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Abstract. In the open online dial-a-ride problem, a single server has
to deliver transportation requests appearing over time in some metric
space, subject to minimizing the completion time. We improve on the
best known upper bounds on the competitive ratio on general metric
spaces and on the half-line, for both the preemptive and non-preemptive
version of the problem. We achieve this by revisiting the algorithm Lazy

recently suggested in [WAOA, 2022] and giving an improved and tight
analysis. More precisely, we show that it has competitive ratio 2.457
on general metric spaces and 2.366 on the half-line. This is the first
upper bound that beats known lower bounds of 2.5 for schedule-based
algorithms as well as the natural Replan algorithm.

Keywords: online algorithms · dial-a-ride · competitive analysis.

1 Introduction

In the open online dial-a-ride problem, we are given a metric space (M,d) and
have control of a server that can move at unit speed. Over time, requests of
the form (a, b; t) arrive. Here, a ∈ M is the starting position of the request,
b ∈ M is its destination, and t ∈ R≥0 is the release time of the request. We
consider the online variant of the problem, meaning that the server does not get
to know all requests at time 0, but rather at the respective release times. Our
task is to control the server such that it serves all requests, i.e., we have to move
the server to position a, load the request (a, b; t) there after its release time t,
and then move to position b where we unload the request. The objective is to
minimize the completion time, i.e., the time when all requests are served.

We assume that the server always starts at time 0 in some fixed point, which
we call the origin O ∈ M . The server has a capacity c ∈ (N ∪ {∞}) and is
not allowed to load more than c requests at the same time. Furthermore, we
consider the non-preemptive version of the problem, that is, the server may not
unload a request preemptively at a point that is not the request’s destination. In
the dial-a-ride problem, a distinction is made between the open and the closed
variant. In the closed dial-a-ride problem, the server has to return to the origin
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metric space
old bounds new bounds

lower upper upper

general
non-preemptive 2.05 2.618 [5] 2.457 (Thm 1)

preemptive 2.04 2.618 2.457

line
non-preemptive 2.05 [10] 2.618 2.457

preemptive 2.04 [11] 2.41 [11] —

half-line
non-preemptive 1.9 [25] 2.618 2.366 (Thm 2)

preemptive 1.62 [25] 2.41 2.366

Table 1. State of the art of the open online dial-a-ride problem and overview of our
results: Bold bounds are original results, other bounds are inherited.

after serving all requests. By contrast, in the open dial-a-ride problem, the server
may finish anywhere in the metric space. In this work, we only consider the open
variant of the problem. By letting a = b for all requests (a, b; t), we obtain the
online travelling salesperson problem (TSP) as a special case of the dial-a-ride
problem.

In this work, we only consider deterministic algorithms for the online dial-
a-ride problem. As usual in competitive analysis, we measure the quality of
a deterministic algorithm by comparing it to an optimum offline algorithm.
The measure we apply is the completion time of a solution. For a given se-
quence of requests σ and an algorithm Alg, we denote by Alg(σ) the comple-
tion time of the algorithm for request sequence σ. Analogously, we denote by
Opt(σ) the completion time of an optimal offline algorithm. For some ρ ≥ 1,
we say that an algorithm Alg is ρ-competitive if, for all request sequences σ,
we have Alg(σ) ≤ ρ · Opt(σ). The competitive ratio of Alg is defined as
inf{ρ ≥ 1 | Alg is ρ-competitive}. The competitive ratio of a problem is defined
as inf{ρ ≥ 1 | there is some ρ-competitive algorithm}

Our results. We consider the parametrized algorithm Lazy(α) that was pre-
sented in [5] and prove the following results (see Table table 1).

Our main result is an improved general upper bound for the open online
dial-a-ride problem.

Theorem 1. For α = 1
2 +

√

11/12, Lazy(α) has a competitive ratio of
α + 1 ≈ 2.457 for open online dial-a-ride on general metric spaces for every
capacity c ∈ N ∪ {∞}.

Prior to our work, the best known general upper bound of ϕ + 1 ≈ 2.618
on the competitive ratio for the open online dial-a-ride problem was achieved
by Lazy(ϕ) and it was shown that Lazy(α) has competitive ratio at least
3
2 +

√

11/12 ≈ 2.457 for any choice of α, even on the line [5]. This means that we
give a conclusive analysis of Lazy(α) by achieving an improved upper bound that
tightly matches the previously known lower bound. In particular,
α = 1/2+

√

11/12 is the (unique) best possible waiting parameter for Lazy(α),
even on the line. The best known general lower bound remains 2.05 [10].
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Crucially, our upper bound beats, for the first time, a known lower bound
of 2.5 for the class of schedule-based algorithms [8], i.e., algorithms that divide
the execution into subschedules that are never interrupted. Historically, all upper
bounds, prior to those via Lazy, were based on schedule-based algorithms [9,10].
Our result means that online algorithms cannot afford to irrevocably commit to
serving some subset of requests if they hope to attain the best possible compet-
itive ratio.

Secondly, our upper bound also beats the same lower bound of 2.5 for the
ReOpt (or Replan) algorithm [3], which simply reoptimizes its solution when-
ever new requests appear. While this algorithm is very natural and may be the
first algorithm studied for the online dial-a-ride problem, it has eluded tight anal-
ysis up to this day. So far, it has been a canonical candidate for a best-possible
algorithm. We finally rule it out.

In addition to the general bound above, we analyze Lazy(α) for open online
dial-a-ride on the half-line, i.e., where M = R≥0, and show that, in this metric
space, even better bounds on the competitive ratio are possible for different
values of α. More precisely, we show the following.

Theorem 2. For α = 1+
√
3

2 , Lazy(α) has a competitive ratio of α+ 1 ≈ 2.366
for open online dial-a-ride on the half-line for every capacity c ∈ N ∪ {∞}.

This further improves on the previous best known upper bound of 2.618 [5].
The best known lower bound is 1.9 [25].

We go on to show that the bound in Theorem 2 is best-possible for Lazy(α)
over all parameter choices α ≥ 0.

Theorem 3. For all α ≥ 0, Lazy(α) has a competitive ratio of at least
α + 1 ≈ 2.366 for open online dial-a-ride on the half-line for every capacity
c ∈ N ∪ {∞}.

