a subgraph of G . A graph G is called a split graph, denoted by (S, R) if its vertex set can be 
partitioned into two sets S and R such that S induces a clique, and R induces an independent set. A complete split graph is 
a split graph such that each vertex of R is adjacent to every vertex in the clique S .

A proper total k-coloring of a graph G is a mapping φ : V (G) ∪ E(G) → {1, 2, . . . , k} such that (i) for every two adjacent 
vertices u and v , φ(u) �= φ(v), (ii) for any edge e incident to a vertex u, φ(e) �= φ(u), and (iii) for any two edges e1 and 
e2 incident to a common vertex, φ(e1) �= φ(e2). Throughout the paper, whenever we say total coloring, we mean a proper 
total coloring. The total chromatic number of a graph G is the minimum integer k such that there exists a total k-coloring 
of the graph G and it is denoted by χ ′′(G). Observe that for any graph G , χ ′′(G) ≥ � + 1, where � is the maximum 
degree of G . Behzad [1] and Vizing [15] independently posed the total coloring conjecture which states that for any graph G , 
χ ′′(G) ≤ � + 2.

An adjacent vertex distinguishing (AVD-) total coloring of a graph G is a total coloring, say φ, with an additional property, 
called AVD-property, that is, for any pair of adjacent vertices u and v , Cφ(u) �= Cφ(v), where Cφ(x) denotes the color set 
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of used colors on vertex x with respect to the coloring φ and Cφ(x) = {φ(x)} ∪ {φ(xy) : y ∈ N(x)}, for x ∈ V (G). Throughout 
the paper, we drop the suffix and denote the color set of any vertex v with respect to an AVD-total coloring as C(v) unless 
there is more than one coloring used. We denote the set of available colors for a vertex v as C̄(v), that is, the set of colors 
that have not been used on the vertex v and the edges incident to it. Observe that, if the AVD-property holds for a pair of 
adjacent vertices u and v , then C̄(u) �= C̄(v). The minimum integer k, such that G has an AVD-total coloring using k colors, 
is the AVD-total chromatic number of G denoted by χ ′′

a (G). This concept was introduced by Zhang et al. [20]. Clearly, for a 
graph G , χ ′′

a (G) ≥ � + 1. Observe that given a pair of adjacent vertices u and v such that d(u) = d(v) = �, at least � + 2
colors are required to totally color the neighborhoods of u and v so that C(u) �= C(v). Therefore, we have the following 
result:

Theorem 1.1. [20] If a graph G has two vertices of maximum degree which are adjacent, then χ ′′
a (G) ≥ � + 2.

Zhang et al. [20] also posed the AVD-total coloring conjecture similar to the total coloring conjecture.
AVD-total coloring conjecture: For a graph G with maximum degree �,

χ ′′
a (G) ≤ � + 3.

The conjecture has been verified for general graphs with � = 3 by Wang [16] and Chen [5]. AVD-total coloring has been 
further studied for graphs with � = 3 in [9,12]. Papaioannou and Raftopoulou [13] proved the AVD-total coloring conjecture 
for 4-regular graphs. Recently, Lu et al. [11] validated the conjecture for all graphs with � = 4. The AVD-total coloring 
conjecture is also known to be true for many families of graphs such as complete graphs [20], hypercubes [4], indifference 
graphs [14], planar graphs with � ≥ 8 [2,6–8,17,18] and outerplanar graphs [19].

Theorem 1.2. [20] For a complete graph Kn with n vertices,

χ ′′
a (Kn) =

{
n + 1, if n is even,

n + 2, if n is odd.

Theorem 1.3. [10] If G is a bipartite graph, then G is a �-edge colorable graph, where � is the maximum degree of G.

In [3], Chen et al. verified the total coloring conjecture for split graphs and proved that for a split graph G , χ ′′(G) = � +1
if � is even. In this paper, we study AVD-total coloring in split graphs. We deploy the same technique used in the paper 
[3] to prove the AVD-total coloring conjecture for split graphs. We also classify the split graphs G = (S, R) such that in 
the bipartite graph B = G − E(G[S]), the degree of any vertex in R is less than the maximum degree of any vertex in S
with respect to their AVD-total chromatic number. In particular, we prove that for a split graph G = (S, R) with |S| = n and 
� ≥ max{d(u) : u ∈ R} + n, if there exist two vertices with degree � in S then χ ′′

a (G) = � + 2; otherwise χ ′′
a (G) = � + 1. 

Furthermore, we classify the complete split graphs according to their AVD-total chromatic number.

2. Verification of AVD-total coloring conjecture for split graphs

In this section, we verify the AVD-total coloring conjecture for split graphs. First, we need some definitions.
A Latin rectangle of size r × k (where r ≤ k), is an r × k array based on the elements 1, 2, . . . , k such that each element 

occurs exactly once in each row and at most once in each column. A Latin square of order k is a k × k array based on 
the elements 1, 2, . . . , k such that each element occurs exactly once in each row and exactly once in each column. A Latin 
square M = [mi, j] is said to be commutative if mi, j = m j,i , for 1 ≤ i, j ≤ k and M is said to be idempotent if mi,i = i, for 
1 ≤ i ≤ k. It is well known that an idempotent commutative Latin square (ICLS) of order k exists if and only if k is odd. If 
the rows of the Latin square are just cyclic permutations (one shift of the elements to the right) of the previous row, then 
the Latin square is said to be circulant (anti-circulant, if the cyclic permutations are actually left shifts). Let M(k) = [mi, j]
where mi, j ≡ (i + j)k (mod 2k − 1), 1 ≤ mi, j ≤ 2k − 1, for 1 ≤ i, j ≤ 2k − 1. Observe that M(k) (in Fig. 1) is an ICLS of order 
2k − 1 and the Latin square M(k) is anti-circulant as well.

