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Abstract
In a permutation graph, vertices represent the elements of a permutation, and edges
represent pairs of elements that are reversed by the permutation. In the Permuta-
tion Vertex Deletion problem, given an undirected graph G and an integer k, the
objective is to test whether there exists a vertex subset S ⊆ V (G) such that |S| ≤ k
and G − S is a permutation graph. The parameterized complexity of Permutation
Vertex Deletion is a well-known open problem. Bożyk et al. [IPEC 2020] initiated
a study on this problem by requiring that G − S be a bipartite permutation graph (a
permutation graph that is bipartite). They called this the Bipartite Permutation
Vertex Deletion (BPVD) problem. They showed that the problem admits a factor
9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm run-
ning in timeO(9k |V (G)|9). Moreover, they posed the questionwhether BPVD admits
a polynomial kernel.We resolve this question in the affirmative by designing a polyno-
mial kernel for BPVD. In particular, we obtain the following: Given an instance (G, k)
of BPVD, in polynomial time we obtain an equivalent instance (G ′, k′) of BPVD such
that k′ ≤ k, and |V (G ′)| + |E(G ′)| ≤ kO(1).

Keywords Kernelization · Bipartite permutation graph · Bicliques

1 Introduction

In a graph modification problem, the input consists of an n-vertex graph G and an
integer k. The objective is to determine whether k modification operations—such as

Related Version An extended abstract of this work appeared in the Proceedings of the 16th International
Symposium on Parameterized and Exact Computation (IPEC) 2021 [23].

B Lawqueen Kanesh
lawqueen@iitj.ac.in

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01040-9&domain=pdf


Algorithmica (2022) 84:3246–3275 3247

vertex deletions, or edge deletions, insertions, or contractions—are sufficient to obtain
a graph with prescribed structural properties such as being planar, bipartite, chordal,
interval, acyclic or edgeless. Graph modification problems include some of the most
basic problems in graph theory and graph algorithms. Unfortunately, most of these
problems are NP-complete [26, 34]. Therefore, they have been studied intensively
within various algorithmic paradigms for coping with NP-completeness [14, 17, 28],
including approximation algorithms, parameterized complexity, and algorithms for
restricted input classes.

Graph modification problems have played a central role in the development of
parameterized complexity. Here, the number of allowedmodifications, k, is considered
a parameter. With respect to k, we seek a fixed-parameter tractable (FPT) algorithm,
namely, an algorithmwhose running time has the form f (k)nO(1) for some computable
function f . Oneway to obtain such an algorithm is to exhibit a kernelization algorithm,
(or kernel, for short). A kernel for a graph problem � is an algorithm that, given
an instance (G, k) of �, runs in polynomial time and outputs an equivalent instance
(G ′, k′) of� such that |V (G ′)| and k′ are upper bounded by f (k) for some computable
function f . The function f is called the size of the kernel, and if f is a polynomial
function, then we say that the kernel is a polynomial kernel. A kernel for a problem
immediately implies that it admits an FPT algorithm, but kernels are also interesting in
their own right. In particular, kernels allow us to model the performance of polynomial
time pre-processing algorithms. The field of kernelization has received considerable
attention, especially after the introduction of the methods for proving kernelization
lower bounds [3, 7, 8, 11, 16, 20, 21]. We refer to the surveys [15, 19, 25, 27], as well
as the books [6, 10, 12, 31], for a detailed treatment of the area of kernelization. In
this paper, we study the kernelization complexity of the following problem.

Bipartite Permutation Vertex Deletion (BPVD) Parameter: k
Input: A graph G and an integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S
is a bipartite permutation graph?

A graph G is a permutation graph if the vertices represent the elements of a per-
mutation, and edges represent pairs of elements that are reversed by the permutation.
Alternatively, a permutation graph can be defined as an intersection graph of line
segments whose endpoints lie on two parallel lines L1 and L2, with one endpoint of
each line segment lying on L1 and the other endpoint on L2. Due to their intriguing
combinatorial properties and modeling power, the class of permutation graphs is one
of the well-studied graph classes [5, 18]. As a subclass of perfect graphs, many prob-
lems that are NP-complete on general graphs can be solved efficiently on permutation
graphs, such as Clique, Independent Set, Chromatic Number, Treewidth and
Pathwidth. Further, there is a linear time algorithm to test whether a given graph is
a permutation graph and, if so, construct a permutation representing it [30]. Whether
Permutation Vertex Deletion admits an FPT algorithm has been a longstanding
open problem in the area. In order to make progress on this open problem, recently,
Bożyk et al. [4] studied the problem of deleting vertices to a subclass of permutation

123



3248 Algorithmica (2022) 84:3246–3275

graphs. The subclasses of permutation graphs include the classes of bipartite permuta-
tion graphs (characterized by Spinrad, Brandstädt & Stewart 1987 [32]) and cographs.
While the fixed-parameter tractability of vertex deletion to cographs follows easily
because of the finite forbidden characterization (as induced subgraphs) of cographs,
no such result was known for vertex deletion to bipartite permutation graphs. Bożyk
et al. [4] studied BPVD and showed that the problem admits a factor 9-approximation
algorithm as well as an FPT algorithm running in time O(9kn9). A natural follow-up
question to this work, explicitly asked in [4], is whether BPVD admits a polynomial
kernel. In this paper, we resolve this question in the affirmative.

Theorem 1 Bipartite Permutation Vertex Deletion admits a polynomial ker-
nel.

1.1 Methods

Our kernelization heavily uses the characterization of bipartite permutation graphs in
terms of their forbidden induced subgraphs, also called obstructions. Specifically, a
graph H is an obstruction to the class of bipartite permutation graphs if H is not a
bipartite permutation graph and H − {v} is a bipartite permutation graph for every
vertex v ∈ V (H). A graph G is a bipartite permutation graph if and only if it does not
contain any obstruction as an induced subgraph. The set of obstructions to bipartite
permutation graphs has been completely characterized bySpinrad et al. [32]. It consists
of T2, X2, X3, K3, as well two infinite families of graphs: even cycles of length at least
6, and odd cycles of length at least 5 (see Fig. 1). We call any obstruction of size less
than 45 a small obstruction, and call all other obstructions large obstructions. Note
that every large obstruction is a hole (induced cycle) of length at least 45.

The first ingredient of our kernelization algorithm is the factor 9 polynomial time
approximation algorithm for BPVD byBożyk et al. [4].We use this algorithm to obtain
an approximate solution of size at most 9k or conclude that no solution of size at most
k exists. We grow this approximate solution to a solution T of size O(k45), such that
every set Y ⊆ V (G) of size at most k is a minimal hitting set for small obstructions in
G if and only if Y is a minimal hitting set for small obstructions in the graph induced
on T . Once we have T (also called a modulator), we know that G − T is a bipartite
permutation graph. Let S be a minimal (or minimum) solution of size at most k. Then,

Fig. 1 The set of obstructions for a bipartite permutation graph (Figure from [4])
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Fig. 2 An overview of the kernalization algorithm

the only purpose of vertices in S ∩ (V (G) \ T ) is to hit large obstructions. Next, we
analyze the graph G − T and reduce its size by applying various reduction rules.

For the kernelization algorithm, we look at G − T and focus on one connected
component of G − T . Since G − T is a bipartite permutation graph, it has a “com-
plete bipartite decomposition” [33]. For our kernelization purpose, we heavily use
this known decomposition. A biclique or a complete bipartite graph is a bipartite
graph where every vertex of the first part is adjacent to every vertex of the second
part. We give a semi-formal definition of a complete bipartite decomposition [33].
Let H = G − T . A complete bipartite decomposition of H is an ordered parti-
tion (Q1, R1, Q2, R2, . . . , Qs, Rs), of V (H), where each part is either a biclique or
an independent set, and vertices of each part have neighbours only (within the part
and) in the two immediately preceding and succeeding parts. The complete bipartite
decomposition is similar to the clique partition used by Ke et al. [24] for designing a
polynomial kernel for vertex deletion to proper interval graphs.

In the first phase, we bound the maximum biclique size in G − T , i.e., the size
of Qi for i ∈ [s]. Our biclique-reduction procedure builds upon the clique-reduction
procedure of Marx [29], which was used in the kernelizations for Chordal Vertex
Deletion [1, 22] and Interval Vertex Deletion [2]. The procedure of Marx
[29], as well as our procedure, are based on an “irrelevant vertex rule”. In particular,
we find a vertex that is unnecessary for a solution of size at most k and delete it.
Moreover, after this procedure, we reduce the size of each biclique in G−T by kO(1).
Next, using a simple marking procedure, we bound the size of Ri for i ∈ [s] as well.

In the second phase, we bound the size of the connected component of G − T we
started with. Towards this, we first bound the number of bicliques in Q1, Q2, . . . , Qt

that contain a neighbor of a vertex in T (say good bicliques).We use small obstructions
and, in particular, T2 (the subdivided claw) and K3 (the triangle) to bound the number
of good bicliques by kO(1). This automatically divides the biclique partition into
chunks. Mark all the good bicliques. A maximal set of unmarked bicliques between
two marked bicliques form a chunk. It is clear that the number of chunks is upper
bounded by kO(1). Finally, we use structural analysis to bound the size of each chunk,
which includes the design of a reduction rule that computes a minimum cut between
the two good bicliques that border the chunk. In particular, we show that each chunk
can be replaced by a graph of size kO(1). We remark that the procedure also needs to
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handle the presence of independent sets R1, R2, . . . , Rs , which we have completely
ignored in the discussion.

Until now, we have assumed that G − T is connected. Finally, again using the
obstructions T2 and K3, we show that the number of connected components in G − T
is upper bounded by kO(1). Using this bound, together with the facts that |T | ≤ kO(1),
and that each connected component is of size kO(1), we can deduce our polynomial
kernel for BPVD.

2 Preliminaries

In this section, we define some notations and list some properties of bipartite permu-
tation graphs.

Standard Notation: For a positive integer n, we denote the set {1, 2, . . . , n} by [n].
For a graph G, V (G) and E(G) denote the set of vertices and edges, respectively.
Two vertices u, v are said to be adjacent if there is an edge (denoted as uv) between
u and v. Given vertex subsets X ,Y ⊆ V (G), such that X ∩ Y = ∅, E(X ,Y ) denotes
the set of edges with one endpoint in X and the other in Y . The neighborhood of a
vertex v, denoted by NG(v), is the set of vertices adjacent to v. The subscript in the
notation for the neighborhood is omitted if the graph under consideration is clear. For
a set M ⊆ V (G) and a vertex u ∈ V (G), by M(u) we denote N (u) ∩ M . For a
set S ⊆ V (G), G − S denotes the graph obtained by deleting S from G and G[S]
denotes the subgraph of G induced on S. A path P = v1, . . . , v� is a sequence of
distinct vertices where every consecutive pair of vertices is adjacent. We say that P
starts at v1 and ends at v�. The vertices (or vertex set) of P , denoted by V (P), is
the set {v1, . . . , v�}. The endpoints of P is the set {v1, v�} and the internal vertices
of P is the set V (P) \ {v1, v�}. The length of P is defined as |V (P)|. A cycle is a
sequence v1, . . . , v� of vertices such that v1, . . . , v� is a path and v�v1 is an edge. A
set Q ⊆ V (G) of pairwise adjacent vertices inG is called a clique. For graph theoretic
terms and definitions not stated explicitly here, we refer to [9].

