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Abstract
We present the non-FIFO time-dependent graph model with REalistic vehicle eXchange times (REX)
for schedule-based multimodal public transport, along with a novel query algorithm called TRIP-based
LAbel-correction propagation (TRIPLA) algorithm that efficiently solves the realistic earliest-arrival
routing problem. The REX model possesses all strong features of previous time-dependent graph
models without suffering from their deficiencies. It handles non-negligible exchanges from one vehicle
to another, as well as supports non-FIFO instances which are typical in public transport, without
compromising space efficiency. We conduct a thorough experimental evaluation with real-world data
which demonstrates that TRIPLA significantly outperforms all state-of-the-art query algorithms for
multimodal earliest-arrival routing in schedule-based public transport.
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1 Introduction

Nowadays, a plethora of applications allows commuters to plan their journeys using public
transport. The journey planning (JP) problem refers to the computation of optimal journeys
as a real-time response to routing queries. The most realistic version of this problem, known
as multimodal journey planning (MJP) problem, supports a combination of different transport
modes (bus, metro, train, tram, walking, etc.). MJP provides optimal journeys from an
origin A to a destination B, in schedule-based multimodal public-transport systems, which
meet one or more optimization criteria. The most commonly used criteria are the earliest
arrival (EA) and the minimum number of vehicle exchanges, a.k.a. the minimum number of
transfers (MNT). The corresponding variants of the problem are MJPEA (for earliest-arrivals)
and MJPMNT (for minimum-number-of-transfers).
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12:2 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

A schedule-based public transport system consists of a timetable that contains the departure
and arrival times of the scheduled vehicles. The challenge in designing schedule-based public
transport systems is the modelling of the timetable information so that optimal journey-
planning queries can be efficiently answered. In the scenario under consideration, a centralised
server accessible to every customer has to respond, in real-time, to a stream of optimal-journey
queries. The goal is to model timetable information in order to reduce the average response
time for a query. The most common approaches use a preprocessing stage that constructs the
data structure used to represent the timetable information. As for representing schedule-based
public-transport instances, there are two main axes which have been considered.

The first axis concerns the type of travel-time. The simplified travel-time approach assumes
that the vehicle exchanges within stations take negligible time and the FIFO property holds
for all the connections between stations. The realistic travel-time approach allows the vehicle
exchanges within stations to require non-negligible time, and also allows the existence of
non-FIFO connections between stations (e.g., due to passing-by trains of different speeds).

The second axis concerns the graph model used to represent the timetables. The time-
dependent graph model [2, 11, 13, 14, 18] is more compact, in the sense that the stations
correspond to graph nodes. The time-expanded graph model [10, 15, 21, 22] allows for a more
detailed representation of the timetable, by allocating, not just stations, but timestamped
stations to the vertices of the graph. Due to the temporal characteristics of the vertices,
the resulting graph is acyclic, allowing for quite simple query algorithms. The size of the
representation blows up in this case, since there are several timestamped copies of the same
station, each representing a different departure/arrival event in the timetable of the station.

Our focus in this paper is the study of time-dependent graph models for schedule-based
public-transport instances. Two characteristic representatives of this family are the BJ [2],
and the PSWZ [18] models. We present the non-FIFO time-dependent graph model with
REalistic eXchange times (REX), which aims to combine the strong features of the BJ and
the PSWZ models, without suffering from their deficiencies. In particular, REX allows for
non-negligible transfer times, as in the PSWZ model, but without increasing the size of the
time-dependent graph: each station is represented by a single vertex, and there is an arc
between two nodes when at least one elementary connection (irrespectively of the vehicle
types using it) exists between them, as in the BJ model. Of course, there is a price to pay
for this enhancement: the Dijkstra-like label-setting query algorithm no longer works as such.
To tackle this problem, we also propose a novel query algorithm, called the TRIP-based
LAbel correcting (TRIPLA) algorithm that solves MJPEA even when the FIFO property is
violated by some arcs. This is a label-correcting shortest-path algorithm, which nevertheless
conducts a targeted label correction, via an appropriate data structure that we maintain at
the vertices and a novel label-correction propagation (LCPROP) phase that TRIPLA uses to
update the vertex labels when a delay occurs.

2 Preliminaries

Schedule-based public-transport networks are described by timetable information. Timetables
consist of scheduled trips described by their sequence of stops and the corresponding departure
and arrival times. More formally, a timetable T is a tuple (Z, B, C), where Z is the set of
public-transport vehicles, B is the set of stops (or stations), and C is the set of elementary
connections. Each elementary connection is a tuple c = (Z, Sd, Sa, td, ta). For each attribute
x of an elementary connection c ∈ C, its value is denoted by x(c). Therefore, c ∈ C represents
the journey of a particular vehicle Z(c) ∈ Z which departs from the origin-stop Sd(c) ∈ B at
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(departure) time td(c), and arrives at the destination-stop Sa(c) ∈ B at (arrival) time ta(c),
with no intermediate stop. The journeys are considered to be periodic, with period Tp, which
may vary from one day to one week. It is assumed that every connection’s travel-time and
every stop’s transfer-time is less than Tp, while the a time unit of 1 minute is considered.

