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Abstract

The strategic selection of resources by selfish
agents is a classic research direction, with Resource
Selection Games and Congestion Games as promi-
nent examples. In these games, agents select avail-
able resources and their utility then depends on
the number of agents using the same resources.
This implies that there is no distinction between the
agents, i.e., they are anonymous.

We depart from this very general setting by propos-
ing Resource Selection Games with heterogeneous
agents that strive for joint resource usage with sim-
ilar agents. So, instead of the number of other
users of a given resource, our model considers
agents with different types and the decisive feature
is the fraction of same-type agents among the users.
More precisely, similarly to Schelling Games, there
is a tolerance threshold 7 € [0,1] which speci-
fies the agents’ desired minimum fraction of same-
type agents on a resource. Agents strive to select
resources where at least a T-fraction of those re-
sources’ users have the same type as themselves.
For 7 = 1, our model generalizes Hedonic Diver-
sity Games with a peak at 1.

For our general model, we consider the existence
and quality of equilibria and the complexity of
maximizing social welfare. Additionally, we con-
sider a bounded rationality model, where agents
can only estimate the utility of a resource, since
they only know the fraction of same-type agents on
a given resource, but not the exact numbers. Thus,
they cannot know the impact a strategy change
would have on a target resource. Interestingly, we
show that this type of bounded rationality yields
favorable game-theoretic properties and specific
equilibria closely approximate equilibria of the full
knowledge setting.

1 Introduction

Selecting resources in a multi-agent setting is a long-
established field of study in Artificial Intelligence, Operations
Research, and Theoretical Computer Science. Resources can

be as diverse as compute servers or printers, facilities like
hospitals, universities, high schools or kindergartens, office
rooms, restaurants or pubs, or driving routes to the workplace.
The main common feature of all such resources typically is
that the utility of the agents selecting them depends on the re-
source selections of all other agents. For almost all resources,
the utility of an agent depends on the number of other agents
that chose to select the same resource as the agent.

However, if the utility only depends on the number of
agents that use a resource, this implies that the agents are
indifferent to whom they are sharing their selected resource
with. While this is a natural assumption in some settings, e.g.,
for jobs on a compute server or for customers of a gas sta-
tion, there are many scenarios where real-world agents have
more complex preferences. One prime example of this is the
phenomenon of residential segregation [Massey and Denton,
1988]. There, the agents are residents of a city that select a
place to live. Typically, real-world residents are not indiffer-
ent to who else lives in their neighborhood, but instead pre-
fer at least a certain fraction of neighbors of the same ethnic
group or socioeconomic status. This behavior is commonly
called homophily and it is seen as the driving force behind the
strongly segregated neighborhoods, i.e., regions where simi-
lar people live, that can be observed in most major cities.

A classic way to model homophilic agents is to assume that
agents have different types and that they strive for having at
least a 7-fraction of same-type agents sharing their selected
resource. In terms of residential segregation, this is captured
by Schelling’s seminal agent-based model [Schelling, 1971].

In this paper, we present and investigate a general model
for strategic resource selection by a set of heterogeneous
agents with homophilic preferences. For this, we incorporate
Schelling’s idea of threshold-based agent preferences into the
classic setting of Resource Selection Games, where a set of
resources is given and agents each can access a subset of
them. Now, instead of selecting a resource with few users,
an agent aims for selecting a resource that is shared at least
with a 7-fraction of users that have the same type as the agent.

We believe that this adds an important new dimension
to classic agent-based resource selection problems. For ex-
ample, our model allows us to investigate strategic school
choice, where families of different ethnic groups that are lo-
cated within a city select nearby schools for their children.
Each family can select a subset of the available schools, typ-



ically schools that are in their neighborhood, but they want
to ensure that their children have a certain fraction of fellow
pupils of their own ethnic group.! Another example, is the
choice of pubs that supporters of different sports teams select
for watching the next match. For enjoying the match with
friends, each supporter aims for patronizing a pub with a least
a certain fraction of like-minded fans.

1.1 Model and Notation

We consider a strategic game, called the Schelling Resource
Selection Game (SRSG), defined by a given bipartite acces-
sibility graph G = (Q U A, E), with Q@ N A = (), where Q
is the set of resources and A is the set of agents that want to
use the resources at the same time. Let |Q| = k, |A| = n,
and |E| = m. Anedge {¢,a} € E, withq € Qanda € A
encodes that agent a has access to resource g, i.e., resource ¢
is accessible for agent a. We use qa as shorthand for {q, a}.
See Figure 1 for an illustration.

Most importantly for our paper, we assume that the society
of agents is heterogeneous, in particular, that we have two?
types of agents that we distinguish by the colors red and blue.
We have A = RU B, where R is the set of 0 < r < n many
red agents and B is the set of b = n — r many blue agents.

We assume that all resources are identical in quality.
Agents strategically select a single accessible resource to use,
i.e., they each choose a single incident edge of G. We con-
sider homophilic agents, i.e., agents that favor a joint re-
source usage with other agents of the same type, if there
are other agents using the same resource at all. In particu-
lar, analogously to Schelling’s model for residential segrega-
tion [Schelling, 19711, we assume a global tolerance thresh-
old 7 € [0, 1] for all the agents, that defines the minimum
fraction of same-type agents that an agent seeks when using
a resource. More formally, let a € A be any agent and let
X(a) C Q denote the set of accessible resources for agent
a, i.e., we have X(a) = {¢ € Q | qa € E}. Similarly, we
defineY(q) = {a € A | qa € E}forall ¢ € Q. Each agenta
selects a resource s(a) € X (a) and we say that s(a) is agent
a’s strategy. The strategy profile s = (s(a1),...,s(ay)),
with a; € A and s(a;) € X(a;), for 1 < i < n, then denotes
the vector of strategies of all agents. For a strategy profile s
and a resource ¢, we denote #(q,s) = |{a € A | s(a) = ¢}|
as the number of agents that jointly use ¢ under s. More-
over, let #r(q,s) = |{a € R | s(a) = ¢}| denote the num-
ber of red agents that use resource g under s. Analogously,
#5(q,s) = #(q,s) — #r(q, s) is the number of blue agents
using resource g under s. Also, let

#R(qas) #B(qas)

pr(¢,;8) = ————- and pp(g,s) = —F—=-
)= .9 9= Fa.9)
denote the fraction of red and blue agents, respectively, that
use resource g under strategy profile s. Note that these frac-
tions are undefined if no agent uses ¢ under s.