Definition 2.1. [3] A color diagram, C = (R1, R2, . . . , Rn) of frame d = (d1, d2, . . . , dn) is an ordered set of color arrays, where 
each color array Ri = [ci,1, ci,2, . . . , ci,di ] is of length di and consists of different colors for 1 ≤ i ≤ n. A color diagram is 
called monotonic if the color ci, j occurs at most di − j times in R1, R2, . . . , Ri−1 for all i, 1 ≤ i ≤ n and 1 ≤ j ≤ di . Let 
C(n, k) denote the color diagram (R1, R2, . . . , Rn), if the colors ci, j in each Ri (1 ≤ j ≤ di), are the entries of M(k) and 
n ≤ 2k − 1.

Definition 2.2. [3] Let B = (U , V , E) be a bipartite graph. An edge coloring scheme with respect to U is a collection of sets of 
colors S = {Su}u∈U , where Su is a set of dB(u) distinct colors for u ∈ U . Scheme S is fulfilled by an edge coloring of B if the 
set of colors occurring on edges incident to u is exactly Su for all u ∈ U . An edge coloring scheme S can be arranged into 
a color diagram by assigning an order to colors in Su for all u ∈ U and an order to {Su}u∈U .
2



S. Verma, H.-L. Fu and B. S. Panda Discrete Mathematics 345 (2022) 113061
Fig. 1. An idempotent commutative Latin square of order (2k − 1).

Lemma 2.1. [3] If S can be arranged into a monotonic color diagram, then B has an edge coloring that fulfills S.

Next, we provide AVD-total colorings for split graphs.

Proposition 2.1. Let G = (S, R) be a split graph. If � is odd, then χ ′′
a (G) ≤ � + 2.

Proof. Let S = {u1, u2, . . . , un} and R = {v1, v2, . . . , vm}. Assume that � = n − 1 + �S , where �S is the maximum degree 
of any vertex in S in the bipartite graph B = G − E(G[S]). Observe that dG (ui) ≥ dG (v j) for all vertices ui ∈ S and v j ∈ R . 
Since � is odd, there exists an ICLS of order � + 2. We take an ICLS M(k) = [mi, j] of order 2k − 1 such that mi, j ≡
(i + j)k (mod 2k − 1), where k = �+3

2 . First, we totally color the subgraph G[S] from M(k). Define an AVD-total coloring π
of G such that π(ui) = mi,i , for 1 ≤ i ≤ n and π(uiu j) = mi, j , for 1 ≤ i, j ≤ n, i �= j. Next, to complete the AVD-total coloring 
π , we have to properly color the edges of the bipartite graph B = G − E(G[S]). Note that each vertex ui has � + 2 − n, 
that is, �S + 1 available colors, and the set of available colors is {mi, j : n + 1 ≤ j ≤ � + 2}. We color the remaining edges 
incident to each vertex ui with colors Sui = {mi, j : n + 1 ≤ j ≤ � + 1}. The color diagram C(n, k) is an arrangement of an 
edge coloring scheme S = {Sui }n

i=1. By the definition of M(k), mi, j = mi−1, j+1, for 1 ≤ i, j ≤ 2k − 1. It follows that the color 
diagram C(n, k) = (Su1 , Su2 , . . . , Sun ) is monotonic. Since C(n, k) is monotonic, by Lemma 2.1 there is an edge coloring π1
of the bipartite graph B which fulfills S . Let π(ui v j) = π1(ui v j) for all ui v j ∈ E(B). Now we only have to color the vertices 
of R . If n is odd, then π(v j) = m1,n−1 for each vertex v j ∈ R as the color m1,n−1 is not present in the color diagram C(n, k)

and so it is not present on any edge incident to v j . If n is even, then π(v j) = m1,n for each vertex v j ∈ R as the color m1,n
is not present on any edge incident to v j . Thus we get a proper total coloring. Note that the set of available colors on each 
vertex ui , C̄(ui) contains the color mi,�+2, which is different for each i, 1 ≤ i ≤ n. Since M(k) is anti-circulant and each set 
C̄(ui) contains a different color mi,�+2, C̄(ui) �= C̄(u j) for every pair of vertices ui and u j . Moreover, for any adjacent pair ui
and v j , C̄(ui) �= C̄(v j) by the definition of M(k) as M(k) is a commutative anti-circulant Latin square. Hence, the obtained 
coloring π is an AVD-total coloring of G using � + 2 colors. �
Proposition 2.2. Let G = (S, R) be a split graph such that � is even. If there is only one vertex of degree � in graph G, then χ ′′

a (G) =
� + 1; otherwise χ ′′

a (G) ≤ � + 3.

Proof. Let |S| = n, |R| = m, S = {u1, u2, . . . , un}, and R = {v1, v2, . . . , vm}. Assume that � = n − 1 + �S , where �S is the 
maximum degree of any vertex in S in the bipartite graph B = G − E(G[S]). Observe that dG(ui) ≥ dG(v j) for ui ∈ S and 
v j ∈ R . We consider the following two cases:

Case 1: There is a unique vertex with degree �.
Let uî ∈ S such that d(uî) = �. We take some edge uî v ĵ and remove it from G , say G ′ = G − {uî v ĵ}. Therefore, �(G ′) =

� − 1. Note that �(G ′) is odd. Therefore, by Proposition 2.1, there exists an AVD-total coloring of G ′ using �(G ′) + 2 colors. 
We obtain an AVD-total coloring π of G ′ by using an ICLS M of order �(G ′) +2 as we obtain in the proof of Proposition 2.1. 
Finally, we color the edge uî v ĵ . Note that the set of available colors on each vertex ui , C̄(ui) contains the color mi,�(G ′)+2, 
which is different for each i, 1 ≤ i ≤ n. Therefore, we assign π(uî v ĵ) = mî,�(G ′)+2. Thus, we obtain an AVD-total coloring of 
G using �(G ′) + 2 colors, that is, �(G) + 1 colors. Hence, χ ′′

a (G) = � + 1.
Case 2: There exist more than one vertex with degree �.
In this case, we give an AVD-total coloring of G using � + 3 colors. Since � is even, there exists an ICLS of order � + 3. 