In the time-dependent graph model, timetables are represented by a weighted graph
G = (V, E), whose vertex set V represents (possibly timestamped copies of) stations and E

represents (either single, or bundles of) elementary connections between stations. Eu ⊆ E is
the subset of outgoing arcs from u ∈ V . We denote by π[u](ts), the label of u for a (tentative)
presence-time at u ∈ V , given that the presence time at the origin s is ts. Clearly, π[u](ts)
cannot be considered as a departure-time from u for all the elementary connections emanating
from it, for commuters starting their journey from s at time ts (or later). Transfer-times
within u should also be taken into account, in case that commuters have to exchange vehicles
to continue their trip. In addition, δ[u](ts) denotes the earliest presence-time at u that would
eventually be returned by a time-dependent shortest-path algorithm.

Given two time values t and t′, the function ∆(t, t′) ∈ [0, Tp) computes the duration of
the interval [t, t′], taking into account the periodicity of reported times, as well as the fact
that each reported time value concerns either the current or the next period:

∆(t, t′) =
{

t′ − t if t′ ≥ t

Tp + t′ − t otherwise.
(1)

The travel-time ∆(c) of an elementary connection c is the elapsed time between the
departure from its origin and the arrival at its destination, i.e., ∆(c) = ∆(td(c), ta(c)).

In the models described below, each elementary connection c is associated with an arc
e = (u, v) ∈ E, while C(e) denotes the set of elementary connections associated with e. The
duration D[c](tu) of the elementary connection c depends on the (tentative) presence-time tu at
u, and the corresponding travel-time for c: ∀tu ≥ 0, D[c](tu) = ∆(tu, td(c)) + ∆(td(c), ta(c)) .

At any station B ∈ B, it is possible for a commuter to be transferred from one vehicle
to another. The transfer-time for this exchange of vehicles is station-specific, and is given
by the value trans(B). Such a transfer is only meaningful if the time-difference of the
departure-time of the outgoing vehicle from B minus the arrival-time of the incoming vehicle
at B, along the journey of the commuter, is at least equal to trans(B). An itinerary of a
timetable T is a sequence of elementary connections P = (c1, c2, .., ci, ci+1, ..., ck), where for
each i = 2, 3, .., k, Sa(ci−1) = Sd(ci) and also

∆(ta(ci−1), td(ci)) ≥

{
0 if Z(ci−1) = Z(ci)
trans(Sa(ci−1)) otherwise.

(2)

According to the itinerary P , a commuter departs from station Sd(c1) at time td(c1) and
arrives at station Sa(ck) at time ta(ck). If the commuter’s presence-time at Sd(c1) is tu,
then the corresponding travel-time of P is defined as follows: ∆[P ](tu) = ∆(tu, td(c1)) +
∆(td(c1), ta(ck)). A trip J = (c1, c2, ..., ck) is a special case of an itinerary that is performed
by only one vehicle. Thus, it must hold that ∆(ta(ci−1), td(ci)) ≥ 0 and Z(ci−1) = Z(ci), for
each 2 ≤ i ≤ k. A route is a subset of trips in the timetable which follow exactly the same
sequence of stops, obviously at different times.

A timetable query is defined by a tuple (S, T, ts) where S ∈ B is the departure station,
T ∈ B is the arrival station, and ts is the presence-time at S. As mentioned above, the most
commonly used optimization criteria for the MJP problem are the earliest arrival (EA) and
the minimum number of transfers (MNT), that define the following variants.
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12:4 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

Earliest Arrival Multimodal Journey Planning Problem (MJPEA): The goal is to find an
itinerary that may depart from S no earlier than the presence-time ts at S, and arrives
at T as early as possible.
Minimum-Number-of-Transfers Multimodal Journey Planning Problem (MJPMNT ): The
goal is to find an itinerary that departs from S no earlier than the presence-time ts at S,
and arrives at T with the minimum number of vehicle exchanges.

In this work we focus on the realistic variant of MJPEA which considers non-negligible
transfer-times and allows for the existence of non-FIFO arcs.

3 Existing Models and State-Of-Art Review

We summarize the basic characteristics and a comparison of the two most prevalent schedule-
based time-dependent graph models, BJ [2] and PSWZ [18], along with their query algorithm.

3.1 The BJ Model
The time-dependent graph G = (V, E) consists of nodes representing stations, and arcs
e = (A, B) ∈ E from station A to station B, if there exists in the timetable at least one
elementary connection from A to B.

Figure 1 The BJ model representation of a network with 3 stations, X, Y and Z, k elementary
connections (c1, c2, c3, . . . , ck) from Z to Y , and d elementary connections (c′

1, c′
2, c′

3, . . . , c′
d) from Y

to X. The transfer-times between vehicles take negligible time.

The transfers between vehicles within a station are assumed to take zero time. The
earliest-arrival time of an arc e = (A, B) is computed “on the fly” and is given by a function
f(A,B)(tA) = tB , where tA is the presence-time at A and tB ≥ tA is the earliest-arrival time
at B. All the elementary connections across e = (A, B) are maintained in an array whose
entries consist of tuples of the form c = (td, ta, Z). Figure 1 illustrates an example of the
time-dependent model. The BJ model makes the assumption, also known as the FIFO
property, that overtaking of vehicles along an arc is not allowed. More formally:

▶ Assumption 1 (FIFO Arcs). For any two given stations A and B, there are no two vehicles
leaving A and arriving to B such that the vehicle that leaves A second arrives first at B.