In the preemptive version of the online dial-a-ride problem, the server is al-
lowed to unload requests anywhere and pick them up later again. In this version,
prior to our work, the best known upper bound on general metric spaces was
2.618 [5] and the best known upper bound on the line and the half-line was
2.41 [11]. Obviously, every non-preemptive algorithm can also be applied in the
preemptive setting, however, its competitive ratio may degrade since the opti-
mum might have to use preemption. Our algorithm Lazy repeatedly executes
optimal solutions for subsets of requests and can be turned preemptive by us-
ing preemptive solutions. With this change, our analysis of Lazy still carries
through in the preemptive case and improves the state of the art for general
metric spaces and the half-line, but not the line. The best known lower bound in
the preemptive version on general metric spaces is 2.04 [11] and the best known
lower bound on the half-line is 1.62 [25].

Corollary 1. The competitive ratio of the open preemptive online dial-a-ride
problem with any capacity c ∈ N ∪ {∞} is upper bounded by

a) 3
2 +

√

11
12 ≈ 2.457 and this bound is achieved by Lazy

(

1
2 +

√

11
12

)

,

b) 1+ 1+
√
3

2 ≈ 2.366 on the half-line and this bound is achieved by Lazy(1+
√
3

2 ).
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Related work. Two of the most natural algorithms for the online dial-a-ride
problem are Ignore and Replan. The basic idea of Ignore is to repeatedly
follow an optimum schedule over the currently unserved requests and ignoring
all requests released during its execution. The competitive ratio of this algorithm
is known to be exactly 4 [8,21]. By contast, the main idea of Replan is to start
a new schedule over all unserved requests whenever a new request is released.
While this algorithm has turned out to be notoriously difficult to analyze, it
is known that its competitive ratio is at least 2.5 [3] and at most 4 [8]. Sev-
eral variants of these algorithms have been proposed such as SmartStart [21],
SmarterStart [10] or WaitOrIgnore [25], which lead to improvements on
the best known bounds on the competitive ratio of the dial-a-ride problem. In
this work, we study the recently suggested algorithm Lazy [5], which is known
to achieve a competitive ratio of ϕ + 1 for the open online dial-a-ride problem,
where ϕ =

√
5+1
2 ≈ 1.618 denotes the golden ratio.

For the preemptive version of the open dial-a-ride problem, the best known
upper bound on general metric spaces is ϕ + 1 ≈ 2.618 [5]. Bjelde et al. [11]
proved a stronger upper bound of 1 +

√
2 ≈ 2.41 for when the metric space is

the line.

In terms of lower bounds, Birx et al. [10] were able to prove that every al-
gorithm for the open online dial-a-ride problem has a competitive ratio of at
least 2.05, even if the metric space is the line. This separates dial-a-ride from
online TSP on the line, where it is known that the competitive ratio is ex-
actly 2.04 [11]. For open online dial-a-ride on the half-line, Lipmann [25] estab-
lished a lower bound of 1.9 for the non-preemptive version and a lower bound
of 1.62 for the preemptive version.

For the closed variant of the online dial-a-ride problem, the competitive ratio
is known to be exactly 2 on general metric spaces [1,3,14] and between 1.76
and 2 on the line [8,11]. On the half-line the best known lower bound is 1.71
[1] and the best known upper bound is 2 [1,14]. The TSP variant of the closed
dial-a-ride problem is tightly analyzed with a competitive ratio of 2 on general
metric spaces [1,3,14], of 1.64 on the line [3,11], and of 1.5 on the half-line [12].

Other variants of the problem have been studied in the literature. This in-
cludes settings where the request sequence has to fulfill some reasonable ad-
ditional properties [12,16,22], where the server is presented with additional [4]
or less [26] information, where the server has some additional abilities [13,19],
where the server has to handle requests in a given order [15,19], or where we
consider different objectives than the completion time [2,6,7,16,17,18,22,23,24].
Other examples include the study of randomized algorithms [21], or other metric
spaces, such as a circle [20]. Moreover, it has been studied whether some natural
classes of algorithms can have good competitive ratios. For example, zealous al-
gorithms always have to move towards an unserved request or the origin [12]. A
schedule-based algorithm operates in schedules that are not allowed to be inter-
rupted. Birx [8] showed that all such algorithms have a competitive ratio of at
least 2.5. Together with our results, this implies that schedule-based algorithms
algorithms cannot be best-possible.
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2 Algorithm description and notation

In this section, we define the algorithm Lazy introduced in [5]. The rough idea
of the algorithm is to wait until several requests are revealed and then start a
schedule serving them. Whenever a new request arrives, we check whether we
can deliver all currently loaded requests and return to the origin in a reasonable
time. If this is possible, we do so and begin a new schedule including the new
requests starting from the origin. If this is not possible, we keep following the
current schedule and consider the new request later.

More formally, a schedule is a sequence of actions specifying the server’s
behaviour, including its movement and where requests are loaded or unloaded.
By Opt[t], we denote an optimal schedule beginning in O at time 0 and serving
all requests that are released not later than time t. By Opt(t), we denote its
completion time. Given a set of requests R and some point x ∈ M , we denote
by S(R, x) a shortest schedule serving all requests in R beginning from point x
at some time after all requests in R are released. In other words, we can ignore
the release times of the requests when computing S(R, x). As waiting is not
beneficial for the server if there are no release times, the length of the schedule,
i.e., the distance the server travels, is the same as the time needed to complete
it and we denote this by |S(R, x)|.

Now that we have established the notation needed, we can describe the al-
gorithm (cf. Algorithm 1). By t, we denote the current time. By pt, we denote
the position of the server at time t, and by Rt, we denote the set of requests
that have been released but not served until time t. The variable i is a counter
over the schedules started by the algorithm. The waiting parameter α ≥ 1
specifies how long we wait before starting a schedule. The algorithm uses the
following commands: deliver_and_return orders the server to finish serv-
ing all currently loaded requests and return to O in the fastest possible way,
wait_until(t) orders the server to remain at its current location until time t,
and follow_schedule(S) orders the server to execute the actions defined by
schedule S. When any of these commands is invoked, the server aborts what it
is doing and executes the new command. Whenever the server has completed a
command, we say that it becomes idle.

We make a few comments for illustration of the algorithm. If the server
returns to the origin upon receiving a request, we say that the schedule it was
currently following is interrupted. Observe that, due to interruption, the sets R(i)

are not necessarily disjoint. Also, observe that p(1) = O, and if schedule S(i) was
interrupted, we have p(i+1) = O and t(i+1) = α · Opt(t(i+1)). If S(i) was not
interrupted, p(i+1) is the ending position of S(i).