!Schools are more segregated than their neighborhoods [Burgess
et al., 2005], i.e., families actively select schools where the own
ethnic group has a high presence [Hailey, 2022].

2For more types of agents, Theorems 1, 4 and 8 to 11 still hold.

The utility of agent a under strategy profile s is defined as

_ {min{pR(S(Q)v S)7 T}a
u(a,s) = .

min{pp(s(a),s), 7},
Thus, agents are striving for using a resource in a group of
same-type agents that represents at least a 7-fraction of all
users of that resource.> Note that u(a,s) is monotonically
increasing in the fraction of same-type agents using the same
resource. Also, if at least a 7-fraction of same-type agents use

resource ¢, then all of these agents have maximum utility.*

if a 1s red, and
if a is blue.

Given a strategy profile s with s(a;) = ¢, we
use the shorthand s = (¢,s_;), where vector s_; =
(s(ar),...,s(a;—1),s(aj+1),-..,s(ay,)) is identical to the

vector s without the i-th entry. Regarding strategy changes,
we will consider two variants: impact-blind improving moves
and impact-aware improving moves. Let s’ = (¢/,s_;) de-
note a strategy profile that is identical to s except for the i-th
entry, i.e., s(a;) = s'(a;) for i # j and s(a;) # s'(a;), with
s'(a;) = ¢'. We say that the strategy change of agent a; from
strategy ¢ to strategy ¢’ that leads from s to s’ is an impact-
aware improving move if u(a;, (¢',s—;)) > u(ai, (¢,8-;)).

The same strategy change is an impact-blind improving
move, if min{pr(¢’,s),7} > u(a;,s) and a; is red, or if
min{pp(¢,s), 7} > u(a;,s) and a; is blue. Since pr(¢,s)
and pp(q’,s) are undefined for #(q’,s) = 0, we say that
switching to an empty resource is also an impact-blind im-
proving move for an agent a;, if u(a;,s) < 7. We call such
an improving move impact-blind, since agent a; only com-
pares her utility with the fraction of same-type agents on re-
source ¢, prior to moving to resource ¢’. This models that
agent a; has limited information about resource ¢’, that is, she
does not know #(q’, s_;) exactly, but only knows the fraction
of agents of her type on ¢’ before the move. Hence, agent a;
cannot estimate the exact fraction of same-type agents using
resource ¢’ after she joins resource ¢, i.e., under strategy pro-
file s’. She only knows that her joining resource ¢’ does not
decrease this fraction of same-type agents.

Based on impact-aware and impact-blind improving
moves, we define two solution concepts for our strategic
game. We say that s is in impact-aware equilibrium (IAE)
if no agent has an impact-aware improving move. Analo-
gously, strategy profile s is in impact-blind equilibrium (IBE)
if no agent has an impact-blind improving move. Slightly
abusing notation, we will use IAE and IBE also for denot-
ing the sets of strategy profiles that are in IAE or IBE, re-
spectively. Since u(a;, (¢',s—;)) > min{pgr(q',s), 7} if a;
is red or u(a;, (¢',s—;)) > min{pp(¢’,s), 7} if a; is blue,
every impact-blind improving move also is an impact-aware
improving move, i.e., every strategy profile in IAE also is in
IBE. However, the converse does not hold.> Moreover, we
will also consider approximate equilibria. A S-approximate
IAE is a strategy profile where no agent has an impact-aware
improving move that yields [ times her current utility.

3Using a resource alone gives a fraction of same-type agents of 1.

“Capping the utility at 7 is a technical assumption that allows
for more elegant proofs. All our results also hold if the utility is
normalized to be 1 if the fraction of same-type agents is at least 7.

3Counterexample: Let two resources be used by exactly one red
and one blue agent each.
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Figure 1: Example instance of our model with three strategy profiles. The instance has two resources ¢q; and g (shown as circles, with their
color fractions shown as pie charts), four red agents, and four blue agents, each shown as squares of the respective color. Moreover, we
assume 7 = % Accessibility is shown via edges, thick black edges show the chosen resource of the respective agent. The fractions below the
squares show the utilities of the agents. (a) shows the social optimum strategy profile with a social welfare of % > 4.1. It is neither an IAE
nor an IBE, since the blue agent highlighted in green can increase her utility from % to g by selecting resource q; instead of g2. (b) shows an
IAE. Since it has social welfare of 4.1 it is not socially optimal. (c) depicts an IBE with social welfare of 4. It is not an IAE, since changing

to the respective other resource is an impact-aware improving move for all the green highlighted agents.

The social welfare of a strategy profile s, denoted by W (s),
is defined as W (s) = Y  u(a;,s), i.e., as the sum of all
the agents’ utilities. For a given graph G, let OPT, called
social optimum, denote a strategy profile that maximizes the
social welfare for G. Using the social welfare, we now define
our measure for the quality of equilibria. For a graph G, let
maxIAE(G) and minIAE(G) be the strategy profiles in IAE
for G with maximum and minimum social welfare, respec-
tively. Analogously, we define maxIBE(G) and minIBE(G)
for IBE. Then the Price of Anarchy with respect to the IAE,

IAE-PoA for short, is defined as maxG{%};T(g))}. The

Price of Stability with respect to the IAE, IAE-PoS for short,

is defined as maXG{%?(g))}. For the IBE, we define the

IBE-PoA and the IBE-PoS analogously.

Regarding the game dynamics, if the agents only perform
impact-aware improving moves, then we call this impact-
aware dynamics.  Analogously, in impact-blind dynam-
ics only impact-blind improving moves occur. If starting
from every strategy profile every sequence of impact-aware
(impact-blind) improving moves is finite, then we say that
the impact-aware (impact-blind) finite improvement property,
short IA-FIP or IB-FIP, holds.

1.2 Related Work

Resource selection as an optimization problem is a classic
topic in combinatorial optimization [Papadimitriou and Stei-
glitz, 1998], with many variants of scheduling, packing, or
covering problems as examples.