3.2 The PSWZ model
The PSWZ model is an extension of the BJ model and is also based on a time-depended
digraph G = (V, E), which is called the vehicle-route graph. The vehicle exchanges at stations
are now allowed to take (either constant, or varying) non-negligible times. For simplicity
we consider the case of constant transfer-time per station. In the PSWZ model the set of
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Figure 2 The PSWZ model representation of a network that contains three stations and two
routes. Nodes X, Y and Z are station nodes. Nodes pZ

0 , pZ
1 , pY

0 , pY
1 and pX

1 are route nodes. The
example considers two routes starting from Z, represented by the route nodes pZ

0 and pZ
1 . Moreover,

there is a route which ends at Y , represented by py
0 , and one passing-by route represented by py

1 .
Finally, one route ends at X, represented by pX

1 . The transfer-arcs are coloured blue, whereas the
red arcs represent route 0 (from Z via Y to X), and the green arcs the represent route 1 (from Z to
Y ) .

vehicles is divided in vehicle routes, where two vehicles belong to the same route if they
pass through exactly the same sequence of stations, probably at different times within a day.
For each station that a route stops by, the vehicle-route graph contains a node to indicate
that event, called a route node. Moreover, the vehicle-route graph contains station nodes
corresponding to stations. The arcs are distinguished in three different types: route arcs
between route nodes of the same route, transfer arcs from a route node to a station node,
and boarding arcs from a station node to a route node. The cost of route arcs is assigned “on
the fly”, while the cost of the transfer and boarding arcs are predetermined. In particular,
the arrival-time of a route arc e = (pA

i , pB
i ) is given by f(pA

i
,pB

i
)(tA) = tB where tB is the time

that pB
i will be reached, given that pA

i was reached at time tA. Its cost is then ∆(tA, tB). A
transfer-arc (A, pA

i ) from a station-node A to a route node pA
i has cost equal to trans(A). A

boarding arc (pA
i , A) from a route node pA

i to a station node A has zero cost. The elementary
connections from a station to another are maintained in a separate array per route arc,
ordered in increasing departure times.

The PSWZ model is based on the following FIFO assumption.

▶ Assumption 2 (FIFO Vehicle Routes). There exist no two vehicles Z1, Z2 ∈ Z belonging to
the same vehicle-route such that the (slow) vehicle Z1 departs earlier than the (fast) vehicle
Z2 from a station A but it arrives later than Z2 at the next station B along the route.

If this assumption is violated, the PSWZ model can enforce it by introducing new vehicle
routes, one for each different speed class, where all vehicles follow the same schedule as
before. Figure 2 illustrates an example of this model.

3.3 Query algorithm for BJ and PSWZ models
The query algorithm used by both models is a variant of Dijkstra’s algorithm [6] which solves
the simplified version (i.e., when Assumption 1 holds) of MJPEA in the BJ model, and the
realistic version (i.e., when Assumption 2 holds) of MJPEA in the PSWZ model.

ATMOS 2022



12:6 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

In particular, given a query (S, T, ts), the query algorithm is a time-dependent variant
of Dijkstra’s algorithm (we call it TDD): Initially the presence-time label π[S](ts) of the
origin-station S is initialized to ts, and all other labels are set to infinity. The costs of
the transfer and boarding arcs in the PSWZ model are all predetermined. The costs of
each time-dependent arc e = (A, B) (i.e., every arc in the BJ model, only route arcs in the
PSWZ model) is computed “on the fly”, when its tail A is selected by TDD for settling
its label. The label π[A](ts) of A is optimal when it is chosen to be settled, due to the
correctness of TDD in time-dependent graphs whose arc costs obey the FIFO property:
δ[A](ts) = π[A](ts). The minimum travel-time D[e](π[A](ts)) = minc∈C(e){ D[c](π[A](ts)) }
of arc e is then easily computed. TDD considers updating the label of B, due to the relaxation
of e: π[B](ts) = min { π[B](ts) , π[A](ts) + D[e](π[A](ts)) } .

It is also known, due to Assumptions 1 and 2, which is the next elementary connection to
be used to reach node B via A along the particular arc e = (A, B), as early as possible: the
first one that departs no earlier than the presence-time π[A](ts) at A. This connection can be
easily found by conducting a binary search on the array C(e), whose elementary connections
are ordered in non-decreasing departure-times.

The time complexity of the above algorithm is O(m log(W ) + n log(n)) [18], where n and
m are the number of nodes and the number of arcs of the time-dependent graph, respectively,
and W is the maximum number of elementary connections of an arc.

3.4 Comparison of BJ vs PSWZ and Other Approaches
Both models have their strengths and weaknesses. The BJ model is based on a digraph
where each node represents a station and each arc between two nodes represents the existence
of at least one elementary connection between them. The PSWZ model, on the contrary,
considers a digraph which contains, in addition to station nodes, route nodes and route arcs
that correspond to elementary connections for a given route, and transfer and boarding arcs
connecting station nodes with route nodes. In particular, assume that we have a timetable
involving a set B of stations and a set C of elementary connections is given. The BJ model
considers a time-dependent digraph (VBJ , EBJ) with |VBJ | = |B| vertices and |EBJ | ≤ |C|
arcs. The PSWZ model, on the other hand, considers a digraph (VP SW Z , EP SW Z) with
|VP SW Z | ∈ |B| + O(|C|) vertices and |EP SW Z | ∈ O(|B| + |C|) arcs: each station S ∈ B

corresponds to a station-node vS and to a constant number of route-nodes pS
i , for all the

passing-by routes from S; S also induces a constant number of transfer and boarding arcs
between vS and each of pS

i . Finally, the number of route-arcs is, again, at most |C|.
The space and query-time requirements in the PSWZ model are still linear in the size of

the timetable, but clearly larger than those in the BJ model. On the other hand, the extra
nodes and arcs in the PSWZ model make the model more realistic, since it can handle both
non-negligible transfer times and violations of the FIFO property when moving from one
station to another (possibly via vehicles of different types). The simplicity of the BJ model
(and thus smaller space and query-time requirements) is due to the fact that it neglects
transfer times and assumes universal enforcement of the FIFO property, for all pairs of
stations connected by at least one elementary connection. These assumptions make the
BJ model not applicable in real-world instances. In conclusion, the BJ model is simpler,
lighter and faster than the PSWZ model, but the PSWZ model overcomes the BJ model in
applicability, because it handles more realistic scenarios.

