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—— Abstract

The study of the KNOT-FREE VERTEX DELETION problem emerges from its application in the
resolution of deadlocks called knots, detected in a classical distributed computation model, that is,

the OR-model. A strongly connected subgraph @ of a digraph D with at least two vertices is said
to be a knot if there is no arc (u,v) of D with u € V(Q) and v ¢ V(Q) (no-out neighbors of the
vertices in Q). Given a directed graph D, the KNOT-FREE VERTEX DELETION (KFVD) problem
asks to compute a minimum-size subset S C V(D) such that D[V \ S] contains no knots. There
is no exact algorithm known for the KFVD problem in the literature that is faster than the trivial
O*(2") brute-force algorithm. In this paper, we obtain the first non-trivial upper bound for KFVD
by designing an exact algorithm running in time O*(1.576™), where n is the size of the vertex set
in D.
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1 Introduction

In concurrent computing, a deadlock [6] is a state in which each group member waits for
another member, including itself, to take action such as sending a message or, more commonly,
releasing a lock. Deadlocks are a common problem in multiprocessing systems, parallel
computing, and distributed systems. Resolving these deadlocks is a fundamental problem
in distributed settings with no efficient (known) algorithms. Note that while distributed
systems are dynamic, a deadlock is a stable property. In other words, once a deadlock occurs
in the system, it would remain there until it is resolved. Two of the main classic deadlock
models are the AND-model and the OR-model [1,2,14,17]. Deadlocks are characterized by
the existence of cycles in the AND-model and by the existence of knots in the OR-model.
Hence the problem of preventing deadlocks in the AND-model is equivalent to the DIRECTED
FEEDBACK VERTEX SET (DFVS) problem and in the OR-model, it is equivalent to the
KNOT-FREE VERTEX DELETION (KFVD) problem [13].

A wait-for graph is useful to analyze deadlock situations. In a wait-for graph, D = (V; E),
the vertex set V' represents processes, and the set E of directed arcs represents wait-conditions.
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A knot in a directed graph D is a strongly connected subgraph @ of D with at least two
vertices, such that no vertex in V(Q) has an out-neighbor in V(D) \ V(Q). The number of
processes needed to be preempted to prevent a deadlock in the OR-model is essentially the
same as solving the KFVD problem in wait-for graphs. Formally, the problem of finding a
vertex subset S C V of minimum cardinality such that D[V \ S] does not contain any knots
is known as the KFVD problem.

Recently, KFVD has been studied extensively from algorithmic perspectives. In particular,
the problem has been studied on graph classes satisfying some structural properties and
from the viewpoint of parameterized complexity [4]. In this paper, we study KFVD from yet
another algorithmic paradigm, that is, exact exponential-time algorithms. There has been
immense progress in this area in the last two decades, resulting in non-trivial exact exponential
algorithms for numerous problems, including CHROMATIC NUMBER, HAMILTONIAN CYCLE
and SATISFIABILITY [3,9,12,16] We refer to the monograph of Fomin and Kratsch for a
detailed exposition of the field [11].

1.1 OQur contribution

In this paper, using the powerful method of Measure €& Conguer, pioneered by Fomin, Kratsch,
and Woeginger [10], we design the first non-trivial exact algorithm for the KFVD problem.
In particular, we obtain the following result.

» Theorem 1. There exists an algorithm for KNOT-FREE VERTEX DELETION running in
O*(1.576™) time.

The starting point of our algorithm is the following simple observation: a graph is knot-free
if and only if every vertex has a path to a sink. Moreover, finding a minimum size knot-free
deletion set is equivalent to finding a subset Z of sinks (vertices with no out-neighbors) such
that NT(Z) is exactly the deletion set [2], that is N*(Z) = S. Our algorithm utilizes this
observation, and rather than obtaining a minimum deletion set S; it constructs a sink set Z
such that every vertex in D — N*(Z) has a path in D — N*(Z) to some vertex in Z. Note
that Z does not complement S The measure associated with the instance I = (D, V,V3), is
given by ¢(I) = |V4| + ‘Lfl We select a vertex u € V4 to branch, which means that either
u is a sink, or it is not. If u is going to be a sink, then observe that all its out-neighbors,
N*(u), must be in the deletion set and be safely deleted. Further, every vertex that can
reach u in D — N (u), say in-reachable vertices, must not go to the deletion set. However,
we can remove them and work on a smaller graph. Thus removing in-reachable vertices
is a prepossessing step that reduces the size of the graph. In the branch where we decide
that u is not part of the sink set, we cannot delete this vertex, and thus, to capture our
progress, we move the vertex u from V; to Vs, resulting in ¢ decreasing by 0.5. To show the
desired running time, we first do “potential sensitive” branching and then do an extensive
case analysis based on the degree of the vertex in V.