We take an ICLS M(k) = [mi, j] of order 2k − 1 such that mi, j ≡ (i + j)k (mod 2k − 1), where k = �+4 . Similar to Case 1, we 
2
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first totally color the graph induced on S from the Latin subsquare [mi, j]1≤i, j≤n and then we color the edges of the bipartite 
graph B = G − E(G[S]) from the remaining colors {mi, j : n + 1 ≤ i ≤ � + 2, 1 ≤ j ≤ n}. Finally, we color the vertices of R . 
Thus, in a similar way to Case 1, we obtain an AVD-total coloring using � + 3 colors. Hence, χ ′′

a (G) ≤ � + 3. �
Next result immediately follows from Proposition 2.1 and Proposition 2.2:

Theorem 2.1. The AVD-total coloring conjecture is true for split graphs.

3. Classification of split graphs

In this section, we study the AVD-total chromatic number of split graphs.

Observation 3.1. Let G = (S, R) be a split graph such that G is not a complete graph and |S| = n. Then we have the following:

1. d(u) ≥ n − 1, for every vertex u ∈ S and d(v) ≤ n, for every vertex v ∈ R.
2. A maximum degree vertex of G always belongs to S only.

Proposition 3.1. Let G = (S, R) be a split graph such that |S| = n, n is even and � ≥ max{d(v) : v ∈ R} +n. If there exists exactly one 
vertex of degree �, then χ ′′

a (G) = � + 1; otherwise, χ ′′
a (G) = � + 2.

Proof. Let � = n − 1 +�S , where �S is the maximum degree of any vertex in S in the bipartite graph B = G − E(G[S]). Let 
�S = k. Since n is even, χ ′′

a (G[S]) = n + 1. Let C = {1, 2. . . . , n + 1} be a set of n + 1 colors and f be an AVD-total coloring 
of G[S] which uses colors from the set C . Now we shall extend the coloring f to get an AVD-total coloring of the graph G . 
Next, we have to color the edges between the sets R and S such that this coloring, together with the AVD-coloring f , is an 
AVD-total coloring.

Case 1: There is only one vertex in S with degree �.
Let v ∈ S such that d(v) = �. Therefore, v has k neighbors in R . Note that the vertex v has one available color from the 

set of colors C , let c be the color available on v . We color one edge e incident to v from B with color c, that is, f (e) = c. 
Now consider the graph G ′ = G − E(G[S]) −{e}. Observe that the graph G ′ is a bipartite graph with maximum degree k − 1. 
We know that G ′ can be edge colored with k − 1 colors, by Theorem 1.3. Let C′ = {n + 2, . . . , n + k} be a set of k − 1 new 
colors. Let f ′ be the edge coloring of G ′ using the colors from the set C′ . Let f (ui v j) = f ′(ui v j), for any edge ui v j ∈ E(G)

such that ui ∈ S and v j ∈ R . Next, color the vertex v j ∈ R with any available color which has not been used for the edges 
incident to v j and for the neighbors of v j . Observe that the AVD-property still holds for any pair of vertices in S , as we 
started with an AVD-total coloring f and the colors of the vertices and edges incident to vertices in S remains unchanged. 
Moreover, the AVD-property always holds for any pair of adjacent vertices u, v such that u ∈ S and v ∈ R if d(u) �= d(v). If 
d(u) = d(v), where u ∈ S and v ∈ R , then C(u) �= C(v) as C ∩ C(u) �= C ∩ C(v). Thus, the obtained coloring f is an AVD-total 
coloring of G which uses n + k colors. Hence χ ′′

a (G) = � + 1.
Case 2: S has more than one vertex with degree �.
In this case, χ ′′

a (G) ≥ � + 2. We will show that k new colors are enough to extend the coloring f to obtain an AVD-total 
coloring of G . Consider the graph G ′ = G − E(G[S]). Note that the graph G ′ is a bipartite graph with maximum degree k
as max{d(v) : v ∈ R} ≤ � − n. Now we know that G ′ is k-edge colorable, by Theorem 1.3. Let C′ = {n + 2, . . . , n + k + 1}
be a set of k new colors and f ′ be the k-edge coloring of G ′ which uses colors from the set C′ . Let f (ui v j) = f ′(ui v j), for 
any edge ui v j ∈ E(G) such that ui ∈ S and v j ∈ R . Finally, color the vertices in R with any available color. Note that the 
AVD-property is satisfied by any pair of vertices in S . Moreover, the AVD-property always holds for any pair of adjacent 
vertices u, v such that u ∈ S and v ∈ R if d(u) �= d(v). If d(u) = d(v) where u ∈ S and v ∈ R , then also C(u) �= C(v) as 
C ∩ C(u) �= C ∩ C(v). Therefore, the obtained coloring f is an AVD-total coloring of G which uses n + k + 1 colors. Hence 
χ ′′

a (G) = � + 2. �
Zhang et al. [20] computed the AVD-total coloring of complete graphs. Consider a complete graph Kn such that n =

2t + 1 and V (Kn) = {v1, v2, . . . , vn}. We give an AVD-total coloring g of Kn with n + 2 colors such that g has a special 
property that out of two available colors on each vertex the smaller color is different for at least n − 1 vertices. Define 
g : V (Kn) ∪ E(Kn) → {1, 2, . . . , n + 2} such that

Case 1: t = 1, that is, n = 3.