Other approaches of public transport networks representation concern vector-based models.
Characteristic representatives are RAPTOR [4] that works in rounds where in the i-th round
it discovers the earliest arrival time to every stop by using at most i − 1 transfers, CSA [5]
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that assumes that the time table is not cyclic – there are no connections after midnight – and
scans a single array of connections containing traveling events sorted in ascending order of
departure time, and Trip-Based Routing [23] which requires the precomputation of transfers
between traveling events and also works in rounds, where each round scans segments of trips
that are reached in the previous round. The basic advantage of vector-based models relies
on the vector-cache-friendly processing of the traveling events. In this work we focus only on
graph-based models.

4 A novel time-dependent graph model

In this section we present the non-FIFO time dependent graph model with REalistic vehicle
eXchange times (REX), which aims to keep the simplicity of the digraph in the BJ model, but
also to support the existence of non-negligible transfer times between stations and non-FIFO
abiding arcs. The ambition of REX is to guarantee the strong points of both BJ and PSWZ
models, without suffering from their weaknesses.

Since the FIFO property is not a precondition for our time-dependent digraph, we can
no longer use TDD as our query algorithm. We therefore present a novel label-correcting
query algorithm, called TRIPLA, that computes optimal earliest-arrival routes within our
model. Clearly, since REX insists on the simplicity of the graph, more work has to be done
by TRIPLA. Nevertheless, rather than conducting blind label-corrections until optimality is
reached, TRIPLA uses a novel label-correction propagation process, which conducts targeted
label corrections only across affected routes in the digraph, upon improving the label of a
particular node. In the rest of this section we first present the REX model, then we continue
with the description of the TRIPLA query algorithm.

4.1 The REX model
REX is based on the time-dependent graph G = (V, E) of the BJ model [2]. We add three ad-
ditional attributes to each elementary connection of BJ: c = (Sd, Sa, td, ta, Z, tr, pnext, pprev).
The attribute pnext(c) (resp. pprev(c)) is a pointer indicating the next (resp. previous)
elementary connection c′ (resp. c′′) along the same trip with c using the same vehicle
(Z(c′) = Z(c) = Z(c′′)), or is set to null when no such connection exists. As for tr(c), it
indicates a tentative estimation of the earliest-arrival time at Sd(c) using the particular
vehicle Z(c) considered by c. The initial value of tr(c) is set to ∞ and changes “on the fly”
when the previous elementary connection c′ = pprev(c) is relaxed.

REX maintains the set C(e) of all elementary connections for e = (A, B) in an array
ConnectionArraye, which is ordered in non-decreasing arrival-times at B, rather than
departure-times from A (as in the BJ and the PSWZ models). For any given elementary
connection c ∈ C(e) along an arc e = (A, B), the boarding-time tx(A) on Z(c) after a vehicle
exchange at A is station-dependent and is computed as tx(A) = π[A](ts) + trans(A). On
the other hand, all commuters arriving at A with the vehicle Z(c) do not need to make a
vehicle exchange in order to get on-board and continue their itinerary with c. Therefore,
their on-board-time in that case is exactly the value tr(c), which may only have a finite value
if at least one route has been discovered that departs from the origin and has already used
some previous elementary connection of the vehicle Z(c). Otherwise, tr(c) = ∞.

The arrival-time at B via the elementary connection c ∈ C(e) is computed by the function
gc(tx(A)) as gc(tx(A)) = min { tx(A) + D[c](tx(A)) , tr(c) + D[c](tr(c)) } . This function
considers two different scenarios for commuters willing to use c as the next leg of their
itineraries. They have either hopped on the vehicle Z(c) earlier than station Sd(c), or

ATMOS 2022



12:8 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

they will do it exactly at this station. Since we refer to the same elementary connection c,
involving the same vehicle but possibly for different periods of the timetable, the function
fc(t) = t + D[c](t) = ta(c) + k · Tp, k · Tp + td(c) ≥ t > (k − 1) · Tp + td(c) is a non-decreasing
step function. Therefore, gc(tx(A)) is also non-decreasing. The arrival-time at B via any
connection of e = (A, B), as a function of the boarding time tx(A) within A (after a vehicle
exchange) is then fe(tx(A)) = minc∈C(e) { gc(tx(A)) } .