Strategic resource selection started with Congestion
Games [Rosenthal, 1973], where a set of resources is given,
and agents select a subset of them. The agents’ cost then
depends solely on the number of users on their chosen set
of resources. In extensions, weighted versions and even
agent-specific cost functions are allowed [Milchtaich, 1996].
Prominent examples are the strategic selection of paths in
a network [Roughgarden and Tardos, 2002; Anshelevich
et al., 2004] or server selection by selfish jobs [Vécking,
2007]. Also, competitive facility location, where the fa-
cilities compete for the clients [Vetta, 2002] or the clients
compete for facilities [Kohlberg, 1983; Peters et al., 2018;
Krogmann et al., 2021; Krogmann et al., 2023] can be seen

as strategic resource selection. Another example is the selec-
tion of group activities [Darmann et al., 2012; Igarashi er al.,
2017]. In all the above models, the utility of an agent depends
on the number of other agents that select the same resources.

In contrast to this, and much closer to our work, are models
with heterogeneous agents. Recently, game-theoretic models
for the creation of networks by homophilic agents have been
studied [Bullinger et al., 2022]. More related to our model
is Schelling’s model for residential segregation [Schelling,
19711, where agents with a type strategically select a loca-
tion in a residential area. These agents behave according to
a threshold-based utility function that yields maximum util-
ity if at least a certain fraction of same-type agents populate
the neighborhood of the selected location. Game-theoretic
variants of Schelling’s model, called Schelling Games, have
recently been studied [Chauhan et al., 2018; Echzell erf al.,
2019] and also variants became popular, where agents strive
to maximize the fraction of same-type neighbors [Agarwal er
al., 2021; Bullinger et al., 2021; Kanellopoulos et al., 2021;
Bild er al., 2022b; Kanellopoulos et al., 2022] or with single-
peaked preferences [Bilo et al., 2022a; Friedrich et al., 2023].
Schelling Games are different from our model since every
resource, i.e., location, can only be chosen by at most one
agent and thus the respective neighborhoods of agents only
partially overlap. Moreover, the size of these neighborhoods
is bounded and given by the graph that models the residential
area, whereas in our model there is no limit on the number of
users of a specific resource.

Closest related to our model are Hedonic Diversity
Games [Bredereck et al., 2019; Boehmer and Elkind, 2020;
Darmann, 2021; Ganian et al., 2022], where agents of dif-
ferent types strategically form coalitions, and their utility
depends on the fraction of same-type agents in their cho-
sen coalition. While preferences over fractions may be ar-
bitrary in these games, our model generalizes the special
case with preferences resembling a 7-threshold function as in
Schelling’s model or with agents having single-peaked util-
ities with a peak at 1, since in our model the access to the
resources can be restricted. Thus, these special cases of He-
donic Diversity Games match our model with a suitable 7 on a
complete bipartite accessibility graph. Also related are Hedo-
nic Expertise Games [Caskurlu et al., 20211, where the utility



of agents increases with more different types in the coalition.

1.3  Our Contribution

We consider strategic resource selection problems with ho-
mophilic agents. In contrast to previous work, the utility of
our agents does not depend on the number of other agents
that use the same resource, but on the fraction of same-type
agents. This opens up a new direction for resource selection
problems, like Congestion Games.

Another main conceptual contribution is the study of
impact-blind equilibria, which can be understood as a natu-
ral bounded-rationality variant of classic Nash equilibria and
hence might be of independent interest. Impact-blindness
models that the exact number of users of a resource might not
be known to the agents, but only the fraction of user types.
For example, for a large-scale multi-agent technical system,
it might be reported that it is currently used by 25% red and
75% blue users. From an agent’s perspective, this is a game
with incomplete information. For risk-averse agents, the best
response is indeed equivalent to being impact-blind. Even
for risk-neutral agents, if the (expected) number of agents is
large, the optimal behavior is impact blind. Mathematically
speaking, as the number of agents grows, the set of Bayesian
equilibria of the game with incomplete information converges
to the set of impact-blind equilibria.

As our main technical contribution, we consider strategic
resource selection with homophilic agents both with impact-
aware and with impact-blind agents. For the latter, we prove
that equilibria always exist and that they can be constructed
efficiently. Moreover, equilibria are guaranteed to exist for
T < % for impact-aware agents. Also, we show that spe-
cific impact-blind equilibria resemble 2-approximate impact-
aware equilibria, which ensures the existence of almost stable
states for any 7 in the impact-aware setting.

Regarding the quality of equilibria, we prove tight constant
bounds on the PoA for both versions and we show that the
PoS is 1 for 7 = 1. On the complexity side, we show that
maximizing social welfare is NP-hard in general, but efficient
computation is possible for restricted instances.

2  Complexity

We begin by studying the computational complexity of find-
ing optimal profiles of Schelling Resource Selection Games.
We show that this is a hard problem in general, but for sparse
instances, i.e., with bounded degrees of the resource nodes or
the agent nodes, we can compute optimal solutions efficiently.

Theorem 1. For any threshold T > 0, it is NP-hard to decide
if every agent can get maximum utility.

Proof. We show this by reducing from (3,4)-SAT, which is
3SAT where each variable appears in at most 4 clauses. This
has been shown to be NP-complete [Tovey, 1984].

Given a (3,4)-SAT instance ¢ with variables X1, ..., X,,
and clauses C1, ..., C,, we construct a Schelling Resource
Selection Game Iy as follows.

For each variable X;, we introduce two variable resources
z; and —x; and v = 2 - [%1 variable agents X1, ..., Xiv
which are colored red and connected to both variable re-
sources x; and —x;. For each clause C;, we have a blue

clause agent y; that is connected to the three variable re-
sources that correspond to the literals of clause Cj.

We first show that if ¢ is satisfiable, there is a monochro-
matic strategy profile that gives all agents maximum utility.
Let X7,..., X} be a satisfying assignment for ¢, we then
assign the variable agents as follows. If X7 is true, the agents
Xj,15---1Xju are assigned to resource -z ;. Otherwise, they
are assigned to resource x;. We assign every clause agent to
a variable resource of a variable that satisfies that clause. As
¢ is satisfying such variables exist and by the choice above
there is no variable agent on that resource. In this strategy
profile, every agent is on a monochromatic resource.