2.1 Bipartite Permutation Graph

The characterization of bipartite permutation graphs presented belowwas proposed by
Spinrad et al. [32]. LetG be a connected bipartite graph with vertex bipartition (A, B).
A linear order (B,<B) satisfies the adjacency property if for each vertex u ∈ A the
set N (u) consists of vertices that are consecutive in (B,<B). A linear order (B,<B)

satisfies the enclosure property if for every pair of vertices u, u′ ∈ A such that N (u)

is a subset of N (u′), vertices in N (u′) \ N (u) occur consecutively in (B,<B). A
strong ordering of the vertices of A∪ B consists of linear orders (A,<A) and (B,<B)

such that for every (u, w′), (u′, w) in E(G), where u, u′ are in A and w,w′ are in
B, u<Au′ and w<Bw′ imply that (u, w) ∈ E(G) and (u′, w′) ∈ E(G). Note that
whenever (A,<A) and (B,<B) form a strong ordering of A ∪ B, then (A,<A) and
(B,<B) satisfy the adjacency and enclosure properties.
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Theorem 2 ([32]) The following three statements are equivalent for a connected
bipartite graph G = (A, B, E):

1. (A, B, E) is a bipartite permutation graph.
2. There exists a strong ordering of A ∪ B.
3. There exists a linear order (B,<B) of B satisfying adjacency and enclosure prop-

erties.

Notation onordering:LetG be a bipartite permutation graphwith a vertex bipartition,
say (A, B), of G. Fix a strong ordering, say π , of (A, B). Let πA and πB be the
restriction of π on A and B, respectively, that is, πA and πB are linear orderings of
the vertices of A and B. For X ∈ {A, B} and a pair of vertices x, y ∈ X , we say
x <πX y if x appears before y in the ordering πX . Similarly, for X ∈ {A, B} and
Y ,Y ′ ⊆ X , we say Y <π Y ′ if y <πX y′ for every y ∈ Y and y′ ∈ Y ′. More generally,
for Y ,Y ′ ⊆ A ∪ B, we write Y <π Y ′ if Y ∩ A <π Y ′ ∩ A and Y ∩ B <π Y ′ ∩ B.
For X ∈ {A, B}, a set Y ⊆ X and an integer q, where 1 ≤ q ≤ |Y |, we write FY

q to
denote the first q vertices of Y in the ordering πX . Similarly, we write LY

q to denote
the last q vertices of Y in the ordering πX .

2.2 Complete Bipartite Decomposition

We start by defining the notion of complete bipartite decomposition.

Definition 3 (Complete Bipartite Decomposition [33]) Consider a bipartite permuta-
tion graph G with vertex bipartition (A, B) and a strong ordering π of (A, B). A
sequence of vertex subsets (Q1, R1, Q2, R2, . . . , Qs, Rs), where Qi , Ri ⊆ V (G) for
every i ∈ [s], is said to be a complete bipartite decomposition of G if the following
properties hold:

1. {Q1, R1, Q2, R2, . . . , Qs, Rs} is a partition of V (G).
2. For every i ∈ [s], G[Qi ] is a biclique whose edge set is non-empty.
3. For every i ∈ [s], Ri is an independent set.
4. Q1 <π R1 <π Q2 <π R2 <π · · · <π Qs <π Rs .
5. For i, j ∈ [s], if E(Qi , Q j ) 	= ∅, then |i − j | ≤ 1.
6. For i, j ∈ [s], if E(Qi , R j ) 	= ∅, then i = j .
7. For i, j ∈ [s], we have E(Ri , R j ) = ∅.
Notice that in the above definition, we require that each Qi induce a non-trivial
biclique; that is, for each Qi , we have Qi ∩ A = ∅ and Qi ∩ B = ∅. In particu-
lar, isolated vertices are not considered to be bicliques. The next lemma proves that
every connected bipartite permutation graph has a complete bipartite decomposition,
and further, it can be computed in polynomial time.

Lemma 4 ([33])Every connected bipartite permutation graphhas a complete bipartite
decomposition. Moreover, there is a polynomial time algorithm that takes a connected
bipartite permutation graph G with a fixed vertex bipartition (A, B) and a fixed strong
ordering π of (A, B) as input, and returns a complete bipartite decomposition of G.
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3 Constructing a Nice Modulator

We classify the set of obstructions for bipartite permutation graphs as follows. Any
obstructionof size less than45 is knownas a small obstruction,while other obstructions
(holes) are said to be large. In this section, we construct a modulator of bounded size,
i.e., a set T ⊆ V (G) such that |T | = kO(1) and G − T is a bipartite permutation
graph. The modulator T will have some additional properties as well. For this, we use
the following known result.

Theorem 5 ([4]) There exists a polynomial time, factor 9-approximation algorithm
for BPVD.

Lemma 6 ([13, Lemma 3.2]) Let F be a family of sets of cardinality at most d over a
universe U and k be a positive integer. Then there is aO(|F |(k+|F |))-time algorithm
that finds a non-empty set F ′ ⊆ F such that

1. For every Z ⊆ U of size at most k, Z is a minimal hitting set of F if and only if Z
is a minimal hitting set of F ′; and

2. |F ′| ≤ d!(k + 1)d .

We use Lemma 6 to identify a vertex subset of V (G), which allows us to forget
about small induced subgraphs of G and to concentrate on long induced holes for the
kernelization.

Lemma 7 There is an algorithm that takes an instance (G, k) of BPVD as input, runs
in time polynomial in the input size, and returns a set T ′′ ⊆ V (G) such that

1. every set Y ⊆ V (G) of size at most k is a minimal hitting set of small obstructions
in G if and only if it is a minimal hitting set for small obstructions in G[T ′′], and

2. |T ′′| ≤ (45 + 1)!(k + 1)45.

Proof Let F be the family consisting of all small obstructions of the input graph G.
For every small obstruction O , F contains the set V (O). By definition, each set in F
is of size at most 45. We apply Lemma 6 onF and, in polynomial time, obtain a setF ′
such that (i) Y is aminimal hitting set ofF of size at most k if and only if Y is aminimal
hitting set ofF ′ of size at most k; and (ii) |F ′| ≤ 45!(k+1)45. We take T ′′ to be the set
of vertices inside any set of F ′. Thus |T ′′| ≤ (45) · 45!(k + 1)45 ≤ (45+ 1)!(k + 1)45.


�
UsingTheorem5, in polynomial timewe construct a 9-approximate solution T ′, and

using Lemma 7 in polynomial time we construct a vertex set T ′′. If |T ′| > 9k, then we
conclude that (G, k) is a no-instance. Otherwise, we have a modulator T = T ′ ∪T ′′ of
sizeO(k45), such thatG−T is a bipartite permutation graph, and every set Y ⊆ V (G)

of size at most k is a minimal hitting set of small obstructions in G if and only if it is a
minimal hitting set for small obstructions in G[T ]. We call the modulator constructed
above a nice modulator. We summarize these discussions in the following lemma.

Lemma 8 (Nice Modulator) Let (G, k) be an instance to BPVD. In polynomial time,
we can either construct a nice modulator T ⊆ V (G) of sizeO(k45), or conclude that
(G, k) is a no-instance.
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4 Bounding the Sizes of Bicliques and Independent Sets

This section considers themodulator T ofG to the bipartite permutation graphobtained
in the previous section. We bound the size of each biclique and independent set in a
complete bipartite decomposition of G − T .

Throughout this section, we assume that we have fixed a bipartition (A, B)

of G − T and a strong ordering π of (A, B). Let πA = π |A and πB =
π |B . And for X ⊆ A (resp. Y ⊆ B), whenever we say that the first or last
vertex of X (resp. Y ), we mean the first or last vertex of X (resp. Y ) in the
ordering πA (resp. πB). We also assume that G − T is connected. Later, we
will remove this requirement. (We assume connectivity so that we can work
with a complete bipartite decomposition of G − T .) We also fix a complete
bipartite decomposition D = (Q1, R1, . . . , Qs, Rs) of G − T .

4.1 Auxiliary Results

Next, we prove a few simple results that will be used later to bound the size of each
biclique and independent set in the complete bipartite decomposition D of G − T .

Lemma 9 Consider a no-instance (G, k) of BPVD. Let v ∈ V (G) be such that v /∈ T
and (G − v, k) is a yes-instance of BPVD. Let X ⊆ V (G − v) be a solution for
the instance (G − v, k), and let H be an obstruction in G − X. Then, H is a large
obstruction.

Proof Let (G, k) be a no-instance of BPVD and let X ⊆ V (G − v) be a solution
of size at most k. That is, (G − v) − X is a bipartite permutation graph. Moreover,
by our assumption that (G, k) is a no-instance, G − X is not a bipartite permutation
graph. Then, G − X must contain an obstruction, say, H . Note that v ∈ V (H), as
otherwise, H would be an obstruction in (G − v) − X , which contradicts the fact
that (G − v) − X is a bipartite permutation graph. We first claim that H is a large
obstruction. Suppose not. Note that X hits all obstructions in G − v. And since G[T ]
is a subgraph of G − v as v /∈ T , X hits all obstructions in the subgraph G[T ] as well.
In particular, X hits all small obstructions in G[T ]. Let Y ⊆ X be a minimal hitting
set for all small obstructions in G[T ]. Then, by the definitions of T and Y , we can
conclude that Y hits all small obstructions in G as well. However, then, as H is an
obstruction in G − X and Y ⊆ X , we can conclude that H is a small obstruction in
G − Y , a contradiction. Thus, H is a large obstruction in G − X . 
�
Lemma 10 Let H be an induced path in G. Consider v ∈ V (G)\V (H). If v has more
than 5 neighbours in V (H), then G[V (H) ∪ {v}] contains a small obstruction.

Proof Assume that |N (v) ∩ V (H)| ≥ 5. Let H be a path from x to y for some
x, y ∈ V (G). Let v1, v2, v3, v4, v5 ∈ V (H) be the first 5 neighbours of v that appear
as we traverse H from x to y. Note that if vivi+1 ∈ E(G) for some i ∈ [4], then
{v, vi , vi+1} induces a triangle, which is an obstruction, and the lemma follows. So,
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assume that vivi+1 /∈ E(H) for every i ∈ [4]. This means that no two vertices from
{v1, v2, v3, v4, v5} appear consecutively on H . For i ∈ {1, 3}, let ui be the neighbour
of vi that appears between vi and vi+1 as we traverse H from v1 to v5, and let u5
be the neighbour of v5 that appears between v4 and v5 as we traverse H from v1 to
v5. Then, notice that {v, v1, u1, v3, u3, v5, u5} induces a subdivided claw, which is an
obstruction. 
�
Lemma 11 Let H ′ be a graph with a Hamiltonian cycle, and let C = v1v2 . . . , v�v1 be
aHamiltonian cycle in H ′, where � ≥ 45. Let Y ⊆ V (H ′) be such that (i) 1 ≤ |Y | ≤ 3,
(ii) the vertices of Y appear consecutively in the cycle C (i.e., Y = {vi , vi+1, vi+2}
for some i ∈ [� − 2] or Y = {v�−1, v�, v1} or Y = {v�, v1, v2}), (iii) H ′ − Y is an
induced path and (iv) dH ′(y) ≤ 5 for every y ∈ Y . Then, H ′ contains an obstruction.