For 1 ≤ i ≤ 3, g(vi) = i;
g(v1 v2) = 3, g(v2 v3) = 4, g(v3 v1) = 5.

Observe that g is an AVD-total coloring of K3 using 5 colors. With respect to the coloring g , the set of available colors are 
C̄(v1) = {2, 4}, C̄(v2) = {1, 5} and C̄(v3) = {1, 2}.
4
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Case 2: t = 2, that is, n = 5.

g(v1 v2) = g(v3 v5) = 1;
g(v1) = g(v2 v3) = 2;
g(v5) = g(v3 v4) = 3;
g(v2) = g(v4 v5) = 4;
g(v3) = g(v1 v4) = g(v2 v5) = 5;
g(v1 v5) = g(v2 v4) = 6;
g(v4) = g(v1 v3) = 7.

Observe that g is an AVD-total coloring of K5 using 7 colors. With respect to the coloring g , the set of available colors are 
C̄(v1) = {3, 4}, C̄(v2) = {3, 7}, C̄(v3) = {4, 6}, C̄(v4) = {1, 2}, and C̄(v5) = {2, 7}.

Case 3: t ≥ 3.

g(v1) = n + 2 and g(vi) = i, for 2 ≤ i ≤ n;
g(vi+ j vi+n− j) = i, for 1 ≤ i ≤ n,2 ≤ j ≤ t;
For 1 ≤ i ≤ n − 2, if i ≡ 1 or 2 (mod 4) then g(vi vi+2) = n + 1;
if i ≡ 3 or 0 (mod 4) then g(vi vi+2) = n + 2;
g(vn−1 v1) = n; and g(vn v2) = 1.

Observe that g is an AVD-total coloring of Kn using n +2 colors. With respect to the coloring g , the set of available colors 
on each vertex vi is C̄(vi) such that C̄(v1) = {1, 2}, C̄(v2) = {3, n + 2} and C̄(vi) = {i − 1, i + 1} for 3 ≤ i ≤ n − 2. If t is even 
then C̄(vn−1) = {n − 2, n + 2} and C̄(vn) = {n − 1, n + 1}. If t is odd then C̄(vn−1) = {n − 2, n + 1} and C̄(vn) = {n − 1, n + 2}.

For this defined AVD-total coloring g , we have the following observation:

Observation 3.2. The above defined AVD-total coloring g of Kn, where n = 2t + 1, holds the following property:
For every pair of vertices vi and v j such that C̄(vi) = {ci, di} and C̄(v j) = {c j, d j}; ci < di , c j < d j , ci �= c j , and di �= d j , where 
i �= 2, j �= 2 and 1 ≤ i, j ≤ n. Furthermore, c2 �= di and d2 �= ci , for any i, 1 ≤ i ≤ n.

Proposition 3.2. Let G = (S, R) be a split graph such that |S| = n, n is odd and � ≥ max{d(v) : v ∈ R} + n. If there exists exactly one 
vertex of degree �, then χ ′′

a (G) = � + 1; otherwise, χ ′′
a (G) = � + 2.

Proof. Let � = n − 1 +�S , where �S is the maximum degree of any vertex in S in the bipartite graph B = G − E(G[S]). Let 
�S = k, S = {u1, u2, . . . , un}. Since n is odd, χ ′′

a (G[S]) = n + 2. Let C = {1, 2. . . . , n + 2} be a set of n + 2 colors. Consider the 
AVD-total coloring g of G[S] from Observation 3.2, which uses colors from the set C . Now we have to extend the coloring 
g to get an AVD-total coloring of the graph G . Next, we have to color the edges between the sets S and R such that the 
obtained coloring is an AVD-total coloring.

Case 1: There is only one vertex in S with degree �.
Suppose we reorder the vertices of clique S along with the coloring g such that d(u2) = �. Therefore, u2 has k neighbors 

in R . Take one edge e incident to u2 from B and color it with some available color. Consider the graph G ′ = G − E(G[S]) −{e}. 
Note that the graph G ′ is a bipartite graph with maximum degree k − 1. We know that G ′ is a (k − 1)-edge colorable graph, 
by Theorem 1.3. Let C′ = {n + 3, . . . , n + k, n + k + 1} be a set of k − 1 new colors and φ be a (k − 1)-edge coloring of G ′
with colors from the set C′ . Let M = {ui1 v j1 , ui2 v j2 , . . . , uir v jr } be a color class with color n +k + 1, that is, a matching with 
respect to the coloring φ. Now recolor the edge uis v js ∈ M with colors cis ∈ C(uis ) for all s, 1 ≤ s ≤ r. Let g(ui v j) = φ(ui v j), 
for any edge ui v j ∈ E(G) such that ui ∈ S and v j ∈ R . Finally, color the vertices of R with any available color on them. Note 
that the set of available colors on each vertex ui is still different, by Observation 3.2. Moreover, the AVD-property always 
holds for any pair of adjacent vertices u, v such that u ∈ S and v ∈ R if d(u) �= d(v). If d(u) = d(v) where u ∈ S and v ∈ R , 
then also C(u) �= C(v) as C ∩ C(u) �= C ∩ C(v). Thus the obtained coloring g is an AVD-total coloring of G using n + k colors. 
Thus χ ′′