Now, if ¢ is not satisfiable, let s be an arbitrary strategy
profile of I'y,. We show that there exists at least one unsatis-
fied agent. We derive a variable assignment X7, ..., X/ from
s as follows. If at least %v variable agents are on resource x;,
we set X! to false; otherwise, X/ is set to true. Since ¢ is
not satisfiable, there exists a clause C; which is not satisfied
by X'. For the corresponding blue clause agent +;, all three
resources that she can choose from have at least %v many
red variable agents. As each variable appears in at most 4
clauses, there are at most 3 other (blue) clause agents on each

of the variable resources. Hence, the ratio for 7; is at most
4 4

Lo © a4 <T.
Therefore, there is a strategy profile in I'y, that gives every
agent maximum utility if and only if ¢ is satisfiable. O

As a corollary, we obtain hardness for the problem of com-
puting a profile maximizing social welfare since finding an
optimal profile also solves the problem of deciding whether
every agent can achieve utility 7.

Corollary 1. Computing the social optimum is NP-hard.

Theorem 1 even holds if we restrict it to instances where
every agent can choose from a set of at most three resources.
Howeyver, this can not be extended to a maximum of two.

Theorem 2. For T = 1, deciding if every agent can get utility
1 is solvable in polynomial time if each a € A has degree 2.

Proof. We show this by constructing a 2SAT formula ¢
which is true if and only if every agent can get utility 1. Note
that satisfying all agents implies that no two agents with dif-
ferent colors are assigned to the same resource.

For each resource ¢, we introduce a variable x,. We will
interpret x4, = true if ¢ is only used by red agents and z, =
false if ¢ is only used by blue agents.

For each red agent a € R with two choices ¢; and ¢o, i.e.,
(q1,a) € E and (g2, a) € E, we add the clause (24, V x4,)
to . If a red agent has only one available resource ¢, we add
the clause (¢). For each blue agent a € R with two choices
g1 and ¢o, i.e. (q1,a) € E and (¢2,a) € E, we add the clause
(—mzq, V —xg,) to . If a blue agent has only one available
resource ¢, we add the clause (—q).

It is easy to see that ¢ is satisfiable if and only if there is a
monochromatic assignment s of agents to resources: If there
is a satisfying solution to ¢, we assign each red agent to a re-
source with the corresponding variable set to true. Each blue
agent is assigned to a resource with the corresponding vari-
able set to false. By construction of ¢, such resources exist.



For the other direction: from a monochromatic assignment s,
we can derive a satisfying assignment for ¢ by setting each
24 to true if and only if ¢ is used by red agents only.

Finally, we use that 2SAT can be solved efficiently. O

A similar result holds if resource nodes have low degree.

Theorem 3. A social optimum can be computed in polyno-
mial time for T € [0, 1] if the degree of each resource is 2.

Proof. The following procedure yields an optimal strategy
profile: In the first step, we iteratively check for a resource
that is accessible by only a single agent or by agents of the
same color only. We assign those agents to that resource and
remove the resource and those agents from the instance. We
are left with an instance in which every resource is accessi-
ble by exactly one red and one blue agent in its associated
accessibility graph. In the second step, we compute a max-
imum matching in the accessibility graph and assign agents
to resources according to the matching. Each remaining un-
matched agent is assigned to an arbitrary accessible resource.

To prove optimality, we first observe that all agents as-
signed in step one have maximal utility and all resources re-
moved in step one are not accessible by any agent left for
step two. It remains to show that the assignment of step two
is optimal. To that end, let n be the number of agents of
the instance at the beginning of step two and let k& denote the
cardinality of a maximum matching. Hence, our algorithm
computes a profile with n — k resources that each have two
agents of different colors and 2k — n resources with exactly
one agent. Assume this was not optimal, then there needs to
be a solution with fewer than n — k resources that have two
differently colored agents. Hence, the total number of used
resources needs to be larger, as n agents still have to be as-
signed. However, this implies the existence of a matching of
cardinality strictly larger than k& which yields a contradiction.

The algorithm can be implemented in polynomial time us-
ing a standard algorithm, e.g. [Hopcroft and Karp, 1973]. O

3 Equilibrium Existence and Computation

In this section, we show that IBE exist in all instances and for
all 7 > 0, since an ordinal potential function exists. Improv-
ing response dynamics converge in a polynomial number of
steps, but an even more efficient greedy algorithm exists to
construct IBE directly from scratch.

3.1 Impact-Blind Equilibria

Lemma 1. For 7 = 1, an impact-blind improving move in-
creases social welfare.

Proof. Let, w.l.o.g., a red agent make an impact-blind im-
proving move from resource ¢ to ¢/, changing the strategy
profile from s to s’. Let 11 = #g(q,s), b = #5(q,s),
T2 = #r(q';s) and by = #5(q', s).

The total social welfare of the agents on ¢ in s is W, (s) =
rerbf bf

Sk = b+ 2 <T1+b1) and in s’ it is W,(s') =

D b =142 () b =1 =0,

r1+by—1
then a would not improve by switching to ¢’. Thus, the

change of welfare of the agents on ¢ is W,(s') — W (s) =

2 (4 o(M ) —1=2(—Y )1
ri+bi—1) ritby ) T T (ri+b1—1)(r1+b1) ) —
Similarly, the total social welfare of the agents on ¢’ in

. 2152 b2 . o
51qu/(s):T2+2:r2—b2—|—2 7245, ) and in 8" it s

r2+b2
. 2, p2 2
W (s') = CEpRTs = ri—bit1+2 (ﬁ) Thus, the

change of welfare of the agents on g is Wy (s') — Wy (s) =
b3 b3 b3

2 (rirr) —2 (2% ) +1 = 2 (mrmrtmre ) + 1

Therefore, the total difference is W(s') —

b? b2
W(S) = 2 ((r1+b1711)(T1+b1) - (7"2+b2+12)(7“2+b2)) >
2

b2 b . .. .
2 ((T1+1b1)2 _ (T2+2b2)2). Since the move is improving, we

have Tllfﬁbl > rrszbz and therefore W(s') — W(s) > 0. O

Note that Lemma 1 does not hold for impact-aware improv-
ing moves. (See Theorem 11.) With the difference considered
in the proof of Lemma 1, we can also bound the number of
steps needed to reach an IBE.

Lemma 2. For 7 = 1, an IBE is reached after O(n®) impact-
blind improving moves.