1.2 Previous Work

Observe that any directed feedback vertex set (a set of vertices that intersect every cycle in
the digraph) is a knot-free deletion set as it removes any strongly connected component of
size at least 2. Hence, the size of the smallest directed feedback vertex set gives an upper
bound on the size of the smallest knot-free vertex deletion set. One way of eliminating knots
in a graph could be to use known algorithms for the DIRECTED FEEDBACK VERTEX SET
(DFVS) problem. While DFVS has been extensively studied [7,15], the KFVD problem is yet
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to receive the same scale of attention. Notice that the optimal solution for KFVD could be
significantly smaller than the solution returned by invoking an existing algorithm for DFVS,
which motivated a closer look at the KFVD problem itself.

Carneiro, Souza, and Protti [5] first studied the problem and showed that KFVD is NP-
complete even when restricted to planar bipartite graphs with the maximum degree 4. They
also presented a polynomial-time algorithm for graphs with the maximum degree 3. Recently,
KFVD was studied in the parameterized framework. Carneiro et al. [4] showed that KFVD is
W(1]-hard when parameterized by the size of the solution, but it can be solved in 2#108 ¢ (1)
time, where ¢ is the size of the largest strongly connected subgraph. KFVD parameterized by
the size of the solution k, is W[1]-hard even when the length of a longest directed path of the
input graph, as well as its Kenny-width, are bounded by constants [2]. However, the problem
is known to be in FPT parameterized by either clique-width or treewidth of the underlying
undirected graph. Moreover, the KFVD problem is known to admit FPT algorithms when
parameterized by dfvs+maximum path length or dfvs+ Kenny-width where, dfvs denotes the
size of the smallest directed feedback vertex set in the graph.

Organization of the paper: In Section 3, we start by providing our algorithm, and we
verify the correctness of each of its steps in Section 4. The running time is analyzed in
Section 5, while Section 6 provides a lower bound on the worst-case performance of our
algorithm.

2  Preliminaries and Auxiliary Results

In this section, we first state some notations, definitions, and useful auxiliary results. We also
formalize an appropriate potential function based on which we later design our algorithm. A
few reduction rules are proved towards the end of this section which are used throughout the

paper.

Standard Notation. For a digraph D, V(D) and E(D) denote the set of vertices and arcs,
respectively. We denote an arc from u to v by the ordered pair (u,v). For a vertex v of
D, the out-neighborhood of v is denoted by N (v) = {u | (v,u) € E(D)}. Similarly, we
denote its in-neighborhood by N~ (v) = {u | (u,v) € E(D)} and N(v) = N (v) UN~(v).
A vertex v is called a source vertex, if N~ (v) = (. Similarly it is called a sink vertez, if
N*t(v) = 0. We define the in-reachability set of a vertex v as the set of vertices that can
reach the vertex v via some directed path in D — N (v) and we denote it by R~ (v). Notice
that v € R~ (v). We define, R(v) = NT(v) UR™ (v). For a set S C V(D), D — S denotes
the digraph obtained by deleting the vertices S and the edges incident on the vertices of
S and D[S] denotes the subgraph of D induced on S. A path P of length ¢ is a sequence
of distinct vertices vy, va, ..., v such that (v;,v;4+1) is an arc, for each i, ¢ € [¢ — 1]. In our
algorithm, branching vector (a,b) means a branching where in the first branch, the potential
(measure) drops by a while in the second branch, the potential drops by b. It is a measure of
the effectiveness of any branching step. Later we provide a detailed description of such a
potential function and how it relates to the hardness of our instance. For graph-theoretic
terms and definitions not stated explicitly here, we refer to [8].

2.1 Auxiliary Results

In this subsection, we first state some of the known reduction rules and some new reduction
rules for the problem that we use in our branching algorithm.
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» Reduction Rule 2 ( [2]). Let v € D be such that N~ (v) = 0, Then (D, k) is a yes-instance
if and only if (D — v, k) is a yes-instance.

» Reduction Rule 3 ( [2]). Let v € D be such that N (v) =0, Then (D, k) is a yes-instance
if and only if (D — R~ (v), k) is a yes-instance.

» Proposition 4 ( [2]). A digraph D is knot-free if and only if for every vertex v of D, v has
a path to a sink.

» Corollary 5 ( [2]). For any optimal solution S C V(D) with the set of sink vertices Z in
D — S, we have NT(Z) = S.

Proposition 4 and Corollary 5 imply that given a digraph D, the problem of finding a set
of sink vertices Z such that every vertex in V(D) \ N (Z) has a directed path to a vertex in
Z and |N*(Z)| is minimum; is equivalent to the KNOT-FREE VERTEX DELETION (KFVD)
problem. Therefore, our algorithm aims to identify a set of (eventually, to be) sink vertices
Z while minimizing [N (Z)| instead of directly looking for the deletion set.