The following observations were already noted in [5] and follow directly from
the definitions above and the fact that requests in R(i) \ R(i−1) were released
after time t(i−1).

Observation 1 ([5]). For every request sequence, the following hold.

a) For every i > 1, Opt(t(i)) ≥ t(i−1) ≥ α ·Opt(t(i−1)).
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Algorithm 1: Lazy(α)

initialize: i← 0

upon receiving a request:

if server can serve all loaded requests and return to O until time α ·Opt(t)
then

execute deliver_and_return

upon becoming idle:

if t < α ·Opt(t) then
execute wait_until(α ·Opt(t))

else if Rt 6= ∅ then

i← i+ 1, R(i) ← Rt, t
(i) ← t, p(i) ← pt

S(i) ← S(R(i), p(i))
execute follow_schedule(S(i))

b) For every x, y ∈ M and every subset of requests R, we have |S(R, x)| ≤
d(x, y) + |S(R, y)|.

c) Let i > 1 and assume that S(i−1) was not interrupted. Let a be the starting
position of the request in R(i) that is picked up first by Opt(t(i)). Then,

Opt(t(i)) ≥ t(i−1) + |S(R(i), a)| ≥ α ·Opt(t(i−1)) + |S(R(i), a)|.

3 Factor-revealing approach

The results in this paper were informed by a factor-revealing technique, in-
spired by a similar approach of Bienkowski et al. [6], to analyze a specific algo-
rithm Alg, in our case Lazy. The technique is based on a formulation of the
adversary problem, i.e., the problem of finding an instance that maximizes the
competitive ratio, as an optimization problem of the form

max

{

Alg(x)

Opt(x)

∣

∣

∣
x describes a dial-a-ride instance

}

. (1)

An optimum solution to this problem immediately yields the competitive ratio
of Alg. Of course, we cannot hope to solve this optimization problem or even
describe it with a finite number of variables. The factor-revealing approach con-
sists in relaxing (1) to a practically solvable problem over a finite number of
variables.

The key is to select a set of variables that captures the structure of the
problem well enough to allow for meaningful bounds. In our case, we can, for
example, introduce variables for the starting position and duration of the second-
to-last as well as for the last schedule. We then need to relate those variables
via constraints that ensure that an optimum solution to the relaxed problem
actually has a realization as a dial-a-ride instance. For example, we might add
the constraint that the distance between the starting positions of the last two
schedules is upper bounded by the duration of the second-to-last schedule.
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The power of the factor-revealing approach is that it allows to follow an
iterative process for deriving structurally crucial inequalities: When solving the
relaxed optimization problem, we generally have to expect an optimum solution
that is not realizable and overestimates the competitive ratio. We can then focus
our efforts on understanding why the corresponding variable assignment cannot
be realized by a dial-a-ride instance. Then, we can introduce additional variables
and constraints to exclude such solutions. In this way, the unrealizable solutions
inform our analysis in the sense that we obtain bounds on the competitive ratio
that can be proven analytically by only using the current set of variables and
inequalities. Once we obtain a realizable lower bound, we thus have found the
exact competitive ratio of the algorithm under investigation.

In order to practically solve the relaxed optimization problems, we limit
ourselves to linear programs (LPs). Note that the objective of (1) is linear if we
normalize to Opt(x) = 1. We can do this, since the competitive ratio is invariant
with respect to rescaling the metric space and release times of requests. Another
advantage of using linear programs is that we immediately obtain a formal proof
of the optimum solution from an optimum solution to the LP dual. Of course,
the correctness of the involved inequalities still needs to be established.

In the remainder of this paper, we present a purely analytic proof of our
results. Many of the inequalities we derive in lemmas were informed by a factor-
revealing approach via a linear program with a small number of binary variables.
This means that we additionally need to branch on all binary variables in order
to obtain a formal proof via LP duality. We refer to Appendix A for more details
of the binary program that informed our results for the half-line.

4 Analysis on general metric spaces

This section is concerned with the proof of Theorem 1. For the remainder of this
section, let (r1, . . . , rn) be some fixed request sequence. Let k be the number
of schedules started by Lazy(α), and let S(i), t(i), p(i), R(i) (1 ≤ i ≤ k) be
defined as in the algorithm. Note that we slightly abuse notation here because k,
S(i), t(i), p(i), and R(i) depend on α. As it will always be clear from the context
what α is, we allow this implicit dependency in the notation.

As it will be crucial for the proof in which order Opt and Lazy serve requests,
we introduce the following notation. Let

– r
(i)
f,Opt

= (a
(i)
f,Opt

, b
(i)
f,Opt

; t
(i)
f,Opt

) be the first request in R(i) picked up by

Opt[t(i)],

– r
(i)
l,Opt

= (a
(i)
l,Opt

, b
(i)
l,Opt

; t
(i)
l,Opt

) be the last request in R(i) delivered by

Opt[t(i+1)],

– r
(i)
f,Lazy

= (a
(i)
f,Lazy

, b
(i)
f,Lazy

; t
(i)
f,Lazy

) be the first request in R(i) picked up by
Lazy(α),

– r
(i)
l,Lazy

= (a
(i)
l,Lazy

, p(i+1); t
(i)
l,Lazy

) be the last request in R(i) delivered by
Lazy(α).
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Definition 1. We say that the i-th schedule is α-good if

a) |S(i)| ≤ Opt(t(i)) and
b) t(i) + |S(i)| ≤ (1 + α) · Opt(t(i)).

In this section, we prove by induction on i that, for α ≥ 1
2 +

√

11/12, every
schedule is α-good. Note that this immediately implies Theorem 1.

As our work builds on [5], the first few steps of our proof are the same as
in [5]. For better understandability and reading flow, we repeat the proofs of some
important but simple steps and mark the results with appropriate citations. The
results starting with Lemma 2 are new and improve on the analysis in [5].

We begin with proving the base case.

Observation 2 (Base case, [5]). For every α ≥ 1, the first schedule is α-good.

Proof. Recall that S(1) begins in O and is the shortest tour serving all re-
quests in R(1). Opt[t(1)] begins in O and serves all requests in R(1), too, which
yields |S(1)| ≤ Opt(t(1)). The fact that we have t(1) = α · Opt(t(1)) implies
t(1) + |S(1)| ≤ (1 + α) ·Opt(t(1)). ⊓⊔

Next, we observe briefly that the induction step is not too difficult when the
last schedule was interrupted.