a (G) = � + 1.
Case 2: S has more than one vertex of degree �.
Therefore, χ ′′

a (G) ≥ � + 2, that is equal to n + k + 1. We will show that k − 1 new colors are enough to extend the 
coloring g to obtain an AVD-total coloring of G . Consider the graph G ′ = G − E(G[S]). Note that G ′ is a bipartite graph 
with maximum degree k. Therefore, G ′ is a k-edge colorable graph, by Theorem 1.3. Let C′ = {n + 3, . . . , n + k, n + k + 2}
be a set of k new colors and φ be an edge coloring of G ′ using colors from the set C′ . Similar to Case 1, we consider the 
matching M = {ui1 v j1 , ui2 v j2 , . . . , uir v jr } with the largest color n +k + 2 and recolor the edges uis v js with color dis ∈ C(uis )

if is = 2 and cis otherwise, for all 1 ≤ s ≤ r. Let g(ui v j) = φ(ui v j), for any edge ui v j ∈ E(G) such that ui ∈ S and v j ∈ R . 
5
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Now color the vertices in R with any available color. Observe that in the obtained coloring, the set of available color on 
ui ∈ S is C̄(ui) = {di}, for i �= 2, 1 ≤ i ≤ n and C̄(u2) = {c2}. By Observation 3.2, di �= d j and c2 �= di , for any 1 ≤ i, j ≤ n. Thus, 
the AVD-property holds for each pair of vertices in S . Moreover, the AVD-property always holds for any pair of adjacent 
vertices u, v such that u ∈ S and v ∈ R if d(u) �= d(v). If d(u) = d(v) where u ∈ S and v ∈ R , then also C(u) �= C(v) as 
C ∩ C(u) �= C ∩ C(v). Thus we obtained an AVD-total coloring g of G which uses n + k + 1 colors. Hence χ ′′

a (G) = � + 2. �
The following result immediately follows from Propositions 3.1 and 3.2:

Theorem 3.1. Let G = (S, R) be a split graph such that � ≥ max{d(v) : v ∈ R} + n, where |S| = n. If there exists exactly one vertex of 
degree �, then χ ′′

a (G) = � + 1; otherwise, χ ′′
a (G) = � + 2.

To classify the general split graphs, we have to characterize the split graph G with � < max{d(v) : v ∈ R} + n. We made 
a little progress in this direction. In the next theorem, we generate an AVD-total coloring with � + 2 colors of a split graph 
G such that � = max{d(v) : v ∈ R} + n − 1.

Theorem 3.2. Let G = (S, R) be a split graph, where |S| = n. If � = max{d(v) : v ∈ R} +n −1, then there exists an AVD-total coloring 
of G with � + 2 colors.

Proof. We know that the vertices with degree � belong to S only. Let k = � − (n − 1), that is, the maximum number of 
neighbors in R of any vertex in S . Therefore, max{d(v) : v ∈ R} = k and � = n + k − 1. Now we give an AVD-total coloring 
of G using (n + k + 1) colors. There are two cases to consider:

Case 1: n is even.
Therefore, χ ′′

a (G[S]) = n +1. Let C = {1, 2, . . . , n +1} be a set of n +1 colors and f be an AVD-total coloring of G[S] using 
colors from the set C . Consider the graph G ′ = G − E(G[S]). Observe that the graph G ′ is a bipartite graph with maximum 
degree k. Let C′ = {n + 2, n + 3, . . . , n + k + 1} be a set of new k colors. Since G ′ is a k-edge colorable graph by Theorem 1.3, 
we color the edges of G ′ from the set C′ . Now, the only uncolored vertices left are the vertices in set R . Now color each 
vertex v ∈ R with any available color. Note that the AVD-property holds on each pair of adjacent vertices u and v such that 
u ∈ S and v ∈ R because no edge incident to vertex v is colored with the color from the set C while C(u) ⊇ C . Thus we get 
an AVD-total coloring of G using n + k + 1 colors.

Case 2: n is odd.
Therefore, χ ′′

a (G[S]) = n +2. Let C = {1, 2, . . . , n +2} be a set of n +2 colors and g be an AVD-total coloring of G[S] using 
colors from the set C with the special property given in Observation 3.2. Consider the graph G ′ = G − E(G[S]) which is a 
bipartite graph with maximum degree k and so by Theorem 1.3, G ′ is a k-edge colorable graph. Let C′ = {n +3, n +4, . . . , n +
k + 2} be a set of new k colors and φ be an edge coloring of G ′ using colors from the set C′ . Suppose that M1, M2, . . . , Mk
are the color classes of k colors with respect to the coloring φ. Note that |Mi | ≤ n for 1 ≤ i ≤ k. Consider the color class Mk . 
Note that for every vertex u ∈ S the set of available colors C̄(u) has two colors from the set C . Now we recolor each edge 
e ∈ Mk where e = uv such that u ∈ S and v ∈ R . Recolor the edge e with the least color in C̄(u). Consider the updated sets 
of available colors for vertices of S . Observe that C̄(u2) is equal to either C̄(un−1) or C̄(un) and for all other pairs ui, u j , 
C̄(ui) �= C̄(u j). To fix this, we take one edge e′ ∈ Mi such that e′ is incident to vertex u2 for some i, 1 ≤ i ≤ k − 1 and 
recolor the edge e′ with the color available in C̄(u2). It follows that the set C̄(u2) becomes empty. Now, g(ui v j) = φ(ui v j)

for all edges ui v j ∈ E(G), where ui ∈ S and v j ∈ R . Now the only remaining uncolored vertices are the vertices of set R . We 
color each vertex in v ∈ R with any available color on v . Observe that for the obtained coloring, the AVD-property holds 
for every pair of vertices of S . Note that the AVD-property holds for every pair of vertices u, v such that u ∈ S and v ∈ R
because at most one color from the set C belongs to C(v) while C(u) ⊃ C . Thus we obtain an AVD-total coloring of G using 
n + k + 1 colors. �

We know that if a pair of adjacent vertices with maximum degree � exists, then χ ′′
a (G) ≥ � + 2. Therefore, the next 

corollary follows:

Corollary 3.1. Let G = (S, R) be a split graph with |S| = n such that � = max{d(v) : v ∈ R} + n − 1. If there exist two vertices with 
degree � in S then χ ′′

a (G) = � + 2; otherwise χ ′′
a (G) ≤ � + 2.