Strategy of our Algorithm. We design a branching algorithm for KFVD in general digraphs.
At any iteration in our algorithm, we branch on a potential vertex v € V(D) based on the two
possibilities that either v is a sink vertex or a non-sink vertex in an optimal solution. Observe
that even if a vertex becomes a non-sink vertex corresponding to an optimal solution, there
are two possibilities: it belongs to the deletion set or does not. So we can not simply forget
about this vertex, which means its behavior in the final knot-free graph remains inconclusive.
To track the possible vertices that become the sink or non-sink, we use a potential function
(¢) for V(D) defined as follows.

» Definition 6 (Potential function). Given a digraph D = (V, E), we define a potential
function on V(D), ¢ : V(D) — {0.5,1} such that ¢p(v) = 1, if v is a potential vertezx to
become a sink in an optimal solution and ¢(v) = 0.5, if v is a non-sink vertex. For any subset
V' CV(D), (V') = > ,cv: ¢(x). We call a vertex v as an undecided vertex if ¢(v) = 1
and a semi-decided vertez if ¢(v) = 0.5.

To solve the KNOT-FREE VERTEX DELETION problem on a digraph D, we initialize the
potential values of all vertices to 1. As soon as we decide a vertex to be a non-sink vertex,
we drop its potential by 0.5. Any vertex whose potential is 0.5 can not become a sink in the
final knot-free graph resulting from removing an optimal vertex deletion set from D.

» Definition 7 (Feasible solution). A set S C V(D) is called a feasible solution for (D, @) if
D — S is knot-free and for any sink vertex s in D — S, ¢(s) = 1. KFVD(D, ¢) is the size of
an optimal solution for (D, ).

» Reduction Rule 8. If all the vertices in D are semi-decided and D has no source or sink
vertices, then V(D) is contained inside any feasible solution for (D, ).

Proof. If S is a solution for (D, ¢), then D — S is knot-free. Since all vertices of D are
semi-decided, D — S has no sink vertices. Therefore, D — S is an empty graph. In other
words, S = V(D). <

Let Sopt and Zgpe be the set of deleted vertices and the set of sink vertices with respect
to some optimal solution KFVD(D, ¢).

> Claim 9. If & € Zyp, then N () is in S, and S,pe N R™(z) = 0.
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Proof. By the definition of a sink vertex, if z € Z,,; then Nt (z) is in S,p;. Let Y =
Sopt N R~ (x). We claim S" = S, \ Y is also a solution which will contradict the fact that
Sopt 18 an optimal solution. Suppose S’ is not a solution, then there exists a vertex v in
G\ ', that do not reach to a sink s in G\ S’ but v reaches to some sink s in G'\ Sp;. Since
every vertex in Y reaches to some sink  in G\ S’, v ¢ Y. If s is not a sink vertex in G \ ',
then some vertex y € Y is an out-neighbor of s. But then v can reach the sink z in G\ S’
via y. Hence, S’ is a solution of strictly smaller size than S,,, which is a contradiction. <

> Claim 10. If z € Z,p, then |Syp | = [N T ()| + KFVD(D — R(z), ¢).

Proof. First, we prove that S = S,,: \ N*(z) is a solution to (D — R(z), ¢). If this is not
true, then there exists a vertex v in D — (R(x) U S’) that do not reach any sink. Since
Sopt € R(x) U S, v ¢ Sop. But Syp is a solution to (D, ¢) and v can reach some sink
S € Zopy in D — Sype. First we claim that s # z. Note that v is not in R(x) and it can only
reach x via some vertex in N*(z). So v can not reach z in D — S, as Nt (z) C S,pe. Hence
s # x. Then v has a path to s which is disjoint from S,y 2 N (x). Moreover this path is
also disjoint from the set R(z)\ NT(z), since v ¢ (R(z). Hence this path is disjoint from
R(x) and S,pi. Therefore, v can reach s via the same path in D — (R(x) U §’). If s is a sink
in D — Sypt, then s is also a sink in (D — R(z)) \ S’. Hence, v has a path to a sink in D,
which is a contradiction. It implies that S” = S, \ N () is a solution to (D — R(z)) and
therefore, |Sypi| — [Nt (2)] > KFVD(D — R(z), ¢).

To prove the other direction, assume that S” is an optimal solution to (D — R(x), ¢). We
claim that S’ = S” U NT(z) is a solution for (D, ¢). Suppose not, then there exists a vertex
v that does not reach a sink in D — S’. Note that v ¢ R(z) as all vertices in R(x) can reach
sink  in D — S’. Then v ¢ R(xz) U S’ and hence it is also in D — (R(z) U S”) and it reaches
a sink s. Since this path is disjoint from S” U R(z), v still can reach s via the same path in

D — S'. Note that s is not a sink in D — S’ only if it has an out-neighbor in R(z) \ N (z).

But then s and v are in R(x) which is not possible. Hence, v can still reach the same sink s
and S" = S” U N*(z) is a solution to D. Thus, Sept < |[NT(z)| + KFVD(D — R(z)). <

3 An algorithm to compute minimum knot-free vertex deletion set

In this section, we design an exact algorithm to compute a minimum knot-free vertex deletion

set. As mentioned earlier, we start by initializing the potential values of all vertices to 1.