Observation 3 (Interruption case, [5]). Let α ≥ 1. Assume that sched-
ule S(i) was interrupted. Then, S(i+1) is α-good.

Proof. If schedule S(i) was interrupted, we have p(i+1) = O and
t(i+1) = α · Opt(t(i+1)). Therefore, |S(i+1)| = |S(R(i+1), O)| ≤ Opt(t(i+1)) and
t(i+1) + |S(i+1)| ≤ (1 + α) ·Opt(t(i+1)). ⊓⊔

For this reason, we will assume in many of the following statements that the
schedule S(i) was not interrupted.

By careful observation of the proof in [5], one can see that the following fact
already holds for smaller α. For convenience, we repeat the proof of the following
Lemma with an adapted value of α.

Lemma 1 ([5]). Let α ≥ 1+
√
17

4 ≈ 1.281 and i ∈ {1, . . . , k − 1}. If S(i) is α-

good, then |S(i+1)| ≤ Opt(t(i+1)).

Proof. First, observe that if S(i) was interrupted, we have p(i+1) = O. Note that
Opt(t(i+1)) begins in O and serves all requests in R(i+1) so that we have

|S(i+1)| = |S(R(i+1), O)| ≤ Opt(t(i+1)).

Therefore, assume from now on that S(i) was not interrupted. Also, if Opt[t(i+1)]

serves r
(i)
l,Lazy

at p(i+1) before collecting any request from R(i+1), we trivially have

|S(i+1)| = |S(R(i+1), p(i+1)| ≤ Opt(t(i+1)).
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Therefore, assume additionally that Opt[t(i+1)] collects r
(i+1)
f,Opt

before serving

r
(i)
l,Lazy

. Next, we prove the following assertion.
Claim: In the setting described above, we have

d(a
(i+1)
f,Opt

, p(i+1)) ≤
(

1 +
2

α
− α

)

Opt(t(i)). (2)

To prove the claim, note that r
(i+1)
f,Opt

is released not earlier than α · Opt(t(i)).

Since we assume that Opt(t(i+1)) collects r
(i+1)
f,Opt

before serving r
(i)
l,Lazy

at p(i+1),
we obtain

Opt(t(i+1)) ≥ α · Opt(t(i)) + d(a
(i+1)
f,Opt

, p(i+1)). (3)

Upon the arrival of the last request in R(i), we have Opt(t) = Opt(t(i+1))
and the server can finish its current schedule and return to the origin in time
t(i)+ |S(i)|+d(p(i+1), O). As we assume that S(i) was not interrupted, this yields

t(i) + |S(i)|+ d(p(i+1), O) > α ·Opt(t(i+1)). (4)

Combined, we obtain that

d(a
(i+1)
f,Opt

, p(i+1))
(3)

≤ Opt(t(i+1))− α · Opt(t(i))

(4)
≤ 1

α
·
(

t(i) + |S(i)|+ d(p(i+1), O)
)

− α ·Opt(t(i))

S(i)α-good

≤ 1

α
·
(

(1 + α) · Opt(t(i)) + d(p(i+1), O)
)

− α · Opt(t(i))

≤
(

1 +
2

α
− α

)

Opt(t(i)),

where we have used in the last inequality that d(p(i+1), O) ≤ Opt(t(i)) because

Opt(t(i)) begins in O and has to serve r
(i)
l,Lazy

at p(i+1). This completes the proof
of the claim.

Now, we turn back to proving Lemma 1. We obtain

|S(i+1)| ≤ d(p(i+1), a
(i+1)
f,Opt

) + |S(R(i+1), a
(i+1)
f,Opt

)|
Obs 1c)

≤ d(p(i+1), a
(i+1)
f,Opt

) + Opt(t(i+1))− α ·Opt(t(i))

(2)

≤
(

1 +
2

α
− 2α

)

Opt(t(i)) + Opt(t(i+1))

≤ Opt(t(i+1)),

where the last inequality follows from the fact that 1 + 2
α
− 2α ≤ 0 if and only

if α ≥ 1+
√
17

4 ≈ 1.2808. ⊓⊔

Recall that the goal of this section is to prove that every schedule is α-good.
So far, we have proven the base case (cf. Observation 2) and
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|S(i+1)| ≤ Opt(t(i+1)) (Lemma 1) in the induction step. It remains to show
that t(i+1) + |S(i+1)| ≤ (1 + α) ·Opt(t(i+1)) assuming S(1), . . . , S(i) are α-good.
In Observation 3, we have already seen that this holds if S(i) was interrupted.
To show that the induction step also holds if S(i) was not interrupted, we dis-
tinguish several cases for the order in which Opt serves the requests. We begin
with the case that Opt[t(i+1)] picks up some request in R(i+1) before serving

r
(i)
l,Lazy

, i.e., that Opt[t(i+1)] does not follow the order of the S(i).

Lemma 2. Let α ≥ 1. Assume that S(i) is α-good and was not interrupted, and

that Opt[t(i+1)] picks up r
(i+1)
f,Opt

before serving r
(i)
l,Lazy

. Then, t(i+1) + |S(i+1)| ≤
(1 + α) · Opt(t(i+1)).

Proof. Using the order in which Opt handles the requests, we obtain the fol-

lowing. After picking up r
(i+1)
f,Opt

at a
(i+1)
f,Opt

after time t(i), Opt[t(i+1)] has to serve

r
(i)
l,Lazy

at p(i+1) so that

Opt(t(i+1)) ≥ t(i) + d(p(i+1), a
(i+1)
f,Opt

). (5)

After finishing schedule S(i), the server either waits until time α ·Opt(t(i+1)) or
immediately starts the next schedule, i.e., we have

t(i+1) = max{α ·Opt(t(i+1)), t(i) + |S(i)|}.