4. Classification of complete split graphs

In [3], the total chromatic number of complete split graphs has been characterized. Their result is mainly based on the 
property of total chromatic number that, for any subgraph H of a graph G , χ ′′(H) ≤ χ ′′(G). However, a similar property 
does not hold for the AVD-total chromatic number of a graph. For example, for a graph G of order 4 obtained by adding 
a pendant edge to one of the vertices of K3, χ ′′

a (G) = 4 but χ ′′
a (K3) = 5. The violation of this property makes it difficult 

to characterize the complete split graphs according to their AVD-total chromatic number. This section studies the AVD-total 
chromatic number of complete split graphs.
6
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Theorem 4.1. Let G = (S, R) be a complete split graph, where |S| = n, n ≥ 2 and |R| = m. If n + m is even, then χ ′′
a (G) = � + 2.

Proof. If m = 1, then G is a complete graph of order n + 1 and therefore χ ′′
a (G) = � + 2, when n + 1 is even and χ ′′

a (G) =
� +3, otherwise. Assume that m ≥ 2 and the maximum degree of G is � = n +m −1. Therefore, χ ′′

a (G) ≥ � +2 = n +m +1. 
Let n + m be even.

We know that χ ′′
a (Kn+m) = n + m + 1. We take an AVD-total coloring φ of a complete graph Kn+m using n + m + 1

colors. Now define an AVD-total coloring of G , f : V (G) ∪ E(G) → {1, 2, . . . , n + m + 1} such that f (v) = φ(v), for any 
vertex v ∈ V (G) and f (uv) = φ(uv), for any edge uv ∈ E(G). Observe that the coloring f is an AVD-total coloring of G as 
C f (v) = Cφ(v) for all v ∈ S and C f (v) �= C f (u) for any vertices u ∈ S and v ∈ R as d(u) �= d(v). We know that χ ′′

a (G) ≥ � +2. 
Thus, χ ′′

a (G) = � + 2 = n + m + 1. �
Classification if (n + m) is odd

Next, we further classify the complete split graphs when n + m is odd. Let G = (S, R) be a complete split graph, where 
|S| = n and |R| = m (m ≥ 2). Since m ≥ 2, χ ′′

a (G) ≥ � + 2 = n + m + 1. Our idea is to construct a Latin rectangle L of size 
n × (n + m + 1), which can be used to obtain an AVD-total coloring of G using n + m + 1 colors. In the next result, we 
show that we can obtain an AVD-total coloring of graph G with n + m + 1 colors by using a Latin rectangle having a certain 
property.

Proposition 4.1. Let G = (S, R) be a complete split graph, where |S| = n, |R| = m (m ≥ 2), n < m and n + m is odd. Then there exists 
an AVD-total coloring of G using n +m + 1 colors if there exists a Latin rectangle L of size n × (n +m + 1) with the following property:

(P ) L contains a subarray A such that A is an idempotent commutative Latin square of size n × n and at least m columns of the 
subarray L − A has at least one missing element from the set {n + 1, n + 2, . . . , n + m + 1}.

Proof. Let S = {u1, u2, . . . , un} and R = {v1, v2, . . . , vm}. Suppose that L = [li, j] is a Latin rectangle of size n × (n + m + 1)

having the property (P ). Let A be an ICLS of size n ×n which is contained in L and a j be a missing element from (n + j)-th 
column such that a j ∈ {n + 1, . . . , n + m + 1}, where 1 ≤ j ≤ m. Now we give an AVD-total coloring of G using n + m + 1
colors. Define an AVD-total coloring φ : E(G) ∪ V (G) → {1, 2, . . . , n + m + 1} such that

φ(ui) = li,i and φui u j = li, j, for 1 ≤ i, j ≤ n;
φ(ui v j) = li,n+ j, for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
φ(v j) = a j, for 1 ≤ j ≤ m.

Observe that the obtained coloring φ is a total coloring. Now we have to prove that the coloring φ is an AVD-total coloring. 
Since n < m, d(ui) �= d(v j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Therefore, AVD-property holds for any pair of adjacent vertices ui ∈ S
and v j ∈ R . Note that for any pair of vertices ui, u j in S , C̄(ui) �= C̄(u j) as C̄(ui) = {li,n+m+1} which is different for each 
i, 1 ≤ i ≤ n. Thus, the coloring φ is an AVD-total coloring using n + m + 1 colors. �

From the previous result, it is clear that to obtain an AVD-total coloring of the complete split graph G using n + m + 1
colors; it is enough to construct a Latin rectangle of size n × (n + m + 1), having property (P ). Observe that the converse 
of Proposition 4.1 is also true. We can construct a Latin rectangle with the property (P ) from an AVD-total coloring of G
using n + m + 1 colors. Since n + m is odd, there exists an ICLS M of order n + m. It is easy to obtain a Latin rectangle of 
size n × (n + m) from the ICLS M . Given a Latin rectangle L of size n × (n + m) which contains an idempotent commutative 
subarray A of size n × n, our only job is to expand the size of L by one column. To achieve this, we define two operations 
as follows:

Definition 4.1. (Push Operation) An element x is said to be “pushed” to a position li, j if the element on position li, j is 
replaced by x and the elements at positions li, j , li, j+1, . . . , li,n+m are shifted one place to the right.