As soon as we decide a vertex is a non-sink vertex, we drop its potential by 0.5. In the
following algorithm, at any step, if there are vertices with no out-neighbors (sinks) or no
in-neighbors (sources), we remove such vertices with the help of Reduction Rules 2 and
3. If all the vertices are semi-decided, we apply Reduction Rule 8 to solve the instance in
polynomial time. At any step, if there is an undecided vertex x with ¢(R(z)) > 3.5), we
branch on the possibility of x being a sink or non-sink in the optimal solution. Here we use
the large potential drop in the branch where x is chosen to be a sink to our advantage and
obtain a (3.5,0.5) branching. If there are no such vertices, we look for an undecided vertex
x such that all its neighbors are semi-decided, and we branch on z. If there are no such
vertices, we branch on undecided vertices of degrees 2 and 3. Notice that in these branching
steps, even if there is not a large potential drop when z is a sink, in the other branch when
x is a non-sink vertex, we still find an undecided vertex s close to x, which is forced to be a
sink. Hence the potential drop together in both the branches ensure good running time for
our algorithm. If all undecided vertices have only one neighbor each, then we remove such
vertices with the help of Reduction Rules 2 and 3.
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Algorithm 1 KFVD (D, ¢).

Input: A directed graph D and a potential function ¢
Output: Size of a minimum knot-free vertex deletion set

1 if 3 z such that N~ (z) = () then
‘ return KFVD(D — {z}, ¢);

3 if 3 = such that N (x) = () then
‘ return KFVD(D — R(z), ¢);

5 if Yo € D, ¢(v) = 0.5 then
‘ return |V (D)[;

7 if 3 x € D such that ¢(z) =1 & ¢(R(z)) > 3.5 then

D, =D — R(x);
9 Dy = D;
10 $1 = ¢;
11 P2 = ¢;

12 ¢2(x) = 0.5;
13 return min{KFVD(D1, ¢1) + |[NT(z)|, KFVD(Dz, ¢2)};

14 if 3z € D such that ¢(z) =1 & Vv € N(z), ¢(v) = 0.5 then
15 forye N~ (z) & z € N*(z) do

16 if 3 s such that s € N~ (y) " Nt (2) & ¢(s) = 1 then

17 Dy =D — R(x);

18 ¢1 = ¢;

19 Dy =D — R(s);

20 P2 = &

21 return min{KFVD(D1, ¢1) + [Nt (z)|, KFVD(D2,¢2) + [Nt (s)|};
22 else

23 Dy =D — R(x);

24 b1 = ¢

25 return KFVD(D1, ¢1) + [N T (2)];

26 if Jdx € D such that |N(x)| € {2,3}, ¢(z) =1 & 3 a unique s € N(z) with ¢(s) =1 then
27 D, =D — R(x);

28 | d1=¢;
29 Dy =D — R(s);
30 P2 = ¢

31 return min{KFVD (D1, ¢1) + |[NT(z)|, KFVD(D2,$2) + [Nt (s)[};

32 if 3z € D with N~ (z) = {y}, NT(z) = {2} and ¢(z) = ¢(y) = #(2) = 1 then
33 Dy =D — R(z);

34 $1 = ¢;
35 D; =D — R(y);
36 $2 = &
37 Ds = D — R(z);
38 $3 = ¢;
39 return

min{KFVD (D1, ¢1) + [N ()|, KFVD(D2, ¢2) + |NT(y)|, KFVD(Ds, ¢3) + [N (2)};

4 Correctness of the Algorithm

In this section, we prove that the Algorithm KFVD returns a knot-free vertex deletion set of
minimum size. We denote the steps from the lines 1-6 of the algorithm as Subroutine 0. The
correctness of the lines 1-4 follows from the Reduction Rules 2, and 3 and the correctness of
the lines 5-6 follows from the Reduction Rule 8. We call the steps from the lines 7-13, 14-25
and 26-39 of Algorithm KFVD as Subroutine 1, Subroutine 2, and Subroutine 3, respectively.



M. S. Ramanujan, A. Sahu, S. Saurabh, and S. Verma

In the subsequent subsections, we will prove the correctness of Subroutines 1, 2, and 3.
Below we provide a flowchart for Algorithm KFVD.

Flow chart for Algorithm KFVD

n denotes the following set of
poly-time reduction rules

Initialize all vertices to be Subroutine 0
undecided.

If the digraph has a source
sink or all semidecided
vertices, apply Reduction
Rules 1, 2, 3.

Subroutine 1

o i/ & —
o & Multiple instances

B —
Branch on v

Yes

s there an undecided
vertex v with all neighbors
semidecided?