Besides the connection arrays (for arcs), we also introduce a new data structure per node,
the Index Array (cf. Figure 3). For each A ∈ V , we consider the sets EA = { (A, Xi) ∈
E : 1 ≤ i ≤ k } of outgoing arcs, NA =

⋃
e∈EA

C(e) of elementary connections departing from
A, and IA =

⋃
c∈NA

{ td(c) } of departure-events at A. Then, IndexArrayA contains pairs
⟨tδ, Ptδ

⟩ where tδ ∈ IA is a departure-event and Ptδ
is an array of (pointers to) elementary

connections: ∀e ∈ EA, Ptδ
[e] indicates the first elementary connection in ConnectionArraye

having td(c) ≥ tδ. The number of the pairs in IndexArrayA is equal to |IA|. The pairs of
IndexArrayA are ordered in increasing departure-events tδ. The number of (pointers to)
elementary connections in each array Ptδ

is |EA|.
Given the presence time tx(A) at station A (after having already gone off-board from the

previous vehicle), IndexArrayA allows the computation of the first elementary connection
ci ∈ ConnectionArray(A,Xi), for each outgoing arc from A, having td(ci) ≥ π[A](ts). This
computation requires only one binary search in IndexArrayA, so as to find the earliest
departure event tδ ≥ π[A](ts). Then, the elementary connection ci = Ptδ

[(A, Xi)] has the
earliest-arrival time at Xi according to the schedule, among all connections of (A, Xi) with
departure time at least π[A](ts). This is because ConnectionArray(A,Xi) is ordered by
non-decreasing arrival times at Xi. All the index arrays of the stations are precomputed
during a prepossessing phase. Their preprocessing-space requirement is linear in the size of
the time-dependent graph, assuming that each node A has a constant number |IA| ∈ O(1) of
departure events during the entire period [0, Tp) of the timetable:

∑
A∈V |IA| · (|EA| + 1) ∈

O(1) ·
∑

A∈V (|EA| + 1) = O(|E| + |V |) . In the worst case, there exist Tp departure events at
each node, |IA| ≤ Tp, implying worst-case space O(Tp · (|E| + |V |)).

Finally, we construct the CheckArray data structure for the arcs, whose role is to jointly
describe chains of elementary connections (comprising trips) along which our query algorithm
will have to perform (targeted) label-correction propagations for the attributes tr(c) of these
connections. In particular, for e = (A, B) ∈ E, the array CheckArraye is initially empty,
and is augmented with elementary connections during the query algorithm’s execution. For
two incident arcs e = (X, Y ) and e′ = (Y, Z), the elementary connection c ∈ C(e) is appended
to CheckArraye when, for the next elementary connection c′ = pnext(c) ∈ C(e′) along the
trip of Z(c), the query algorithm is in position to conclude that the boarding time tx(Z) at
Z is suboptimal, that is, Z could have been reached earlier if c had been relaxed before c′.

Consider the following example (Figure 4): Assume that a 1-minute time unit is used, and
Tp = 1440. B is settled before A and C, since the π[B](ts) = 4 < π[C](ts) = 15 < π[A](ts)
= ∞, and has boarding time (after vehicle exchange) tx(B) = π[B](ts) + trans(B) = 12.
Assume that B realizes that tr(c21) = ∞ and tr(c23) = ∞, i.e., the vehicles M and K have
not been considered yet by some of its predecessor stations for the routes of M and K.
Unavoidably, these two vehicles may be used only afteran exchange of vehicles at station B:
gc21(12) = min{12+D[c21](12)), ∞} = 1450, and gc23(12) = min{12+D[c23](12), ∞} = 1454.
If, on the other hand, c11 and c14 become relaxed at some time after the settlement of B, then
it would hold that tr(c21) = 8 and tr(c23) = 11. As a result, the valuations of gc for the two
connections has to be updated accordingly: gc21(12) = min{12 + D[c21](12), 8 + D[c21](8)} =



S. Kontogiannis, P.-M.-M. Machaira, A. Paraskevopoulos, and C. Zaroliagis 12:9

Figure 3 The index array of a node A. For tδ = 7, the (pointer to the) elementary connection
ci = P7[(A, Xi)] indicates the first (in order of ConnectionArray(A,Xi)) connection having an eligible
departure time td(ci) ≥ 7, therefore also providing the earliest arrival time at Xi among eligible
connections .

10 < 1450 and gc23(12) = min{12 + D[c23](12), 11 + D[c23](11)} = 14 < 1454. Therefore,
upon settlement of B, CheckArraye1 should be augmented with c11 and c14 so that, if these
two connections are ever relaxed in the future, the changes in the values tr(c11) and tr(c14)
are updated accordingly. As for c15, since tr(c15) ≥ 13 > tx(B) = 12, there is no need to be
added in CheckArraye1 .

4.2 TRIPLA: Query algorithm for REX

We present now the TRIP-based LAbel-correction propagation (TRIPLA) query algorithm
for MJPEAP , in the REX model. Due to possible violation of the FIFO property, TRIPLA
cannot be a label-setting algorithm. Nevertheless, it is built as a time-dependent variant of
Dijkstra’s algorithm, with a priority queue storing each node A with its label (presence-time)
π[A](ts), and relaxes (possibly more than once) elementary connections of arcs using the
auxiliary data structures described in Section 4.1, according to an appropriate label-correction
propagation (LCPROP) phase.

Given an EA query (S, T, ts), the algorithm, after an initialization phase, executes a
number of iterations until the destination station is extracted from the priority queue. Here
is the high-level description of TRIPLA.

Initialization. S is inserted into the priority queue with label π[S](ts) = ts, and the
transfer-time of S is set to trans(S) = 0.

Iteration. A new node A is extracted from the priority queue. The earliest arrival time
δ[A](ts) at station A, as we prove later, is equal to π[A](ts) and therefore A is settled.
Consequently, all the outgoing arcs from A are scanned. For each e := (A, B) ∈ E s.t. B has
not been settled yet, a relaxation phase starts. Otherwise, the label-correction propagation
(LCPROP) phase starts. TRIPLA returns the earliest arrival time to T when T is settled.