Proof Observe first that since H ′ − Y is an induced path, any chord in the cycle C is
incidentwithY . Firstwe prove that if a vertex v ∈ Y has at least 5 neighbors in H ′, there
is an obstruction contained in H ′. Such a vertex v has at least 3 neighbors {x1, x2, x3}
in H ′ \ Y such that vxi is not an edge in C for i ∈ [3]. Also if any two vertices
{x1, x2, x3} are consecutive, they form a triangle with v, which is an obstruction.
Otherwise {x1, x2, x3} along with v induces a subdivided claw, an obstruction. Now,
if every vertex in Y has at most 4 neighbors in H ′, then |NH ′(Y )| ≤ 12. But from
pigeonhole principle, there is a maximal induced subpath P1, of H ′ \ Y of length at
least 3 that has no neighbors in Y . This also implies the existence of a minimal path
P2 of length at least 5 with V (P1) ⊆ V (P2) where only its endpoints have neighbors
in Y . Then any shortest path between the endpoints of P2 using vertices of Y only,
together with the path P2 induces a cycle of length at least 6, which is an obstruction.


�

4.2 Bounding the Size of a Biclique in the Complete Bipartite Decomposition

In this section, we bound the size of each biclique in the complete bipartite decompo-
sition D = (Q1, R1, . . . , Qs, Rs) of G − T . In particular, we show that if G − T has
a sufficiently large biclique, then in polynomial time, we can find and safely delete
an “irrelevant vertex” from such a biclique. We start with a marking procedure that
marks a set of vertices in a given biclique.

The intuition behind the marking procedure is simple. The graph G may contain a
large obstruction, say H , such that three vertices u, v, w appear consecutively on H .
Suppose that v ∈ Q j . Then, u, w ∈ T ∪ Q j−1 ∪ Q j ∪ R j ∪ Q j+1. We will argue
that v is “irrelevant,” which means that in H , we can replace v with another vertex
v′ such that uv′, v′w ∈ E(H). To do this, we need to set aside sufficiently many
common neighbors of u and w in Q j as “relevant” vertices. For that, we will have to
consider different cases depending on which of the sets T , Q j−1, Q j , R j and Q j+1
the vertices u and w belong to, and identify the “relevant” vertices accordingly. This
is precisely what our marking procedure does. The only rather difficult case arises
when u ∈ Q j−1 and w ∈ R j ∪ Q j+1. Steps 5A and 5B of the marking procedure
below cover this case, and all other cases are covered by Steps 1-4. Informally, in Step
5A, we look for the first possible (first in the ordering πA) vertex u′ ∈ Q j−1 ∩ A
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and the last possible vertex w′ ∈ (R j ∪ Q j+1) ∩ A such that u′ and w′ have at least
one common neighbour in (Q j ∩ B). For such a pair (u′, w′), we mark at most O(k)
many common neighbours (in Q j ∩ B) of u′ and w′. We do this only forO(k2) many
distinct pairs of the form (u′, w′). And while doing this, we also ensure that no vertex
appears in more than O(k) many pairs. Step 5B deals with the symmetric case when
u′, w′ ∈ B and have a common neighbour in Q j ∩ A.

Recall that for a set Y ⊆ A and an integer q, where1 ≤ q ≤ |Y |, by FY
q , we mean

the set of the first q vertices of Y (in the ordering πA); similarly, by LY
q , we mean

the last q vertices of the Y (again, in the ordering πA). If Y ⊆ B, then FY
q and LY

q
respectively denote the sets of the first and last vertices of Y in the ordering πB .

Now, we formally describe the marking procedure. And towards that end, for each
j ∈ [s], we set Mj = M ′

j = ∅.
Procedure Mark-1. The procedure works in 5 steps. For each fixed j ∈ [s], we do as
follows.
Step 1: For each {u, v} ⊆ T , let A{u,v}

j = N (u) ∩ N (v) ∩ Q j ∩ A, and B{u,v}
j = N (u) ∩

N (v) ∩ Q j ∩ B. We add the first min
{
k + 1, |A{u,v}

j \ Mj |
}
vertices of A{u,v}

j \ Mj in

the ordering πA to Mj . Similarly, we add the first min
{
k + 1, |B{u,v}

j \ Mj |
}
vertices of

B{u,v}
j \ Mj in the ordering πB to Mj .

Step 2: For each v ∈ T , if |(N (v) ∩ Q j ∩ A) \ Mj | ≤ 2(k + 1), then we add (N (v) ∩
Q j ∩ A) \ Mj to Mj , otherwise we add the first k + 1 vertices and the last k + 1 vertices in
(N (v) ∩ Q j ∩ A) \ Mj in the ordering πA to Mj . Similarly, if |(N (v) ∩ Q j ∩ B) \ Mj | ≤
2(k + 1), then we add (N (v) ∩ Q j ∩ B) \ Mj to Mj , else we add the first k + 1 vertices
and the last k + 1 vertices in (N (v) ∩ Q j ∩ B) \ Mj in the ordering πB to Mj .

Step 3: For each u ∈ F
Q j∩A
k+10 \ Mj , we add u to Mj . And for each u ∈ F

Q j∩B
k+10 \ Mj , we

add u to Mj .

Step 4: For each u ∈ L
Q j∩A
k+10 \ Mj , we add u to Mj and for each u ∈ L

Q j∩B
k+10 \ Mj , we add

u to Mj .
Step 5A: Set SA

j = ∅. For every x ∈ (Q j−1 ∪ R j ∪ Q j+1) ∩ A, set count(x) = 0. Repeat

the following while |SA
j | ≤ (k+10)2−1, or until it is no longer feasible to do so, whichever

happens, earlier. For the first vertex u ∈ Q j−1 ∩ A and the last vertex w ∈ R j ∪ Q j+1 ∩ A
such that (u, w) /∈ SA

j , count(u) ≤ k + 9, count(w) ≤ k + 9 and u and w have a
common neighbour in Q j \ Mj , add any k + 10 vertices of (N (u) ∩ N (w) ∩ Q j ) \ Mj

to Mj . If |(N (u) ∩ N (w) ∩ Q j ) \ Mj | ≤ k + 10, then add all the vertices of (N (u) ∩
N (w) ∩ Q j ) \ Mj to Mj . And add (u, w) to SA

j , and set count(u) ← count(u) + 1 and
count(w) ← count(w) + 1. Finally, we add u to Mj−1; and if w ∈ R j , then we add w to
M ′

j , otherwise if w ∈ Q j+1, then we add w to Mj+1.

Step 5B: Set SB
j = ∅. For every x ∈ (Q j−1 ∪ R j ∪ Q j+1) ∩ B, set count(x) = 0. Repeat

the following while |SB
j | ≤ (k+10)2−1, or until it is no longer feasible to do so, whichever

happens, earlier. For the first vertex u ∈ Q j−1 ∩ B and the last vertex w ∈ R j ∪ Q j+1 ∩ B
such that (u, w) /∈ SB

j , count(u) ≤ k + 9, count(w) ≤ k + 9 and u and w have a
common neighbour in Q j \ Mj , add any k + 10 vertices of (N (u) ∩ N (w) ∩ Q j ) \ Mj

to Mj . If |(N (u) ∩ N (w) ∩ Q j ) \ Mj | ≤ k + 10, then add all the vertices of (N (u) ∩
N (w) ∩ Q j ) \ Mj to Mj . And add (u, w) to SB

j , and set count(u) ← count(u) + 1 and
count(w) ← count(w) + 1. Finally, we add u to Mj−1; and if w ∈ R j , then we add w to
M ′

j , otherwise if w ∈ Q j+1, then we add w to Mj+1.
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Step 1
Step 2
Step 3
Step 4

Added to
Added to
Added to or

Step 5

Fig. 3 An illustration of the procedure Mark-1

Remark 12 1. We apply Steps 5A and 5B only for those values of j for which Q j−1
and Q j+1 exist, i.e., only when j /∈ {1, s}. We also apply Mark-1 in the increasing
order of j .

2. Consider u ∈ Q j−1∩ A. Notice that in Step 5A, we add at most k+10 pairs of the
form (u, w) to SA

j , where w ∈ R j ∩ Q j+1 ∩ A; because each time we add a pair
(u, w), we increase count(u) by 1. And we add (u, w) only if count(u) ≤ k + 9.
Thus, every vertex u ∈ Q j−1 ∩ A appears in at most k +10 pairs in SA

j . Similarly,

for w ∈ (R j ∪ Q j+1) ∩ A, w appears in at most k + 10 pairs in SA
j .

3. At the end of Mark-1, |SA
j | ≤ (k + 10)2.

4. The properties analogous to the ones in items 2 and 3 holds for Step 5B.

We now bound the size of the set Mj at the end of the procedure Mark-1.

Remark 13 Observe that the Procedure Mark-1 can be executed in polynomial time.
Also note that |Mj | = O(k · |T |2). In Step 1, we addO(k ·(|T |

2

)
) vertices to Mj . In Step

2, we add O(k · |T |) vertices. In Steps 3 and 4, we add O(k) vertices. Furthermore,
in Steps 5A and 5B, we considerO(k2) pairs, and for each pair, we addO(k) vertices
to Mj . Also, in Steps 5A and 5B, we addO(k2) vertices to Mj−1, M ′

j and Mj+1. We

thus add a total of O(k · |T |2) vertices to Mj .

Reduction Rule 1 If there exists a vertex v ∈ Q j \ Mj for some j ∈ [s], then delete v.

Lemma 14 Reduction Rule 1 is safe.
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Proof Consider an application of Reduction Rule 1 in which a vertex, say v ∈ Q j \Mj

was deleted for some j ∈ [s]. We show that (G, k) is a yes-instance of BPVD if and
only if (G − v, k) is a yes-instance of BPVD. Observe first that if (G, k) is a yes-
instance, so is (G − v, k), as G − v is an induced subgraph of G. Assume now for a
contradiction that (G−v, k) is a yes-instance, but (G, k) is not. And let X ⊆ V (G−v)

be a solution of size at most k. That is, (G − v) − X is a bipartite permutation graph.
Moreover, by our assumption that (G, k) is a no-instance, G − X is not a bipartite
permutation graph. Then, G − X must contain an obstruction, say, H . By Lemma 9 it
follows that H is a large obstruction in G − X . That is, H is a hole of length at least
45.

Let u and w be the neighbours of v in H , i.e., H = uvw . . . u. And thus H − v

is an induced path from w to u in G. Without loss of generality, assume that v ∈ A.
Then, u, w ∈ B. We show that we can construct another hole H ′ in (G − v) − X ,
which will contradict the fact that (G − v) − X is a bipartite permutation graph. For
this, we consider different cases depending on which Qi ∪ Ri or T each of the two
vertices u and w belong. And in each case (except Cases 6.2.1.3 and 6.2.3.2.2), we
will show that there exists v′ ∈ Q j ∩ A such that v′ /∈ X ∪ {v} and uv′, v′w ∈ E(G).
(Notice that the fact that uv′, v′w ∈ E(G) also implies that v′ /∈ V (H), as H is a hole
and u and w are the only two neighbours of v in H .) So, we replace v with v′ to get
a new graph H ′ from H ; and H ′ is completely contained in (G − v) − X . Then, we
will use Lemmas 10 and 11 to argue that H ′ contains an obstruction, which will lead
to a contradiction. In Cases 6.2.1.3 and 6.2.3.2.2, we replace v with a 3-vertex path
abc such that abc /∈ X ∪ V (H) and ua, cw ∈ E(G). Again, by replacing v with the
path abc, we will get a contradiction.