Subroutine 2

Is there an undecided
vertex v of degree 37

Subroutine 3 No i/ / o

Is there an undecided
vertex v of degree 27

No

Return answer

4.1 Correctness of Subroutine 1

Subroutine 1 branches on an undecided vertex x € V(D), if ¢(R(z)) > 3.5. Notice that
for any solution S in polynomial time we can determine the set of sink vertices, say Zg,
corresponding to set S.

» Lemma 11. If z € V(D) such that ¢(z) = 1 and ¢(R(z)) > 3.5, then KFVD(D, ¢) =
min{KFVD(D1, ¢1) + [NT(x)|, KFVD(Ds, ¢2)} where D1 = D — R(z), Dy = D and ¢1 = ¢,
¢p2(v) = ¢(v), for allv € V(D) \ {z} and ¢2(x) = 0.5.

Proof. We use induction on the total potential ¢(V' (D)) of the digraph D to prove the lemma.
For the base case, assume that ¢(V(D)) = 1 and there exists exactly one undecided vertex .

Note that the given recurrence relation holds in this case. Next assume that KFVD(D, ¢1)
and KFVD(Daq, ¢2) compute the optimal solution correctly, say S; and Ss, respectively. Let
S be an optimal solution for KFVD(D, ¢). We consider the following two cases:

Case 1: = € Zg.

78:7
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Here we claim that S;UNT(z) is an optimal solution for KFVD(D, ¢) if and only if S; is an
optimal solution for KFVD(Dy, ¢1). The arguments are exactly the same as that in Claim
6. And by construction, Zs € ¢~'(1) if and only if Zg € ¢7'(1) where S’ = S\ N*(z).
We also claim that KFVD(Dag, ¢2) > KFVD(D1, ¢1) + |NT(z)|. For contradiction suppose
KFVD (Ds, ¢2) < KFVD(D1, ¢1) + |[NT(x)|. Then any optimal solution Sy for (Da, ¢2) is
also a feasible solution for KFVD(D, ¢). But Ss has size strictly smaller than S, which is
a contradiction. Hence, KFVD(D, ¢) = min{KFVD (D1, ¢) + |[NT(z)|, KFVD(D, ¢2)}.
Case 2: ¢ & Zs.
In this case, KFVD(Ds, o) = KFVD(D,¢), by definition. Also KFVD(Ds, ¢s) <
KFVD(D1, ¢1) + |N* ()|, otherwise we have S’ = S; U NT(z) as a solution with size
strictly smaller than S for KFVD(D, ¢), where © € Zg/, and that is a contradiction.
Hence, KFVD(D, ¢) = min{KFVD(D1, ¢) + |N*(z)|, KFVD(D, ¢2)}. <
In Subroutine 1, we get a (3.5,0.5) branching. If Subroutine 1 is no longer applicable on the
instance, the digraph has no undecided vertices with ¢(R(x)) > 3.5. This fact is crucial to
obtaining desirable branching vectors for Subroutine 2 and Subroutine 3.

» Remark 12. After Subroutine 1 completion, there are no undecided vertices with degree
more than 4.

4.2 Correctness of Subroutine 2

Subroutine 2 branches on any undecided vertex z who has semi-decided neighbors only. Note
that x has at least one out-neighbor and at least one in-neighbor; otherwise, reduction rules
2 or 3 would have been applied.

> Claim 13. Let D be a digraph such that ¢(R(v)) < 3.5, for every vertex v € V(D) and z
be an undecided vertex in D such that for all v € N(z), ¢(v) = 0.5. If = is a non-sink vertex
in an optimal solution S for (D, ¢), then there exist vertices y € N~ (z) and z € N7 (z) such
that there exists a unique s € N~ (y) N NT(z) with ¢(s) = 1 and s is a sink vertex in D — S.

Proof. If z is not a sink vertex, then there exists a vertex z € N (z) such that it does not
belong to S. Therefore, in digraph D — S the vertex z must reach to a sink s i.e., there exists
a path between z and the undecided vertex s. It implies that the vertices x, z, s belong to
R(s). Therefore, ¢p(R(s)) > 3.5 as ¢(x) = ¢(s) = 1, which is not possible. It implies that
s € N*(z) with ¢(s) = 1. Since vertex x must have one in-neighbor, say y € N~ (z). Next,
s can not have an out-neighbor outside the set {z,y, z}, otherwise ¢(R(z)) > 3.5 which
is not possible. Moreover, x or z cannot be an out-neighbor of s as z has no undecided
out-neighbor and z does not belong to S,,:. Hence, y € N*(s) which implies that s € R(z).
Since ¢(R(z)) < 3.5, there does not exist any vertex u € N~ (y) except s such that ¢(u) = 1.
Hence, s is a unique vertex such that s € N~ (y) N NT(z) with ¢(s) = 1. <

Next, we prove the correctness of Subroutine 2.

