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Abstract

We provide a perfect sampling algorithm for the hard-sphere model on subsets of R¢
with expected running time linear in the volume under the assumption of strong spatial
mixing. A large number of perfect and approximate sampling algorithms have been
devised to sample from the hard-sphere model, and our perfect sampling algorithm
is efficient for a range of parameters for which only efficient approximate samplers
were previously known and is faster than these known approximate approaches. Our
methods also extend to the more general setting of Gibbs point processes interacting
via finite-range, repulsive potentials.

1 Introduction

Gibbs point processes, or classical gases, are mathematical models of interacting particles. In
statistical physics they are used to model gases, fluids, and crystals, while in other fields they
are used to model spatial phenomena such as the growth of trees in a forest, the distribution
of stars in the universe, or the location of cities on a map (see e.g. |71} [62] [76], 12]).

Perhaps the longest and most intensively studied Gibbs point process is the hard-sphere
model: a model of a gas in which the only interaction between particles is a hard-core
exclusion in a given radius around each particle. That is, it is a model of a random packing
of equal-sized spheres. Despite the simplicity of its definition, the hard-sphere model is
expected to exhibit the qualitative behavior of a real gas [2], and in particular exhibit
gas, liquid, and solid phases, thus giving evidence for the hypothesis, dating back to at
least Boltzmann, that the macroscopic properties of a gas or fluid are determined by its
microscopic interactions. This rich behavior exhibited by the hard-sphere model is very
difficult to analyze rigorously, and the most fundamental questions about phase transition
in this model are open mathematical problems [71], [52].
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In studying the hard-sphere model (or Gibbs point processes more generally), a funda-
mental task is to sample from the model. Sampling is used to estimate statistics, observe
evidence of phase transitions, and perform statistical tests on data. A wide variety of meth-
ods have been proposed to sample from these distributions; for instance, the Markov chain
Monte Carlo (MCMC) method was first proposed by Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller [55] to sample from the two-dimensional hard-sphere model. Understand-
ing sampling methods for point processes in theory and in practice is a major area of
study [611 [62] 16, 39 49], and advances in sampling techniques have led to advances in the
understanding of the physics of these models [55] 2, 52, [6] 5] [16].

In this paper we will be concerned with provably efficient sampling from the hard-sphere
model. Rigorous guarantees for sampling algorithms come in several different varieties. One
question is what notion of ‘efficient’ to use; another is what guarantee we insist on for the
output. In this paper we will provide an efficient sampling algorithm under the strictest
possible terms with respect to both running time and accuracy of the output: a linear-time,
perfect sampling algorithm.

For simplicity we focus on sampling from the hard-sphere model defined on finite boxes
in R?. For fixed parameter values of the model, the typical number of points appearing in
such a region is linear in the volume, and so any sampling algorithm will require at least
this much time.

As for guarantees on the output, there are two main types of guarantees. The first type
is an approximate sampler: the output of such an algorithm must be distributed within e
total variation distance of the desired target distribution. Perhaps the main approach to
efficient sampling from distributions normalized by intractable normalizing constants is the
MCMC method. In this approach, one devises a Markov chain with the target distribution
as the stationary distribution and runs a given number steps of the chain from a chosen
starting configuration; if the number of steps is at least the e-mixing time, then the final
state has distribution within e total variation distance of the target [42] 68, [13]. In general,
however, computing or bounding the mixing time can be a very challenging problem.

The second type of guarantee is that of a perfect sampler [66]. Such an algorithm has
a running time that is random, but the distribution of the output is guaranteed to be
exactly that of the target distribution. The main advantage of perfect sampling algorithms
— and the primary reason they are studied and used in practice — is that one need not
prove a theorem or understand the mixing time of a Markov chain to run the algorithm
and get an accurate sample; one can simply run the algorithm and know that the output
has the correct distribution. The drawback is that the running time may be very large,
depending on the specific algorithm and on the parameter regime. Some naive sampling
methods such as rejection sampling return perfect samples but are inefficient on large
instances (exponential expected running time in the volume). The breakthrough of Propp
and Wilson in introducing ‘coupling from the past’ [66], 67| was to devise a procedure for
using a Markov chain transition matrix to design perfect sampling algorithms which, under
some conditions, could run in time polylogarithmic in the size of a discrete state space
(polynomial-time in the size of the graph of a spin system), matching the efficiency of fast



mixing Markov chains which only return approximate samples (see also [4, [51] for precedents
in perfect sampling). The work of Propp and Wilson led to numerous constructions of
perfect sampling algorithms for problems with both discrete and continuous state spaces
including [17, 27, 45 63| 28|, 21], 146l [61, 23]. Notably, many of the first applications of
Propp and Wilson’s technique were in designing perfect sampling algorithms for Gibbs point
processes (though often without rigorous guarantees on the efficiency of the algorithms).

Perfect sampling continues to be a very active area of research today, with a special focus
on improving the range of parameters for which perfect sampling algorithms can (provably)
run in expected linear or polynomial time [8], 40, [30]

In this paper we design a perfect sampling algorithm for the hard-sphere model (and
Gibbs point processes interacting with a finite-range, repulsive pair potential more generally)
that is guaranteed to run in linear expected time for activity parameters up to the best
known bound for efficient approximate sampling via MCMC.

What is this bound and how do we design the algorithm? One central theme in the
analysis of discrete spin systems is the relationship between spatial mixing (correlation decay
properties) and temporal mixing (mixing times of Markov chains) [35] 11 [75, 54 [15]. At
a high level, these works show that for discrete lattice systems a strong correlation decay
property (strong spatial mizing) implies a near-optimal convergence rate for local-update
Markov chains like the Glauber dynamics. Recently it has been showed that strong spatial
mixing in a discrete lattice model also implies the existence of efficient perfect sampling
algorithms [I8, 3]. In parallel, there has been work establishing the connection between
strong spatial mixing and optimal temporal mixing for Markov chains in the setting of the
hard-sphere model and Gibbs point processes [33, 57, 58]. At a high level, our aim is to
combine these threads to show that strong spatial mixing for Gibbs point processes implies
the existence of an efficient perfect sampler. One challenge is that the approaches of [18] 3]
are inherently discrete in that key steps of the algorithms involve enumerating over all
possible configurations in a subregion, something that is not possible in the continuum. To
overcome this we make essential use of Bernoulli factories — a method for perfect simulation
of a coin flip with a bias f(p) given access to coin flips of bias p. Bernoulli factories have
recently been used in perfect sampling algorithms for solutions to constraint satisfaction
problems in [311 [32].

1.1 The hard-sphere model, strong spatial mixing, and perfect sampling

The hard-sphere model is defined on a bounded, measurable subset A of R? with an activity
parameter A > 0 that governs the density of the model and a parameter r > 0 that governs
the range of interaction (though by re-scaling there is really only one meaningful parameter,
and we could take r = 1 without loss of generality). In words, the hard-sphere model is the
distribution of finite point sets in A obtained by taking a Poisson point process of activity A
on A and conditioning on the event that all pairs of points are at distance at least r from
each other; in other words, on the event that spheres of radius r/2 centered at the given
points form a sphere packing.



We can equivalently define the model more explicitly, and in doing so, introduce objects
and notation we work with throughout the paper. To begin, let A/, be the set of all finite
point sets in A and write Ry C 2V for the o-field generated by the maps {N — INg,n —
InN B| | B C A Borel-measurable}. The hard-sphere model (or in fact any Gibbs point
process) is a probability measure uy on the space (N, Ry ).

Define for every z1, . ..,z € R” the indicator that the points are centers of non-overlapping
spheres of radius r/2; that is,

D(.’Bl, ce 7$k) = H ]ldist(:ci,:cj)ZT .
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Then define the partition function
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For an event A € Ry, the hard-sphere model assigns the probability
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A very useful generalization of this model is to allow for a non-constant (but measurable)
activity function A : A — [0,00). Here the model is a Poisson process with inhomogenous
activity A conditioned on the points forming the centers of a sphere packing; the partition
function is now

1 k
Zx(A) = Z o /Ak H/\($i)D($1, cooyxp)dey .. dag
i=1

k>0

and the measure py is defined analogously to . This generalization allows modeling of
non-homogenous spaces and generalizes the concept of imposing boundary conditions on the
model. To see this, suppose we fix a particle configuration n € N as boundary conditions.
Additional points are forbidden within the balls of radius r around each point = € n; we
can implement the distribution of additional points by considering the measure u) with
A(y) = 0 if dist(y, z) < r for some = € n; and A(y) = A otherwise. We denote the resulting
activity function by X by A,. Further, we can use this generalization to restrict a point
process to only place points in a subregion A’ C A by considering the measure pyq L+ With
activity function Al s : & — Alzepr. Of course the generalization to measurable activity
functions is much more general than this, and activity functions A need not be realizable by
boundary conditions or restriction to a subregion, nor take only two values.

This generalization to activity functions is crucial for defining strong spatial mizing, the
condition under which we can guarantee the efficiency of our perfect sampling algorithm.



To define the concept of strong spatial mixing we consider projections of the measure py
to subregions A’ C A. We write uy[A’] for the probability measure on (Ny/,Ry/) induced
by uy (we make this definition formal in Section . We can impose two distinct boundary
conditions on A’ by choosing two different activity functions X, X’. Strong spatial mixing
asserts that the distributions py[A'], uy [A'] are close in total variation when A, X" differ only
on points far from A’; i.e., when dist(A’, supp(A — X)) is large (as supp(A — X') is the set of
points at which the two activity functions disagree).

Writing |A’| for the volume of A’ strong spatial mixing with exponential decay is defined
as follows.

Definition 1.1. Given a,b € Rsq, the hard-sphere model on RY exhibits (a,b)-strong
spatial mizing up to A € Rwg if for all bounded measurable A C R? the following holds:
For all measurable ' C A and all activity functions A\, X" < X it holds that

dry (ux[A'], s [A']) < a| A0 dist(suppA=20)
where dpy (-, -) denotes total variation distance.

This definition of strong spatial mixing comes from [58|, which in turn adapted similar
notions from discrete spin systems [I5], [77]. Strong spatial mixing has proved to be an
essential definition in the analysis, both probabilistic and algorithmic, of spin systems on
graphs, and many recent works are focused on either proving strong spatial mixing for a
particular model, range of parameters, and class of graphs (e.g. |77, 22, 63| [72], 69, [9]) or
deriving consequences of strong spatial mixing (e.g. |73}, 19} 50} 18 [3]).

Our main result is a linear expected-time perfect sampling algorithm for the hard-sphere
model under the assumption of strong spatial mixing.

Theorem 1.2. There is a perfect sampling algorithm for the hard-sphere model on finite boxes
A C R? with the property that if the hard-sphere model exhibits (a,b)-strong spatial mizing
up to A, then the expected running time of the algorithm at activity X is O(|A]), where the
implied constant is a function of a,b, and .

In particular, one can run the algorithm for any value of A\ (without knowing whether
or not strong spatial mixing holds) and the algorithm will terminate in finite time with
an output distributed exactly as wp); under the assumption of strong spatial mixing the
expected running time is guaranteed to be linear in the volume.

Using bounds from [58] on strong spatial mixing in the hard-sphere model, we obtain the
following explicit bounds on the activities for which the algorithm is efficient.

Corollary 1.3. The above perfect sampling algorithms runs in expected time O(|A|) when

A< ﬁir)’ where vg(r) is the volume of the ball of radius r in RY.

In comparison, near-linear time MCMC-based approximate samplers were given in [58] for
the same range of parameters (following results for more restricted ranges in [43] 33]). For
perfect sampling from the hard-sphere model, linear expected time algorithms were given
in [36, 25] for more restrictive ranges of parameters.



1.2 Gibbs point processes with finite-range repulsive potentials

We now give a closely related result in the more general setting of Gibbs point processes
interacting via finite-range, repulsive pair potentials.

Gibbs point processes are defined via a density against an underlying Poisson point process.
In general, this density is the exponential of (the negative of) an energy function on point
sets that captures the interactions between points. In many of the most studied cases, this
energy function takes a special form: it is the sum of potentials over pairs of points in a
configuration.

A pair potential is a measurable symmetric function ¢ : R x R? — R U {co}. For a
bounded, measurable activity function XA on A the Gibbs point process with pair potential ¢
on A is defined via the partition function

1
ZA(A) = Z k'/Ak H ;) | e HErmk) gy o day,
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where
H(xl,...,xk) = Z ¢($z,x])
{igye(y)

Again the corresponding probability measure py is obtained as in . A pair potential
¢ is repulsive if ¢(x,y) > 0 for all z,y. It is of finite-range if there exists r > 0 so that
¢(x,y) = 0 whenever dist(z,y) > r. As with the hard-sphere model, we can use the
activity function to encode the influence of boundary conditions by defining the activity
function X\, : y — Ae” 2aen®@Y) for any activity A\ € [0,00) and particle configuration
n € Na. Moreover, strong spatial mixing for a Gibbs point process is defined exactly as in
Definition [[.1}

The hard-sphere model is one example of a model interacting via a finite-range, repulsive
pair potential; it is obtained by letting ¢(z,y) take the value +oo if dist(z,y) < r and 0
otherwise. The Strauss process [74] [44] is another such example.