Recall that v ∈ Q j \Mj . Notice that for x ∈ {u, w}, if x /∈ T , then, by the definition
of a complete bipartite decomposition, x ∈ Q j−1 ∪ Q j ∪ Q j+1 ∪ R j .

1. Case 1: u, w ∈ T . Notice that in Step 1 of the Procedure Mark-1, we must have
marked k + 1 common neighbors of u and v in Q j ∩ A, as otherwise, we would

have marked v as well. That is, |A{u,w}
j ∩ Mj | = k + 1. Since, |X | ≤ k, we have

(A{u,w}
j ∩ Mj ) \ X 	= ∅. Let v′ ∈ (A{u,w}

j ∩ Mj ) \ X . Then, uv′, v′w ∈ E(G).
2. Case 2: u ∈ T , w ∈ Q j ∪ R j ∪ Q j+1. In Step 2 of the Procedure Mark-1, we

must have marked the k+1 last neighbors of u in Q j ∩ A, as otherwise, we would

have marked v as well. That is, |LN (u)∩Q j∩A∩Mj
k+1 | = k + 1. Since |X | ≤ k, we

have L
N (u)∩Q j∩A∩Mj
k+1 \ X 	= ∅. Let v′ ∈ L

N (u)∩Q j∩A∩Mj
k+1 \ X . Then, v <π v′.

Observe now that v′w ∈ E(G). If w ∈ Q j , then, clearly v′w ∈ E(G) as Q j is a
biclique. Suppose that w ∈ R j ∪ Q j+1. Let w′ ∈ Q j ∩ B. Then, w′ <π w. And
we have v′w′ ∈ E(G), as Q j is a biclique. We thus have v <π v′ and w′ <π w;
and vw, v′w′ ∈ E(G). Then, by the definition of the strong ordering, we have
v′w ∈ E(G).

3. Case 3: u ∈ T , w ∈ Q j−1. This case is symmetric to Case 2. In Step 2 of the
Procedure Mark-1, we must have marked the first k+1 neighbors of u in Q j ∩ A,

as otherwise, we would have marked v as well. That is, |FN (u)∩Q j∩A∩Mj
k+1 | = k+1.

Again, there exists v′ ∈ (F
N (u)∩Q j∩A∩Mj
k+1 )\ X . The rest of the arguments proceed

as in Case 2.
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We have thus covered all the cases in which at least one neighbor of v in H belongs
to T . Assume now that u, w /∈ T . Then, by the definition of complete bipartite
decomposition, u, w ∈ Q j−1 ∪ Q j ∪ R j ∪ Q j+1.

4. Case 4: u ∈ Q j−1 ∪ Q j ∪ Q j+1 and w ∈ Q j−1 ∪ Q j ∪ Q j+1.

a. Case 4.1: u, w ∈ Q j . In Step 3 of the procedureMark-1, wemust havemarked
thefirst k+10 vertices of Q j∩A, as otherwise,wewould havemarked v aswell.

That is, |FQ j∩A∩Mj
k+10 | = k + 10. Since, |X | ≤ k, we have F

Q j∩A∩Mj
k+10 \ X 	= ∅.

Let v′ ∈ F
Q j∩A∩Mj
k+10 \ X . Since v′ ∈ Q j , we have uv′, v′w ∈ E(G).

b. Case 4.2: u, w ∈ Q j−1. Just like in Case 4.1, there exists v′ ∈ F
Q j∩A∩Mj
k+10 \ X .

Then, v′ <π v. Consider w′ ∈ Q j ∩ B. Since Q j is a biclique, such a vertex
w′ exists. Then, v′w′ ∈ E(G), and u <π w′ and w <π w′. Then, by the
definition of strong ordering, since uv, v′w′ ∈ E(G), we have uv′ ∈ E(G);
and since wv, v′w′ ∈ E(G), we have v′w ∈ E(G).

c. Case 4.3: u, w ∈ Q j+1. Symmetric to Case 4.2. In this case, there exists

v′ ∈ L
Q j∩A∩Mj
k+10 \ X . And using symmetric arguments, we can show that

uv′, v′w ∈ E(G).
d. Case 4.4: u ∈ Q j , w ∈ Q j−1. In Step 3 of the procedure Mark-1, we must

have marked the first k + 10 vertices of Q j ∩ A, as otherwise, we would have

marked v as well. That is, |FQ j∩A∩Mj
k+10 | = k + 10. Since, |X | ≤ k, we have

F
Q j∩A∩Mj
k+10 \ X 	= ∅. Let v′ ∈ F

Q j∩A∩Mj
k+10 \ X . Since v′ ∈ Q j , we have

uv′ ∈ E(G). Notice that v′ <π v. Now, sincew ∈ Q j−1 and u ∈ Q j , we have
w <π u. Therefore, by the definition of strong ordering, we have v′w ∈ E(G).

e. Case 4.5: u ∈ Q j , w ∈ Q j+1. Symmetric to Case 4.4. In this case, there exists

v′ ∈ L
Q j∩A∩Mj
k+10 \ X . Hence, v <π v′. And we have u <π w. Now, using

symmetric arguments, we can show that uv′, v′w ∈ E(G).

The only remaining possibility in Case 4 is when u ∈ Q j−1 and w ∈ Q j+1. We
will consider this possibility in Case 6.

5. Case 5: u ∈ Q j ∪ Q j+1 ∪ R j , w ∈ R j . In Step 4 of the procedure Mark-1, we
must have marked the last k + 10 of vertices of Q j ∩ A, as otherwise, we would

have marked v as well. That is, |LQ j∩A∩Mj
k+10 | = k + 10. Since |X | ≤ k, we have

(Q j ∩ A ∩ Mj ) \ X 	= ∅. Let v′ ∈ (Q j ∩ A ∩ Mj ) \ X . Then, v <π v′. We
now claim that uv′, v′w ∈ E(G). (1) If u ∈ Q j , then uv′ ∈ E(G). Also, we
have u <π w, and since vw, uv′ ∈ E(G), by the definition of strong ordering,
we get v′w ∈ E(G). (2) Suppose that u ∈ R j ∪ Q j+1. Consider w′ ∈ Q j ∩ B.
Such a vertex w′ exists as Q j is a biclique. Then, w′ <π u and w′ <π w. Again,
since Q j is a biclique, we have v′w′ ∈ E(G). Hence, by the definition of strong
ordering, we have uv′ ∈ E(G), (as v <π v′, w′ <π u and uv, v′w′ ∈ E(G)) and
v′w ∈ E(G), (as v <π v′, w′ <π w and vw, v′w′ ∈ E(G)).

6. Case 6: u ∈ Q j−1, w ∈ R j ∪ Q j+1. There are two possibilities. Either we consid-
ered the pair (u, w) (i.e., (u, w) ∈ SB

j ) in Step 5B and added common neighbours
of u and w to Mj , or we did not.
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a. Case 6.1: (u, w) ∈ SB
j . In this case, when we considered (u, w), we must have

added k+10 common neighbours of u and w in Q j \Mj to Mj , for otherwise
we would have added v as well. That is, |N (u) ∩ N (w) ∩ Q j ∩ Mj | ≥ k+10.
Therefore, (N (u) ∩ N (w) ∩ Q j ∩ Mj ) \ X 	= ∅. Let v′ be such a common
neighbour of u and w in Q j \ X .

b. Case 6.2: (u, w) /∈ SB
j . Then, we must have either |SB

j | = (k + 10)2 or
count(u) = k + 10 or count(w) = k + 10, for otherwise we would have
considered the pair (u, w) in Step 5B. Notice that for each pair (u′, w′) ∈ SB

j ,

we added at least one vertex to Mj . We added at least |SB
j | vertices to Mj in

Step 5B.
i. Case 6.2.1: Suppose that count(u) = k + 10. This means that there exist

k + 10 pairs of the form (u, w′) ∈ SB
j ; and corresponding to each such

pair, we added a common neighbour of u and w′, say v′ ∈ Q j ∩ A, to
Mj . Since |X | ≤ k, there exists (u, w′) ∈ SB

j such that corresponding to
(u, w′), we added v′ ∈ N (u) ∩ N (w′) ∩ Q j ∩ A to Mj , and w′, v′ /∈ X .
There are two further possibilities: w <π w′ or w′ <π w.
A. Case 6.2.1.1: w <π w′. Now, if v <π v′, then, since u <π w

and uv′, vw ∈ E(G), by the definition of strong ordering, we get
v′w ∈ E(G). On the other hand, if v′ <π v, then, since w <w′ and
vw, v′w′ ∈ E(G), by the definition of the strong ordering, we get
v′w ∈ E(G).

B. Case 6.2.1.2: w′ <π w and v <π v′. Then, since vw, v′w′ ∈ E(G),
we get v′w ∈ E(G).

C. Case 6.2.1.3: w′ <π w and v′ <π v. Note that we must have marked
the k + 10 last vertices of Q j ∩ A (i.e., the vertices of L

Q j∩A
k+10 ), for

otherwise, we would have marked v as well. So, let z ∈ L
Q j∩A
k+10 \ X .

Since Q j is a biclique, there exists y ∈ Q j ∩ B, and we have zy ∈
E(G). Notice that we have v′, v, z ∈ A with v′ <π v <π v <π z and
u, y, w′, w ∈ B with u <π y <π w′ <π w. Now, since zy, v′w′ ∈
E(G), we get zw′ ∈ E(G). Then, since zw′, vw ∈ E(G), we get
vw′, zw ∈ E(G). We thus have v′, w′, z with uv′, v′w′, w′z, zw ∈
E(G).
In addition, we can safely assume that v′, w′, z′ /∈ V (H). First, since
vw′ ∈ E(G) and H is a hole such that u andw are the only neighbours
of v in H , we can conclude that w′ /∈ V (H). Now, suppose that
z ∈ V (H). Then, since H is an induced cycle and zw,wv ∈ E(G),
we can conclude that z and v are the only neighbors ofw in H . Recall

that we chose z arbitrarily from L
Q j∩A
k+10 \ X . In other words, there

exists at most one such z ∈ L
Q j∩A
k+10 \ X with z ∈ V (H). So, we can

always choose an z from L
Q j∩A
k+10 \ X such that z /∈ V (H). Similarly,

since uv′, uv ∈ E(G), if v′ ∈ V (H), then v and v′ are the only
neighbours of u in H . In other words, there exists at most one such v′
in H . Again, we chose the pair (u, w′) with a common neighbour v′
arbitrarily from SB

j such that w′, v′ /∈ X . Since count(u) = k + 10,
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we have sufficiently many pairs (u, w′) with the additional property
that v′ /∈ V (H).

ii. Case 6.2.2: Suppose that count(w) = k + 10. This case is symmetric to
Case 6.2.1.

iii. Case 6.2.3: Suppose that count(u) < k + 10 and count(w) < k + 10.
Then, |SB

j | = (k + 10)2. Since |X | ≤ k and count(x) ≤ k + 10 for every

x ∈ X∩(Q j−1∪R j ∪Q j+1), there exists a pair (u′, w′) ∈ SB
j such that in

Step 5B, corresponding to (u′, w′), we marked a common neighbour, say
v′ ∈ Q j ∩ A, of u′ andw′, and u′, v′, w′ /∈ X . Now, in Step 5, since we did
not consider the pair (u, w), (which has an unmarked common neighbour
v, and count(u) < k + 10 and count(w) < k + 10), and since we
considered the pair (u′, w′), it cannot be the case that we simultaneously
have u <π u′ and w′ <π w. So, we either have u′ ≤π u or w ≤π w′. In
fact, there are three possible scenarios: (i) u′ ≤π u <π w ≤π w′ or (ii)
u <π u′ <π w ≤π w′ or (iii) u′ ≤π u <π w′ ≤π w. We consider each
of these scenarios separately.
A. Case 6.2.3.1: u′ ≤π u <π w ≤π w′. Suppose first that v <π v′.