Definition 4.2. (Swap Operation) An element y on some anti-diagonal D is said to be “swapped” with an element x of an 
ICLS if the following conditions hold:

1. The element y at two places li, j , l j,i of anti-diagonal D gets replaced by the element x.
2. The element x gets pushed at two different positions li,n+k and l j,n+k′ , where 1 ≤ k < k′ ≤ m + 1; k and k′ are the 

minimum indexed column in i-th row and in j-th row, respectively such that the following properties hold:
(a) the element x is not present in k-th and k′-th columns, and
(b) after pushing the element x to the positions li,n+k and l j,n+k′ , there does not exist any column C in the resultant 

subarray L − A such that no element occurs more than once in C .
7
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In an idempotent commutative Latin square (ICLS), we denote the principal anti-diagonal as D0, an upper anti-diagonal 
as Di , and the corresponding lower anti-diagonal as D ′

i . Observe that an ICLS has the same element on every position of 
any anti-diagonal; see Fig. 1.

Next, we give an algorithm to construct a Latin rectangle L of size n × (n + m + 1) having the property (P ). For prepa-
ration, we need an ICLS M = [mi, j] of order n + m such that mi, j = (i + j)n+m+1

2 (mod n + m). Let M′ be the rectangle 
obtained from M by keeping the top n rows. So, M′ is a Latin rectangle which contains an idempotent commutative sub-
array A of size n × n. Now in order to achieve our goal, we shall append a column to M′ and use the two operations 
mentioned above to construct L, which is a Latin rectangle of size n × (n + m + 1) having the property (P ). Let C be a 
rectangle of size n × 1 with each entry φ, where φ is a positive integer. Define the Latin rectangle L as an augmented 
rectangle obtained by appending C to M′ , i.e., L := [M′|C]. Note that L is a Latin rectangle of size n × (n + m + 1), where 
the last column contains the element φ in each row. We intend to replace the element φ in each row with some other 
element and transform L such that L satisfies the property (P). We give an algorithm to achieve our goal as follows:

Algorithm 1
Input: n, m ∈N such that (n + m) is odd, m ≥ 2 and the Latin rectangle L.
Objective: Construct a Latin rectangle L of size n × (n + m + 1) having the property (P ).
Step 1. Define the new element to be added as n + m + 1. Fix the index i = 1 and r = n.
Step 2. We swap the element x present on the anti-diagonal Di from the positions mr−i,i and mi,r−i and the element y

present on the anti-diagonal D ′
i from the positions mr,i+1 and mi+1,r with the element n +m + 1. Mark i-th , (r − i)-th , r-th 

and (i + 1)-th rows and mark the i-th , (r − i)-th , (i + 1)-th and r-th columns from the rectangle M′ and consider the 
rectangle M′ with unmarked rows and columns. If the element n + m + 1 is placed in every row, then we stop. Otherwise, 
we repeat this step at most m+1−i

2 times, or until the size of the number of unmarked rows become smaller than (i + 2).
Step 3. If the element n + m + 1 is placed in every row, then we stop. Otherwise, we repeat Step 2 for different value of 

i, 2 ≤ i ≤ m − 1.
Step 4. If the element n + m + 1 is placed in every row, then we stop. Otherwise, we swap the element x present on 

the principal anti-diagonal D0 from the positions mr+1−i,i and mi,r+1−i with the element n + m + 1, where i = 1. Mark i-th 
and (r + 1 − i)-th rows and mark the i-th and (r + 1 − i)-th columns from the rectangle M′ and consider the rectangle M′
with unmarked rows and columns. We repeat this step for different value of i, 2 ≤ i ≤ m+1

2 , unless we place the element 
n + m + 1 in at least m or r − 1 (whichever is smaller) rows of the rectangle M′ .

Step 5. If the element n + m + 1 is placed in every row, then we stop. Otherwise, we push the element (n + m + 1) in 
one unmarked row î such that any element occur at most once in each column of the subarray M′ − A and the element 
n + m + 1 get placed at the position mî,n+m+1.

A natural question here is, whether there exists such a Latin rectangle of size n × (n + m + 1) or not, when n + m is odd 
and m ≥ 2. To check that, we have to count the maximum number of the performed swap or push operations. Next, we 
give an upper bound on the value of n, for which the above method gives us a Latin rectangle with the property (P ). In 
the following result, we prove that using Algorithm 1, we always obtain a Latin rectangle with property (P ) if such a Latin 
rectangle exists.

Lemma 4.1. If n + m is odd, m ≥ 2 and n ≤ m2 + m + 1, then Algorithm 1 constructs a Latin rectangle of size n × (n + m + 1) which 
contains an idempotent commutative subarray of size n × n. Furthermore, if n > m2 + m + 1 then there does not exist such a Latin 
rectangle.

Proof. Observe that the goal of Algorithm 1 is to place the element n + m + 1 exactly once into each of the n rows such 
that each element occurs at most once in each column. Clearly, each swap operation place the element n + m + 1 in two 
different rows, and each push operation place the element n + m + 1 in a new row. Let W and P be the maximum number 
of possible swap and push operations, respectively. Therefore,

n ≤ 2W + P .