Proof. As seen in Lemma 1, an improving move increases so-
. b2 b2
cial welfare by W (s') — W(s) > 2 ( L (T2+2bz)2) =

(r1+b1)2
b3 (ra+b2)*—b3(r1+b1)°
(r14+01)2(r2+b2)? . L
Also by Lemma 1, the numerator is a positive integer, so
W(s') — W(s) > L. Since the social welfare is in [0, n], its
maximum is reached after at most n® steps. O

Since an impact-blind improving move for a threshold 7 <
1 is also an impact-blind improving move for 7 = 1 and since
we can compute an improving response in O(m), we get:

Theorem 4. For any T € [0, 1], the Schelling Resource Selec-
tion Game possesses the IB-FIB and an IBE can be computed
with runtime O(n°m).

Note that the social welfare at 7 = 1 is always an ordi-
nal potential function, independently of the actual value of
7. However, social welfare is not a potential function for the
impact-aware setting.

Observation 1. For 7 = 1 an impact-aware improving move
may decrease social welfare.

Proof. Let a be a red agent using a resource g with
pr(q,s) = % and #(q,s) = 100. Let there be an im-

100

proving move for a to a resource ¢’ with pr(q,s) = 15

and #(q’,s) = 10. Then the change in social welfare is

1824812 | 22492 1924812 12492 81 0
99 i1 100 10~ 550

We provide Algorithm 1 to greedily compute an IBE, i.e.,
we can circumvent finding equilibria via expensive improving
response dynamics. However, we still think that the IB-FIP is
important as the agents can also find an equilibrium indepen-
dently. Intuitively, our algorithm checks which resource can
achieve the highest red fraction, taking into account the blue
agents that have only one resource available. Then it assigns
all possible red agents and the necessary blue agents to that



Algorithm 1: computeEquilibrium(G)

1 while Q not empty do
2 assign all a € B with | X (a)| = 1;
|ROY (q)]
q€Q [BNassigned(q)|’
4 assignalla € RNY(q) to ¢;
5 remove ¢ and its assigned agents from G

3 q < argmax

resource and removes it from the instance. We show, that the
algorithm removes the resources sorted by their fraction of
red agents in the resulting equilibrium.

Lemma 3. If Algorithm 1 producing the IBE s removes re-
source qy before resource qs, then pr(q1,s) > pr(qe, s).

Proof. While running the algorithm, for each resource ¢, the
number of assigned blue agents to ¢ monotonically increases
and the number | RNY (¢)| of red agents assignable to ¢ mono-
tonically decreases. Thus, after the removal of ¢;, no resource
g2 with a higher fraction can be removed. O

Theorem 5. For 7 € [0, 1], Algorithm I computes an IBE in
runtime O(m + klogk).

Proof. For the runtime, we build a data structure in which for
each resource g we store the number of assigned blue agents
and the number of red agents with an edge to ¢, with runtime
O(m + k). Updating this data structure and finding the blue
agents can be done in amortized O(m) steps, as we only have
to do an operation for each edge that is removed from the in-
stance. Additionally, we maintain a Fibonacci heap [Fredman
and Tarjan, 1987] of resources, to select the next resource to
be removed. This needs O(m) decrease-key operations for
each of the updates of the aforementioned data structure. For
extracting the k agents we need a total runtime of O(k log k).

A red agent does not want to change strategies, as she can-
not access the resources removed before her assignment and,
by Lemma 3, all other resources have a worse fraction. For
blue agents, the argument is analogous. O

Note that Algorithm 1 is not correct for IAE.
Observation 2. Algorithm 1 is incorrect for IAE.

Proof. Let Q = {q1,¢2} and 7 = 1. We have one red agent
a, connected to ¢; and 3 red agents connected to g2. We also
have one blue agent b, connected to both ¢; and g2, while
another blue agent is connected to only go. The algorithm
removes ¢ first with only a,. assigned. All other agents are
assigned to go. In this state, however, b, can make an impact-
aware improving move by switching to ¢; changing her utility
from 2 to 1. O

3.2 Impact-Aware Equilibria

For impact awareness, we show the existence of an equilib-
rium for 7 < % by using a potential argument. First, we give
an ordinal potential function that always remains constant or
increases with an improving move. The function is the sum
of majority sizes over all resources.

Lemma 4. With an impact-aware improving move in the
Schelling Resource Selection Game, the potential function
®(s) = >, comax{#r(q,s),#5(q,s)} never decreases,
for all possible values of 7. (However, it is possible that it
does not change.) The number of steps increasing ®(s) in a
sequence of improving moves is limited.

Proof. The potential ® can only have integer values in [0, n],
limiting the number of increasing moves. Let, w.l.o.g, a be
a red agent making an improving move from resource ¢ to ¢’
changing the state from s to s’. We study the possible cases
for the relation between # r and #p at ¢ and ¢’ and consider
the terms of ® for ¢ and ¢’ as all other terms do not change.

Case 1: (#r(q,s) > #a(g,s)): We have (s ) =
max{#r(qs), #5(q,s)} = max{#r(q,s"), #5(qs")} +
1 = q(s’) + 1.  Since the move is improving,

#r(d,s") > #p5(¢,s') holds and therefore Op(s) =
maX{#R(q’ s),#5(q',s)} = max{#r(¢',s"), #5(¢,s)}

—1 = ®4(s") — 1. Thus, the value of ® remains unchanged.

Cos 2 Ghals) = Falurs): We hme fs) =
maX{#R(q,s),#B(q,s)} = maX{#R(q7 #B q,s )} -
®,(s’). Since the move is improving, #R(q s’) >

#p(q¢',s’) and thus @4 (s) = max{#r(¢,s), #B(q', s)} =
max{#r(q,s'), #B(¢,8')} — 1 = &, (s’) — 1. Thus, the
value of ® increases by 1.

Case 3: (#R(qv S) < #B(qv S) and #R(qlv S) < #B(qlv S)):
Blue agents stay in the majority for this move in ¢ and ¢/, so
® remains unchanged.

Case 4: (#r(g,;s) < #g5(g,s) and #r(q's)
#5(q',s)): We have ®,(s) = max{#r(q,s), #5(¢,s)}
max{#r(q,s'), #5(q.8")} = P4(s’) and Dy (s)
ma’x{#R(qla S)7 #B(qla S)} = max{#R(ql7 sl)7 #B(q/ S/
1= (s’) — 1. Thus, the value of ® increases by 1.

v

0=

With Lemma 4, we know that in a sequence of improving
moves, Cases 2 and 4 of the proof occur only finitely often.