If t(i+1) = α · Opt(t(i+1)), the assertion follows immediately from Lemma 1.
Thus, assume t(i+1) = t(i) + |S(i)|. This yields

t(i+1) + |S(i+1)|
Obs 1b)

≤ t(i) + |S(i)|+ d(p(i+1), a
(i+1)
f,Opt

) + |S(R(i+1), a
(i+1)
f,Opt

)|
S(i)α-good

≤ (1 + α) · Opt(t(i)) + d(p(i+1), a
(i+1)
f,Opt

)

+ |S(R(i+1), a
(i+1)
f,Opt

)|
Obs 1a)

≤ 1 + α

α
t(i) + d(p(i+1), a

(i+1)
f,Opt

) + |S(R(i+1), a
(i+1)
f,Opt

)|
Obs 1c)

≤ 1

α
t(i) + d(p(i+1), a

(i+1)
f,Opt

) + Opt(t(i+1))

(5)

≤ 1

α

(

Opt(t(i+1))− d(p(i+1), a
(i+1)
f,Opt

)
)

+ d(p(i+1), a
(i+1)
f,Opt

)

+ Opt(t(i+1))

=

(

1 +
1

α

)

Opt(t(i+1)) +

(

1− 1

α

)

d(p(i+1), a
(i+1)
f,Opt

)

≤ 2 · Opt(t(i+1)),

where we have used in the last inequality that d(p(i+1), a
(i+1)
f,Opt

) ≤ Opt(t(i+1))

as Opt[t(i+1)] has to visit both points. ⊓⊔
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Next, we consider the case where Opt handles r
(i)
l,Lazy

and r
(i+1)
f,Opt

in the same
order as Lazy.

Lemma 3. Let α ≥ 1. Assume that schedules S(1), . . . , S(i) are α-good, S(i)

was not interrupted, and Opt[t(i+1)] serves r
(i)
l,Lazy

before collecting r
(i+1)
f,Opt

. If

we have d(p(i+1), a
(i+1)
f,Opt

) + Opt(t(i)) ≤ α · Opt(t(i+1)), then t(i+1) + |S(i+1)| ≤
(1 + α) · Opt(t(i+1)).

Proof. Similarly as in the proof of Lemma 2, we can assume

t(i+1) = t(i) + |S(i)|. (6)

We have

t(i+1) + |S(i+1)|
Obs 1b)

≤ t(i) + |S(i)|+ d(p(i+1), a
(i+1)
f,Opt

) + |S(R(i+1), a
(i+1)
f,Opt

)|
S(i)α-good

≤ (1 + α) · Opt(t(i)) + d(p(i+1), a
(i+1)
f,Opt

)

+ |S(R(i+1), a
(i+1)
f,Opt

)|
Obs 1c)

≤ (1 + α) · Opt(t(i)) + d(p(i+1), a
(i+1)
f,Opt

)

+ Opt(t(i+1))− α ·Opt(t(i))

= Opt(t(i+1)) + d(p(i+1), a
(i+1)
f,Opt

) + Opt(t(i))

≤ (1 + α) · Opt(t(i+1)),

where the last inequality follows from the assumption that

d(p(i+1), a
(i+1)
f,Opt

) + Opt(t(i)) ≤ α · Opt(t(i+1)). ⊓⊔
Now that we have proven the case described in Lemma 3, we will assume in

the following that

d(p(i+1), a
(i+1)
f,Opt

) > α ·Opt(t(i+1))− Opt(t(i)). (7)

The following lemma states that, in this case, the (i−1)-th schedule (if it exists)
was interrupted, i.e., the i-th schedule starts in the origin at time α ·Opt(t(i)).

Lemma 4. Let α ≥ 1+
√
3

2 ≈ 1.366. Assume that the i-th schedule is α-good and

was not interrupted, and Opt[t(i+1)] serves r
(i)
l,Lazy

before collecting r
(i+1)
f,Opt

. If (7)

holds, then p(i) = O and t(i) = α ·Opt(t(i)).

Proof. If i = 1, we obviously have p(i) = O and t(i) = α ·Opt(t(i)). Thus, assume

that i ≥ 2. If r
(i)
l,Lazy

∈ (R(i−1) ∩R(i)), schedule S(i−1) was interrupted and, thus,

the statement holds. Otherwise, request r
(i)
l,Lazy

is released while schedule S(i−1)

is running, i.e., t
(i)
l,Lazy

≥ t(i−1) ≥ α · Opt(t(i−1)). Combining this with the

assumption that Opt[t(i+1)] serves r
(i)
l,Lazy

before collecting r
(i+1)
f,Opt

, we obtain

Opt(t(i+1)) ≥ t
(i)
l,Lazy

+d(p(i+1), a
(i+1)
f,Opt

) ≥ α·Opt(t(i−1))+d(p(i+1), a
(i+1)
f,Opt

). (8)
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Rearranging yields

α ·Opt(t(i−1))
(8)

≤ Opt(t(i+1))− d(p(i+1), a
(i+1)
f,Opt

)

(7)
< Opt(t(i))− (α− 1)Opt(t(i+1))

Obs 1a)

≤ (1 + α− α2)Opt(t(i)),

which is equivalent to

Opt(t(i−1)) <
(

1 +
1

α
− α

)

Opt(t(i)). (9)

By the assumption that S(i−1) is α-good, the server finishes schedule S(i−1) not

later than time (α + 1) · Opt(t(i−1)). Thus, at the time where request r
(i)
l,Lazy

is released, the server can serve all loaded requests and return to the origin by
time

max{(α+ 1)Opt(t(i−1)), t
(i)
l,Lazy

}+ Opt(t(i−1)).

We have

(α+ 2) · Opt(t(i−1))
(9)
< (α + 2)

(

1 +
1

α
− α

)

Opt(t(i))

=

(

3 +
2

α
− α2 − α

)

Opt(t(i))

≤ α · Opt(t(i)),

where the last inequality holds for α ≥ 1.343. Furthermore, as r
(i)
l,Lazy

∈ R(i), it
holds that

t
(i)
l,Lazy

+ Opt(t(i−1)) ≤ Opt(t(i)) + Opt(t(i−1))

(9)

≤
(

2 +
1

α
− α

)

Opt(t(i)) ≤ α · Opt(t(i)),

where the last inequality holds for α ≥ 1+
√
3

2 ≈ 1.366. This implies that the

server can return to the origin by time α · Opt(t(i)), i.e., we have p(i) = O. ⊓⊔

We now come to the technically most involved case.

Lemma 5. Let α ≥ 1
2 +

√

11/12 ≈ 1.457. Assume that the i-th schedule is

α-good and was not interrupted, and Opt[t(i+1)] serves r
(i)
l,Lazy

before collecting

r
(i+1)
f,Opt

. If (7) holds, then t(i+1) + |S(i+1)| ≤ (1 + α) ·Opt(t(i+1)).