Then, since vu, v′u′ ∈ E(G), we also have v′u ∈ E(G). But then,
since vw, v′u ∈ E(G), we also have v′w ∈ E(G). That is, we have
uv′, v′w ∈ E(G). Suppose now that v′ <π v. Then, since v′w′, vu ∈
E(G), we also have v′u ∈ E(G). Then, since vw, v′w′ ∈ E(G), we
also have v′w ∈ E(G). That is, we have uv′, v′w ∈ E(G).

B. Case 6.2.3.2: u <π u′ <π w ≤π w′. We divide this case into two,
depending on whether or not v <π v′.
B1. Case 6.2.3.2.1: v′ <π v. Since v′u′, vu ∈ E(G), we also have
v′u ∈ E(G). And since vw, v′w′ ∈ E(G), we also have v′w ∈
E(G). We thus have uv′, v′w ∈ E(G).
B2. Case 6.2.3.2.2: v <π v′: Note that we must have marked the
first k + 10 vertices of Q j ∩ A (i.e., the vertices of F

Q j∩A
k+10 ), for

otherwise we would have marked v as well. So, let z ∈ F
Q j∩A
k+10 \ X .

Since Q j is a biclique, there exists y ∈ Q j ∩ B, and we have
zy, vy, v′y ∈ E(G). Also, notice that z <π v and u′ <π y <π

w. Now, since zy, v′u′ ∈ E(G), we also have zu′ ∈ E(G). And
since v′y, vw ∈ E(G), we also have v′w ∈ E(G). We thus have
z, u′, v′(/∈ X) such that uz, zu′, u′v′, v′w ∈ E(G).
Finally, using the same arguments as in Case 6.2.1.3, we conclude
that z, v′ /∈ V (H).And sincevw, v′u′ ∈ E(G),wehavevu′ ∈ E(G)

as well, which implies that u′ /∈ V (H).
C. Case 6.2.3.3: u′ ≤π u <π w′ ≤π w. This case is symmetric to Case

6.2.3.2.

In all the Cases discussed above, except in Cases 6.2.1.3 and 6.2.3.2.2 (and their
symmetric counterparts), let H ′ be the graph obtained from H by replacing the
vertex v with the vertex v′ and the edges uv, vw by the edges uv′, v′w. Then,
v′ /∈ V (H), as v is the only common neighbour of u and w in H . Notice also that
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no vertex of H ′ belongs to X∪{v}. Thus, the graph H ′ is contained in (G−v)−X ,
and H ′ −v′ is an induced path in G. By Lemma 10, v′ has at most 4 neighbours in
V (H ′) \ {

v′}, for otherwise G[V (H ′)] contains a small obstruction, (which is an
obstruction in (G−v)−X ), a contradiction to the assumption that X is a solution to
G−v of BPVD. However, then, by Lemma 11,G[V (H ′)] contains an obstruction,
which is again a contradiction to the assumption that X is a solution to G − v of
BPVD. Similarly, inCase 6.2.1.3, let H ′ be the graph obtained from H by replacing
v with the vertices v′, w′, z and the edges uv, vw with uv′, v′w′, w′z, zw. In Case
6.2.3.2.2, let H ′ be the graph obtained from H by replacing the vertex v with
vertices z, u′, v′ and the edges uv, vw with the edges uz, zu′, u′v′, v′w. In Cases
6.2.1.3 and 6.2.3.2.2, let I = V (H ′) \ V (H). Note that in both these cases, H ′ is
a cycle as we have already argued that V (H) ∩ I = ∅, and H ′ − I is an induced
path in G. Also, note that no vertex of H ′ belongs to X ∪ {v}. By Lemma 10, each
of three vertices in I has at most 4 neighbours in V (H) \ I . However, then, by
Lemma 11, we conclude that H ′ contains an obstruction, which is an obstruction
in (G − v) − X as well, a contradiction to the assumption that X is a solution to
G − v of BPVD.

This concludes the proof. 
�

4.3 Bounding the Size of an Independent Set in the Complete Bipartite
Decomposition

In this section, we bound the number of vertices in each independent set Ri for each
i ∈ [s] in the complete bipartite decomposition D of G − T . First, we describe the
construction of a set M ′

j with respect to an independent set R j , j ∈ [s] in the complete
bipartite decompositionD ofG−T . Recall that while applying the procedureMark-1,
we already added some vertices of R j to M ′

j .

Procedure Mark-2. The procedure works in 4 steps as follows.
Step 1: For each v ∈ T , if |(N (v)∩R j ∩A)\M ′

j | ≤ k+1, thenwe add (N (v)∩R j ∩A)\M ′
j

to M ′
j , and otherwise we add the first k+1 vertices in (N (v)∩ R j ∩ A)\M ′

j in the ordering
πA to M ′

j . Similarly, if |(N (v) ∩ R j ∩ B) \ M ′
j | ≤ k + 1, then add (N (v) ∩ R j ∩ B) \ M ′

j
to M ′

j , and else we add the first k + 1 vertices in (N (v) ∩ R j ∩ B) \ M ′
j in the ordering πB

to M ′
j .

Step 2: For each pair x, y ∈ T , if |(N (x) ∩ N (y) ∩ R j ∩ A) \ M ′
j | ≤ k + 1, then we

add (N (x) ∩ N (y) ∩ R j ∩ A) \ M ′
j to M ′

j , else we add the first k + 1 vertices in (N (x) ∩
N (y) ∩ R j ∩ A) \ M ′

j in the sequence π to M ′
j . Similarly, for each pair x, y ∈ T , if

|(N (x) ∩ N (y) ∩ R j ∩ B) \ M ′
j | ≤ k + 1, then we add (N (x) ∩ N (y) ∩ R j ∩ B) \ M ′

j to
M ′

j , else we add first k + 1 vertices in (N (x) ∩ N (y) ∩ R j ∩ B) \ M ′
j in the sequence π to

M ′
j .

Step 3: for each u ∈ F
Rj∩A
k+1 \ M ′

j , we add u to M ′
j . And for each u ∈ F

Rj∩B
k+1 \ M ′

j , we add
u to M ′

j .

Step 4: for each u ∈ L
R j∩A
k+1 \ M ′

j , we add u to M ′
j and for each u ∈ L

R j∩B
k+1 \ M ′

j , we add
u to M ′

j .
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We now bound the size of the set M ′
j at the end of the procedure Mark-2.

Remark 15 Observe that the Procedure Mark-2 can be executed in polynomial time.
Observe also that |M ′

j | ≤ (k + 1)(|T | + |T |2 + 1) for every j ∈ [s]. To see this, fix
j ∈ [s]. Note that for each v ∈ T , we added at most 2(k + 1) neighbours to v to
M ′

j , i.e., at most 2(k + 1) vertices from (N (v) ∩ R j ) \ M ′
j . Therefore the number of

vertices we added to M ′
j in Step 1 is at most 2(k + 1)|T |. And in Step 2, for each

pair x, y ∈ T , we added at most 2(k + 1) common neighbours of x and y to M ′
j , and

therefore the number of vertices we added to M ′
j in Step 2 is at most 2(k + 1)|T |2.

In each of Steps 3 and 4, we added at most 2(k + 1) vertices to M ′
j . Also, during the

procedure Mark-1, we added O(k2) vertices to M ′
j . Thus, |M ′

j | = O(k · |T |2).
Using the set M ′

j , we get the following reduction rule.

Reduction Rule 2 If there exists v ∈ R j \ M ′
j for some j ∈ [s], then delete v.

Lemma 16 Reduction Rule 2 is safe.

Proof Consider an application of Reduction Rule 2 in which a vertex, say v ∈ R j \M ′
j

was deleted for some j ∈ [s]. We show that (G, k) is a yes-instance of BPVD if and
only if (G − v, k) is a yes-instance of BPVD. Observe first that if (G, k) is a yes-
instance, so is (G − v, k), as G − v is an induced subgraph of G. Assume now for a
contradiction that (G−v, k) is a yes-instance, but (G, k) is not. And let X ⊆ V (G−v)

be a solution of size at most k. That is, (G − v) − X is a bipartite permutation graph.
Moreover, by our assumption that (G, k) is a no-instance, G − X is not a bipartite
permutation graph. Then, G − X must contain an obstruction, say, H . By Lemma 9 it
follows that H is a large obstruction in G − X . That is, H is a hole of length at least
45.

Let u and w be the neighbours of v in H , i.e., H = uvw . . . u. Moreover, H − v

is an induced path from w to u. Without loss of generality, assume that v ∈ A. Then,
u, w ∈ B. We show that we can construct another hole H ′ in (G − v) − X , which
will contradict the fact that (G − v) − X is a bipartite permutation graph. For this, we
consider different cases depending on which Qi ∪ Ri or T each of the two vertices u
and w belong. Recall that v ∈ R j \ M ′

j . Notice that for x ∈ {u, w}, if x /∈ T , then, by
the definition of a complete bipartite decomposition, x ∈ Q j .

1. u, w ∈ T . Notice that as v ∈ (N (u)∩N (w)∩R j ∩A)\M ′
j , by Step 2 of the Proce-

dure Mark-2, we must have marked k+1 common neighbours of u, w in R j ∩ A,
i.e., we have added k+1 vertices in (N (u)∩N (w)∩R j ∩A) toM ′

j as otherwise, we
would have added v to M ′

j as well. That is, we have |M ′
j ∩ N (u) ∩ N (w) ∩ A| ≥

k+1. Since, |X | ≤ k, we have (M ′
j ∩N (u)∩N (w)∩ A)\ X 	= ∅. Also notice that

N (u)∩N (w)∩V (H) = {v}, as H is a hole. Let v′ ∈ (M ′
j ∩N (u)∩N (w)∩ A)\X

and H ′ be the graph obtained from H by replacing the vertex v by v′ and by replac-
ing edges uv, vw by uv′, v′w. Notice that no vertex of H ′ belongs to X ∪ {v} and
the graph H ′ − v is an induced path in G. Moreover, H ′ is a cycle of length at
least 45 in G. By Lemma 10, v′ have at most 4 neighbours in H ′ − v′. By Lemma
11 we conclude that H ′ contains an obstruction, which is also an obstruction in
(G − v) − X , contradicts that X is a solution to G − v of BPVD.