Theorem 6. For 7 < %

5, the Schelling Resource Selection
Game has the IA-FIP.®

Proof. Let Z(s) be the descendingly sorted vector of utilities
in s. We show that Z in combination with @ is a lexicographic
potential function for the SRSG.

To prove this, let, w.l.0.g., a red agent ¢ make an improving
move from resource ¢ to ¢’ changing the state from s tos’. We
consider three cases for pg(q’, s) before the move:

Case 1 (pr(¢,s) < 3): The only agents that lose utility
are the red agents that keep using q. (The utility of the blue
agents using ¢’ does not fall below % and therefore does not
change.) Since agent a ends up with a utility greater than
what the losing agents had before, the earliest change in the
vector is an increase.

Case 2 (pr(q’,s) = 3): In this case, the potential given in
Lemma 4 increases (Case 2), hence this case may only occur
a finite number of times in a sequence of improving moves.
Case 3 (pr(¢/,s) > 1): Only blue agents at ¢’ and red agents
at ¢ lose utility. All of them have a utility strictly smaller
than % in s’ before the move. Since a improves from a utility

®We conjecture that this also holds for arbitrary 7.



smaller than % to equal to %, the first change in the vector is
an improvement in the new spot of a.

The number of possible values of an entry in Z is limited,
and thus also the number of possible values for the vector. [

4 Equilibrium Approximation

Next, we show that we can compute an approximate IAE by
using an IBE with specific properties as a proxy.

Theorem 7. A 2—approximate impact-aware equilibrium
can be computed in runtime O(n°m) for any T € [0, 1].

Proof. For the proof, we use 7 = 1, but a 2—approximate
IAE for 7 = 1 is also a 2—approximate IAE for all other
values of 7 as the utility gain of a move monotonically de-
creases with decreasing 7. Let, w.l.o.g., ared agent ¢ make an
impact-aware improving move from resource ¢ to ¢’, chang-
ing the strategy profile from an IBE s to s’. First, we show
that if a improves by a factor of more than 2, then social
welfare increases. Let 1 = #g(q,s), b = #5(q,s),
ro = #r(¢’,s) and by = #p(¢,s). As s is an IBE and

therefore a’s current utility is in the interval of Tz’sz and
ro+1

T th T We have ro = 0 to allow for an improvement fac-
tor of more than 2. The move changes the sum of utilities of
agents using ¢’ by the value

1 ) 1\ 2 .
bo+1  2\bg+1) byt1

For ¢ this change is

71 ry—1 1
(br = +1) <7“1+bl _7“1-1-51—1)_7“14-51
b1 1
(ri+00)(r+b1—1) 711 +b
_(br 7+ 1)by — 2617y r1
T (b)) b —1) i +by

:(bl — 71 +].) .

-1 T1 2b1’l”1 T1
b (riAb)(ri+b 1) ri4bh
>1—4. 1
T1 + bl
In the last step, we use - +bb11_1 < 1. Therefore the total
. . . 2 . .

change in social welfare is at least bl 4 - T'l’,“‘l}bl , which is
greater than 0, by the assumption that 2 (H’“lel) < ﬁ.

For finding an IBE with no possible strategy change that
increases social welfare, we use the algorithm in Lemma 2.
However, we execute all strategy changes that improve social
welfare and not just impact-blind improving moves. O

S Equilibrium Quality

In this section, we compute the exact Price of Anarchy for all
values of 7 which holds for both impact-aware and impact-
blind agents. Additionally, we give an upper bound on the
impact-blind Price of Stability and show that for 7 < % the
social optimum is not necessarily an IBE.

5.1 Price of Anarchy

For giving an upper bound on the Price of Anarchy, we first
prove lower bounds for the sum of utilities of the agents using
a resource. After that, we use the fact that a social welfare
optimum assigns at most utility 7 to every agent for deriv-
ing our upper bound. Finally, we give a class of instances
in which we match this upper bound on the PoA asymptoti-
cally. This gives us an exact PoA for both impact-blind and
impact-aware agents.

Lemma 5. Consider a resource q in a arbitrary state s, with,

w.lo.g., #r(q,s) > #5(q,s). If pr(q,s) > 7, then the sum
VR . . 2

of utilities of the agents using q is at least #(q, s) (T — %)

Proof. Let pp(q,s) = 7 — ¢, with € > 0. The sum of utilities
of agents using ¢ is S(e) = #(¢,s)((1 — (1 — €))7 + (7 —
€)?) = #(q,s)( — Te + €2). To find the minimum of this
expression, we set 2 S(e) = 0 and get 0 = #(q,s)(—7 +

2¢) — € = 5. Thus, the minimum for the sum of utilities

S(e)is S(3) = #(0,9) (71— ). O

Lemma 6. Consider a resource q in a arbitrary state s with,
w.lo.g., #r(q,s) > #5(q,8). If pr(q,s) < 7, then the sum
of utilities of the agents using q is at least w.

Proof. Form pairs between blue and red agents using ¢g. Each
pair has a combined utility of 1. All unpaired red agents have
a utility of at least % Thus, the average utility of an agent

using g is at least 3. O

Theorem 8. The IAE-PoA and IBE-PoA for 7 < 2 — \/2 are
at most ﬁ and for T > 2 — /2 they are at most 27.

Proof. Consider a resource ¢ in a arbitrary state s with,
w.lo.g., #Rr(q,s) > #5(q,s) and consider the sum of utili-
ties S of the agents using ¢ in two different cases.

Case 1 (pr(q,s) > 7): By Lemma 5, we have S >

#(q,s) (T - %)

Case 2 (pr(q,s) < 7): By Lemma 6, we have S
Now, we check which case dominates for which 7:

#(g,8)
> =

1 2

537*% = 2-V2<7 <2+ V2
Thus, for 7 > 2 — /2, the state s with the lowest social
welfare has at least W (s) > %. Similarly, for 7 < 2 — /2,

the lowest social welfare is at least W (s) > n (T — %42)

The highest social welfare any state can have is 7n, so we get
bounds of ﬁ and 27 for the PoA, respectively. O

We match these upper bounds asymptotically, by creating
instances in which only a constant number of agents do not
use resources with the worst-case distributions given in Lem-
mas 5 and 6.

Theorem 9. The IAE-PoA and IBE-PoA for 7 < 2 — \/2 are
ﬁ and for T > 2 — \/2 they are 2.
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(a) Social optimum. (b) Socially bad IAE.