ATMOS 2022
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Figure 4 Example of CheckArrays .

We shall now describe the relation and label-correction propagation phases.

Relaxation phase. Let e = (A, B) ∈ E. Since the FIFO property does not apply, an
elementary connection that departs first from A is not necessarily the one that arrives first
at B. Therefore, multiple elementary connections of an arc must be now relaxed. If ci =
ConnectionArraye[i] (1 ≤ i ≤ k) is the first elementary connection of ConnectionArraye

having departure time td(ci) ≥ π[A](ts), then the elementary connections towards B that
have to be relaxed are in the ordering ⟨ci, ci+1, ..., ck, c1, c2, ..., ci−1⟩, up to an elementary
connection cp, where 1 ≤ p ≤ k, such that cp is the first elementary connection within the
ordering for which π[A](ts) + D[cp](π[A](ts)) ≥ tx(B) = π[B](ts) + trans(B).

With a binary search in IndexArrayA, TRIPLA can locate ci. It then sequentially scans
the connections of ConnectionArraye, until cp is discovered. Consequently, the arrival-time
of ci is computed and the connection to follow (along the same trip) c′

i = pnext(ci), if it
exists, updates its attribute tr(c′

i) accordingly.

Let the arcs e1 = (A, B), e2 = (B, C), e3 = (C, D) and the elementary connections
c1 ∈ C(e1), c2 ∈ C(e2), c3 ∈ C(e3) where pnext(c1) = c2 and pnext(c2) = c3. The arrival-time of
c2 at C is updated as wc2 = gc2(tx(B)) = min{ D[c2](tx(B)) + tx(B), D[c2](tr(c2)) + tr(c2) }
where tr(c2) is the on-board arrival-time of c2 to B using vehicle Z(c2) = Z(c1) (i.e., without
vehicle exchange), and tx(B) = π[B](ts) is the boarding time (after vehicle exchange) at B.
So long as π[A](ts) > π[B](ts), B may be extracted from the priority queue only before A,
and thus the relaxation of c2 would take place before tr(c2) is computed, i.e., tr(c2) = ∞ at
that time. Let t′

r(c2) be the optimal value of the on-board arrival-time of Z(c2) at B, and w′
c2

be the corresponding arrival-time of c2 at C. If it holds tx(B) = π[B](ts)+ trans(B) > t′
r(c2),

then wc2 ≥ w′
c2

, due to the monotonicity of gc:
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tr(c2) = ∞ > tx(B) > t′
r(c2) ⇒ D[c2](tx(B)) + tx(B) ≥ D[c2](t′

r(c2)) + t′
r(c2)

⇒ gc2(tx(B)) = min
{

D[c2](tx(B)) + tx(B),
D[c2](tr(c2)) + tr(c2)

}
≥ g′

c2
(tx(B)) = min

{
D[c2](tx(B)) + tx(B),
D[c2](t′

r(c2)) + t′
r(c2)

}
⇒ wc2 ≥ w′

c2

Hence, if wc2 ≥ w′
c2

then the arrival-time of c3 = pnext(c2) at D may be larger than the
earliest arrival-time at D via c3. Analogously, the arrival-time of c4 = pnext(c3) may also be
suboptimal, and so on. For that reason, a trip-based LCPROP phase follows, in order to
re-relax the affected elementary connections and update the label of any affected node in the
priority queue so that no node with suboptimal label is extracted.

When an elementary connection c is relaxed, TRIPLA checks if all the following re-
relaxation conditions (RC) hold at the same time, in order to conclude whether its own
arrival-time at the arrival-node is potentially suboptimal:

RC1(c) The elementary connection c′ = pprev(c) has not been relaxed yet: tr(c) = ∞.
RC2(c) The arrival-time of c at Sa(c) would become smaller, if no transfer at Sd(c) occurs:

gc(tx(Sd(c))) > gc(π[Sd(c)](ts)).
RC3(c) The optimal arrival-time via c at station Sa(c) would be smaller than the boarding-

time (after vehicle exchange) at Sa(c): w′
c < tx(Sa(c)) = π[Sa(c)](ts) + trans(Sa(c)).

If all these conditions hold for c, then c′ = pprev(c) is inserted into CheckArraye′ , where
c′ ∈ C(e′), in order to be processed by LCPROP as soon as Sd(c′) is settled.

Label-correction propagation phase. In the LCPROP phase for e′, TRIPLA computes the
arrival-time of c′ using the function gc′(tx(Sd(c′))), and it updates then accordingly the value
of tr(c). TRIPLA also checks if the Conditions RC1-2-3 hold for c′ this time and, if this
is the case, it inserts its preceding connection along the trip of Z(c′) to the corresponding
CheckArray. The LCPROP phase recomputes the arrival-time of of c, wc = gc(tx(Sd(c))),
and updates accordingly tr(c′′), where c′′ = pnext(c). It then recomputes the arrival-time
of c′′ and updates accordingly tr(pnext(c′′)), and so on. The LCPROP phase stops when
an elementary connection c̃ is considered which provides clearly suboptimal arrival-time at
its arrival-node (i.e., tx(Sa(c̃)) ≤ ta(c̃), or Sa(c̃) has not been settled yet. In the latter case,
the arrival-station has not been extracted from the priority queue yet, thus the elementary
connections emanating from it are not affected (their arrival-times have not been computed
yet). Before ending LCPROP, tr(c̃) is also computed, and π[Sa(c̃)](ts) is updated if necessary.