» Lemma 14. Let D be a digraph such that ¢(R(v)) < 3.5, for every vertex v € V(D) and
x € V(D) be such that ¢(x) = 1 and for all v € N(z), ¢(v) = 0.5. Ify € N~ (z) and
z € NT(x), then

min {KFVD(Dl, o) + [NT(2)],

KFVD(D, ¢) = KFVD(Dy, ¢2) + |N+(3)|} if3s€ N~ (y) N NT(2) with ¢(s) =1,

KFVD(D1, ¢1) + [N T ()| otherwise,
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where D1 = D — R(z), Dy = D — R(s) and ¢1 = ¢ = ¢.

Proof. Let S, S; ans Ss be the optimal solutions for KFVD(D, ¢), KFVD(D;,¢1) and

KFVD(Da, ¢2), respectively. We use induction on the total potential ¢(V (D)) of the digraph

to prove the correctness of the above claim. Let y € N~ (2) and z € N{z). Now, we consider

the following two cases:

Case 1: 3s € N~ (y) N NT(2) such that ¢(s) = 1.
Assume that there exists s € N~ (y) N NT(z) with ¢(s) = 1. From Claim 13, we know
that either x or s will be a sink in an optimal solution. Let x € Zg, then from Claim
10, |S| = KFVD(D1, ¢1) + [Nt (z)|. And Se U N7 (s) is a feasible solution to KFVD(D, ¢)
and hence KFVD(Ds, ¢2) + [NT(s)| > |S| = KFVD(D1,¢1) + |[NT(x)|. Similarly, if
s € Z(S) then from Claim 10, |S| = KFVD(D3, ¢2) + |[N*(s)|. Note that S; U Nt (z)
is also a feasible solution to KFVD(D, ¢) and therefore, KFVD(D1,¢1) + |[N*(z)| >
|S| = KFVD(Ds, ¢2) + |[NT(s)|. Hence, we have KFVD(D, ¢) = min{KFVD(D, ¢1) +
IN*(2)], KFVD(Da, $2) +|N*(s)]}.

Case 2: fis € N~ (y) N N1 (2) such that ¢(s) = 1.
Suppose there does not exist any vertex s € N~ (y) N N1 (z) such that ¢(s) = 1. Observe
that in this case, the vertex = has to be a sink; otherwise, by Claim 13 there exists a
vertex s € N~ (y) N NT(z) with ¢(s) = 1, which is a contradiction. Therefore, the vertex
x has to be a sink. Hence, KFVD(D, ¢) = KFVD(D1, ¢1) + N*(z) by Claim 10, where
Dy =D — R(x). <

» Remark 15. If Subroutine 2 is no longer applicable, the instance has no undecided vertices
with a degree more than 3.

4.3 Correctness of Subroutine 3

Subroutine 3 branches on undecided vertices with degrees 2 and 3. When Subroutine 0, 1,
and 2 are no longer applicable, there are no vertices with all semi-decided neighbors. Also
there is no undecided vertex x with degree 4 as ¢(R(x)) > 3.5. So any undecided vertex has
degree at most 3. Moreover, any undecided vertex = of degree 3 has exactly one undecided
vertex. We will prove the correctness of branching in Subroutine 3 in two parts. First, we
analyze the branching vector for degree 3 undecided vertices and then for degree 2 undecided
vertices.

Branching on a degree 3 vertex

Given an undecided vertex = of degree 3, there are two cases; either x has one in-neighbor
and two out-neighbors or x has two in-neighbors and one out-neighbor.

Case 1: x has one in-neighbor y; and two out-neighbors zq, z5

Out of three neighbors, = has exactly one neighbor which is undecided. So we have the
following 3 three subcases.

Subcase 1: ¢(y1) = 1 and ¢(z1) = ¢(z2) = 0.5.
If x is a sink, there is a potential drop of at least 3 since {y1, 21, 22,2} € R(x) .
If = is not a sink, then x and some z € NT(z) are not in the deletion set.Without loss
of generality, let 2 = z;. Now 2; reaches a sink s € Z,p; in D — S,p;. If 21 can reach a
sink s (# y1), then {y1,x, z1,s} C R(s). This is true since s can not have x or z; as
its out-neighbor and either y; is an out-neighbor of s or y; € R~ (x). It implies that
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MFCS 2022



78:10 An Exact Algorithm for Knot-Free Vertex Deletion

¢(R(s)) > 3.5, which is a contradiction. Hence y; is the only sink that z; must reach.
Note that ¢(R(y1)) > 2.5.

This gives us a (3,2.5) branching vector.
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Subcase 2: ¢(y1) = 0.5, ¢(z1) = 1 and ¢(z2) = 0.5.
If x is a sink, the potential drops by at least 3.
If z is not a sink and z; is not in the deletion set, then z; reaches a sink say, s in Z,,;
in D —S,p;. If 21 can reach a sink s (# z1), then {y1,, 21, s} C R(s) as s can not have
x , z1 or yi as its out-neighbors. Therefore, ¢(R(s)) > 3.5 which is a contradiction.
Therefore z; has to be a sink when x is not a sink. Note that ¢(R(z1)) > 2.5.
This gives us a (3,2.5) branching vector.