Our next result is a near-linear expected time perfect sampling algorithm for Gibbs point
processes interacting via finite-range, repulsive potentials under the assumption of strong
spatial mixing.

Theorem 1.4. Suppose ¢ is a finite-range, repulsive potential on R and suppose ¢ exhibits
(a,b)-strong spatial mizing up to \ for some constants a,b > 0. Then there is a perfect
sampling algorithm for the Gibbs point process defined by ¢ and activity functions bounded

by A on bozes A in RY with expected running time O(|A| 10g0(1)|A|>.

One difference between this algorithm and the hard-sphere algorithm of Theorem is
that this algorithm needs knowledge of the constants a, b in the assumption of strong spatial
mixing, whereas the hard-sphere algorithm does not.



Using the results of [58], we can get explicit bounds for the existence of efficient perfect
sampling algorithms in terms of the temperedness constant of the potential defined by

Cy := sup / 11— ef¢(x’y)|dy. (2)
zeR? JR4

Under the assumption that ¢ is repulsive and of finite range r, we have 0 < Cy < vg4(7).

Corollary 1.5. The above perfect sampling algorithm runs in expected time O(|A| 10g0(1)|A|)
when \ < C%;

Remark 1.6. In fact, using the results of Michelen and Perkins [26], one can push the bound
for strong spatial mizing up to e/ Ay, where Ay < Cy is the potential-weighted connective
constant defined therein; our perfect sampling algorithm is efficient up to that point.

1.3 Related work and future directions
Related work

In recent years there has been a moderate flurry of activity around proving rigorous results
for Gibbs point processes in both the setting of statistical physics and probability theory
and in the setting of provably efficient sampling algorithms.

Work on provably efficient approximate sampling methods for the hard-sphere model begins
with the seminal paper of Kannan, Mahoney, and Montenegro [43], who used techniques
from the analysis of discrete spin systems to prove mixing time bounds for Markov chains
for the hard-sphere model. Improvements to the range of parameters for which fast mixing
holds came in [29] [33], before Michelen and Perkins proved the bound e/vg(r) in [58], which
we match with a perfect sampling algorithm in Corollary [I.3]

Perfect sampling algorithms for the hard sphere model have been considered in [27] 40,
21), 25, 138]. In terms of rigorous guarantees of efficiency, Huber proved a bound of 2/v4(r)
for a near-linear expected time perfect sampler in [36]. The perfect sampling algorithm of
Guo and Jerrum in [25] does not match this bound, but the algorithm, based on ‘partial
rejection sampling’ [26] is novel and particularly simple. Several of these approaches also
apply for finite-range, repulsive potentials or can be extended to that setting (e.g. [60]).

In parallel, there has been much work on proving bounds on the range of activities for which
no phase transition can occur in the hard-sphere model; and, in recent years in particular,
the techniques used have close connections to algorithms and the study of Markov chains.
The classic approach to proving absence of phase transition is by proving convergence of the
cluster expansion; the original bound here is 1/(evq(r)) due to Groeneveld [24]. In small
dimensions (most significantly in dimension 2) improvements to the radius of convergence
can be obtained [20]. On the other hand, this approach is inherently limited by the presence
of non-physical singularities on the negative real axis. Alternative approaches avoiding
this obstruction include using the equivalence of spatial and temporal mixing [33], 58]; or



disagreement percolation [10, 34, [7]. The best current bound for absence of phase transition
for the hard-sphere model and for repulsive pair potentials is the bound of e/Cy (and e/Ay)
obtained by Michelen and Perkins [57, 58, [66]. Theorem brings the bound for efficient
perfect sampling up to this bound.

On a technical level, the most relevant past work is [I8|, in which the authors prove
that for discrete spins systems, strong spatial mixing and subexponential volume growth
of a sequence of graphs imply the existence of an efficient perfect sampling algorithm. We
take their approach as a starting point but need new ideas to replace their exhaustive
enumeration of configurations.

A key step in our algorithm is the use of a Bernoulli factory to implement a Bayes
filter. Bernoulli factories are algorithms by which a Bernoulli random variable with success
probability f(p) can be simulated (perfectly) by an algorithm with access to independent
Bernoulli p random variables, where the algorithm does not know the value p. Whether a
Bernoulli factory exists (and how efficient it can be) depends on the function f(-) and a
priori bounds on the possible values p. Bernoulli factories have been studied in [64, 37, [14]
and recently used in the design of perfect sampling algorithms for CSP solutions in [31], 32].

Future directions

There are a number of extensions and improvements to these results one could pursue.
Perhaps most straightforward would be to relax the notion of strong spatial mixing from
exponential decay to decay faster than the volume growth of R? and to extend the results
to repulsive potentials of unbounded range but finite temperedness constant Cy. Moreover,
it would be nice to upgrade the guarantees of the algorithm in Theorem to that of
Theorem [T.2} that the algorithm does not need prior knowledge of the strong spatial mixing
constants a, b to run correctly.

An ambitious and exciting direction would be to remove the assumption of a repulsive
potential and find efficient perfect sampling algorithms for the class of stable potentials (see
e.g. [65) [70] [71] for a definition). A stable potential is repulsive at short ranges but can
include a weak attractive part; such potentials include the physically realistic Lenard-Jones
potential among others [78]. This would require some very new ideas, as much of the recent
probabilistic and algorithmic work on Gibbs point processes (e.g. [57, 58, [7, [41], 56]) has
used repulsiveness as an essential ingredient (for one, repulsiveness of the potential implies
stochastic domination by the underlying Poisson point process).

1.4 Outline of the paper
In we describe the high-level idea and intuition behind the algorithm. In

we introduce some notation and present some preliminary results that we will use throughout
the paper. In we present the algorithm that we will apply to both hard spheres

and more general processes. In [Section 5| we prove correctness of the algorithm. In [Section 6

we prove a technical lemma that will be crucial for showing efficiency of our algorithm under



the assumption of strong spatial mixing. In [Section 7] we specialize to the hard-sphere model
to complete the proof of [Theorem 1.2| In [Section 8 we work with finite-range, repulsive
potentials to complete the proof of [Theorem 1.4] In [Section 9| we prove the running time
bound for the Bernoulli factory used by our algorithm. The appendix contains some technical
lemmas on measure theory and stochastic processes.

2 Intuitive idea behind the algorithm

Our algorithm is an adaptation to continuum models of the work by Feng, Guo, and Yin
[18] on perfect sampling from discrete spin systems. We mimic their setting of a spin system
on a graph G = (V, E) by putting a graphical structure on sub-regions of our continuous
space.

Let A = [0, L)% € R? be the region considered, A > 0 the activity, and let ¢ be a repulsive
potential of range r > 0. We subdivide A into (Ay)yey, a set of smaller boxes of side length
r indexed by vertices of a graph: each box corresponds to a vertex and boxes are connected
if they are within r of each other, i.e., particles in the boxes can interact directly through the
potential ¢. We fix the index set for the boxes to be V € IN¢, where each v € V corresponds
to the box Ay = [v1r, (v1 + 1)r) X -+ X [vgr, (vg + 1)r). We extend this notation to sets of
indices S C V by setting Ag = (J,cg Av. Further, we denote by Bg(v) the set of indices
w € V with |lv —w|, < k. To shorten notation, we write 95 = (Upeg B1(v)) \ S for the
outer boundary of a set of boxes indexed by S C V.

Our algorithm runs iteratively, keeping track of two random variables: a point configuration
X; € Nj with Xg = 0, and a set of ‘incorrect’ boxes Uy C V with Uy = V. With each
iteration ¢ we maintain the following invariant: the partial configuration X; N (Ag,)¢ is
distributed according to the projection of uy to (Ag, )¢ under the boundary condition X;NAyy,.
It follows that X; is distributed according to u) once we reach the state U; = ().

We proceed by sketching an iteration of the algorithm. An example for the involved
subregions is given in Each iteration runs as follows:

1. We choose u; € Uy uniformly at random and attempt to ‘repair’ it by updating X; on
a neighborhood of boxes B = {u:} U (By(ut) \ U;) for some update radius ¢ € IN.

2. We sample a Bayes filter F} (i.e., a Bernoulli random variable) with probability
depending on the potential ¢, the activity A, and the current point configuration X;
on Ay, and App.

3. a) HF, =1, weset U1 = U \{u} and we get Xy 11 by updating X; on Ap according
to a projection of p) conditioned on the boundary configuration X; N (Ap)°.
b) If F} = 0, the configuration is unchanged and we add the boundary boxes to our

‘incorrect’ list, i.e., X;y1 = Xy and Uy = U UIB.

We use the Bayes filter, as in [I8], to remove bias from the resulting distribution. To
give some intuition for its role, suppose we run a naive version of the algorithm where we



Uy
Figure 1: The box-shaped region A C R? is divided into

boxes of side length r (dotted lines). The boxes U
are bordered by bold black lines. For u; as given

Uy

and update radius ¢ = 2, the corresponding set B

.

of boxes to be updated is indicated by the red
hatched area (falling left to right). Its boundary

\

boxes 0B are shown as blue hatched area (rising

shown with gray background.

/////////B///;% | left to right). The boxes in H = (U, U B)° are

H

always update X; on Ap as in step 3.a) above. Assuming the desired invariant holds after
t iterations, this naive algorithm gives a bias to the distribution of X;,; proportional to
2 gy Ko 0500 )

Zap (>‘Xt NAgp
bias term gets canceled. This suggests the choice

. We choose the Bayes filter such that, conditioned on F; = 1, the

ZAB ()\XthBB) (3)

PlF, =1 | Xy, U, ue] = C(Up,ue, Xy) - ;
ZAp\fug) ()‘Xt“AaBu{ut}>

where the choice C'(Uy, ut, X) serves three main purposes.
First, it must guarantee that the right-hand side of is a probability. To achieve this
we need, for H = (U; U B)° and almost all realizations of X, U; and u;, that

Za g (Moot
C(Ut’ut’Xt)S jjl\lff B\{us} tMAy, .
£e A ZAB ()‘EU(XthMt\{ut}))

(4)
Second, C'(Uy, ut, X;) must introduce no new bias. This is guaranteed if C'(Uy, us, X;) only
depends on X; N Ay,. Finally, it must ensure that the algorithm terminates almost surely. It
suffices to ensure C' (U, us, X;) is uniformly bounded away from 0 for almost all realizations
of X;, implying that the same holds for the right-hand side of . We refer to a function
C'(+) satisfying these requirements as a Bayes filter correction.

If we use a Bayes filter as given in , keeping X; and U; unchanged whenever F; = 0
introduces new bias. To prevent this, we set U1 = Uy UOB in step 3.b). Since the algorithm
only terminates once U; = (), we further require the Bayes filter correction to ensure that
the probability of F; = 0 is small to guarantee efficiency.

Constructing a Bayes filter correction that satisfies the requirements above and allows
for efficient sampling of F} is a non-trivial task. In the next subsections, we present two
approaches for this, the first specialized to the hard-sphere model without requirements, and
the second one for more general potentials with strong spatial mixing of the point process.

10



Crucially, assuming strong spatial mixing, both constructions allow us to control the success
probability of the Bayes filter via the update radius £ in the construction of the updated set
of boxes B (see step 1).

2.1 Bayes filter for the hard-sphere model

To construct a Bayes filter for the hard-sphere model, we efficiently approximate the right-
hand side of . To approximate the infimum over the uncountable set of configurations
§ € N, we take the minimum over a finite, but sufficiently rich set of configurations,
balancing the quality of approximation with the computation required. In fact the number
of configurations needed will depend only on the volume of Ag yp. We approximate the
fraction of partition functions in with running time only depending on the volume of
Apusp. As aresult, we efficiently compute a Bayes filter correction C¢(+), with the parameter
e > 0 controlling how much C; (U, us, X;) deviates from the right-hand side of (4.

While our construction of C.(-) guarantees correctness of the sampling algorithm for
any € > 0, proving efficiency requires more. With strong spatial mixing, we choose € so
that the probability that F; = 0 is uniformly bounded above, ensuring O(|A|) iterations in
expectation.

It remains to argue that we can efficiently sample F}, using the Bayes filter correction
C.(-). Explicitly computing the success probability of F} as in would require computing
the fraction of partition functions on the right-hand side exactly, while approximating these
partition functions would require that the approximation error only depends on X; N Ay,
to avoid new bias.

It is unclear how to implement these approaches, so instead we use Bernoulli factories to
sample F; without knowing the success probability. To do so, we observe that the fraction of
partition functions can be written as a ratio of probabilities for drawing the empty set from a
conditional hard-sphere model on Ap and Ap, fy,}. Since both regions have constant volume,
rejection sampling obtains Bernoulli random variables with these success probabilities in
constant time, and hence construct a Bernoulli factory for F; with constant expected running
time. Wald’s identity yields a total expected running time O(|A|) for the algorithm.