Proof. We begin by proving the following assertion.

Claim: Opt[t(i+1)] serves all requests in R(i) before picking up r
(i+1)
f,Opt

in a
(i+1)
f,Opt

.

To prove the claim, assume otherwise, i.e., that Opt[t(i+1)] serves r
(i)
l,Opt

after
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collecting r
(i+1)
f,Opt

. The request r
(i+1)
f,Opt

is released after schedule S(i) is started,

i.e., after time α ·Opt(t(i)). Thus,

Opt(t(i+1)) ≥ α · Opt(t(i)) + d(a
(i+1)
f,Opt

, b
(i)
l,Opt

)

△-ineq

≥ α · Opt(t(i))+d(a
(i+1)
f,Opt

, p(i+1))−d(b
(i)
l,Opt

, O)−d(O, p(i+1)). (10)

Since S(i) starts in O, ends in p(i+1) and serves r
(i)
l,Opt

, we obtain

d(O, b
(i)
l,Opt

) + d(b
(i)
l,Opt

, O) ≤ |S(i)|+ d(p(i+1), O)
Lem 1
≤ Opt(t(i)) + d(p(i+1), O).

(11)

Furthermore, because Opt[t(i+1)] serves r
(i)
l,Lazy

at p(i+1) before picking up r
(i+1)
f,Opt

at a
(i+1)
f,Opt

, we have

Opt(t(i+1)) ≥ d(O, p(i+1)) + d(p(i+1), a
(i+1)
f,Opt

)

(7)
> d(O, p(i+1)) + α · Opt(t(i+1))− Opt(t(i)). (12)

Combining all of the above yields

Opt(t(i+1))
(10),(11)

≥ α · Opt(t(i)) + d(a
(i+1)
f,Opt

, p(i+1))

− Opt(t(i)) + d(p(i+1), O)

2
− d(O, p(i+1))

(12)
> α · Opt(t(i)) + d(a

(i+1)
f,Opt

, p(i+1))− Opt(t(i))

2

− 3

2

(

Opt(t(i))− (α − 1)Opt(t(i+1))
)

=

(

3

2
α− 3

2

)

Opt(t(i+1))− (2− α)Opt(t(i)) + d(a
(i+1)
f,Opt

, p(i+1))

(7)
>

(

3

2
α− 3

2

)

Opt(t(i+1))− (2− α)Opt(t(i))

+ α · Opt(t(i+1))− Opt(t(i))

=

(

5

2
α− 3

2

)

Opt(t(i+1))− (3− α)Opt(t(i))

Obs 1a)

≥
(

5

2
α− 3

2

)

Opt(t(i+1))−
(

3

α
− 1

)

Opt(t(i+1))

=

(

5

2
α− 1

2
− 3

α

)

Opt(t(i+1))

≥ Opt(t(i+1))

where the last inequality holds if and only if α ≥ 1
10 · (3 +

√
129) ≈ 1.436. As

this is a contradiction, we have that Opt[t(i+1)] serves all requests in R(i) before

picking up r
(i+1)
f,Opt

in a
(i+1)
f,Opt

. This completes the proof of the claim.
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Now that we have established the claim, we turn back to the proof of Lemma 5.

Let T ≥ 0 denote the time it takes Opt[t(i+1)] until it has served r
(i)
l,Opt

, i.e., all

requests from R(i). First, observe that

T ≥ Opt(t(i)). (13)

By the claim, we have

Opt(t(i+1)) ≥ T + d(b
(i)
l,Opt

, a
(i+1)
f,Opt

) + |S(R(i+1), a
(i+1)
f,Opt

)|. (14)

The algorithm Lazy(α) finishes R(i+1) by time

t(i+1)+S(i+1) Lem 4
= α · Opt(t(i)) + |S(i)|+ |S(i+1)|
≤ α · Opt(t(i)) + |S(i)|+ d(p(i+1), a

(i+1)
f,Opt

) + |S(R(i+1), a
(i+1)
f,Opt

)|

≤ α · Opt(t(i)) + |S(i)|+ d(p(i+1), b
(i)
l,Opt

) + d(b
(i)
l,Opt

, a
(i+1)
f,Opt

)

+ |S(R(i+1), a
(i+1)
f,Opt

)|
(14)

≤ α ·Opt(t(i))+|S(i)|+d(p(i+1), b
(i)
l,Opt

)+Opt(t(i+1))−T.

(15)

As S(i) visits b
(i)
l,Opt

before p(i+1) and Opt[t(i+1)] visits p(i+1) before b
(i)
l,Opt

,

|S(i)|+ T ≥
(

d(O, b
(i)
l,Opt

) + d(b
(i)
l,Opt

, p(i+1))
)

+
(

d(O, p(i+1)) + d(p(i+1), b
(i)
l,Opt

)
)

= 2 · d(p(i+1), b
(i)
l,Opt

) + d(O, b
(i)
l,Opt

) + d(O, p(i+1))

≥ 3 · d(p(i+1), b
(i)
l,Opt

). (16)

Combined, we obtain that the algorithm finishes not later than

t(i+1) + |S(i+1)|
(15)

≤ α ·Opt(t(i)) + |S(i)|+ d(p(i+1), b
(i)
l,Opt

) + Opt(t(i+1))− T
(16)

≤ α ·Opt(t(i)) + |S(i)|+ |S(i)|+ T

3
+ Opt(t(i+1))− T

Obs 1a)

≤ 2 ·Opt(t(i+1)) +
4

3
|S(i)| − 2

3
T

Lem 1, (13)

≤ 2 · Opt(t(i+1)) +
2

3
Opt(t(i))

Obs 1a)

≤
(

2 +
2

3α

)

· Opt(t(i+1))

≤ (1 + α) · Opt(t(i+1))

where the last inequality holds if and only if α ≥ 1
2 +

√

11/12. ⊓⊔

The above results enable us to prove Theorem 1.
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Proof (of Theorem 1). Our goal was to prove by induction that every schedule
is α-good for α ≥ 1