123



Algorithmica (2022) 84:3246–3275 3263

2. u ∈ Q j , w ∈ T . (analogous arguments follows for the case u ∈ T , w ∈ Q j ) In
Step 1 of the Procedure Mark-2, we have added k + 1 neighbours of w in R j ∩ A
to M ′

j which are before v in sequence π , as otherwise, we would have added v as
well to M ′

j . Thus, |N (w) ∩ M ′
j ∩ A| = k + 1. Let v′ ∈ N (w) ∩ R j ∩ A \ X . As

v′ <π v, we have v′u ∈ E(G), by the definition of the strong ordering, as Q j is a
non-trivial biclique and hence u must have a neighbour u′ in Q j ∩ A and hence all
the vertices between u′ to v in π are neighbours of u, which implies v′ ∈ N (u).
Let H ′ be the graph obtained from H by replacing the vertex v with vertex v′ and
edge uv, vw by edges uv′, v′w. And by Lemma 10, each of the vertices u′, v′ and
w′ has at most 4 neighbours in V (H ′) \ {

u′, v′, w′}. By Lemma 11 we conclude
that H ′ contains an obstruction, which is also an obstruction in (G − v) − X ,
contradicts that X is a solution to G − v of BPVD.

3. u, w ∈ Q j . Note that v /∈ F
Rj∩A
k+1 , as in Step 3 of the Procedure Mark-2, we have

added all the vertices in the set F
Rj∩A
k+1 to M ′

j . Since |X | ≤ k, F
Rj∩A
k+1 \ X 	= ∅.

Let v′ ∈ F
Rj∩A
k+1 \ X . As v′ <π v, we have v′u, v′w ∈ E(G), by the definition

of the strong ordering, as Q j is a non-trivial biclique and hence u, w must have a
neighbouru′ inQ j∩A andhence all the vertices betweenu′ tov inπ are neighbours
of u, w, which implies v′ ∈ N (u) ∩ N (w). Let H ′ be the graph obtained from
H by replacing the vertex v with vertex v′ and edge uv, vw by edges uv′, v′w.
And by Lemma 10, each of the vertices u′, v′ and w′ has at most 4 neighbours in
V (H ′) \ {

u′, v′, w′}. By Lemma 11 we conclude that H ′ contains an obstruction,
which is also an obstruction in (G − v) − X , contradicts that X is a solution to
G − v of BPVD.


�
Observation 17 After an exhaustive application of Reduction Rule 1, note that for
every j ∈ [s], Q j \ Mj = ∅. Thus, by Remark 13, |Q j | = |Mj | = O(k · |T |2).
Observation 18 After an exhaustive application of Reduction Rule 2, note that for
every j ∈ [s], R j \ M ′

j = ∅. Thus, by Remark 15, |R j | = |M ′
j | = O(k · |T |2).

Observation 17 and 18 together imply the following result.

Lemma 19 Given an instance (G, k) of BPVD and a nice modulator T ⊆ V (G) of
size kO(1), in polynomial time, we can construct an equivalent instance (G ′, k) such
that G ′ is an induced subgraph of G, T ⊆ V (G ′), and for each connected component
of G ′ − T with a complete bipartite decomposition (Q1, R1, . . . , Qs, Rs), we have
|Q j ∪ R j | = O(k · |T |2).

5 Bounding the Size of a Connected Component

In this section, we bound the size of each connected component in G − T . Con-
sider a connected component of G − T with a complete bipartite decomposition
(Q1, R1, Q2, R2, . . . , Qs, Rs). Recall that in previous sections, we bounded the size
of each biclique Qi and independent set Ri . This section aims to bound the number
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of Qi s and Ri s in each connected component of G − T . Without loss of generality,
let C = ⋃

i∈[s](Qi ∪ Ri ). For a pair of biclique Qi and independent set Ri , the set
Qi ∪ Ri is called a block.

Reduction Rule 3 Let v be a vertex in T . If v is contained in at least k + 1 triangles
(v, ai , bi , v) intersecting exactly at {v}, where ai , bi ∈ V (G) \ T , (that is, for i ∈
[k + 1], there exist distinct vertices ai , bi ∈ V (G) \ T such that {v, ai , bi } induces a
triangle and for distinct i, j ∈ [k + 1], {ai , bi } ∩ {a j , b j } = ∅), then delete v from G,
and reduce k by 1. The resultant instance is (G − v, k − 1).

The safeness of the above reduction rule is easy to see as every solution to (G, k)
of BPVD must contain v. From now on, we assume that Reduction Rule 3 is not
applicable.

Reduction Rule 4 Let v be a vertex in T . If there exist more than 6(k + 1) (distinct)
indices i such that there exist ai ∈ Qi ∪ Ri , bi ∈ N (ai ) ∩ Qi and vbi /∈ E(G), then
delete v and reduce k by 1. The resultant instance is (G − v, k − 1).

Lemma 20 Reduction Rule 4 is safe.

Proof Notice that (v, ai , bi ) is an induced P3. By the pigeonhole principle, there are
at least 3(k + 1) non-consecutive blocks Qi ∪ Ri which contain a pair (ai , bi ) such
that (v, ai , bi ) is an induced P3. Let P be the set of such induced P3’s. That is, P is
a set of distinct induced P3’s (v, ai , bi ), intersecting exactly at {v} and for every pair
of P3’s, (v, ai , bi ) and (v, a j , b j ), where ai , bi ∈ Qi ∪ Ri and a j , b j ∈ Q j ∪ R j , the
blocks Qi ∪ Ri and Q j ∪ R j are not consecutive. Notice that the vertices of any three
P3s in P induce a subdivided claw (the forbidden subgraph T2 in Fig. 1). Thus the
set of vertices of the 3(k + 1) induced P3s in P induce k + 1 subdivided claws that
intersect only at v, which implies that any solution to the instance (G, k) of BPVD
must contain v. 
�
From now on, we assume that Reduction Rules 3 and 4 are not applicable.

Lemma 21 Let C be a connected component in G−T . Then there are at most 7|T |(k+
1) many disjoint blocks (Qi ∪ Ri ) in the complete bipartite decomposition of C such
that N (T ) ∩ (Qi ∪ Ri ) 	= ∅.
Proof Let v ∈ T has a neighbour ai ∈ Qi ∪ Ri , for some i ∈ [ j]. As Ri is an
independent set, and by the properties of the complete bipartite decomposition, a
vertex in Ri can have neighbors only in Qi . Since C is a connected component, it
implies that ai must have a neighbor in Qi . Let bi ∈ Qi be a neighbour of ai in G.
Consider the following cases:
Case 1: bi ∈ N (v). Notice that we obtain a triangle (v, ai , bi , v) in this case. If there
are more than k + 1 such disjoint (ai , bi ) pairs such that both ai , bi are adjacent to
v, then there are k + 1 triangles of the form (v, ai , bi , v) intersecting exactly at {v}
and ai , bi ∈ T . By non-applicability of Reduction Rule 3, such a case cannot occur.
Hence, for any vertex v ∈ T , v has neighbours ai ’s in at most k + 1 different Qi ∪ Ri

blocks such that there is a vertex bi ∈ N (ai ) ∩ N (v) ∩ Qi .
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Case 2: bi /∈ N (v). Notice that (v, ai , bi ) is an induced P3. If v has more than 6(k+1)
neighbours ai ’s in different Qi ∪ Ri such that there exists bi ∈ N (ai ) ∩ Qi \ N (v),
then Reduction Rule 4 would be applicable. By non applicability of Reduction Rule 4,
we obtain that for any vertex v ∈ T , v has neighbours ai ’s in at most 6(k+1) different
Qi ∪ Ri ’s such that there is a vertex bi ∈ N (ai ) ∩ Qi \ N (v).

Thus, every vertex v ∈ T has neighbors in at most 7(k + 1) different Qi ∪ Ri ’s.
Hence, there are at most 7|T |(k+1)many disjoint blocks (Qi ∪ Ri ) such that N (T )∩
(Qi ∪ Ri ) 	= ∅. 
�

If C has 3500|T |k(k + 1) disjoint blocks, then by the pigeon hole principle and
Lemma 21, there are at least 500k consecutive blocks in C that do not contain any
vertex from N (T ). Let Q1∪R1, . . . , Q500k∪R500k be the set of 500k such consecutive
blocks in C that are disjoint from N (T ). Let j = 500k/2. Consider DL = {Qi ∪
Ri |i ∈ [ j − 2k, j − 3]} \ R j−3 and DR = {Qi ∪ Ri |i ∈ [ j + 3, j + 2k]}. Let
F = {R j−3} ∪ {Qi ∪ Ri |i ∈ [ j − 2, j + 2]} and Z = {Qi |i ∈ [ j − 2k, j + 2k]}.
Observe that, for a vertex v ∈ DL ∪DR and a vertex u ∈ T , distG(u, v) ≥ 240k. This
observation will be used to prove further results. Let Q = Q j−3 and Q′ = Q j+3. Let
Y be a Qi , Qi ′ cut in G − T , where i ∈ [ j − 2k, j − 3] and i ′ ∈ [ j + 3, j + 2k],
where Y must contain vertices from only block Qa ∪ Ra , a ∈ [i + 1, i ′ − 1]. Let τ be
the size of minimum Qi , Qi ′ cut in G − T over all pairs i, i ′, i ∈ [ j − 2k, j − 3] and
i ′ ∈ [ j + 3, j + 2k].
Reduction Rule 5 Let F be as defined above. Delete all the vertices of F from G.
Introduce three new bicliques S1 = Kk2,k2 , S2 = K�τ/2�,�τ/2�, S3 = Kk2,k2 . Also add
edges such that G[V (Q) ∪ S1] and G[S1 ∪ S2], G[S2 ∪ S3] and G[V (Q′) ∪ S3] are
complete bipartite graphs. The bicliques appear in the order Q, S1, S2, S3, Q′.

Let G ′ be the reduced graph after applying the Reduction Rule 5. Let S = S1 ∪
S2 ∪ S3. Notice that G ′ − T is a bipartite permutation graph by construction.

Observation 22 There are no small obstructions containing any vertices from F ∪
DL ∪ DR or S ∪ DL ∪ DR in G ′.

Proof Let D be a set such that D ∈ {F, S}. Suppose that there is a small obstruction
O in G such that V (O)∩ (DL ∪DR ∪D) 	= ∅. Since for any vertex v ∈ DL ∪DR ∪D
and a vertex u ∈ T , distG(u, v) ≥ 240k and |O| ≤ 45, for both choices of D. Hence,
V (O) ∩ T = ∅. However, this is a contradiction since G \ T has no obstructions. So
there are no small obstructions containing any vertices from DL ∪ RR ∪ D in G. 
�
Observation 23 Any hole H in G which contains a vertex from F∪DL∪DR, intersects
all bicliques in F ∪ DL ∪ DR. Furthermore, such H is of length at least 500k.

Proof Since there are no large holes in G − T , V (H) ∩ T 	= ∅. Without loss of
generality, suppose that H intersects a block Qi ∪ Ri , for i ∈ [s] but does not intersect
some Qi+1 ∈ Z . Then any biclique Qi ′ where i ′ < i contains at least two vertices
from the hole H . Let a1 and a2 be two such vertices with an induced path in H . Let
H = (s, v1, v2, ...a1, ...a2, ..., s). Notice that a1 and a2 can not belong to different
partitions of Qi−21 since H is a hole. But Qi−21 has some vertex v in its other
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Reduction rule 5

Block = Biclique + Independent Set

Fig. 4 An illustration of Reduction Rule 5

partition. But then we get a cycle C = (s, ..., a1, v, a2, ..., s). However, v can have at
most 5 neighbors on the induced path of the hole (a1, . . . , a2); otherwise, there is a
small obstruction containing v which is completely contained in G − T , which is not
possible. Since the length of the cycle C is at least 40, we can construct a new hole
H1 such that V (H1) ⊆ V (C) which is completely contained in G − T , which is a
contradiction. Notice that any such hole must have one vertex from each of the 500k
consecutive bicliques. Hence the length of the hole is more than 500k. 
�

The following claim can be argued similarly.