2.2 Bayes filter for general potentials

We now consider the case of general bounded-range, repulsive potentials. Unlike the hard
sphere model, it is not clear here how to approximate the infimum in from a finite set of
boundary configurations. However, given constants a, b > 0 such that ¢ satisfies (a, b)-strong
spatial mixing, we can explicitly compute a function §(a, b) so that

ZAp\ (uy) <)\Xthut>

Znp <)‘Xt”/‘ut\{ut}>

Cop(Up,u, Xy) = 0(a,b) -
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is a Bayes filter correction. With strong spatial mixing, we use C, () to construct a Bayes
filter such that probability that F} = 0 is bounded above, again implying a bound of O(|A])
on the expected number of iterations of the algorithm.

Note that in this setting, we require spatial mixing for both correctness and efficiency,
while for the hard-sphere model we only need it for efficiency. Another crucial difference
is that, while we can explicitly compute d(a, b), the same does not hold for C, p(-) due to
the fraction of partition functions involved. Again we circumvent this by rewriting the
success probability of the Bayes filter in a suitable way and applying a Bernoulli factory for
sampling F;. Finally, we point out that we do not obtain a constant bound for the expected
running time of each iteration, but instead the bound depends on the number of points in
X:N Agp. Possible dependencies between the configuration X; and the number of iterations
prevent us from bounding the total expected running time using Wald’s identity. Instead,
we provide tail bounds on the number of iterations and the running time of each iteration,
allowing us to derive an expected total running time that is linear in the volume of A up to
polylogarithmic factors.

3 Preliminaries

Throughout the paper, we write IN for the set of strictly positive integers, and we write
Ny = NU {0}. For any k£ € IN, we denote by [k] the set [1, k] N IN.

For a bounded measurable region A C R? and any finite point configuration n € N, we
write |n| for the number of points in 7. Note that this notation is the same that as the one
we use for the volume of a region. The particular meaning will be clear from the context.
Moreover, for k € N, we write (}}) for the set {n/ Cn | || = k}.

3.1 Gibbs point processes

We introduce some additional notation for Gibbs point processes, used in the rest of the
paper. Firstly, when dealing with a tuple (x1,...,z;) € (RY)* we frequently denote it by
the corresponding bold letter . Based on this, we write dz for dz; ... dzy and H(z) for
H(z1,...,7t). Moreover, for any k € Ng and & = (1, ...,2;) € (R%)* we write 1 for the
set {z1,...,2}, where the case k = 0 results in 1, = ). Finally, for x € A* we write A® for
[Tici A(zi). This simplifies the definition of 1y given in the introduction to

1 1
A) = - / 1, car®e 1@ qg.
,u)\( ) ZA()\) kzzok' i nNe €A

Next, we formalize two different notions of restricting a Gibbs point process on A to a
subregion A’ C A that are relevant throughout the paper.

The first is based on restricting the support of A by defining a new activity function
Alp sy = A(y) - Lyear (for constant activity A, we write ALy : y — Al epr). The resulting
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Gibbs point process is a probability measure on (Ny,R) with

_ 1 1 2o~ H (@)
:LL)\ILA/(A) - ZA(/\]IA’) ;} k' /Ak ]1771,-€A(A]1A/) € dm

1 1
— 1 Ao H@) qg
Zn(A) kzmk! /Ak €A

for all A € Ry. In particular, for A = {n € Ny | nN(A)° >0}, it holds that pyg,,(A) = 0.

The second way of restricting a Gibbs point process uy is by projecting it to a measurable
subregion A’ C A. To this end, we write uy[A’] for the image measure of puy under the map
Np = N, n— nn AL By construction, uy[A’] is a probability distribution on (Ny/, Ras)
that, for every A € SR/, assigns a probability

1 1
N(A) = — [ LpraearTe 1@ da.

As discussed in we frequently modify the activity function to encode the effect
of fixing a certain point set (boundary condition). More precisely, for a fixed potential ¢, an
activity function A and a point set 7 € Ny we write A, for the function y — A(y)e™ 2oen ¥@y),
Similarly, for & € IN and & € A* we write Az for the activity function y +— A(y)e” Liety #@i),
We extend this notation to constant activity A € R>q, writing A, : y = Ae™ 2zen 9@Y) and
Ag © y — Ae” el ®@i¥) - Using this notation, a useful alternative definition of pxlA] is
given by

1 1 T
mN(A) = 205 ,;0 *l /Ak Ly eaXe™ @2y ol (yye) da

__ 1 1 ~H(z)
RPN [ ¥ 2 )
k A

>0

for A € Rps. In particular, note that

, _ 1 1 _H(z)
Y [A ] (A) a A% (A) kz>0 E /A/k ]ln”EAXte 2

While jixg,,[A’] and pipg,, seem similar, the difference is that the former is a distribution on
(Nar, Rar) whereas the latter is defined on (N, Ry).

We introduce further concepts related to Gibbs point processes, such a point density
functions when they are required. Moreover, various useful properties of Gibbs point

processes are given in
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3.2 Bernoulli factories

In designing our sampling algorithm, it will be useful to consider the following Bernoulli
factory problem. We are given access to a sampler for Ber(p) and for Ber(q), that is samplers
of Bernoulli random variables with parameters p and ¢ respectively, where we further assume
p < q. We want to sample a random variable Z ~ Ber g .

Most work on Bernoulli factories studies their running time in terms of the number of coin
flips required. In our setting, the time needed to generate each of these coin flips is random
variable. Fortunately, suitable independence assumptions hold in our setting allowing us to
prove the following lemma.

Lemma 3.1. Fiz some p,q € [0,1] such that g — p > € for some € > 0. Further assume that
we have oracle access to a sampler from Ber(p) and Ber(q) in the following sense:

1. every sample from Ber(p) (resp. Ber(q)) is independent from all previous samples;

2. the expected running time for obtaining a sample from Ber(p) (resp. Ber(q)), condi-
tioned on previously obtained samples, is uniformly bounded by some t € R>¢.

Then we can sample from Ber(%) m O(te_z) expected time.

will play a key role in bounding the expected running time of our algorithm.
To proceed with the formal description of our algorithm, we defer the proof of this lemma
to [Section 9

4 The algorithm

Let A = [0, L)% and consider a Gibbs point processes on A with uniform activity A(z) = A
for some A € R+ and repulsive potential ¢ with finite range » € R~g. Throughout the
analysis of our algorithm, it will be useful to focus on configurations n € ANy such that
d(x,y) < oo for all {x,y} € (g), in which case we call n a feasible configuration.

Before stating our algorithm, we first formalize how we divide A into smaller boxes,
following the description given in For a r and L as above, let N = [L/r].
We set V = {0,...,N — 1}d to be the set of box indices and associate each box index
v = (v1,...,v4) € V with the region Ay = ([v17, (v1 4+ 1)r) X -+ X [vgr, (vg + 1)r)) N A. As
in we extend this notation to sets of box indices S C V by setting Ag = Uves Ay.
Further, recall that, for v € V, we write B (v) for the set of boxes w € V with |jv —w|| < k.
As mentioned earlier, our algorithm tries to update in each step the point configuration on
a subset of boxes B C V. To this end, for S CV, v € S,r € R>g and ¢ € IN, we define

B(S,v,0) = {v} U (B\(£)S).

We refer to the parameter ¢ as the update radius. Finally, recall that we write 95 =
(Upeg Bi(v)) \ S for the outer boundary of S C V.

14



If the algorithm updates the point configuration in any iteration ¢ depends on the outcome
of a Bernoulli random variable F}, called the Bayes filter. We introduce the following
definition.

Definition 4.1. Fiz a repulsive potential ¢ of range r € Rsq, an activity A € R~ and some
¢ € IN. We call a function C : 2¥ x V x Ny — [0,1] a Bayes filter correction if, for all
non-empty S CV and v € S, it holds that

1. C(S,v,-) is Rpg-measurable (in particular C(S,v,n) = C(S,v,nNAg) for all n €
Nu),

2. there is some € > 0 such that for B = B(S,v,{), H = (SUB)® and all feasible n € N
it holds that

e < C(S,v,n) < inf Zhp\ 1) (>‘£U(nmAs))
— » Uy > feNA
EU(NNA5) z'steasz'ble Znp <)‘€U(770AS\{1;}))

Our perfect sampling procedure is stated in [Algorithm 1}

Algorithm 1: Perfect sampling algorithm for repulsive Gibbs point processes

Data: region A = [0, L)¢, repulsive potential ¢ of range at most r € R, activity
A € R+, update radius £ € IN
1sett=0,Uy =V, X; =10
2 while U; # () do
3 draw u; € U; uniformly at random
4 set B = B(U,uy, )

5 draw F} from Ber | C'(U;, uy, Xy) - Znp (\xinop) where C' is a Bayes
A5\ fugy MXe0 50 ()
filter correction as in
6 if F; = 1 then
7 draw Y from fix,, - ielag, [AB]
8 set Xt+1 = (Xt \ AB) uY
9 set Z/{t-l—l = Z/[t \ {Ut}
10 else
11 L set U1 = U UOB
12 increase t by 1

13 return X;

Before we analyze we first argue that the success probability of the Bayes
filter that we require in line [5| is indeed a well defined probability. For this, we use the
following lemma.
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Lemma 4.2. Suppose C' is a Bayes filter correction. Let S CV be non-empty, v € S and
B = B(S,v,{). There is some ¢ > 0 such that, for all feasible n € Ny, it holds that

Zng ()\UHABB )

e < C(S,v,n) -
ZAB\{v} ()‘nﬂAaBu{v})

<1

Proof. Fix S and v. For the lower bound, note that for all n € Ny

ZAg ()‘7701\83) > ZAB\{v} ()‘7701\63) > ZAB\{U} </\770AaBu{u}>'

Thus, by the definition of a Bayes filter correction, there is some € > 0 such that for all
feasible n € Ny
Zhg ()‘ﬁﬂAaB)

ZAB\{v} ()‘ﬂﬂ/\agu{u})
To derive the upper bound, note that by Zng(Mrngs) = Zag (/\m(AB)c) and
ZAB\{v} (Anﬂl\asu{v}) = ZAB\{v} (Anﬁ(AB\{v})C . Note that, for feasible n € Ny, it further

holds that (nNAx)U(nNAg) is feasible as well. By the definition of a Bayes filter correction,
this implies

C(S,’U,?])' ZC(S?,U777) > €.

ZAB\{v} <)‘WO(AB\{v})°>

C(S,v,m) <
Zns (Man(an)e)
Consequently, it holds that
C(S v 77) . ZAB ()‘TIQAE)B) _ C(S v 77) . ZAB ()\UQ(AB)C) <1
ZAp\ (v} ()‘nﬂAaBu{v}) ZAp\ 1wy ()‘ﬂﬂ(AB\{v})C)
which proves the claim ]

We use the previous lemma to derive the following statement.
Lemma 4.3. For allt € Ny the following holds almost surely

1) Xy is a feasible configuration

2) there is some € > 0 such that, given U # 0,

Zhg (AXthc’)B>

ZAp\fu) (AXt”AaBu{ut})

e < C(Z/{t,ut,Xt) . < 1.
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Proof. We prove this statement via induction over the iteration ¢ € INy. For ¢t = 0, note
that Xy = (0. Thus, [1)|is trivially true. Moreover, [2)| follows from applying to
C(V,v,0) for every v € V.

Now, suppose our claim holds at some iteration ¢t € N. We start by showing that [1)| holds
in iteration ¢ + 1. First, note that if ¢; = (), then there is nothing to prove. Thus, we may
assume Uy # (). If F; =0, then X; 1 = X;. Thus, in this case, Xy, is feasible if and only if
X; was feasible, which holds almost surely by the induction hypothesis. Next, consider the
case F; =1 and set B = B(U;,u, £). Note that

X Xi410(AB)© Xt41NA re€Xi4+1NA
yre(Ftrl , t+1 B yle + B t4+1 B
{LE y} ( 2 ) {33 y}e( 2 ) {z y} ( 2 ) yeXt+1ﬂ(AB)C

Since Xy11 N (Ap)° = Xy N (Ap)° and X; is almost surely feasible, we have

> $(x,y) < 00

{zy}e(XtJrlﬁg(AB)c)

with probability 1. Moreover, note that X, 1 NAg ~ pu Axun(ag)clag [Ag]. Thus, it also holds
that

Xt41NA Xep1NA Xt41NA ze€Xip1NA
zyre(tH1AB TEXAt+1NAB zyle(Tt+1"AB t+11AB
{ y} ( 2 ) yeXH—lﬁ(AB)C { y} ( 2 ) yEXtﬂ(AB)C

< 00

with probability 1. Consequently, X4 is almost surely feasible, proving For assume

that U1 # 0. Applying for every non-empty S C V and v € S yields the
desired bounds on C (U1, w41, Xi+1) whenever X4 is feasible. As we have just shown,
this is the case almost surely, which concludes the proof. O

Considering an immediate question is how to construct the Bayes filter
correction in line [5} and in particular, how to do so in such a way that the Bayes filter F;
can be sampled efficiently. However, we will defer this question for now and first prove that

produces the correct output distribution.