Subcase 3: ¢(y1) = ¢(z1) = 0.5 and ¢(z2) = 1.

if  is a sink, again the potential drops by at least 3 in (D1, ¢1).

If x is not a sink and z; is not in the deletion set, then z; reaches s in Zyp: in D — Sope.
Suppose z; can reach a sink, say s (# z3). If z; has an out-neighbor outside {y1,z, 21}
then ¢(R(s)) > 3.5, which is a contradiction. Otherwise y; is its only out-neighbor.
But then {s,y1,x, 21,2, 22} C R(x) and ¢(R(s)) > 4, which is not possible. Therefore,
the only possibility for z, is to be the sink for z; when z is not a sink. Note that
¢(R(22)) = 2.5.

Hence we have a (3,2.5) branching vector.

Case 2: x has two in-neighbors y;, y> and one out-neighbor z;

Subcase 1: ¢(y1) = ¢(y2) = 0.5 and ¢(z) = 1.
If x is a sink, there is a potential drop of at least 3.
If = is not a sink, then z; is not in the deletion set. Note that z; reaches a sink, say
5 € Zopt in D — Syps. If 21 can reach a sink s (# 21), then {y;,z, 21,5} C R(s). But
then ¢(R(s)) > 3.5 which is a contradiction. The only possibility is for z; itself to be
a sink when xz is not a sink. Note that ¢(R(z1)) > 2.5.
Hence we have a (3,2.5) branching vector.

Subcase 2: ¢(y1) = 1 and ¢(y2) = ¢(z1) = 0.5.

If x is a sink, the potential drops by 3.

If = is not a sink, then z; is not in the deletion set. Therefore, z; reaches a sink s. If
there is a path from z; to s not using y1, yo, then ¢(R(s)) > 4, which is not possible.
Otherwise if there is a path from z; to s via y; or ya, then ¢(R(s)) > 4, which is again
not possible. Hence, the only possibility is that y; becomes a sink such that z; reaches
y1. Note that in this case, the potential drops by at least 2.5.

Hence we have a (3,2.5) branching vector in this case.

Branching on a degree 2 vertex

This subsection analyzes the potential drop while branching on a degree 2 undecided vertex
x, which has an undecided neighbor. An undecided vertex x of degree 2 has exactly one
in-neighbor and one out-neighbor. Let y € N~ (z) and z € NT(z). We consider the following
three cases.

Case 1: ¢(y) = 1 and ¢(2z) = 0.5.
If x is a sink, the potential drops by 2.5.
If = is not a sink, then z is not in the deletion set and it reaches a sink s. If s # y,
then {y,z,z,s} C R(s) and ¢(R(s)) > 3.5, which is not possible. Hence, the only
possibility is that y is a sink that z reaches. Note that here the potential drops by 2.5.
Hence, we get a (2.5,2.5) branching vector.

MFCS 2022
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Case 2: ¢(y) = 0.5 and ¢(z) = 1.
If x is a sink, the potential drops by 2.5.
If z is not a sink, then z is not in the deletion set. Therefore, z reaches a sink, say s.
If s # y then {y,z, z,s} C R(s) and ¢(R(s)) > 3.5, which is not possible. Hence, the
only possibility is for z to be a sink itself. Note that in this case, the potential drops
by 2.5
Hence we have a (2.5,2.5) branching vector.

Case 3: ¢(y) =1 and ¢(z) = 1.
If x is a sink, potential drops by 3.
If  is not a sink, then z is not in the deletion set. Therefore, z reaches a sink, say s.
If s # y and s # z, then {y,z,z,s} C R(s) and ¢(R(s)) > 3.5, which is not possible.
Hence, the only possibility is for z to be a sink itself or to reach sink y. Note both in
these cases, the potential drops by at least 3.

Hence we have a (3, 3, 3) branching vector.
Next, we give a formal proof of the correctness for Subroutine 3.

» Lemma 16. Let D be a digraph such that ¢(R(v)) < 3.5, for every vertex v € V(D) and
x € V(D) be such that d(x) € {2,3}, ¢(x) =1 and there exists some vertex s € N(x) such
that ¢(s) = 1. Then KFVD(D, ¢) = min{KFVD(Dy, ¢) + [N+ (z)|, KFVD(Ds, ) + N*(s)}
where D1 = D — R(z), Dy = D — R(s) and ¢1 = ¢ = ¢.

Proof. Notice that there is no vertex v with ¢(v) > 3.5 and no vertex v that has all its
neighbors with potential 0.5. We use induction on the potential function to prove the
correctness of the claim. Let KFVD(Dy, ¢1) and KFVD(Ds, ¢3) correctly compute optimal
solution (S1,Z1) and (S, Z2), where Z; C ¢~ 1(1). Let (S, Z) be an optimal solution for
KFVD(D, ¢).