2 +
√

11/12. In Observation 2, we have proven the base
case. In the induction step, we have distinguished several cases. First, we have
seen in Observation 3 that the induction step holds if the previous schedule
was interrupted. Next, we have seen in Lemma 1 that the induction hypothesis
implies |S(i+1)| ≤ Opt(t(i+1)). If the previous schedule was not interrupted, we
have first seen in Lemma 2 that the induction step holds if Opt[t(i+1)] loads

r
(i+1)
f,Opt

before serving r
(i)
l,Opt

. If Opt[t(i+1)] serves r
(i)
l,Opt

before loading r
(i+1)
f,Opt

,
the induction step holds by Lemma 3 and Lemma 5. ⊓⊔

5 Analysis on the half-line

In this section, we prove that Lazy is even better if the metric space considered
is the half-line. In particular, we prove Theorem 2. To do this, we begin by
showing that α + 1 is an upper bound on the competitive ratio of Lazy(α) for
α = 1+

√
3

2 ≈ 1.366. Later, we complement this upper bound with a lower bound
construction and show that, for all α ≥ 0, Lazy(α) has a competitive ratio of
at least 3+

√
3

2 ≈ 2.366.
Since, for all α ≥ 1+

√
3

2 ≈ 1.366, Observations 2 and 3, as well as Lemmas 1-4
hold, it remains to show a counterpart to Lemma 5 for α ≥ 1+

√
3

2 on the half-
line. Similarly to the proof of Theorem 1, combining Observations 2 and 3 and
Lemmas 1-4 with Lemma 6 then yields Theorem 2.

Lemma 6. Let 1+
√
3

2 ≤ α ≤ 2, and let M = R≥0.Assume that the i-th schedule

is α-good and was not interrupted, and that Opt[t(i+1)] serves r
(i)
l,Lazy

before

collecting r
(i+1)
f,Opt

. If (7) holds, then t(i+1) + |S(i+1)| ≤ (1 + α) · Opt(t(i+1)).

Proof. First, observe that, in Lemma 5, we have the same assumptions except
that we worked on general metric spaces. Therefore, all the inequalities shown in
Lemma 5 hold in this setting, too, so that we can use them for our proof. Next,
note that on the half-line, we have for any x, y ∈ M

d(x, y) ≤ max{d(x,O), d(y,O)}. (17)

We show that this implies that a similar claim as in Lemma 5 holds.

Claim: Opt[t(i+1)] serves all requests in R(i) before picking up r
(i+1)
f,Opt

in a
(i+1)
f,Opt

.

To prove the claim, assume otherwise, i.e., that Opt[t(i+1)] serves r
(i)
l,Opt

after

collecting r
(i+1)
f,Opt

. The request r
(i+1)
f,Opt

is released after schedule S(i) is started,

i.e., after time α ·Opt(t(i)). Thus,

Opt(t(i+1)) ≥ α · Opt(t(i)) + d(a
(i+1)
f,Opt

, b
(i)
l,Opt

)

≥ α · Opt(t(i)) + d(a
(i+1)
f,Opt

, p(i+1))− d(b
(i)
l,Opt

, p(i+1))

(17)
≥ α ·Opt(t(i)) + d(a

(i+1)
f,Opt

, p(i+1))

−max{d(b(i)l,Opt
, O), d(O, p(i+1))}. (18)
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Combining the above with the results from the proof of Lemma 5 yields

Opt(t(i+1))
(18),(11)

≥ α ·Opt(t(i)) + d(a
(i+1)
f,Opt

, p(i+1))

−max
{Opt(t(i)) + d(p(i+1), O)

2
, d(O, p(i+1))

}

(12)
> α ·Opt(t(i)) + d(a

(i+1)
f,Opt

, p(i+1))

−max
{2Opt(t(i))− (α− 1)Opt(t(i+1))

2
,

Opt(t(i))− (α− 1)Opt(t(i+1))
}

=
α− 1

2
Opt(t(i+1)) + (α− 1)Opt(t(i)) + d(a

(i+1)
f,Opt

, p(i+1))

(7)
>

(α− 1

2
+ α

)

Opt(t(i+1)) + (α− 2)Opt(t(i))

Obs 1a)

≥
(α− 1

2
+ α+

α− 2

α

)

Opt(t(i+1))

≥ Opt(t(i+1))

where the last inequality holds for all α ≥ 4
3 . As this is a contradiction, we have

that Opt[t(i+1)] serves all requests in R(i) before picking up r
(i+1)
f,Opt

in a
(i+1)
f,Opt

.
This completes the proof of the claim.

Now that we have established the claim, we turn back to the proof of Lemma 6.

Let T ≥ 0 denote the time it takes Opt[t(i+1)] until it has served r
(i)
l,Opt

, i.e., all

requests from R(i). First, observe that

T ≥ Opt(t(i)). (19)

If p(i+1) ≥ b
(i)
l,Opt

, as Opt[t(i+1)] visits p(i+1) before b
(i)
l,Opt

, we have

T ≥ d(O, p(i+1)) + d(p(i+1), b
(i)
l,Opt

)
(17)

≥ 2 · d(p(i+1), b
(i)
l,Opt

).

Otherwise, if p(i+1) < b
(i)
l,Opt

, as S(i) visits b
(i)
l,Opt

before p(i+1), we have

T
(19)

≥ Opt(t(i)) ≥ |S(i)| ≥ d(O, b
(i)
l,Opt

) + d(b
(i)
l,Opt

, p(i+1))
(17)

≥ 2 · d(b(i)l,Opt
, p(i+1)).

Thus, in either case, we have

d(b
(i)
l,Opt

, p(i+1)) ≤ T

2
. (20)
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Combined, we obtain that the algorithm finishes not later than

t(i+1) + |S(i+1)|
(15)

≤ α ·Opt(t(i)) + |S(i)|+ d(p(i+1), b
(i)
l,Opt

) + Opt(t(i+1))− T

(20)

≤ α ·Opt(t(i)) + |S(i)|+ T

2
+ Opt(t(i+1))− T

Obs 1a)

≤ 2 ·Opt(t(i+1)) + |S(i)| − T

2
Lem 1, (19)

≤ 2 · Opt(t(i+1)) +
1

2
Opt(t(i))

Obs 1a)

≤
(

2 +
1

2α

)

· Opt(t(i+1))

≤ (1 + α) · Opt(t(i+1))

where the last inequality holds if and only if α ≥ 1+
√
3

2 ≈ 1.366. ⊓⊔

5.1 Lower bound on the half-line

In this section, we prove Theorem 3, i.e., we show that Lazy(α) has a competitive
ratio of at least 3+

√
3

2 ≈ 2.366 for every choice of the parameter α, even when the
metric space is the half line. Our proof builds on some lower bound constructions
given in [5]. We begin by restating needed results.