Figure 2: Example instance from the proof of Theorem 9 showing
that the PoA bound in Theorem 8 is tight.

Proof. For 7 > 2 — /2, we create the instance G, with Q =
{q1,92, g3} with a parameter « such that « € N. We have

a set R, of @ red agents with edges to g; and g3 and
a set B, of %~ blue agents with edges to ¢; and ¢o. (Since
we let « — oo later, we can use the nearest integer values
for R, and B, with an error that goes to 0.) Furthermore,
we have a set of red agents R, and blue agents B,, both with
[%W agents and edges to g2 and g3. Assigning all red agents
to g3 and assigning all blue agents to g5 gives all agents the
maximum utility of 7, achieving the same best-case optimum
we used in Theorem 8. See Figure 2a.

Assigning R, and B, to q;, while assigning R, and B,
to g2 and g3 respectively yields an IAE (see Figure 2b), as
the agents using ¢; can only switch to a resource used by
only the respective other color. In particular, a blue agent
a € B, with utility 7 cannot improve by moving to g3 with
utility ﬁ < 5 (and similar for agents in [2,). Since the

agents on ¢; have the worst-case distribution of Lemma 5, we
asymptotically achieve the PoA bound with o — oc.

For 7 < 2 — /2, we use the same construction, but with
|R.| = |Bz| = §, which achieves the worst-case distribution
of Lemma 6. O

5.2 Price of Stability

As seen in Lemma 1, the IBE-PoS is 1 for 7 = 1. We now
generalize this for arbitrary 7.

Theorem 10. The IBE-PoS for arbitrary T > 0 is at most %

Proof. For athreshold 7, let s, be the social welfare optimum
and denote by W..(s) the social welfare of a state s. Observe
that by Lemma 1 s; is an impact-blind equilibrium for arbi-
trary 7. Since the utility of an agent decreases at most by fac-
tor ¢, when changing the threshold from 7 = 1 to 7 = ¢, we
have Wi(s1) > tWi(s1). Also Wi(s1) > Wi(s:) > Wi(se),

and, therefore, we have Wt(5:) < 1. O
Wy (Sl) t

Note that for 7 < % this result is dominated by the
bound on the IBE-PoA. Combining these two bounds, we get
a bound of v/2 on the IBE-PoS for any 7 > 0.

Theorem 11. The IBE-PoS for 0 < 7 < % is larger than 1.

Proof. Let % < 7 with z,y € Nand z > 6. Consider an
instance with two resources ¢; and ¢». Resource ¢; is used
by 2 — 1 blue agents and (y — ) + 1 red agents, g5 is used by
one blue agent. All agents have only one accessible resource

{
{

1 y—=z)+1 1 1

-2 1 (y—=x)+1
(b) The unigue IBE.

T —2

8

(a) Social optimum.

Figure 3: Example instance from the proof of Theorem 11 showing
that the PoS is larger than 1.

except agent a. Agent a is one of the blue agents on ¢; and
also has an edge to g». See Figure 3.

Note that in this game there are only two strategy profiles.
Let the profile with a on g; be O PT and the one with a on ¢
is the unique IBE. For the latter, observe that agent a increases
her utility by % when switching to q».

To quantify the loss in social welfare, observe that the red
agents are in the majority on g; before and after the move,
hence, their utility does not change. For each of the remaining
x — 2 blue agents on ¢; the utility decreases by ‘Z(_yﬁ—% ifa
switches to g2. Thus the total decrease of the utility of agents
on qp 18

(z—2)(y—a+1) ay—2y+3z—a>-2
yly—1) yly —1)

Subtracting the social welfare increase by the blue moving
agent a gives a total decrease in social welfare of

;vy—2y—|—3x—x2—2_ y—1 S T
y(y—1) yy—1) " yly—1)

where the first inequality follows from = > 6 and % < %,

>0,

hence, zy > 3y + x2.
Therefore O PT is indeed the optimal solution but not an
IBE and the theorem follows. O

6 Conclusion and Outlook

In this paper, we introduce Schelling Resource Selection
Games in which agents strategically select resources to op-
timize the fraction of same-type agents on their respective se-
lected resources. We investigate agents that fully know the
impact of their own actions and also agents that are blind
to their exact impact. For the second case, which is ar-
guably more realistic for settings with limited information,
we present an efficient algorithm for computing equilibria.
Moreover, we show that specific impact-blind equilibria ap-
proximate impact-aware equilibria well. Also, we show that
the PoA is at most 2, showing that the game is well-behaved.
We believe that impact-blind equilibria are a natural object to
study also in other settings, like Schelling Games, Hedonic
Games, and other types of Resource Selection Games.

Given our algorithmic advances on the problem, it may
now be interesting to investigate real-world examples of the
problem. Especially in the case of school choice, there may
be data available on which our model could be used to draw



additional conclusions. With further research, it may be pos-
sible to identify measures that help to desegregate schools,
which is a pressing current problem. Note that careful con-
sideration must be applied to our measure of social welfare.
Even though it accurately depicts the agents’ preferences, the
social optimum yields maximally segregated usage of the re-
sources, which might be undesirable for some applications,
e.g., in schools. For these cases, diversity is a more suitable
measure of social welfare.

References

[Agarwal er al., 2021] Aishwarya Agarwal, Edith Elkind,
Jiarui Gan, Ayumi Igarashi, Warut Suksompong, and
Alexandros A. Voudouris. Schelling games on graphs. Ar-
tif. Intell., 301:103576, 2021.

[Anshelevich et al., 2004], Elliot Anshelevich, Anirban Das-
gupta, Jon Kleinberg, Eva. Tardos, Tom Wexler, and Tim
Roughgarden. The Price of Stability for Network Design
with Fair Cost Allocation. In FOCS, pages 295-304, 2004.

[Bild et al., 2022a] Davide Bilo, Vittorio Bild, Pascal
Lenzner, and Louise Molitor. Tolerance is necessary for
stability: Single-peaked swap schelling games. In IJCAI,
pages 81-87, 2022.

[Bilo et al., 2022b] Davide Bild, Vittorio Bild, Pascal
Lenzner, and Louise Molitor. Topological influence and
locality in swap schelling games. AAMAS, 36(2):47, 2022.

[Boehmer and Elkind, 2020] Niclas Boehmer and Edith
Elkind. Individual-based stability in hedonic diversity
games. In AAAI pages 1822-1829, 2020.