Case 1: z € Z.
In this case, we know that S; U NT(z) is an optimal solution for KFVD(D, ¢) if and
only if S} is an optimal solution for KFVD(Dy,¢1) and |Se U NT(s)| > |S1 U Nt (z)],
since it is also a solution to KFVD(D,¢) that does not contain z € z. Hence
KFVD(D, ¢)=min{KFVD(Da, ¢2) + |[NT(x)|, KFVD(D1,¢1) + [NT(s)|}.

Case 2: ¢ & Z.
By arguments made in the branching steps for degree 3 and 2 vertices, we can always
find an s that must be a sink in Z. And hence Sy U NT(s) is an optimal solution for for
KFVD(D, ¢) if and only if S; is an optimal solution for KFVD(Dsg, ¢3). |S1 U N (z)| >
|So U N (s)| since it is also a solution to KFVD(D, ¢) that does contain = € z. Hence
KFVD(D, ¢)=min{KFVD(Ds, ¢2) + |[NT(x)|, KFVD(D1, ¢1) + [NT(s)|}. <

5 Running time analysis

Reduction Rules 1, 2 and 3 are applied on the instance (D, ¢) in n®M time. In Subroutine 1,
while branching we get a potential drop of at least 3.5 in one branch, while in the other branch
the potential drop is at least 0.5. Hence, we get the recurrence f(u) < f(u—3.5)+ f(p—.5),
which solves to f(u) = O(1.576#). Similarly for Subroutine 2, we have a branching vector
(2,3). Therefore, we have the recurrence f(u) < f(u —2) + f(u — 3), which solves to
f(u) = O(1.324*). For Subroutine 3, we have branching vectors (3,2.5),(2.5,2.5), and
(3,3,3), out of which (3,3,3) gives the worst running time. This solves to f(u) = O(1.442%).
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To solve the KNOT-FREE VERTEX DELETION, when we call KFVD(D, ¢), potentials of all
the vertices of D are initialized to 1 and ¢(V (D)) = |V(D)| = n. Moreover, in the recursive
calls to the algorithm, the potential of the input graph never drops below 0. Hence we can
upper bound the running time of Algorithm KFVD by the worst-case running subroutine
(Subroutine 1). Thus we obtain the following theorem.

» Theorem 17. Algorithm KFVD solves KNOT-FREE VERTEX DELETION in O*(1.576™) time.

6 A lower bound on the worst case running time of our algorithm

In this section, we give a lower bound on the worst-case running time of our algorithm.

DR
) a1 dl (%) (&) dg Cn /4 Qn /4 dn/4

bl b2 bn/«l

Figure 1 Illustration of a worst-case instance for our algorithm.

We run our algorithm KFVD on the graph D (shown in Figure 1), where V(D) =
n/4 n/4 .
U, 21{ai, b, iy d;} and E(D) = U, 2 {(a;, b;), (bi, ci), (¢iy ai), (ag, d;), (diy ¢;)}. We claim that
in the worst case, our algorithm takes O % (2"/2) time to solve KFVD on D. We will give this
lower bound via adversarial arguments.

Let V; = {a;, b, ¢;,d;} where i € [1,n/4]. Since the potentials of all the vertices are
initialized to 1, we have ¢(R(a;)) = 4, ¢(R(b;)) = 3, ¢(R(¢;)) = 4, ¢(R(d;)) = 3. The
adversary chooses the vertex a; for KFVD to branch on. If q; is a sink, all the four vertices are
deleted. If a; is a non-sink vertex, its potential drops by 0.5 while all other vertices’ potentials
remain unchanged. In the next iteration, ¢(R(c;)) = 3.5, so we branch on ¢;. Again, if ¢;
is a sink then all four vertices get deleted. If ¢; is not a sink, then its potential drops by
0.5. In the next step, b; and d; are vertices where all their neighbors are semi-decided. The

adversary chooses b; to branch on. If b; becomes a sink all the vertices are again removed.

Else, when b; is a non-sink d; has to be a sink and all vertices are removed. There are four
leaves of the branching tree while branching on the set of vertices {a;, b;, ¢;, d;}. This gives
us a recurrence equation: T'(n) = 4T (n — 4) which solves to 4/4 = 1.414".

» Theorem 18. Algorithm KFVD runs in time Q(1.414™).

7 Conclusion

We obtain a O(1.576™) time and polynomial space algorithm for KFVD problem. Notice that

our algorithm is not optimal and its improvement is a suggested direction for future work.

Also exact algorithms for KFVD with dependency on number of edges instead of vertices can
be an interesting research topic.
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Branching on V; Vi = {ai, bi, ci, d;}

a; is a sink a; is a non-sink

G=G-V,

¢; is a sink ¢; 18 a non-sink

G=G-V

b; is a sink b; is a non-sink
G=G-V, and d; is a sink

G=G-V;

Figure 2 Branching steps on V;.
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