5 Proof of correctness

In this section we prove that produces the correct output distribution. That
is for T = inf{t € Ny | Uy = 0} it holds that X7 ~ uy. We first show that the number of
iterations 7T is finite almost surely. This directly follows as a corollary of

Corollary 5.1. terminates almost surely after finitely many iterations. That is,
for T =inf{t € Ny | Uy = 0} we have P[T < c0] = 1.
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Proof. By the probability that |U4| decreases in each step is uniformly bounded
away from 0. Thus, there is a positive probability of going from any U; to the empty set in
Uy | steps. Since || < |V], this means for every k € IN, it holds that the probability that
Up. v = () is bounded away from 0 uniformly in k. Thus, T is dominated by a geometric
random variable with strictly positive success probability, which proves the claim. ]

To analyze |Algorithm 1} we consider it as a Markov chain (X, Uy, F}, ut)tenN,, which we set
to remain constant for ¢ > T'. Throughout this section, we write 2 = (N3 x 2Y x {0, 1} x V)No

for the state space of all trajectories of that Markov chain. Further, we equip 2 with the
o-field A = (B @ 22" © 201} @ 2V)®No and we denote by P the distribution on (£2,.A)
induced by

Before going into the technical part of proving correctness, a few remarks about our
notation are in place. Firstly, for any A € A with P[A] > 0 we write P4 as shorthand for the
probability measure P4[:] = P[- | A]. Note that for all events A, B € A with P[AN B] >0
it holds that Pynp = (P4)p. Throughout our proofs, we use conditional expectations
to make conditioning on partial point configurations X; N A’ rigorous. In particular, we
frequently condition on a sub-o-field 7 C A and an event A € A with PP[A] > 0 at the
same time. Formally, for a measurable function f :  — R we write E[f | F; A] for the
conditional expectation of f given F under the conditional measure P 4. Note that any
identity involving E[f | F; A] should be understood to hold P 4-almost surely. More details
on conditional expectations can be found in Moreover, we often make use of
the concept of regular condition distributions. For more details, see Lastly,
for every bounded measurable A’y C A’y C RY, we write mpr, a7, + Nar, — N, for the
projection n — n N A's.

Our main result in this section is the following statement.

Theorem 5.2. For all t € Ny with P{Uy = 0] > 0 and all A € Ry, it holds that
IP[Xt cA ’ Uy = @] = H)\(A)

Since the algorithm terminates when U; = (), this implies that the output of [Algorithm 1
follows the distribution py(A). We deduce [Theorem 5.2| from the following invariant.

Lemma 5.3. For allt € No, S CV with Py = S| > 0 and A € Rpy)e it holds that
E[]le(As)CeA | Xt N AS?“t = S] = /'L)\XthSﬂ(AS)C [(AS)C] (A)
In particular, the map
(w,A) — 'u/\xt(w)mAS]l(AS)C[(AS)C](A) w € Q, Ae SR(AS)C

is a regular conditional distribution of X; N (Ag)¢ given o(X; N Ag) under the probability
measure P4, —gy -

Before we get into proving we first show how follows from it.
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Proof of [Theorem 5.9 Note that Ay = (. Thus, it holds that (Ay)® = A and o (X N Ay) =
{0, 2} for all t € Ny. Using we obtain for all A € Ry

P[Xt cA ’ Z/{t = @] :E[]lXteA | Z/[t = @]
:E[]lXteA | XtﬂA@;Ut = @]
:M)\(A)7

which proves the theorem. O
We proceed by stating and proving several lemmas that we will use to prove

Lemma 5.4. Fiz t € Ny, and assume that for all S C V with P4y =S| > 0 and all
A € R(pg)e it holds that

E[ly,nag)rea | XeNAgilUy =S| = Fax,mngLiagye [(As)I(A).

Let E = {Uy = S,u; = v} for some S € 2¥\ {0} and v € S such that P[E] > 0. For any
measurable region A" C (Ag)® and any event A € Ry it holds that

E[lx,nnvea | XeNAg E] = HFXx,angLag)e [AI] (A).
In particular,
(w, A) — Ay, oL (agye [A](A) weQ, Ae Ry
is a reqular conditional distribution of Xy N A" given o(X; N Ag) under Pg.

Proof. Fix some measurable region A’ C (Ag)° and note that Max,nagliag)e [A’] is a proba-
bility distribution on (M, Ras). Thus, it suffices to show that fixy, -, [A](A) is also
a version of the conditional expectation IE []IXtQ(A/)CEA } X:NAg; E] for all events A € JRyp/.
Write mas as shorthand for the projection w5 ) os. By the assumptions of the lemma, we
have

]1<AS)C

E[]lXtﬂA’eA’XthS;ut:S]:E{]IXtQAS 1(4) ‘XtﬁAS,L{t S}
M)\XtﬁASﬂ(AS)C AS)C] (W )
= Hax,nagLiag)e [ /] (A).

Next, we use part |(2)| to argue that this still holds if we change the probability
measure from Pgy_gy to Pg. Note that, given U = S, u; is chosen uniformly from S

independent of X;. Therefore, we have

Ely=y | Xe NAg;Uy = S| = E[ly, = | U = 5]
=E[lu— | Xe NAg, Xy NA ;U = S].
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Lemma 5.5. Under the assumptions of [Lemma 5.4}, let By = {Uy = S,us = v, Fy = 1} for
some S € 2Y\ {0} andv € S such that P[E1] > 0, and set R = S\ {v}. For all A € R e

it holds that
E[]IXHW(AR)CEA ’ Xet1 0 AR; El] = HAx, oagLiag)e [(AR)°](A).

Proof. Let E = {U; = S,u; = v} for S and v as in the definition of E1, and set B = B(S,v, ()
and H = V\ (SU B). The main idea of the proof is to prove the claim for pairs of
events Ap € Rp, Ay € Ry and use the fact that such events form a generating m-system
since (R)® = UyH. To establish this, we derive a suitable version of the conditional
expectation B [Lx,nayeay - Lxinageay - Bt | Xi N Ag; E], which we do by first deriving
an expression for ]E[]lxt+1mABeAB - F} ! X;NAg; E] and integrating it over Ay against a
regular conditional distribution for X; N Ay given o(X; N Ag) under the measure Pg.

We start by deriving an expression for E[]IXH_mABeAB - Fy } XN AS;E]. Note that
given the event Fy, the point set X311 N Ap is sampled from Pdx,napelag [Ap]. Therefore
we have for all Ap € R, that

E[1x,napeap | Xe N (AB)% 1] = tiayg,n,eta, [AB]-

Since the above is true independently of the partial configuration X; N A,, we may add it to
the condition and obtain

E[Lx,inapeap | Xe N (Apve)) B1] = B[lx,. napeas | XeN (AB)S, XN Ay B |
= Hax,nap)clag [AB](AB)

Note that the right-hand side of the latter equality is a function on 2, and denote this
function by g. Moreover, given E and X; N (Ap)¢, F; is drawn as a Bernoulli random variable
with success probability

Zhg ()\XthBB)

C(Sa v, Xt) :
ZAB\{U} ()‘XtﬂAaBu{u})

)

where C' is a Bayes filter correction as in [Definition 4.1 Thus, it holds that
Zg (/\XtﬁAaB)

ZAB\{'U} (AXthBBU{v}>

ZAB ()\XthBB)

ZAB\{U} </\Xtm\63u{u}>

E[F, \ XiN(Ap\))SE] =C(Sv,Xy) -

= C(S,’U,XtﬁAs) .

i

where the second equality holds since C(S,v,-) = C(S,v,- N Ag) by definition. We denote
the function on the right-hand side of the last equality by h. By we have

Elx,, napes - Fr | Xe N (Ap\o})S B (w) = g(w) - h(w)
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for IP g-almost all w € .

Our next step is to use[Theorem A.4]to derive an expression for the conditional expectation
]E[]lxthHeAH “Ix, 1 nageas - Fr ‘ X ﬂAg;E] for every Ay € P, . To this end, note
that

]E[]]-XtﬁAHEAH : ]]-Xt+1ﬂAB€AB : Ft ‘ Xt N AS7 E]
=E[Lx,napeay - B[Lx,napeas - Fr | Xe N(Ap\o})S E] | XeNAg; E
=E[lx,nageay 9 -h| XiNAg; E, (5)
where the first equality comes from the fact that o(X: N Ag) C o(X¢ N (Ap\(v})©)- By
[emma 53, the map
(w,Apr) — Ak wynagLag)e [An|(Ag) forw e Q, Ay € Ra,

is a regular conditional distribution for X; N A given X; N Ag under the probability measure
Pg. To use this regular conditional probability to obtain an expression for the conditional
expectation in , define functions §, 2 : Ny, x Nag — Rsq via

9(M1,12) = B, s grelag ABI(AB)

C(S,v,1m2) - ZAp ()‘(mUm)W\aB)

ZAB\{v} (A(WUTD)QABBUM})
Now, observe that for all w € € it holds that ¢(Xi(w) N Am, Xi(w) N Ag) = g(w) and
h(X¢(w) N Ap, X¢(w) N Ag) = h(w). Thus, ﬂ yields

E[lx,napeay -9 -7 | XeNAg; E)(w)

- ]E[]leAHeAH G(Xy N Agr, Xe N Asg) - h(Xe N Ag, X N Ag) ‘ X, N Ag: E} (w)

5(7717772) =

- / ]lneAH . §(777 Xt(w) N AS) : B(nv Xt(w) N AS) :u)\xt(w)m\s]l(/\s)c [AH]( d77)
A

H

= e 9Ny Xe(w) N As) - h(ng, Xe(w) N Ag)
Z(As) (>‘Xt(w ﬂ/\s Z / et ’ oo

—H(z)

: (Axt(wms) e Zrs)n(hm)e (Axuw)nas)un) 4z

: i)
= cedy - 00w, Xe(w) N Ag) - h(ng, Xi(w) N Ag)
Z )(Axtw)ms)z e

(A w)nas)® - o @ Zp\ (v (A (@nas)une) dz. (6)
We proceed by simplifying @ Observe that

ZAg ()\(an(XtﬂAs))mAaB)

il(”w,Xt N AS) = C(S,’U,Xt N As> .
ZAB\{v} (A(an(XtﬂAs))ﬂAaBu{v}>

21



Zg ()\(ﬂxU(XtﬂAS))mA(B)C>

= C(S,’U, Xt N As) .
Zhp\(w) (A(%U(Xtﬂ/\s))ﬂ(AB\{v})c)

Zpg (A
= C(S,’U, Xt m As) . AB( an(XtﬂAR))

ZAB\{v} ()‘nmU(XtﬂAs)) ‘

Here, the second equality follows from and the fact that for all n € N} it
holds that the distance between (n N (Ap)°)A(n N Asp) and Ap, and the distance between
(1N (Ap\0}))AMN Agpugey) and Ap (v} are at least r. Moreover, the last equality follows
from the fact that SN(B)® = S\{v} = R, n: € Ay C (Ap)° C (Ap\(v})¢and S C (B\{v})".
Further, note that

901z, Xe VAS) = 103 (xamngnia e ag MBI (AB)

= X u(xnap) lag [AB](AB)

Ym0 wl f/vg Lyyeap - (Appucxinan) -e 1@ dy

Zng (Mpu(xinag))

Substituting both back into @ and canceling Z ()‘nxu(XmAR)) and ZAB\{V} ()‘nzu(XmAs))
yields
]E[]lXtﬂAHEAH : ]]-XH,lﬂABGAB : Ft ‘ Xt n AS’ E]
- E[]]-XtﬁAHGAH *g- h ‘ Xt N ASv }

C(S v Xt M AS / .
- (A o H@)
Z(As)c )‘XmAS Z n! Lnseay (Ax,nag) - e

Z / ﬂyGAB : 77,; (XtﬂAR)) H(y) dy dz.

m>0 "
Moreover, note dist(Ay, Agr) > 7. Thus, it holds for n € Ny and = (z1,...,2,) € A}, that
Ditrans)? = Ate™ Sia ey 9(002)
— N\~ Zim1 Zzexynag 9(i2)
= (Ax,;nap)"

Consequently, we have

E[]lXtﬂAHeAH : ]]~Xt+1ﬁABEAB : Ft ‘ Xt N AS) ]

C(S v, X N AS / i
- ° )\ e :l})
Z(AS)C ()\XthS Z n' nmeAH XtﬁAR)
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Z m'/ Lyyeap - (Appuxenag))? - e HW dy | dz.

m>0

To shorten notation, let 75, denote the projection m( ) a, and write ma,, for mp ye a
Since H U B = (R)¢, we obtain

Z / 77$€AH )\XthR e Zm|/ 77::/6143 ﬁxU(XtﬂAR)) (y)dy dz

n>0 m>0

= Ziawe (xirin) - Byt [(AR)) (T (Arr) N 7L (4B)).