Observation 24 Any hole H in G ′ which contains a vertex from S∪DL∪DR, intersects
all the bicliques in S ∪ DL ∪ DR.

Lemma 25 Reduction Rule 5 is safe.

Proof We show that (G, k) is a yes instance of BPVD if and only if (G ′, k) is a yes
instance of BPVD. In the forward direction, suppose that (G, k) is a yes instance
of BPVD and let X be its minimal solution of size at most k. Recall that DL and
DR contain 2k − 3 blocks. Therefore there must exist bicliques Q�, Qr in blocks
in DL and DR , respectively such that Q� ∩ X = Qr ∩ X = ∅, as |X | ≤ k. Let
W = R� ∪ (

⋃r−1
i=�+1 Qi ∪ Ri ) that isW is the set of all the vertices which are after Q�

and before Qr in the ordering π . Recall that τ is the size of minimum Qi , Qi ′ cut in
G − T over all pairs i, i ′, i ∈ [ j − 2k, j − 3] and i ′ ∈ [ j + 3, j + 2k] where the cut
has only vertices in between Qi and Q′

i .

Claim 26 Either X ∩ W = ∅ or |X ∩ W | = τ .
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Proof Suppose that X ∩W 	= ∅ and |X ∩W | < τ . Let v ∈ X ∩W . As X is a minimal
solution, then for every vertex u ∈ X , there exists an obstruction that does not contain
any vertex of X \ {u}. This implies that there exists a hole H containing v and not
containing any vertex in X \ {v}. Consider the smallest such hole. By Observation
23, H is a hole of length at least 500k, and it intersects with every biclique in Z and
therefore intersects with Q� and Qr as well. Let a ∈ Q� be the last and b ∈ Qr be the
first vertex in ordering π of H . Observe that v must be contained on an a to b subpath
Pab of H which has all its internal vertices only from W .

Recall that τ is the size of a minimum Qi , Qi ′ cut in G − T over all pairs i, i ′,
i ∈ [ j −2k, j −3] and i ′ ∈ [ j +3, j +2k]. Therefore, the minimum cut for Q�, Qr is
of size at least τ , and there are at least τ many paths from Q� to Qr that are (internally)
disjoint in F . We have that |X ∩ W | < τ . As Q� ∪ Qr ∩ X = ∅ there exists a path
P from a vertex in Q� to a vertex in Qr which is completely disjoint from X . This
implies that there is a path from a ∈ Q� to b ∈ Qr which is completely disjoint from
X and contains vertices only from W ∪ Q� ∪ Qr . Next, using this a to b path P , we
construct another a to b path P ′ such that length of P ′ is at most length of Pab and
we can construct an obstruction by replacing Pab in H by P ′ which does not contain
any vertex of X and is also a hole in G − X , which contradicts our assumption that X
is a solution to (G, k) of BPVD. Towards this, consider the following cases:

• If |V (P) ∩ Ri | > 1, for some i ∈ [�, r − 1] and let v1 and v2 be two vertices of P
in Ri with π(v1) ≤ π(v2). By the properties of strong ordering N (v2) ⊆ N (v1).
Let u, u′ be the neighbours of v2 in P such that u′ is closer to v1 in P . In this case
we construct a shorter path P ′ from P by replacing subpath v1 to u by edge v1u.
From now onwards we assume that |V (P) ∩ Ri | ≤ 1.

• If |V (P) ∩ Qi | > 3, for some i ∈ [�, r ]. If P contains vertices from only one
partition say A of Qi and let v1, v2 ∈ V (P)∩Qi such that distance between v1, v2
in P is the largest amongall pairs inV (P)∩Qi . Letu ∈ Qi∩B. Thenweconstruct a
shorter path P ′ from P by replacing subpath v1 to v2 by path v1u, uv2. If P contains
vertices both partition A, B of Qi and let v1 ∈ A∩V (P)∩Qi , v2 ∈ B∩V (P)∩Qi .
Then we construct a shorter path P ′ from P by replacing subpath v1 to v2 by path
v1v2. From now onwards, we assume that |V (P) ∩ Qi | ≤ 3 and P do not contain
vertices from the partition A and B of Qi .

By above arguments we obtain a path P ′ that contains at most 4 vertices from each
block between Q� and Qr , for �, r ∈ [s]. As the number of blocks between Q� and
Qr are bounded by 4k + 1 and P ′ contains vertices only from blocks between Q� and
Qr length of P ′ is bounded by 4(4k + 1) ≤ 17k.

Next, we construct a cycle H ′ from H by replacing path Pab, by P ′. Notice that no
vertex of H ′ belongs to X ∪ {v} and the graph H ′ − V (P ′) is an induced path in G.
By Lemma 10, each of the vertices in P ′ has at most 4 neighbours in V (H ′) \ V (P ′).
As the length of H is at least 500k, the size of the graph V (H ′) − V (P ′) is at least
483k.

Claim 27 H ′ contains an obstruction.

Proof Observe first that since H ′−V (P ′) is an induced path, all the chords in the cycle
H ′ are incident with V (P ′). Consider y ∈ V (P ′). Since dH (y) ≤ 5 by Lemma 10, we
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can conclude that the H ′ has at most 5 chords that are incident with y. Note that if y is
adjacent to two vertices that appear consecutively on H ′, i.e., if yvi , yvi+1 ∈ E(H ′)
for some i ∈ [� − 1] or yv�, yv1 ∈ E(H ′), then H ′ contains a triangle, which is an
obstruction. So, assume that there does not exist y ∈ V (P ′) such that y is adjacent
to two vertices that appear consecutively on H ′. Suppose that H ′ does not contain a
hole of length at least 5, then for every vertex vi ∈ H ′, vertex vi+2 is adjacent to a
vertex in V (P ′). Intuitively every alternate vertex must have a neighbor in V (P ′) so
that every cycle of length at least 5 has a chord. However, |N (V (P ′))∩V (H ′)| ≤ 85k
implies that there is an induced path of length at least 5 such that it does not contain
any neighbor of V (P ′). Let P� be longest induced path in H ′ such that endpoints of
P� have neighbours in V (P ′) and no internal vertex of P� is adjacent to any vertex of
V (P ′). Then as there is no triangle in H ′, we obtain that V (P�) together with V (P ′)
induces a hole of length at least 5, a contradiction. Hence H ′ contains an obstruction.


�
By the above claim, H ′ contains an obstruction, which is also an obstruction in

(G − v) − X , which contradicts that X is a solution to G − v of BPVD. Therefore,
we have proved that either X ∩ W = ∅ or |X ∩ W | = τ . 
�

Using the above claim, we consider the following cases:
Case 1: X ∩ W = ∅
In this case, we show that X is a solution to (G ′, k) of BPVD. Suppose not. Then there
is an obstruction H in G ′ − X , which must contain a vertex v ∈ W . By arguments
similar to the above, we can find a new obstruction contained in G − X , which will
be a contradiction.
Case 2: |X ∩ W | = τ

In this case, we show that X ′ = (X \W )∪S2 is a solution to (G ′, k) of BPVD. Suppose
that there is an obstruction H in G ′ − X ′. Then H must contain a vertex from S. By
Observation 22, H must be a hole containing a vertex from S2, which contradicts that
S2 ⊆ X ′. This completes the proof in the forward direction.

Next, for the reverse direction, consider that (G ′, k) is also a yes instance of BPVD
and let X be its minimal solution of size at most k. Recall that DL and DR contain
2k − 3 blocks. Therefore there must exist bicliques Q�, Qr in blocks in DL and DR ,
respectively such that Q�∩X = Qr ∩X = ∅, as |X | ≤ k. LetW = R�∪(

⋃ j−3
i=�+1 Qi ∪

Ri ) ∪ S ∪ (
⋃r−1

i= j+3 Qi ∪ Ri ), that isW is the set of all the vertices which are after Q�

and before Qr .

Claim 28 Either X ∩ W = ∅ or |X ∩ W | = τ .

Proof Suppose that X ∩W 	= ∅ and |X ∩W | < τ . Let v ∈ X ∩W . As X is a minimal
solution, then for every vertex u ∈ X , there exists an obstruction that does not contain
any vertex of X \ {u}. This implies that there exists a hole H containing v and not
containing any vertex in X \ {v}. Consider the smallest such hole. Such a hole H has
a length of at least 500k. By Observation 24, we have that H , intersects with every
biclique in S ∪DL ∪DR and therefore intersects with Q� and Qr as well. Let a ∈ Q�

be the last and b ∈ Qr be the first vertex in ordering π of H . Observe that v must be
contained on a to b subpath Pab of H which has all its internal vertices only from W .
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In graph G−T , there are at least τ many paths between Qd and Qe who are vertex
disjoint in F as the minimum cut size is at least τ . Let these paths be P1, . . . Pτ . Let
their intersections with Q and Q′ inG be {a1, . . . aτ } and {b1, . . . bτ }. As |X∩W | < τ

then there exists a path Pi from a to b such that V (Pi ) ∩ X = ∅. But then we have a
subpaths P1

i from a to ai and P2
i from bi to b of Pi which are disjoint from X . Also,

we have that a vertex u ∈ S2 \ X and at least k2 − k many vertices from both partitions
of S1 and S3 that are not in X . By our construction if ai ∈ A (∈ B) then ai is adjacent
to every vertex in S1 ∩ B (S1 ∩ A). Similar arguments hold for bi and S3. Hence we
have a path P from a to b containing path P1

i from a to ai , a vertex in S1 \ X , u and a
vertex in S2 \X , bi to b path P2

i . Notice that P is disjoint from X . Using the arguments
similar to the forward direction, we can obtain another path P ′ that contains at most
4 vertices from each block between Q� and Qr . As the number of blocks between
Q� and Qr are bounded by 4k and P ′ contains vertices only from blocks between
Q� and Qr length of P ′ is bounded by 4.(4k + 1) ≤ 17k. Analogous to arguments
in the previous section, we can obtain a cycle H ′ using P ′ from H that contains an
obstruction, which is also an obstruction in (G ′ − v) − X , which contradicts that X is
a solution to G ′ − v of BPVD. Therefore, we have proved that either X ∩ W = ∅ or
|X ∩ W | = τ . 
�

Case 1: X ∩ W = ∅
Here we claim that X is a solution to G. Suppose it is not true. Then there is an
obstruction in H inG−X . This obstruction can not be contained inG−(DL∪F∪DR)

as X hits all such obstructions. Hence it must intersect (DL ∪ F ∪ DR) and must be
a large hole passing through F . From Observation 23, H intersects both Q� and Qr .
However, in G ′, we can find a path disjoint from X between a and b in W of length
at most 17k and get a cycle H ′ by replacing the segment between a and b in H by
this path in G ′. By arguments similar to Claim 27, we can show that H ′ contains an
obstruction which is also obstruction in G ′ − X .