Lemma 7 ([5]). Lazy(α) has competitive ratio at least 1+α for the open online
dial-a-ride problem on the half-line for all α ≥ 0 and every capacity c ∈ N∪{∞}.

The following bound holds, since [5, Proposition 2] only uses the half line.

Lemma 8 ([5]). For every α ∈ [0, 1), Lazy(α) has a competitive ratio of at
least 1 + 3

α+1 > 2.5 for the open online dial-a-ride problem on the half-line for
every capacity c ∈ N ∪ {∞}.

Combining these two results gives that, for α ∈ [0, 1) ∪ [ 1+
√
3

2 ,∞), the com-
petitive ratio of Lazy(α) is at least 3+

√
3

2 ≈ 2.366.
The next proposition closes the gap between α < 1 and α ≥ 1.366 and

completes the proof of Theorem 3. An overview of the lower bounds for different
domains of α can be found in Figure 2.

Proposition 1. For every α ∈ [1, 1.366), the algorithm Lazy(α) has a com-
petitive ratio of at least 2 + 1

2α for the open online dial-a-ride problem on the
half-line for every capacity c ∈ N ∪ {∞}.

Proof. Let α ∈ [1, 1.366) and let ε > 0 be sufficiently small. We define an instance
(cf. Figure 1) by giving the request sequence

r1 = (0, 1; 0) , r2 = (1, 0; 0), r3 = (1, 2− ε; 0),

and r4 = (4α− 2, 4α− 2; 4α).
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0

position

time

Lazy
Opt

0 0 0 Opt = 4α Lazy

4α− 2

2− ε

1

Fig. 1. Instance of the open online dial-a-ride problem on the half-line where Lazy(α)
has a competitive ratio of at least 2 + 1

2α
for all α ∈ [1, 1.366).

The offline optimum delivers the requests in the order (r1, r2, r3, r4) with no
waiting times. This takes 4α time units.

On the other hand because Opt(0) = 4 − 2ε, Lazy(α) waits in the origin
until time α(4− 2ε) and starts serving requests r1, r2, r3 in the order (r1, r3, r2).
At time 4α, request r4 is released. At this time, serving the loaded request r1
and returning to the origin takes time

α(4 − 2ε) + 2 = 4α+ 2− 2αε
α∈[1,1.366),ε≪1

> 4α2 = α ·Opt(4α).

Thus, Lazy(α) continues its schedule and afterwards serves r4. Overall, this
takes time (at least) α(4− 2ε) + (4− 2ε) + 4α− 2 = 8α+2− (2α+2)ε. Letting
ε → 0, we obtain that the competitive ratio of Lazy(α) is at least

lim
ε→0

8α+ 2− (2α+ 2)ε

4α
= 2 +

1

2α
.

⊓⊔

A Factor-revealing approach for the half-line

We show how to use the factor revealing approach from Section 3 for the dial-a-
ride problem on the half-line. Consider the following variables (recall that k ∈ N

is the number of schedules started by Lazy(α)).

– t1 = t(k−1), the start time of the second to last schedule
– t2 = r(k), the start time of the last schedule
– s1 = |S(k−1)|, the duration of the second to last schedule
– s2 = |S(k)|, the duration of the last schedule
– Opt1 = Opt(t(k−1)), duration of the optimal tour serving requests released

until t(k−1)

– Opt2 = Opt(t(k)), duration of the optimal tour
– p1 = p(k), the position where Lazy(α) ends the second to last schedule
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Fig. 2. Lower bounds on the competitive ratio of Lazy(α) depending on α. The lower
bound of Lemma 7 is depicted in red, the lower bound of Lemma 8 in blue, and the
lower bound of Proposition 1 in green.

– p2 = a
(k)
f,Opt

, the position of the first request in R(k) picked up first by the
optimal tour

– sa2 = |S(R(k), a
(k)
f,Opt

)|, duration of the schedule serving R(k) starting in p2

– d = d(p(k), a
(k)
f,Opt

), the distance between p1 and p2

With these variables

x =
(

t1, t2, s1, s2,Opt1,Opt2, p1, p2, s
a
2 , d

)

,
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we can create the following valid optimization problem.

max t2 + s2

s.t. Opt2 = 1 (21)

d = |p1 − p2| (22)

t2 = max{t1 + s1, αOpt2} (23)

t1 ≥ αOpt1 (24)

Opt1 ≥ p1 (25)

s2 ≤ d+ sa2 (26)

Opt2 ≥ t1 + sa2 (27)

t1 + s1 ≤ (1 + α)Opt1 (28)

Opt2 ≥ p1 + d or Opt2 ≥ t1 + d (29)

d ≥ αOpt2 − Opt1 or s1 − p1 ≤ 2(Opt2 − p2) (30)

x ≥ 0 (31)

Note that in (29) and (30), at least one of the two inequalities has to be satisfied
in each case. In order to obtain an MILP, one can introduce four binary variables
b1, . . . , b4 to model constraints (22), (23), (29), and (30).

With M > 0 being a large enough constant, equality (22) can be replaced by
the inequalities

d ≥ p1 − p2,

d ≥ p2 − p1,

d ≤ p1 − p2 + b1 ·M,

d ≤ p2 − p1 + (1− b1) ·M.

Equality (23) can be replaced by the inequalities

t2 ≥ t1 + s1,

t2 ≥ αOpt2,

t2 ≤ t1 + s1 + b2 ·M,

t2 ≤ αOpt2 + (1− b2) ·M.

Constraint (29) can be replaced by the inequalities

Opt2 ≥ p1 + d− b3 ·M,

Opt2 ≥ t1 + d− (1− b3) ·M,

and, likewise, (30) by the inequalities

d ≥ αOpt2 − Opt1 − b4 ·M,

s1 − p1 ≤ 2(Opt2 − p2) + (1− b4) ·M.
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The resulting MILP has the optimal solution
(

t1, t2, s1, s2,Opt1,Opt2, p1, p2, s
a
2 , d, b1, b2, b3, b4

)

=
(

1,
α+ 1

α
,
1

α
, 2− α,

1

α
, 1, 0, 2− α, 0, 2− α, 0, 1, 1, 1

)

and optimal value max{3+ 1
α
−α, 1+α}. For α = 1+

√
3

2 > 1.366, this expression
is minimized.
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