H®

This finally yields the expression

]E[]lXtﬁAHEAH : ]lXH_lﬂABEAB . Ft ‘ Xt N AS; E]
Z(/\R)C ()‘XtﬂAR)
Zag)(Axinns)

: :u/\XthRﬂ(AR)C [(AR)C] ( (AH) N 7TA (AB))

Our next goal is to use to switch from Pg to Pg,. To this end, note that

= C(S,v, X; N Ag) -

EIF; | Xi0Asi B] = E[Lxonuens, - Lxanaseny, - Fi | XiNAs |

Z(Ap)e(Axinag)

= X A M .
C(S,va t N S) Z(AS)C(AXtﬁAS>

Thus, by it holds that

E[ﬂXtﬂAHEAHﬂXt+1ﬂAB€AB ‘ Xt N AS; El]

E[lx,napedy - Ixonageds - Fr | Xe NAg; E]
E[F; | X¢NAg; E]

= HAx,nagLiag)e KAR)C]( (AH) A (AB))

Moreover, given F1, it holds that X;11 N Ay = X; N Ay, which implies

E[lx,napedn - Lxnageay | Xe N Ag; Er]
= I engtinge [(AR)] (720 (An) N 731 (AB)) (7)

We now generalize (7)) to arbitrary events A € 9 ,)c. To this end, note that Ay UAp =
(Agr)°. Thus, shows that events of the form

{mak(Am) O3k (Ap) ] Ay € Ry, Ap € Ry |
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are a generating m-system for R, ,ye. Since further Hax,nn L (a gy [(AR)€] is a probability

distribution on (N4 e, Rap)e ) implies that for all A € Ry,
E[]lXt+1ﬁ(AR)C€A ‘ XN As; El] = BAx,nagLiag)e [(AR))(A). (8)

Note that the right-hand side of (8)) is o(X; N Ag)-measurable. As o(X;NAR) C o(X:NAg),
this implies that it is also a version of the conditional expectation IE []IXHIQ(AR)CEA | XiNAg; Fy } .
Finally, observing that, given F1, it holds that X;11 N Ar = X; N AR we obtain

I []lXHlﬁ(AR)CEA | Xi41 N Ap; El] = HAx, i oagLiag)e [(AR)°](A). [
The next lemma is the counterpart of for the case F; = 0.

Lemma 5.6. Under the assumptions of |[Lemma 5.4} let Ey = {U; = S,uy = v, F; =0} for
some S € 2¥ \ {0} andv € S such that P[Eg] > 0, and set B = B(S,v,{) and R =SU B.

For all A € Rpy)e it holds that
E[Lx, ,napeea | Xert VAR Eo] = by, onpta e [(AR)T(A).

Proof. Let E = {U; = S,u; = v} for S and v as in the definition of Ey. Our first step is to
show that for all A € Ry, it holds that

E[Lx,nAp)cea | Xe VAR E] = piong,an 1 a e [(AR)(A). 9)

Define f : Q — [0,1] to be the right-hand side of the equality above. Since f is o(X; N AR)-
measurable, it suffices to prove that

E[lx,napen - f | E] = E[Lx,nageD - Lxynap)ycea | E] (10)

for all events D € PRy ,. For this, it suffices to prove this statement for some m-system of
events D C JRp, that generates DRy ,. Write TAop\s for the projection ma, A,y 4, and write

TAg for A, ag. Since R is the union of the disjoint sets S and 0B\ S, shows

that such a generating m-system for Ry, is given by

D= {m3l, (D) NTRAD:) | D€ Ry Dy € R

ﬂ-ABB\S

Let Dy € %Aas\s and Dy € Ryg. Writing

]E|:]]-XtﬂAaB\S€D1 : ]]-XtﬂSEDQ : f ‘ Ei| - ]E|:]]-XtﬁSED2 : ]E|:]]-XtﬂAaB\SeD1 : f ‘ Xt N AS; Ei| ‘ Ei|

shows that, for proving for all D € D (and by extension for all D € Ry ), it suffices to
prove

E[Lxionomsenn  f | XeNAsi B| = B[Lxiongpsen: - Lxnapren | XiNAsiB].
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To this end, define f : Nagms X Nag — [0,1] by

f(nlv n2) = FoxgyUng La gye [(AR)](A)

and note that f(X;(w) N Mop\s, Xi(w) NAg) = f(w) for all w € 2. Therefore, we have

]E|:]]~thAaB\S€D1 : f ‘ Xt ﬂ AS, E
=E [1xthaB\SeD1 f(Xe N Agpys, Xe N As) ’ Xt N Ag; E} :

We proceed by deriving an explicit expression for the right-hand side. By and
the assumption of the lemma, we know that

(w, ") = FXx, (wynagLiage [AaB\S] ()

is regular conditional distribution for X; N Agp\s given X; N Ag under Pg. Thus, using
we obtain

I [ﬂxthaB\seDl - f(Xin Agp\s, Xi N As) ) XiNAg; E] (w)

b f(777 Xt(w) N AS) ’u/\Xt(w)m\sll(As)C [ABB\S] ( d77)
1

1 1 / 3
- — Lpepy - f(nz, Xe(w) N Ag)
Z(As)c(Axtw)mAs),;”! A '

—H(x) |

Axt(w nag)” e “Z(Ayms)n(Aas) (ANXi(@)nAs)ung) 4T

= : Xi(w)NA
e rrmern DI MR L EO LI

aB\s

o H@)

T (Axi(@)nag)” Z(agye (Axu(w)nas)une) 42

for IPg-almost all w € €. Further, note that

£ (nz, Xe(w) N Asg)

- M)‘(Xt(w)ﬂAs)Una:]l(AR)c [(AR)C](A)

1 1

- m! Lyyea - (Axy@)nag)uns)? e HW) qy.
Zianye (M @)nas)ome) mzzo m! /«AR)c)m e (AXi@nas)un

Thus, after canceling Z( e (/\(Xt(w)ﬂAs)Unz)7 we obtain
E[]lXtﬂAaB\SEDl ) f(Xt N A@B\S’ XN AS ‘ XN Ag; E} (w)

Z( )\Xt w)ﬂAS Z / anDl Xt(W)ﬁAS) e

OB\S

25



1 _
: §: ml/((A o Ly,ea - Mgy ) - e 1@ dy| da
* R c\ym

m>0
c -1 -1
- M)‘Xt(w)ﬁ/\sl(/\s)c [(As) }<7TABB\S (Dl) n 7T(AR)C (A)>
= E{]leAaB\SeDl “Ax,A(Ag)cea ‘ XN As;E} (w)

for Pg-almost all w € Q, where the last equality is once again due to [Lemma 5.4l This

shows and consequently @
In the next step, we aim for changing the probability measure from Pg to Pg,. To achieve
this, note that by definition F; does only depend on X; via X; N Agr. Thus, it holds that

E[]lFt:O ‘ XN AR; E] = E[]lFt:D ‘ XN AR, XN (AR)C; E}
Therefore, implies
E{Ly,napeea | Xe NAR; Eo] = E[Lx,nAp)cea | Xe N AR E|
= HAXtMAR]l(Amc [(AR)C](A)

Finally, observe that, given Ej, it holds that X;;1 = X;. Thus, we have

E []lXtJrlﬂ(AR)CGA ‘ Xi+1 N Ap; EO] = HAx, naglap)e [(AR)C](A)
as desired. ]

Combining and we Now prove

Proof of[Lemma 5.3 First, note that is suffices to show that, for all t € Ny and S C V
with P[if; = S] > 0, it holds that iy, 1, [(As)](A) is a version of the conditional
expectation E[]le(AS)CEA ‘ XiNAg; Uy = S]. The second part of the statement then
follows as Ly e [(As)€] is a probability distribution on (N(ag)e, Rag)e) for all n € Nyg.

We proceed by proving our claim by an induction over ¢. For t = 0, the statement is
trivially true since Uy =V and (Ay)° = (.

Now, assume the lemma holds for some fixed t € N and let R C V be such that
P[Ui+1 = R] > 0. We start with the case R # (). We consider two sets of event Cy and
C1, where C; for i € {0,1} consists of all events of the form C{U; = S,u; = v, F; = i} with
S € 2Y\ {0} and v € S such that P[C N {Us+1 = R}] > 0. Set C = Cy UCy and note that
all events in C are pairwise disjoint. Moreover, it is easy to check that

Plwn=n [UCEC C} =P [UCGC ¢ ‘ Urr1 = R} =L

Thus, given we show that

E[]IXH-M(AR)CEA ‘ XN Ag; C] = HAx, ragLag)e [(AR)](4) (11)
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for all C € C, implies that gy, a1 [(AR)€](A) is also a version of

E[]lxt+1m(AR)ceA XiNAp;Uppr = R] as desired. Suppose that C € C;. Then C' must
have the form {U; = S,u; = v, F; = 1} for some S and v with R = S\ {v}. Thus, using
the induction hypothesis and applying [Lemma 5.5 proves . Otherwise, if C' € Cy, then
C is of the form {Uy = S,us = v, F; =0} with R = S U9B(S,v,¢). Using the induction
hypothesis and m shows .

It remains to consider the case R = (). We construct Co and C; as before, but we set
C=CoUCLU{{Uy =0}}. Again, by it suffices to argue for all C' € C. The
cases C' € C; and C € Cy are handled as before and we focus on C = {U; = }}. By our
definition of the process, we fixed X; and U; to remain constant once U; = (). Thus,
follows directly from the induction hypothesis, concluding the proof. O

6 Strong spatial mixing and success probabilities of Bayes
filters

Recall that for to terminate rapidly, we need to ensure that the success
probability of the Bayes filter is close to 1. In this section, we prove a general statement
that allows us to control the success probabilities of the Bayes filters we will construct in
the upcoming sections. Readers only interested in the actual construction of the Bayes filter
may skip this section for now and return to it later for the running time analysis.

The main technical lemma of this section states that, under strong spatial mixing, a
certain fraction of partition functions that is central for the construction of our Bayes filters
can be brought arbitrarily close to 1 by increasing the update radius ¢.

Lemma 6.1. Let S CV be non-empty, v € S, ¢ € N, and set B = B(S,v,¢) and H = (SUB)°.
Suppose ¢ exhibits (a,b)-strong spatial mizing up to X\. Then, for all feasible n € Ny and all
1,82 € Ny, it holds that

< ZAB\{v} (Aﬁlu(nﬂ/\s)) ) Zp (A&U(ﬂﬂAS\{v}))
. a2 (A&U(nﬂ/\s\{u})> ZAB\{v} ()‘izU(nﬁAs))

< exp (a3d7"de2br ()\rd + e)‘Sdrd> e*brg) )

d,.d _
exp<_a3dee2br ()\Td Fpetis )e bre

Before we prove we briefly sketch how it helps control the success probability
of the Bayes filter. Recall and assume we would directly use

ZAB\{v} ()‘§U(770As))

C(S,v,n) = &ﬁﬁ
H

(12)
EU(MNAg) is feasible ZAB ()‘EU(nF‘IAS\{v})>
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as Bayes filter correction. Assuming X; =7, Uy = S andu; =v € S, yields that
the probability that F; =1 is

uf ZAB\{v} (/\EU(WQAS)) ) ZAg ()\nﬂAaB)
£eEN,
EU(MNAg) ;\steasible ZAB (Afu(nmAS\{”})) ZAB\{”} (AHOABBU{”}>

_ inf ZAB\{v} (Agu(nmAs)) ZAB (A(UQAH)U("]QAS\{‘U}))

EEN, . Zn A
EU(nNAg) ;\sh;easible ZAB (Agu(nmAs\{v}O A ( (nﬁAH)U(nﬂAs))

Applying with & = £ and £ = n N Ag allows us to lower bound the probability
that F; = 1 by exp( —a3%rde?®r (x\?“d + X377 g bt Thus, by increasing the update radius
£ we could bring the success probability of the Bayes filter arbitrary close to 1. While we

will not use exactly as Bayes filter correction, we can apply in a similar
fashion when using a suitable approximation. More on that in [Section 7] and [Section 8|

To prove we first show that strong spatial mixing implies correlation decay in
terms of k-point density functions. The converse of this statement was previously shown in
[58]. We then use an identity from [58, 56] to derive our lemma.

6.1 Strong spatial mixing and point density functions

For k € IN and & € A* the k-point density function of a Gibbs point process uy is defined as

o xZA(’\x) —H(z
pa(z) =X me H@),

Recall [Definition 1.1land note that, for a measurable space (£2,.4) and probability measures
P and @, an equivalent definition of total variation distance is

dTV(PaQ) = sup |]EP[f]_EQ[f”7
f:Q—=[-1,1]

where the supremum is taken over measurable functions. Using this definition we obtain the
following statement.

Lemma 6.2. Let ¢ be a repulsive pair potential of range r and let A\, a,b € R~q such that ¢
exhibits (a,b)-strong spatial mizing up to . Let A C R? be bounded and measurable, and
consider activity functions A, \" < X. For all measurable \" C A disjoint from supp(A — X),
all k € N and all z € A% it holds that

loa(x) — pa ()] < AzefH(x)a‘A/(r) eb""efb'dist(/\l7Supp()\7A/))7

where A7) = {y € A | dist(y,A') < r}, and py and py are the k-point densities on A for
the potential ¢ and activity functions X and X'
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Proof. For every k € N and « = (21, ..., 3,) € A'F define f5 : Ny — [0,1] by
fz(n) — e_ Zze[k] ZyEn ¢(-’Ei7y)'
By definition, it holds that

o mZA()‘-’E) —H(z
pa(x) =X me Hiz)

=X @R, [f,].