We illustrate the LCPROP phase regarding the re-relaxation of certain arcs through the
example of Figure 5, where a 1-minute time unit is considered, and Tp = 1440. Consider
the arcs e1 = (A, B), e2 = (B, C), e3 = (C, D), e4 = (D, X), e5 = (X, Q), the elementary
connections c1, c2, c3, c4, c5, where ci ∈ C(ei), 1 ≤ i ≤ 5, and the trip P = ⟨c1, c2, c3, c4, c5⟩
from A to Q. The transfer times are shown below the station-nodes. The departure-times td,
the arrival-times ta and the vehicles Z of the connections are shown on the right in Figure 5.
The presence time at the origin-node S is ts = 2. At a certain point during the execution of
TRIPLA, the labels of the nodes A, B, C, D, X, Q are also shown in Figure 5. When B is
extracted from the priority queue, tr(c2) is still ∞ because A is not settled yet. Therefore, a
transfer must occur at B and the boarding time at B is tx(B) = 25 > td(c2) = 21. TRIPLA
will then relax c2 with arrival-time wc2 = gc2(25) = min{D[c2](25) + 25, ∞} = 1464 , and will
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Figure 5 A trip P = ⟨c1, c2, c3, c4, c5⟩ from A to Q, whose elementary connections are shown
in the table. The transfer-time per station is indicated by trans. At a certain point during the
algorithm’s execution, the labels of the nodes get the values shown in the figure.

also update c3 with tr(c3) = 1464. TRIPLA will also insert c1 to CheckArraye1 , since c2
fulfills all the Re-relaxation Conditions. Node C will be extracted next from the priority queue.
Its boarding time (after vehicle exchange) is tx(C) = 26. TRIPLA will relax c3 with the arrival-
time wc3 = gc3(26) = min{D[c3](26) + 26, D[c3](1464) + 1464} = 1467 and thus, c4 will be
updated with tr(c4) = 1467. Consequently, TRIPLA will relax c4 with the arrival-time wc4 =
gc4(1467) = min{D[c4](1467) + 1467, ∞} = 1469 and will also update c5 with tr(c5) = 1469.
Observe that, after the relaxation of c4, X will still have label π[X](ts) = 50 instead of 29,
because tr(c4) = 1467 and not 27. Node D will be extracted next from the priority queue. Its
boarding time (after vehicle exchange) is tx(D) = 19+9 = 28. TRIPLA will relax c4 with the
arrival-time wc4 = gc4(28) = min{28+D[c4](28), 1467+D[c4](1467)} = 1469 and thus, c5 will
be updated with tr(c5) = 1469. Consequently, since tx(X) = 50 + 5 = 55, TRIPLA will relax
c5 with the arrival-time wc5 = gc5(55) = min{55 + D[c5](55), 1469 + D[c5](1469)} = 1470 .

Now is the time for A to be extracted from the priority queue. TRIPLA computes the arrival-
time of c1 and updates accordingly tr(c2) = 23. All the subsequent elementary connections
of c1 along the same trip must be re-relaxed with as follows: wc2 = 24 ⇒ tr(c3) = 24,
wc3 = 27 ⇒ tr(c4) = 37, wc4 = 29 ⇒ tr(c5) = 29. Since X has not been settled yet, the
LCPROP phase updates also its label: π[X](ts) to 29. As a consequence, before being
extracted, station X has its own label corrected to the optimal value.

For more details on the pseudocode of TRIPLA, its proof of correctness, the O(1) time-
complexity of LCPROP and the O(m + n log(n)) time-complexity of TRIPLA for real-world
instances, the reader is deferred to the full version of this paper.

5 Experimental Evaluation

In this section, we present the experimental evaluation of the TRIPLA algorithm. All
the experiments have been performed on a workstation equipped with an Intel Xeon CPU
E5-2643 v3 3.40 GHz and 256 GB RAM. All algorithms were implemented in C++ and
compiled with gcc (v7.5.0, optimization level O3) and Ubuntu Linux (18.04 LTS). The input
data used to implement the multimodal transport networks are (a) timetable data sets in
the General Transit Feed Specification (GTFS) format, containing various means of public
transport, and (b) road and pedestrian network data sets in the Open Street Map (OSM)
format. The integrated networks concern the metropolitan areas of Athens, Rome, London,
Berlin and Switzerland. The source of the timetable data for London is [17], for the rest is
[16]. The source of the pedestrian network is [12].
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Table 1 contains detailed information concerning the input timetables. It contains the
number of stations |B| and the number of elementary connections |C| between stops (a proxy
size), along with the number of nodes |V | and arcs |E| of the graph-based models REX
and MDTM [7], which is the most efficient time-expanded model. The departure time for a
query is within 1, 2 or 7 days. The timetable time period of the connection sets is the valid
departure period plus two days, starting from Monday. It is evident from Table 1 that the
graph of REX is much smaller than that of MDTM. The corresponding Table for maximum
walking time 600secs, is included in the full version of this paper.

Table 1 Benchmark instances and sizes of corresponding graphs; restricted walking: 300 sec.