[Bredereck et al., 2019] Robert Bredereck, Edith Elkind,
and Ayumi Igarashi. Hedonic diversity games. In AAMAS,
pages 565-573, 2019.

[Bullinger et al., 20211 Martin Bullinger, Warut Suksom-
pong, and Alexandros A. Voudouris. Welfare guarantees
in schelling segregation. J. Artif. Intell. Res., 71:143-174,
2021.

[Bullinger et al., 2022] Martin Bullinger, Pascal Lenzner,
and Anna Melnichenko. Network creation with ho-
mophilic agents. In IJCAI pages 151-157, 2022.

[Burgess et al., 2005] Simon Burgess, Deborah Wilson, and
Ruth Lupton. Parallel lives? Ethnic segregation in schools
and neighbourhoods. Urban studies, 42(7):1027-1056,
2005.

[Caskurlu et al., 2021] Bugra Caskurlu, Fatih Erdem
Kizilkaya, and Berkehan Ozen. Hedonic expertise games.
In SAGT, pages 314-328, 2021.

[Chauhan et al., 2018] Ankit Chauhan, Pascal Lenzner, and
Louise Molitor.  Schelling segregation with strategic
agents. In SAGT, pages 137-149, 2018.

[Darmann et al., 2012] Andreas Darmann, Edith Elkind,
Sascha Kurz, Jérdme Lang, Joachim Schauer, and Gerhard
Woeginger. Group activity selection problem. In WINE,
pages 156-169, 2012.

[Darmann, 2021] Andreas Darmann.  Hedonic diversity
games revisited. In ADT, pages 357-372, 2021.

[Echzell et al., 2019] Hagen Echzell, Tobias Friedrich, Pas-
cal Lenzner, Louise Molitor, Marcus Pappik, Friedrich
Schone, Fabian Sommer, and David Stangl. Convergence
and hardness of strategic schelling segregation. In WINE,
pages 156-170, 2019.

[Fredman and Tarjan, 1987] Michael L. Fredman and
Robert Endre Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. J. ACM,
34(3):596-615, 1987.

[Friedrich et al., 2023] Tobias Friedrich, Pascal Lenzner,
Louise Molitor, and Lars Seifert. Single-peaked jump
schelling games. CoRR, abs/2302.12107, 2023.

[Ganian et al., 2022] Robert Ganian, Thekla Hamm, Dusan
Knop, Simon Schierreich, and Ondrej Suchy. Hedonic di-
versity games: A complexity picture with more than two
colors. In AAAI pages 5034-5042, 2022.

[Hailey, 2022] Chantal A. Hailey. Racial preferences for
schools: Evidence from an experiment with white, black,
latinx, and asian parents and students. Sociology of Edu-
cation, 95(2):110-132, 2022.

[Hopcroft and Karp, 1973] John E. Hopcroft and Richard M.
Karp. An n°/? algorithm for maximum matchings in bi-
partite graphs. SIAM Journal on Computing, 2(4):225—
231, 1973.

[Igarashi er al., 2017] Ayumi Igarashi, Dominik Peters, and
Edith Elkind. Group activity selection on social networks.
In AAAL 2017.

[Kanellopoulos et al., 2021] Panagiotis Kanellopoulos,
Maria Kyropoulou, and Alexandros A. Voudouris. Mod-
ified schelling games. Theor. Comput. Sci., 880:1-19,
2021.

[Kanellopoulos er al., 2022] Panagiotis Kanellopoulos,
Maria Kyropoulou, and Alexandros A. Voudouris. Not
all strangers are the same: The impact of tolerance in
schelling games. In MFCS, pages 60:1-60:14, 2022.

[Kohlberg, 1983] Elon Kohlberg. Equilibrium Store Loca-
tions When Consumers Minimize Travel Time Plus Wait-
ing Time. Economics Letters, 11(3):211-216, 1983.

[Krogmann et al., 2021] Simon Krogmann, Pascal Lenzner,
Louise Molitor, and Alexander Skopalik. Two-stage facil-
ity location games with strategic clients and facilities. In
1JCAI, pages 292-298, 2021.

[Krogmann et al., 2023] Simon Krogmann, Pascal Lenzner,
and Alexander Skopalik. Strategic facility location with
clients that minimize total waiting time. In AAAI, 2023.

[Massey and Denton, 1988] Douglas S Massey and Nancy A
Denton. The dimensions of residential segregation. Social
forces, 67(2):281-315, 1988.

[Milchtaich, 1996] Igal Milchtaich. Congestion games with
player-specific payoff functions. Games and economic be-
havior, 13(1):111-124, 1996.

[Papadimitriou and Steiglitz, 1998] Christos H. Papadim-

itriou and Kenneth Steiglitz. Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.



[Peters et al., 2018] Hans Peters, Marc Schroder, and Dries
Vermeulen. Hotelling’s location model with negative net-
work externalities. Int. J. Game Theory, 47:811-837,
2018.

[Rosenthal, 1973] Robert W. Rosenthal. A class of games
possessing pure-strategy nash equilibria. Int. J. Game The-
ory, 2(1):65-67, 12 1973.

[Roughgarden and Tardos, 2002] Tim Roughgarden and Eva
Tardos. How bad is selfish routing? J. ACM, 49(2):236—
259, 2002.

[Schelling, 1971] Thomas C. Schelling. Dynamic models
of segregation. The Journal of Mathematical Sociology,
1(2):143-186, 1971.

[Tovey, 1984] Craig A. Tovey. A simplified np-complete
satisfiability problem. Discrete Applied Mathematics,
8(1):85-89, 1984.

[Vetta, 2002] Adrian Vetta. Nash Equilibria in Competitive
Societies, with Applications to Facility Location, Traffic
Routing and Auctions. FOCS, pages 416425, 2002.

[Vocking, 2007] Berthold Vocking. Selfish load balancing.
Algorithmic game theory, 20:517-542, 2007.



	1 Introduction
	1.1 Model and Notation
	1.2 Related Work
	1.3 Our Contribution

	2 Complexity
	3 Equilibrium Existence and Computation
	3.1 Impact-Blind Equilibria
	3.2 Impact-Aware Equilibria

	4 Equilibrium Approximation
	5 Equilibrium Quality
	5.1 Price of Anarchy
	5.2 Price of Stability

	6 Conclusion and Outlook