We perform a push operation, only to put an element in the columns of M′ − A, which has m + 1 columns, including the 
new column. To obtain a Latin rectangle with property (P ), at least m columns of the resultant subarray L − A should have 
one missing element, which is greater than n. Observe that by performing the maximum number of swap operations, we 
put every element from the set {n +1, . . . , n +m} into each column of the subarray M′ − A. Note that the element n +m +1
can not be placed into the subarray M′ − A by a swap operation. Therefore, to obtain a Latin rectangle with property (P ), 
we can push the element n + m + 1 in at most one column of the subarray M′ − A. Hence, P = 1.

We perform a swap operation to an element on anti diagonals, which would place the new element in two different 
rows. From each anti-diagonal Di or D ′

i we can perform 
⌊

m+1−i
2

⌋
swap operations. Therefore,

W =
⌊

m + 1
⌋

+ 2
⌊m⌋

+ 2

⌊
m − 1

⌋
+ 2

⌊
m − 2

⌋
+ · · · + 2

⌊
m + 1 − (m − 1)

⌋

2 2 2 2 2
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Fig. 2. An input Latin rectangle L of size n × (n + m + 1) for Algorithm 1, where n = 7 and m = 2.

Case 1: m is odd.

W = m + 1

2
+ (m − 1) + (m − 1) + (m − 3) + · · · + 2(1) + 2(1)

= m + 1

2
+ (m − 1)(m + 1)

2

= m(m + 1)

2
.

Case 2: m is even.

W = m

2
+ m + (m − 2) + (m − 2) + · · · + 2(1) + 2(1)

= m(m + 2)

2
− m

2

= m(m + 1)

2
.

Thus, W = m(m+1)
2 . Therefore, n ≤ m(m + 1) + 1 = m2 + m + 1. Hence, we can construct a Latin rectangle of size n × (n +

m + 1) having the property (P ), if n ≤ m2 + m + 1.
On the other hand, suppose that n > m2 + m + 1. Observe that in a Latin rectangle L of size n × (n + m) such that it 

contains an ICLS A of size n ×n as a subarray, and the element present on the principal anti-diagonal D0 is the only element 
which is not present in the subarray L − A. So this element can be replaced with the element n + m + 1 maximum m+1

2
times. Similarly, after D0, the elements present on anti-diagonals D1 and D ′

1 are the elements that can be replaced with 
the element n + m + 1 maximum times and so on. That is what we are doing in the above algorithm by using swap and 
push operations. We have already proved that by using the swap and push operations, we can place the element n + m + 1
in at most m2 + m + 1 rows to obtain a Latin rectangle having property (P ). Therefore at least one row would be left where 
the element n + m + 1 cannot be placed. Hence it is not possible to place the element n + m + 1 in all the n rows in this 
case. Therefore there does not exist the required Latin rectangle of size n × (n + m + 1), if n > m2 + m + 1. �

To demonstrate the execution of Algorithm 1, we give a running example.
For example, we take the Latin rectangle L given in Fig. 2 with values n = 7 and m = 2. Now, we will place the new 

element n + m + 1 = 10 in each row by using Algorithm 1. Observe that n = m2 + m + 1.
By Step 2, we perform our first two swap operations on anti-diagonals D1 and D ′

1 and swap the elements marked with 
circle with the element 10, as shown in Fig. 3.

Note that we cannot perform Step 2 again on any other anti-diagonal. Therefore, we move to Step 4 and perform a swap 
operation on the principal anti-diagonal in unmarked rows, as shown in Fig. 4.

Note that there is only one unmarked row left. Therefore, we move to Step 5 and place the element “10” in the unmarked 
row, as shown in Fig. 5. Thus, we get the desired Latin rectangle L after the execution of Algorithm 1.

Theorem 4.2. Let G = (S, R) be a complete split graph where |S| = n and |R| = m. If n + m is odd, m ≥ 2 and n ≤ m2 + m + 1, then 
χ ′′

a (G) = � + 2.

Proof. Let S = {u1, u2, . . . , un} and R = {v1, v2, . . . , vm}. Observe that if n ≤ m, then � ≥ max{d(u) : u ∈ R} +n −1. Therefore 
from Theorem 3.1 and Theorem 3.2, χ ′′

a (G) = � +2 as m ≥ 2. We assume that n > m. Since n ≤ m2 +m +1, we can construct 
9
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Fig. 3. Swap the elements marked with circle on diagonals with new element 10 by Step 2.

Fig. 4. “Swap” the elements marked with circle on the principal diagonal with new element 10 by Step 4.

a Latin rectangle L of size n × (n + m + 1) having the property (P ), from Algorithm 1. Therefore, we can construct an AVD-
total coloring of G using n + m + 1 colors, from Proposition 4.1. Hence, χ ′′

a (G) = n + m + 1 = � + 2. �
We know that if n > m2 +m +1, then we cannot construct a Latin rectangle L of size n × (n +m +1) having the property 

(P ). It implies that if n > m2 + m + 1, n + m is odd and m ≥ 2, then we cannot give an AVD-total coloring of the complete 
split graph using n + m + 1 colors. Therefore, from the previous results the next corollary characterizes the complete split 
graphs as follows:

Corollary 4.1. Let G = (S, R) be a complete split graph where |S| = n and |R| = m. If n +m is odd, m = 1 or m ≥ 2 and n > m2 +m +1, 
then χ ′′

a (G) = � + 3; otherwise, χ ′′
a (G) = � + 2.
10
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Fig. 5. Place the element 10 in unmarked row by Step 5.

5. Conclusion

In this paper, we verify the AVD-total coloring conjecture for split graphs. We also give a characterization for the AVD-
total chromatic number of split graphs G = (S, R) such that the maximum degree of the bipartite graph G − E(G[S])
belongs to S . Furthermore, we characterize the complete split graphs according to their AVD-total chromatic number. The 
classification problem for the general split graphs remains unsettled.
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