Since the range of ¢ is bounded by r, it holds that f5 is local on A’ = {y e A dist(y,A') <r}.

That is, for every n € Ny it holds that fz(n) = fe(n N A (r)). Consequently, we have
By, fe] = E/u (/0] [fz]. Applying the same reasoning to py/(z) and observing that A = X’

on A’ yields

pA(@) = pxr(@)] = AT

B, (] [fz] - E,, (A0)] [fz]
< /\ze—H(z)dTV (M/\ [A’(T)} e [A’(T)} )7

where the inequality follows from the definition of the total variation distance given above
and the fact that f; has domain [0,1]. Finally, applying (a, b)-strong spatial mixing and

noting that dist (A’ ), supp(A — X )) > dist(A’, supp(A — X)) — r concludes the proof. [J

Remark 6.3. Note that, without fizing a particular region A’ C A that contains x4, ..., n
A’(T)‘ < kvgr® with vg being

Lemma 6.2, we can always set ' = {x1,...,x}, which yields

the volume of a unit ball in d dimensions.

The following multiplicative bound for k-point densities with different activity functions
follows immediately.

Corollary 6.4. Consider the setting of [Lemma 6.3 It holds that

br+A A7)
(]

@) < (1+afa o (@)

e—b-dist (A ;supp(A—=X")) >

Proof. Since A = X on A’, it holds that ATe @) = \e=H@) [f \2e~H @) = then the
desired inequality holds trivially since both sides are 0.
Assume Ae(®) > 0. Defining f; as in the proof of and following the same

arguments we have
px(T) = /\/mefH(x)Ew [A)] [fz] = /\mefH(x)]EM,\, [A)] [fz)-

Observe that f; is non-negative and f;(0)) = 1. Combined with Poisson domination, we

obtain
A

B, (o lfl = e [A0] (01 2 e,
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A
which implies py () > Ae 7@ AL particular, we have py/(z) > 0, and applying
Lo 0. yields
PAZ) — py (&
mia) < (14 12D, )
/() . / /
< (1 Ta A/(r) ebTHA o~ b-dist(A supp(A-A ))>,0,\/(:I:). =

6.2 Proof of Lemma 6.1]

To prove the main lemma of the section, we use the following identity by Michelen and
Perkins [58, 56].

Lemma 6.5 (|58, Lemma 12|). Let A’ C A be measurable. Fiz a point in z € A" and, for any
given activity function X and any point y € A, let

3 (w) 0 ifcfli\slt(z,w) < ai\slt(z,y)
w) =
Y A(w) otherwise

where dist(u,v) = dist(u, v) + diam(A') - Liypygar foru,ve R?. For allk € N and z € A'*,
it holds that
zZ(A/)C()‘w) —H(z)

o) = pa(@)exp <—/,p®y(y) dy>'

Z(ZAA/)(C)E;) = eXp<— /A rs, (Y) dy)-

We use to show the following intermediate statement.
Lemma 6.6. Consider the setting of. For allk € Ng and allx € AN'* it holds that

Z(A/)c (AZE) efH(
ZA(N)

A

Moreover, we have

\* %) < exp <a A

br / A
e (A}A ‘ +e ZA V)

where A7) = {y € A | dist(y,A") <}, and Zo(X) and ZA(X') are the partition functions
on A for the potential ¢.

Proof. Using |Lemma 6.5 we have
Zianye(Ag)
g Z(\) ) —H(z) _ _ .
N © PA(«’C)GXP< /A Pom), W) dy>,

where we treat case that x is the empty tuple by setting py(x) = 1. By [Corollary 6.4} we
have

br4-A| A/ (")
e

A/(T)

pa(x) < <1 +a px ()

e—b~dist(A’,supp()\—)\’))>
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br4A|A/ ()
€

AT o ().

Moreover, observe that supp ()‘/m\)y — ®y> C supp(A = X), ()\/:)y <A< Xand ()\/Z)y <
XN < Xforall y € A’. Thus, implies

— | o ydyé—/pf ydy+/

/A/ (AI)y( ) A (Aa:)y( ) A
< — 7 dy + A/(T)
< /A Pop, W dy +a

< —/,p@y(y) dy +a

< exp (a e—b~dist(A/,supp()\—X)))

eb’re—bdist(A’,supp(/\—/\’)) / (A/Z)y(y) dy
A/

A/ ()] br g —b-dist (A’ supp(A—=X)) | AN

We conclude that

22 (A)e (Az) o H(@)
ZA(N)

< exp (a

A

A (r)

r r A —b-dist(A’,su =X’
Al )‘eb </\\A’| Te >e b-dist(A’,supp(A A))>pA,(z)exp<_/A/ p@)y(y) dy>.

Applying again concludes the proof. O

With [EmIE T we can prove
Proof of[Lemma 6.1 We aim to apply To this end, we start by writing the

involved partition functions in terms of two new activity functions X\, X’.
Set A = Aq,umnag 1)) 1A and AN = AeaU(nnA s, (o)) LA and observe that AN <A Let

T € A,l,mA"| be any fixed tuple of points such that n, = n N A, (i.e., any tuple containing
exactly the points in n N A,). Note that

)\flU(”ZﬁAS)]lAB\{v} = Anﬁ/\vﬂ(/\v)c = )\xﬂ(Av)C

and analogously A¢,umnag) = /\;]1( Ay)e- Thus, we obtain

Lap (v

Zagign Cerng)  Zan (et o) _ Z2aX)Za)e(Na) (13)

ZAp (Aﬁlu(mAS\{v})) ZAp\(v) (Aeumnag)) ZaN)Z(ap)(Az)

We proceed by lower bounding the distance between supp(A —X') and A,. Note that
§1U (N Ag\(vy) and & U (N Ag gy)) agree on Ag\ py and can only disagree on Ay. By
construction, it holds that dist(Ag, Ay) > ¢r. As the potential range is bounded by r, it
follows that dist(supp(A —X),Ay) > (¢ — 1)r.

Now, note that in particular A and A’ agree on A, and A* = X®. We may assume \ > 0,
since otherwise all involved partition functions are 1 and the statement holds trivially.

31



Since further 7 is feasible we have A*e=H @) = N®e=H (@) -~ (. Thus, multiplying (13) with
AT~ H(z) .
=1 yields

Neeg—H(@) —
ZAB\{,,} (/\glu(nnAs)) ' Znp ()‘§2U(77ﬁ/\s\{v})> _ /\mZA()‘/)Z(A,,)C (’\z)eiH(m)

B -H
ZAB <)‘§1U(nmAS\{v})) ZAB\{v} ()\§2U(770A5)) AIEZA (A)Z(AU)C (/\;)e (x)
)\xZ(AZ”)iE/\(;\;)e*H(m)
A

T e 20w _H@)
'z gA(X) H(x)

Finally, by we have the upper bound

ZAB\{v} (/\£1U(770As)) . Zhgp ()‘§2U(Wﬂ/\5\{u})>
Zrg (Aglu(nms\{v})) ZAB\{u} ()\ﬁzu(nrms))

d,.d
< exp(agdrde%r ()\Td 1M )e—w)’

and applying the same reasoning after swapping the roles of A and X\ results in the
corresponding lower bound, which proves the claim. O

7 Hard-sphere model

In this section we focus on the hard-sphere model. Recall that for an interaction range
r > 0, the hard-sphere model is defined by the potential

oo if dist(z,y) <r
T,Y) =
¢(@y) {O otherwise

To simplify notation, define for every x € R* and y € R™

72 . (j)(th)

D(w) —e {’L,]}G([g]) J — H ]ldist(zi,xj)ZT and
{i.gye(§)

D(x | y) = e~ et et P = TT T Tatist(onyy)>r-

i€[k] j€[m]

We extend this definition from tuples of points to finite point sets in the obvious way. This
allows us to write

)\k
Zn (M) = Z o D(z)D(z | n)de,
k>0 - UA

for all measurable A’ C A and all € Nj.
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7.1 Constructing the Bayes filter

We start by constructing a suitable Bayes filter correction for the hard-sphere model. The
key ingredient will be computing such a correction by enumerating a finite set of boundary
configurations that closely approximates all possible boundary conditions. This is made
precise by the following lemma.

Lemma 7.1. Let S C V be non-empty, v € S, n € Np, B = B(S,v,¢) and H = (S U B)°.
For alle >0, £ € Np,, and

o<e <|§ N AaB!2drd_1d3/2)\e’\(2£+1)drd)_1
there is some v C (5Z)d N Agrop such that

—e ZAB\{“t}(Agu(nmAS)) < ZAB\{ut}()"vu(nﬂAs)) - ZAB\{ut}()‘ﬁu(mAs))

ZAp (AéU(WﬁAS\{v}O N Znp ()\'YU(WQAS\{v})> ZAp (Aﬁu(nﬁAS\{u}O |

Proof. Fix some & € Ny, let ® map every point in Agngp to its closest point in (5Z)d N
Apnop in loo-distance and set v = {®(x) | € £ N App}. We first prove that

£

€72 Iy Aevmnng)) < Zaguyy (Paumnag)) < €2 - Zag o, Aeumnag) )
To this end, note that by
Z gy Aeumnas)) = 2 puyy (Mennomuimnas))-

Thus, we have

‘ZAB\{ut} ()‘&J(nﬁAs)) - ZAB\{ut} (Avu(nm\s)) ‘

k
<y / )-ID@ | (€N Aog) U (1N As)) — D( | v U (1N As))| de
E>1 (Ap\(v})*
)\k
<> / D(z | (€N Ao) U (1N As) — D& | 7U (11 Ag))| da.
E>1 (Ap\(w})*

Next, observe that for every x € (AB\{v})k it holds that D(z | (N Asp) U (nNAg)) #
D(z | yU (nNAg)) implies that there is some i € [k] and some y € £ N App such that either
dist(z;,y) > r > dist(z;, ®(y)) or dist(x;,y) < r < dist(z;, ®(y)). Further, note that for
every y € Agrop (and particular y € € N Ayp) it holds that dist(y, ®(y)) < v/dd. Using
union bound and the fact that D(- | (N Agp) U (nNAg)) D(- | yU (nNAg)) are symmetric
functions, we obtain

‘ZAB\{“t} ()‘ﬁU(ﬂﬂAs)) - ZAB\{ut} (Avu(nmAS)) ‘
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k
< |€N Aopl - [(r +Vdo)? — (r + \/35)”’} > %’f\AB\{v}\H

k>1

< €N Aspl- [(r +Vdo)? — (r + \/&5)‘1} M|
Elementary calculations yield
(r + \/g(;)d e \/g(s)d] < d3/25(7,+ \/gé)d—l < PB/259d—1pd-1

Further, it holds that
|Apwy| < IAB| < 20+ 1),

Thus, for our choice of § we obtain

15
’ZAB\{%} (>‘£U(nﬂAs)) - ZAB\{ut} ()‘vu(mAs))‘ < 9

and, since
min{ZAB\{ut} ()\gu(nﬂAs))a A\ (uy ()\WU(HHAS))} > 1,

this proves the desired multiplicative bound.
It remains to show

e 2 Zpg (Aéu(nﬂAS\{u})> S (AWU(”MS\{”}O =e

which is done analogously, concluding the proof. O

|,

g <)\§U(nmAs\{v})>’

In particular, we obtain the following corollary.

Corollary 7.2. Let S CV be non-empty, v € S, n € Np, B= B(S,v,{) and H = (S U B)°.
For all e > 0 and

6<e- (4d7“_1d(d+3)/2(2€ + 3)drdxek(2£+1)drd) -1
it holds that

—€

min 20\ () ()\W(”mAS)) ZA vy ()‘fu(ﬂﬂ/\s)) )

inf
YC(8Z)INAgnon Zrgp <)\

§ENA L

(] ~
W(”“AS\{M)) €U(nNAs) is feasible a2 (Aéu("“AS\{vﬂ)

Proof. Note that, if £ € N},, is such that £ U (n N Ag) is feasible, this implies in particular
that & = €N Ayp is feasible. Thus, the claim follows from by arguing that every

d
feasible configuration {’ € Ny, satisfies || < (M) (2¢ + 3)%r4. To see this, note that

T

d
every point in £ blocks at least a volume of (ﬁ) , where no other point can be placed.

Moreover, it holds that
[Amronl < [Apugs| < (20 +3)%,

which concludes the proof. O
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allows us to replace the minimization over the uncountable set of boundary
conditions N}y ,, by a minimization over the finite set (6Z)* N Apnop. The second ingredient
that we need for computing a suitable Bayes filter correction is a way to approximate the
involved partition functions.

To this end, for every non-empty S C V, n € Ny and § > 0, define

Z(S,m,8) = > A" D(y)- D(y | 0N Ays). (14)
YC(6Z)INAs

The follow lemma justifies using Z (S,n,9) as an approximation for the hard-sphere partition
function Zx4(\y), given that 0 is chosen sufficiently small.