Period Map |B| |C| Transfers MDTM REX

|V | |E| |V | |E|

One day

Athens 6771 2178677 27734 2185448 6506253 6771 31980
Rome 6883 2551316 27972 2558199 7592671 6883 33606
London 19706 13391869 81798 13411575 39901166 19706 96436
Berlin 27917 4222929 73445 4250846 12530654 27917 110339
Switz. 26757 6639655 36112 6666412 19412126 26757 84847

Two days

Athens 6771 2904772 27734 2911543 8665372 6771 31980
Rome 6893 3402181 28424 3409074 10115850 6893 34071
London 19706 17839626 81836 17859332 53125144 19706 96468
Berlin 27920 5630882 73461 5658802 16683977 27920 110372
Switz. 26805 8855105 36268 8881910 25877261 26805 85225

Seven days

Athens 7041 4603557 28524 4610598 13717448 7041 32971
Rome 6917 5502358 28576 5509275 16343179 6917 34405
London 19706 29979408 82216 29999114 89224052 19706 96854
Berlin 28096 8794883 74933 8822979 26021451 28096 112345
Switz. 27468 14252368 38008 14279836 41586992 27468 90422

Our implementation is engineered by applying a series of algorithmic optimizations, the most
important of which which we present next. Further optimizations and extensions of REX
and TRIPLA, such as heuristic methods aiming to boost the performance of TRIPLA (one
trying to avoid unnecessary binary searches in our data structures, and one that tries to
accelerate TRIPLA in the rationale of ALT [8]) including the integration of walking, are
described in the full version of the paper.

Graph representation: A static forward-star array-based and cache-friendly variant of the
PGL library [9] was used for the graph representation.
Priority queue: For Dijkstra-based algorithms, we used as priority queue Sanders’ cache-
friendly implementation1 of the sequence heap [19].
Vertex reordering: Similar to well-known observations concerning performance enhance-
ments on Dijkstra-based core processing steps [3, 20], we reorder the vertices of the
graph so that neighboring vertices are located in adjacent memory blocks. This way, the
cache misses and run time are decreased. That re-ordering is formed with respect to a
combination of DFS and BFS traversal of the graph.
Data allocation: We order the required data (e.g., distances, predecessors, and time event
containers) of all the algorithms for each vertex and arc, to enforce a contiguous memory
allocation and thus decrease the cache misses on memory access operations.

1 http://algo2.iti.kit.edu/sanders/programs/spq
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The experimental evaluation compares TRIPLA with some of the fastest state-of-art
routing algorithms (CSA [5], ULTRA+CSA [1] and MDTM-QH-ALT [7]). The input for
ULTRA preprocessing are the limited walking graphs. For each input we generated 10, 000
random queries, and reported average execution times (in ms). Table 2 shows the performance
of the algorithms when the departure time of a query is within one day, two days or seven
days, to demonstrate how the increment of the timetable period affects query times. We
observe that TRIPLA has faster average query times in all cases. Especially in Switzerland,
TRIPLA is at least 2.5 times faster than all other algorithms.

Table 2 Experimental evaluation of query algorithms when the department time is within 1, 2, or
7 days. Optimisation criterion: earliest arrival time; maximum walking time: either 300 or 600 secs.

Map QT [ms] - 1d QT [ms] - 2d QT [ms] - 7d
Algorithm (300) (600) (300) (600) (300) (600)

A
th

en
s CSA 1.52 6.88 1.52 6.69 2.07 7.54

ULTRA + CSA 0.43 0.64 0.47 0.67 1.12 0.89
MDTM-QH-ALT 0.72 0.93 0.81 1.00 1.14 1.36
TRIPLA 0.31 0.49 0.32 0.49 0.52 0.69

R
om

e

CSA 1.59 5.54 1.63 5.76 1.76 6.06
ULTRA + CSA 0.59 0.72 0.67 0.80 0.85 0.85
MDTM-QH-ALT 0.97 1.17 1.04 1.24 1.29 1.50
TRIPLA 0.44 0.62 0.44 0.61 0.62 0.74

Lo
nd

on

CSA 10.32 78.39 10.55 80.34 11.52 86.13
ULTRA + CSA 3.61 4.17 3.81 4.31 4.45 4.80
MDTM-QH-ALT 2.17 2.96 2.48 3.02 3.11 3.18
TRIPLA 0.98 1.60 1.04 1.43 2.34 1.89

B
er

lin

CSA 2.80 15.01 3.02 15.36 4.41 18.14
ULTRA + CSA 3.34 3.47 3.56 3.70 5.10 5.28
MDTM-QH-ALT 7.19 8.11 7.90 8.84 8.70 9.57
TRIPLA 2.71 3.46 2.78 3.55 3.74 4.57

Sw
itz

. CSA 5.08 6.66 5.38 6.85 8.00 9.14
ULTRA + CSA 5.52 5.34 5.85 5.56 8.60 7.87
MDTM-QH-ALT 4.48 4.83 5.07 5.48 6.50 6.49
TRIPLA 1.75 1.89 1.62 1.71 2.58 2.52

6 Conclusions and Future Work

In this work, the REX model for multimodal route planning in schedule-based public transport
systems is presented, along with a novel query algorithm, TRIPLA, that efficiently solves
the realistic earliest-arrival routing problem. An extensive experimental study on real-world
benchmark instances demonstrates that TRIPLA outperforms the state-of-the-art multimodal
route planners.

We are currently working on another novel query algorithm, that exploits the REX model
to solve the multicriteria variant of the routing problem in schedule-based public-transport
systems with walking transfers, where apart from the earliest-arrival objective, the commuters
also care for minimizing the number of vehicle exchanges.
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