Case 2: |X ∩ W | = τ

Let X ′ = X \ W , X ′′ = X ′ ∪mincut(Qi , Qi ′), where mincut(Qi , Qi ′) be a Qi , Qi ′
cut inG−T , which isminimumoverall i, i ′, i ∈ [ j−2k, j−3] and i ′ ∈ [ j+3, j+2k].
We claim that X ′′ is a solution to (G, k) of BPVD size at most k. If not, there is an
obstruction inG−X ′′. This obstruction can not be contained inG−(DL ∪F∪DR) as
X − X ′′ hits all such obstructions. Hence this obstruction must contain vertices from
DL ∪ F ∪DR . But then by Observation 22 it must be a large hole passing through all
the bicliques in Z . This is not possible since mincut(Qi , Qi ′) disconnects all paths
between Qi and Qi ′ and hence must intersect this hole. Hence X ′′ is a solution to G.
This completes the proof in the reverse direction. 
�

With the above reduction rule, we obtain the following result.

Lemma 29 Given an instance (G, k) of BPVD and a nice modulator T ⊆ V (G) of
size kO(1), in polynomial time, we can construct an equivalent instance (G ′, k) such
that, T ⊆ V (G ′), T is a nice modulator for G ′ and for each connected component C of
G ′ −T with a complete bipartite decomposition (Q1, R1, . . . , Qs, Rs), the number of
blocks (Qi ∪ Ri )s in the connected component C is at most 3500|T |k2 = O(k2 · |T |).
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6 Bounding the Number of Connected Components

In Sect. 5, we showed that the size of any connected component of G − T is upper
bounded by kO(1). In this section, we show that the number of connected components
ofG−T is also upper bounded by kO(1). This, together with the fact that |T | ≤ kO(1),
result in a polynomial kernel for BPVD.

A bipartite permutation graph is a connected component with no neighbor in T .
Hence, we can safely remove it from our instance.

Reduction Rule 6 If there is a connected component C in G − T such that N (T ) ∩
V (C) = ∅, then reduce (G, k) to (G − V (C), k).

From now onwards, we assume that the Reduction Rules 3, 4 and 6 are not applica-
ble. We partition the set of all the connected components in G − T into two sets C≥2
and C=1, where C≥2 contains all the connected components of size at least 2 whereas
C=1 contains all the connected components of size exactly 1. First, we bound the size
of C≥2.

Lemma 30 |C≥2| ≤ 7|T |(k + 1).

Proof Consider any vertex v ∈ T such that v has a neighbor, say ai , in a connected
component, say Ci , where Ci ∈ C≥2. Note that for vertex ai , there exists a neighbor
bi ∈ Ci since Ci has size at least 2.
Case 1: (The vertex bi is adjacent to v.) Therefore, we have a triangle (v, ai , bi , v). If
v has more than k + 1 such different pairs of (ai , bi ) such that bi is adjacent to v, then
there are k+1 triangles of the form (v, ai , bi , v) having a common vertex v. It implies
that any solution of size k must contain v. By non-applicability of Reduction Rule 3,
such a case cannot occur. Hence, for any vertex v ∈ T , v has neighbors (ai ’s) in at
most k + 1 different components Ci ∈ C≥2 such that there is a vertex bi ∈ Ci ∩ N (v).
Case 2: (The vertex bi is not adjacent to v.) Therefore, (v, ai , bi ) is an induced P3.
Let v has more than 6(k + 1) neighbors (ai ’s) in different Ci such that there exists
bi ∈ Ci \ N (v). Therefore, there exists some Qi ∪ Ri in component Ci such that
ai ∈ Qi ∪ Ri and bi ∈ N (ai ) ∩ Qi \ N (v). Since vertex v has more than 6(k + 1)
such neighbors ai , Reduction Rule 4 would be applicable. By non-applicability of
Reduction Rule 4, such a case cannot occur. Hence, for any vertex v ∈ T , v has
neighbors (ai ’s) in at most 6(k+1) different components Ci such that there is a vertex
bi ∈ N (ai ) ∩ Qi \ N (v).

Thus, every vertex v ∈ T has neighbors at most in (k + 1) + 6(k + 1), that is,
7(k + 1) different components Ci ’s. Hence, |C≥2| ≤ 7|T |(k + 1). 
�

Next, we proceed to bound the size of the setC=1. Towards that, we will utilize the
following marking scheme.

ProcedureMark-3.We initialiseM = ∅ and for each {x, y} ⊆ T , we initialise
M(x, y) = ∅, and do as follows: For each {x, y} ⊆ T , if |M(x, y)| ≤ k + 1
and if there exists u ∈ C=1 such that u ∈ (N (x) ∩ N (y)) \ M , then we add u
to M(x, y) and M , i.e., we set M(x, y) ← M(x, y)∪{u} and M ← M ∪ {u}.
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Remark 31 Observe first that M = ⋃
{x,y}⊆T M(x, y). And in the procedure Mark-3,

corresponding to each {x, y} ⊆ T , we add at most k + 1 vertices to M(x, y). Thus,
|M(x, y)| ≤ k + 1, and therefore, |M | ≤ (k + 1)

(|T |
2

)
, as there are

(|T |
2

)
many distinct

sets {x, y} ⊆ T .

Reduction Rule 7 If there exists v ∈ C=1 \ M, then delete v.

Lemma 32 Reduction Rule 7 is safe.

Proof Consider an application of Reduction Rule 7 in which a vertex v ∈ C=1 was
deleted. We can assume that dG(v) ≥ 1, as otherwise, dG(v) = 0, and v would have
been deleted by Reduction Rule 6. Note that NG(v) ⊆ T as v ∈ C=1.

We show that (G, k) is a yes-instance if and only if (G − v, k) is a yes-instance.
First, if (G, k) is a yes-instance, so is (G − v, k), as G − v is an induced subgraph
of G. Now, assume that (G − v, k) is a yes-instance. And let X ⊆ V (G − v) be a
solution of size at most k for the instance (G−v, k). That is, (G−v)− X is a bipartite
permutation graph. Notice that if G − X is also a bipartite permutation graph, then
(G, k) is a yes-instance. So, assume for a contradiction that G − X is not a bipartite
permutation graph. Moreover, let H be an obstruction in G − X . Then, v ∈ V (H), as
otherwise H would be an obstruction in (G − v) − X , a contradiction.

We first claim that H is a large obstruction. Suppose not. Notice that as v /∈ T ,
G[T ] is a subgraph of G − v, and therefore, X hits all the obstructions in G[T ]. Let
Y ⊆ X be a minimal set that hits all the small obstructions in G[T ]. Then, by the
definition of T , Y hits all the small obstructions in G. In particular, Y hits H . But
this is not possible, as Y ⊆ X and H is an obstruction in G − X . Thus, H is a hole
of length at least 45. In particular, H is a cycle that contains v. Then, we must have
dG(v) ≥ 2, as otherwise, dG(v) = 1, and therefore there does not exist any cycle in
G that contains v.

Let x and y be the neighbors of v in the hole H . Note thatwe have |M(x, y)| = k+1,
as otherwise we would have added v to M(x, y) during the procedure Mark-3. Since
|X | ≤ k, we have M(x, y) \ X 	= ∅. Let v′ ∈ M(x, y) \ X . Observe that v′ /∈ V (H),
as otherwise, the edges v′x and v′y would be chords of the cycle H , which would
contradict the fact that H is a hole. And let H ′ be the graph obtained from H by
replacing v with v′. That is, V (H ′) = (V (H) \ {v}) ∪ {

v′} and E(H ′) = (E(H) \
{vx, vy}) ∪ {

v′x, v′y
}
. Notice that no vertex of H ′ belongs to X ∪ {v} and that the

graph H ′−v is an induced path. Notice that as V (H ′)∩(X∪{v}) = ∅, any obstruction
in G[V (H ′)] is an obstruction in (G − v)− X . We now show that G[V (H ′)] contains
an obstruction, which will contradict the assumption that (G − v) − X is a complete
bipartite graph. If v′ has at least 5 neighbours in V (H ′ − v), then, by Lemma 10,
G[V (H ′)] contains a subdivided claw (T2), which is an obstruction. Otherwise, by
Lemma 11, G[V (H ′)] contains an obstruction. 
�

Observe that by Remark 31 and by applying the Reduction Rule 7 repeatedly, we
can reduce the graph such that in the reduced instance, |C=1| ≤ (k + 1)

(|T |
2

)
. This

reduction and Lemma 30 implies the following result:

Lemma 33 Given an instance (G, k) and a nice modulator T ⊆ V (G) of size kO(1), in
polynomial time, we can construct an equivalent instance (G ′, k) such that the number
of connected components in G ′ − T is O(k · |T |2).
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7 Kernel Size Analysis

Now we are ready to prove the main result of our paper, that is, Theorem 1. Before
proceeding with the proof, let us state all the bounds that contribute to the kernel size.

Size of nice modulator T : O(k45)
Number of connected components in G − T : O(k · |T |2).
Number of blocks in any connected component in G − T : O(k2 · |T |)
Size of any block (Qi ∪ Ri ) in G − T : O(k · |T |2).

Proof of Theorem 1 Let (G, k) be an instance of the BPVD problem. First, we show
that ifG is not connected, we can reduce it to the connected case. If there is a connected
component C that is a bipartite permutation graph, we delete it. Clearly, (G, k) is a
yes instance if and only if (G \ C, k) is a yes instance. We repeat this process until
every connected component of G is not a bipartite permutation graph. At this stage,
if the number of connected components is at least k + 1, then we conclude that G can
not be made into a bipartite permutation graph by deleting at most k vertices. Thus,
we assume that G has at most k connected components. Now we show how to obtain
a kernel for the case when G is connected, and for the disconnected case, we just run
this algorithm on each connected component. This only increases the kernel size by a
factor of k. From now onwards, we assume that G is connected.

From Lemma 8, in polynomial time, we can obtain a nice modulator T ⊆ V (G) of
size O(k45) or conclude that (G, k) is a no-instance.

Note thatG−T is a bipartite permutation graph.Next,we take the complete bipartite
decomposition of each component inG−T . Now by Theorem 33, in polynomial time
we return a graph G such that G − T has O(k · |T |2) components.

We now bound the size of each connected component of G − T . Let G ′ be a
connected component of G − T . By Lemma 29, in polynomial time we can reduce
the graph G ′ such that G ′ has at most O(k2 · |T |) blocks.

Next, we bound the size of each block Qi ∪ Ri in G ′. By Lemma 19, in polynomial
time we can reduce the graph G ′ such that for each block Qi ∪ Ri , |Q j ∪ R j | =
O(k · |T |2). Therefore the total number of vertices in any connected component G ′ is
at most O(k · |T |2) · O(k2 · |T |), that is, O(k3 · |T |3).

As the graph G − T has at most O(k · |T |2) number of components, the total size
of the graph G −T is at mostO(k · |T |2) ·O(k3 · |T |3), that is,O(k4 · |T |5). It follows
that |V (G)| = O(k4 · |T |5) + |T |, that is, O(k4 · |T |5). Recall that |T | = O(k45).
Therefore, the size of the obtained kernel is O(k4 · |T |5), that is, O(k229). 
�

8 Conclusion

In this paper, we studied Bipartite Permutation Vertex Deletion from the
perspective of kernelization complexity and designed a polynomial kernel of size
O(k229). This answers an open question posed by Bożyk et al. [4]. We remark that
the size of the kernel can be brought closer to O(k100) by doing a more careful case
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analysis. However, getting a kernel of size O(k20) would require significantly new
ideas, and we leave that as an open problem. Indeed, showing whether Permutation
Vertex Deletion is FPT remains a challenging open problem.
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