Lemma 7.3. Let S CV be non-empty and n € Np. For alle > 0 and
-1
§ < €[d3/22d max{ril, rdfl} max{/\, )\2}(]77 NAps| + ]Aguagl)e/\lAsuasq
it holds that )
e ¢. ZAS (AWO(AS)C) < Z(S,n, 5) < e ZAS (AWO(AS)C)7
where Z(S,1m,0) is defined as in .

Proof. Define Ags = U ecszyanng IB((;;OQ) (x), where IB((;;Z) (x) is the closed §/2-ball around z

in infinity norm. Moreover, let ® map every point in Ags to its closest point in (6Z)?N Ag
in f-distance, breaking ties arbitrarily. With some abuse of notation, we extend ® to
tuples x € Ags by setting ®(x) = (®(x1),...,P(xx)). Now, note that

)\k

k>0 7 me(sZ)dknAk
)\k
=> o D(®(z)) - D(®(z) | n N Ags) da,
k>0 T JAS

where the first equality uses the fact D(xz) = 0 whenever  contains the same point more
than once.

We proceed by relating Z(S,n,0) to Zxg ()\nm(As)c) in two steps. First, we compare
Zng (/\T]O(AS)C) with Zag;(Apnags), and then we compare Zjg ;(Ajna,s) with Z(S,n,0)
using the expression above.

For the first part, note that by it holds that Zx4 ()\nm(AS)C) = Zrs(Anngs)-

Moreover, we have

ZAs (/\ﬂﬂ/\as) < ZAs\As,a ()‘Uﬁf\as) ’ ZAsﬁAs,a ()‘nﬂl\as)

AAsSA
<e \ S S,6| 'ZAs,a(/\nﬂAas)7
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where © denotes the symmetric difference. Analogously, it holds that
ZAs,a ()‘nﬁ/\as) < e>\|As@As,5\ ) ZAS(/\nﬂAas)'
Thus, if we show that A\|[Ag © Ags| < e/2 for our choice of ¢, then
e_e/QZAs ()‘nﬂ(As)C) < Zas s (Mgnnes) < 68/2ZAS ()‘nﬁ(/\s)c)' (15)

To this end, note that, if x € Ags\ Ag, then ¢ Ag but dist(z, Ag) < @. Similarly, if

x € Ag\ Ags, then z € Ag but dist(z, (Ag)°) < @. Taking the union bound over v € §
yields

[As © Asal <IS]- [+ Vds/2) — (r — Vd5/2)"
< |S|d*25 - (r + Vds/2)¢
< |Ag|d3/?2d= 171,

Thus, for § < E()\\Ag|d3/22dr_1)_l the desired inequality is satisfied.
We proceed by relating Zag ;(Aynays) to Z(S,n,8). First, note that

‘ZA”(AWBS) —Z(5, n,a)(

)\k
<% [ 1D@)- D@ |10 80s) - D@@) - D@() |11 As)|da
k>0 A%
k
_;A/Ak rdx+§ / Diz | 101 Ass) — D(®(z) [ 171 Ags)] da.

We bound each of the terms in this sum separately. To this end, note that for any € Ag s
it holds that D(z) # D(®(x)) implies that there are ¢ < j such that either dist(z;, ;) <

r < dist(®(x;), P(z;)) or dist(x;, xj) > r > dist(P(z;), P(x;)). Since dist(z, P(z)) < @,
applying union bound over 1 < ¢ < j < k yields

/Ak (@(2))| dz < [(r+ Vad) — (r — Vs)'] AN = 1) A

A
k>2 k>2

< d325 - (r +V/d5)T N2 A g e Al
< d3/252d—1rd—1)\2|AS75|e)\]AS,5|‘

Similarly, we have

Ak
> / D(z | 7N Aps) — D(®(x) | n N Ags)|dz < d¥/2529 1741 x5 1 Aggle|Asial.
k>1
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Combining both and noting that Ags C U, ep, 5/2

() € Asups yields
| ZaasOurnas) = Z(5,m,6)] < a2 r = max{, A2} (1n 1 Aos + [Asuas|Je5osl,
For 6 < €(d3/22d7'd_1 max{)\, /\2}(|n NAss + \AsuasH)e)“ASUBS')_l this gives
’ZAS,(;()\nﬂA@S) — Z(S,n, 5)‘ <e/2,
and, since Z g ;(Ayna,s) > 1 and Z(8,m,0) > 1,
e % Zyg s Cnings) < Z(S,m,8) < e/ Zyg s (Anrings)-

Combining this with concludes the proof. O

We now combine [Corollary 7.2| and [Lemma 7.3| to obtain our Bayes filter correction for
the hard-sphere model.

Lemma 7.4. For e > 0, non-empty S CV, v € S and feasible n € Ny set
€ ([ 4d.—1 (d+3)/2 d,.dy A2e1)ydrd 71
7-(47° d (20 + 3)%r%Xe T) and

2

0g = 02(e) = Z : <d3/22d max{?"_l, rd_l} max{\, )\Z}me’\@”?’)d’"d)_l,

51 = 51(8) =

where m = 24(2¢ + 3)rd <51_d + dd/Qr_d> + (204 3)4r?, and define

Z(B\ {v},7U (nNAg),b)
V€6 Z) A mnos  Z(B,yU (1N Agy,),5)

CE(S7va 7]) =e -

)

where B = B(S,v,0) and H = (SU B)°. Then C.(S,v,n) is a Bayes filter correction as in
[Definition 4.1,

Proof. We start by arguing that C. is a Bayes filter correction. For the measurability, note
that for every fixed non-empty S C V and v € S it holds that C.(S,v, ) is a minimum of a
finite set of M 4-measurable functions. In particular, it holds that C.(S,v,n) = C.(S,v,7’)
for every two configurations 7,7’ € N that agree on Ag.

Next, we argue that for all feasible n € N} it holds that C-(S,v,n) is bounded away from
0 and

C-(S,v,n) < inf Z 1wy Aevnnag))

£ » Y = .
EENA ( )

§U(nNAs) is feasible 25 )‘éu(nﬂ/\s\{v})

For the lower bound, note that for all v C (6;Z)% N Agngp it holds that

Z(B \ {v}vly U (77 N AS)’52)
Z(B,yU (n N Ag\ju}), 02)

> (1+ )\52)_’(522)’%/\3‘ >0
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independent of . For the upper bound, we start by observing that, for our choice of 4y,

yields

o—c/2. min ZAp\(v) (Mumnas)) ZAp\(v) (Aevmnas)) '

inf
YC(51Z)NAmnoB Zn, ()\

EENA
VU(UOAS\{V})) EU(MNAg) isteasible ZAB <)\§U(UOAS\{”}))

Note that [Ap\}| < [Ap| < (204 1)%? and [Apivas\ )| < [ABuas| < (2€+ 3)%r?,
Moreover, we have the crude bound |(51Z)d N AHmaB‘ < 2d6fd(2€ +3)4r?, and, for every
feasible n € Ny, it holds that ‘77 N ASma(B\{v})‘ < 24d%2p=4(2¢ 4 3)%?. Therefore, for all

v C (61Z)4 N Agrop we have ‘(’y UnnNAg))N Aa(B\{v})| < 29(20 4 3)4rd ((51_d + dd/2r*d).
Analogously, it holds that |(yU (7N As\(wy)) N Aop)| < 24(2¢ + 3)drd (51_d + dd/2r*d>.
Thus, yields for our choice of o
ez Phmiw (Mumnas)) _ Z(B\{v},7U(mNAs), &) _ /2 hmm (Mumnas)) ‘
ZAB ()\’YU(UQAS\{U})) Z(B7 v U (77 N AS\{”})’ 52) ZAB (A’YU(’UQAS\{,U})>

In particular, this proves

e*-  min Z(ZBz\a {o} 7V (Zm AS;’ %) A Zap ) Aeumnas)) |
C(HZ)4NA U(nn c
vC(01Z)4NArnoB ( YU (n S\v)7 2) £U(nAS) ?steasible Zpg ()\5U(770AS\{1)})>
implying that C. is a Bayes filter correction. O

7.2 Efficiency of the algorithm

We now argue that under the assumption of strong spatial mixing we can use C; to obtain
an efficient implementation of Our argument will consist of two steps. First,
we discuss how to implement each step of the algorithm efficiently. In particular, we argue
that we can efficiently update the configuration (line , and that we can efficiently sample
a Bayes filter based on C.(-) (line[5)). For the latter, we make use of a Bernoulli factory to
circumvent the lack of an algorithm for exact computation of partition functions. In the
second part, we focus on the overall number of iterations of the algorithm. This is where the
assumption of strong spatial mixing comes into play to ensure that the success probability
of our Bayes filter is sufficiently large, which implies rapid termination of the algorithm.

We start with discussing the running time of each iteration of For updating
the configuration, we will use a rejection sampling method which, as long as the updated
region Ap has constant volume, will be efficient enough for our setting. Since apply the
same argument for more general repulsive potentials, the following lemma is stated in this
general setting.
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Lemma 7.5. Let B C V and n € Na. For any repulsive finite-range potential ¢ we can
sample from iy [Ag] in expected time (A|Ag|+ |n N Aspl) - )\|AB|e)‘|AB|,

anap)clag

Proof. Let Py, x denote a Poisson point process on Ap with intensity A\. We consider the

rejection sampling algorithm given in

Algorithm 2: Sample from gy |\ c1,, [AB]

1 repeat
2 Draw Y ~ Pj, »

3 Compute w = e Z{“’}E(g) Pl e~ Zaenngpwey PTY)
4 Draw W ~ Ber(w)

5 until W = 1;

6 return Y

To prove that this rejection sampling method produces the correct out put distribution,
it suffices to argue that w is proportional to the density of FXyn(agyeLag [Ap] with respect to
Py .a for Pa, y-almost all & € NVy,,. This is true since for all { € Ny,

zenN(AB)©,y€s z€ENNAoB,YEE zenN(Apuop)©,yEE

= Z (;S(CC,y),

z€ENNAoB,YEE

where the last equality follows from the fact that dist(Ap, (Apusn)®) > r and therefore
¢(z,y) =0 for all x € (Apusn)®,y € Ap.

We proceed by using Wald’s identity as given in to bound the expected
running time of the procedure above. To this end, let (Y, )nen be a sequence of independent
samples from P, ». Assume the algorithm draws Y =Y, at iteration n € IN. Let \S,, denote
the running time of the rejection sampler in iteration n and let N be the (random) number
of iterations until the algorithm terminates. We aim for bounding It {Zgil Sn}.

First, observe that S, is dominated by the time for computing w, implying S, <
Yo|? + Y| - |n N Ag|. Since further |Y;,| follows a Poisson distribution with parameter A|Ap|,
we have E[S,] < )\2|AB\2 + AAB| - [n0 Aol = NAB|+ [n N Ass|) - A|AB|.

Moreover, observe that the random variable 1 x>, only depends on (Y;);<n—1, whereas
Sy, only depends on Y. Therefore, S, and 1y>, are independent and E[S,1n>,] =
E[S,]E[1N>r].

Applying [Lemma B.1| yields E[ZnNzl Sn} < (MAB|+|n N Asgl) - A|Ap| - E[N]. To obtain
a bound E[N]| on, observe that the algorithm always terminates if Y = (), which happens
in every iteration independently with a probability of e **5l. Thus, N is dominated by
a geometric random variable with success probability e *A5| and E[N] < eMABl which
concludes the proof. O
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Note that, in the case of the hard-sphere model with r > 0, if n € N, is feasible, then
|n N App| is a linear function of the volume |Asp|.

We proceed with bounding the running time for sampling the Bayes filter for the hard-
sphere model in each step. To this end, we start with the following observation.

Observation 7.6. Consider the setting of[Lemma 7.4} The required running time for comput-
ing Ce(S,v,n) does only depend on e, €, r, A\ and d.

This follows directly from enumerating all subsets v C (61Z)% N Agnsp and brute-force
computation of Z(B \ {v},yU (N Ag),d) and Z(B,fy U(nNAg\y),d2), where 61,0 are
as in

In fact, we will not use C; directly for our Bayes filter, but rather a slightly scaled version
e ¢C., which is again a Bayes filter correction. The slack due to the additional scaling
allows us to efficiently sample the Bayes filter by using a Bernoulli factory, as we argue in
the next lemma.

Lemma 7.7. Let S CV be non-empty, v € S and n € N be feasible, and set B = B(S,v, /).
For all € > 0 we can sample a Bernoulli random variable with success probability

Zhg ()‘ﬁﬂAaB )

ZAB\{u} (AnmAaBU{v} )

e_ECE(Sa v, 77) '

with expected running time only depending on €, £, r, X and d.

Proof. Our goal is to use a Bernoulli factory of the form g to perform this task. To bring
the desired success probability into such a form, note that

1

FXpengplag ({03})
1

Fr om0

ZAB ()\WQABB) =

ZAB\{v} ()‘ﬁﬁAaBu{v}) =

Moreover, note that 0 < e ¢C¢(S,v,n7) < 1. Thus, by setting p = e °C.(S,v,n)
Pt ooy T (o) ({0}) and g = pix, -, 14, ({0}) we have p € 0,1],¢ € [0,1] and
Zns (A
efscs(s’,v’ 77) . AB( nﬂAaB) _ 2
ZAB\{v} (AnﬂAaBu{v}> 9

We are now going to use [Lemma 3.1|to prove that we can obtain a sample from Ber(%)

within the desired expected running time. To this end, we need to provide a positive lower
bound on ¢ — p and we need an efficient way for generating independent samples from Ber(q)

and Ber(p).
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For the lower bound, note that by Zag(Apnrgs) = Zag ()‘nﬂ(AB)C) and
ZAp\ () (AnﬁAaBu{u} = ZAp\ (v (’\nﬂ(AB\{v})C . Moreover, since C¢(S,v,7n) is a Bayes filter
correction by and 7 is feasible, we have
ZAB ()\UOABB)

ZAB\{v} ()‘TlﬁAaBu{v}>

CS(S,'U,T])‘ S 1.

Consequently, g <e ¢ and
g—-p>(1—e)g=(1-e7%)- (ZAB()‘nﬂAaB)rl > (1- efg)e*AlABL

Using the upper bound |[Ag| < (20 + 1)%9 yields ¢ —p > (1 — e_e)e_’\(%“)d”d.

We proceed by arguing that we can obtain an oracle for Ber(p) and Ber(q) as required by
Firstly, note that by [Observation 7.6/ we can compute C.(S,v,n) with running
time only depending on ¢, ¢, r; A and d. After computing C.(S,v,7), each independent
sample from Ber(e ¢C.(S,v,7n)) can be obtained in constant time. Thus, it remains to
argue that we can efficiently sample independent Bernoulli random variables with success
probabilities uAmAaBU{U}nAB\{U}({@}) and g5, 1, ({0}). To this end, note that for

Y~ fix,n0, 514, it holds that Y N (Ap)® = 0 almost surely. Thus, it holds that

Hnngpiag ({01 = 1iaony 1, [AEI(O)).

Observe that for Y ~ py, ., - 1, [Ag] it holds that 1y_y is a Bernoulli random variable with
success probability 1y, 14, ({0}). By we can obtain independent samples
from pix, oy, 14, [AB], each in expected time at most (A|Ap|+[n N Agp|) A Aple*Asl. Note
that |Ag| < (2¢ + 1)%¢ and that, for feasible n € Ny, [nNAgp| < (2Vd/r)YAsp| <
(2v/d/r)? - (2¢ + 3)4r?. Therefore, the expected running time for obtaining independent

Bernoulli samples with success probability 1, 1,,({0}) is bounded by some function of
g, ¢, r, Aand d.

Treating FAmons 50y 151 o) ({0}) analogously and applying NOW proves our

claim. O

We conclude the following bound on the running time of each iteration.

Corollary 7.8. Suppose we run |Algorithm 1| on a hard-sphere model with C(-) = e C:(-)

as Bayes filter correction in line[J for some € > 0, and let R; denote the running time of
iteration t € IN. Then, for allt € N, E[R; | Xi—1,Us—1,u—1] is almost surely bounded by
some function of €, £, r, A and d.

Proof. Set B = B(U;—1,ut—1,7), and note that the bulk of the running time in each

iteration of is due to sampling the Bayes filter in and updating the point
configuration on Apg in
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For [line 5] note that X; ; is almost surely feasible by Thus,
yields that the expected time for sampling the Bayes filter, conditioned on X;_1,U; 1 and

us_1, almost surely bounded by some function of ¢, £, r, A and d.

For [ine 7 we can use to bound the expected time for sampling from
HAx, nagelag [Ap] is bounded by (A|Ap| + |X;—1 N Aspl|) - A|Ap|e? 5l Note that |Ap| <
(20 +1)%r? and, if X; 1 is feasible, | X;_1 N App| < (2Vd/7)%|Agp| < (2Vd/r)¢ - (20 + 3)4rd.
Since X;_1 is indeed almost surely feasible, the expected running for conditioned on
X¢1,Us—1 and uy_1, is almost surely bounded by some function of €, £, », X\ and d as well,
which concludes the proof. O

We proceed by bounding the expected number of iterations of running on a
hard-sphere model. To this end, we start with the following lower bound on the success
probability of the Bayes filter with correction e *C(-) for a particular choice of .

Lemma 7.9. Consider a hard-sphere model that exhibits (a,b)-strong spatial mizing up to
X. Then there are constants a’,b', only depending on a, b, r, X and d, such that for all
non-empty S CV, v € S and feasible n € Ny it holds that

ZAB ()‘nﬁAaB )

ZAB\{v} (AnﬂAaBu{u})

Proof. Set 61 = 61 (e_z) and do = o (e_é) as defined in Note that by

we have

/
>1- a'e bt

e_efeCefz(S,v, n) -

ZAg ()‘7701\83) = Zng ()\ﬁﬂ(AB)C) = ZAg <)‘(770AH)U(T7WAS\{”})>’

where the last equality comes from the fact that H and S\ {v} form a partitioning of (B)°.
Similarly, we obtain

281} (A"”AaBu{vJ ! ()‘"”(AB\{v})C> = Za oy Amnamumnag))-
Thus, applying with & = and & = n N Ay yields

min Zapgey Mumong) | Zag(gnngs)
YC(61Z) N Apnos Zng (AVU(??W\S\{«;}O ZAB\{v} ()‘nﬂAaBu{v}>

> exp (_a3drde2br ()\Td n e)\Sdrd) e—br£> .

Moreover, following the same arguments as in we have

ZAB\{v} ()WU(WW\S)) min Z(B \ {v},YU(nNAg),d2)
) TS0 Z) A mnos Z(B,yU (1N Ag\fu}), 02)

_e—t .
et/2, min
VCGZ) N mnon 7, ( A

e
YU(NNAS\ {w})
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Recalling the definition of C,—¢(S,v,7) in and noting that for £ > 2 it holds that
b- (¢ —1)r > ¢, this implies

_ Zpn(A
oe ZOefz(S,v, n) - Ap (Annagp) > exp<_a3drde2br ()\rd n eAgdrd)e—bre) - exp (26—4)
ZAB\{v} (Aﬂﬁl\asu{u}

Z 1— a/e—b/f
for b = min{1,br} and o’ = a3%rde?* <)\rd + e>‘3drd) + 2, which concludes the proof. [

allows us to control the success probability of the Bayes filter in terms of /.
This leads to the following statement.

Lemma 7.10. Consider a hard-sphere model that exhibits (a,b)-strong spatial mizing up to \.
Suppose we Tun with C(-) = e~ "C.—¢(+) as Bayes filter correction in line@ and
let T =inf{t € No | Uy = 0} denote the number of iterations until the algorithm terminates.
Then, for £ sufficiently large depending on a, b, r, A\ and d, it holds that E[T] < 2|V|.

Proof. We aim for applying[Theorem B.2|to prove our claim. To this end, consider the process
(Is])tev, and the filtration (F3)icn, defined by F; = o((X;,U;,u;)<¢). Further, observe
that our desired hitting time can equivalently be written as T' = inf{t € INg | [Us| < 0}.
Since we are interested in the expectation of T, we only need to check assumptions [a)l and
[b)] of [Theorem B.2]

For [a)| of [Theorem B.2] observe that [¢4;] > 0 for all t € INy. For [b)| we prove that
E[([Uy| — [Up1])L7rse | Fo] > 3175y if £ is sufficiently large. Since

E[([th] — U1 ) Lrse | Fi] = (U] = Bl[Uesa| | Fr]) s

it suffices to show that E[|U11| | Fe]lrse < ([Ue] — 3)Lrse.

To simplify notation, we will omit the indicator of T' > ¢ while still restricting ourselves
to the setting where U; # (). Next, observe that, if F; = 1, then |Usy1| = Uy — 1. On the
other hand, if F; = 0, then

Up1| = |Us| + |0B| < |Uy| + | B UIB| < [Uy] + (2¢ + 3)“,

where B = B(U,ut, £). Thus, it suffices if

1
(20+3)"- (1 —E[F, | 7)) - E[F, | Fi] < 5
Since, by [Commma 73}
E[F, | 7] >1—de ",

for o’ and V' only depending on a, b, A\, r and d, this is satisfied for ¢ sufficiently large,

depending on a, b, A\, r and d. Applying [Theorem B.2| then yields E[T] < 2|V|, which
concludes the proof. O
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We conclude the following theorem.

Theorem 7.11. Consider|Algorithm 1| on a hard-sphere model with C(-) = e_e_ZC’e_z(-) as

Bayes filter correction in line[5. We can run the algorithm in almost-surely finite running
time and, on termination, it outputs a sample from the hard-sphere Gibbs measure py on A.
Moreover, if the hard-sphere model satisfies (a,b)-strong spatial mizing and if £ is chosen as
a sufficiently large constant, depending on a, b, v, A and d, then we can run the algorithm
in expected time O(|A]).
Proof. For the first part of the statement, note that the correct output distribution follows
directly from and the fact that e_eiéC’efz(-) is a Bayes filter correction by
[Cemma 7.4 Let T' denote that number of iterations of and let R; denote
the running time in iterations t € IN. By we know that 7' is almost surely
finite. Moreover, it holds that E[R;] = E[E[R; | X¢—1,U;—1,u—1]]. Since by
E[R; | Xi—1,Ui—1,ur—1] < t(L,r, X\, d) for some function ¢ : ]R?;O x INg = R>g, it also holds
that B[R] < t(¢,r, \,d). Consequently, R; must be finite almost surely, and
has almost surely finite running time.

For the second part of the statement, suppose the hard-sphere model satisfies (a, b)-strong
spatial mixing up to A\. Observe that the expected running time of can be
expressed as

=E|> LrBRy | X1, Up-1,u-1]

t>1

T
E) R
t=1

T(ON)) o e PR

t>1
= t(, 7, \, d)E[T],

where the first equality uses the fact that 1> = Ty, g is o(U—1)-measurable. By
Lemma 7.10, we can choose ¢ sufficiently large, depending on a, b, r, A and d only, such
that E[T] < 2|V| € O(|A]), proving linear expected running time of the algorithm for any
such choice of £. O

8 General repulsive potentials

We now extend our perfect sampling algorithm to the setting of more general bounded-range
repulsive potentials ¢. In contrast to the hard-sphere model, it is not clear how to perform
the minimization task in involved in constructing the Bayes filter in this setting. We will
instead assume knowledge of the rate of strong spatial mixing for constructing the Bayes
filter.
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Lemma 8.1. Let S C V be non-empty and v € S. Let n € Np be feasible and set B =
B(S,v,¢). Suppose a,b > 0 are such that ¢ satisfies (a,b)-strong spatial mizing up to X\, and
set

d=194(a,b) = exp(—a?)drde%r ()\T‘d + e’\3drd)e_bﬁ)

and
ZAB\{v} (/\nﬂ/\s )

Zpg (/\nﬂAS\{v}>
Then C,p(S,v,n) is a Bayes filter correction as in|Definition 4.1 Moreover, it holds that

Cop(S,v,m) =10

Zpn (A
exp<_2a3drd62br (/\Td i e)\3drd)efbrf> < Cop(Sv,7) - A5 (Apnags) <1
ZAB\{u} ()‘nﬂAaBu{u})

Proof. We start by checking that C,(-) is a Bayes filter correction. For the measurability,
note that for all non-empty S C V, v € S and 1 € N} it holds that C,;(S,v,n) does only
depend on 7N Ag. Moreover, observe that

Cup(S,v,7) > exp<_a3drde2br (Ard I e)\BdT‘i)e—bM) . e~ MABUas|

> exp (—a3drdezb7" (x\rd + e)‘3drd>e*br£> - exp (—)\(25 + 3)drd>

uniformly in 7. For the upper bound, we apply with & = 0 and & = £ to obtain

Znp oy Pnnas) . f Ap \ AUMNAS\ (v}) < exp <a3drd62br (/\Td n eAsdrd)e—br£>
EENA Zn o Qeoimng) :
ZAB (AnmAS\{”}) EU(nNAs) isteasible B\ie} ( §umn S))

Therefore, multiplying both sides with § yields

ZAB\{v} ()‘EU(nﬂAs))

Ca,b(S,v,n) < c ijI\l/_f
ENA
EU(nNAg) isteasible ZAB ()\SU(UHAS\{U})>

as desired.

For the second part of the statement, note that by we have

Zns(Mnriron) = Zag (Min(ag)e) = Zag <A<nmAH)u(nmAS\{,,}>>>

where the last equality comes from the fact that H and S\ {v} form a partitioning of (B)°.
Similarly, we obtain

2oy (A””AaBu{vJ = Zhmw (A"”(AB\{v}V) = 2oy Aonamumas))-
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Since C,(S,v,n) is a Bayes filter correction, it follows that
Zrp ()‘ﬁmAaB)
ZAB\{v} ()\nmAﬁBu{v}>

Moreover, applying with & =0 and & = n N Ay yields

Ca,b(svvan> ' <L

Za g\ oy Annas) _ Zng(Annngs) > exp<_a3drd62br (Ard n e)\Sdrd>efbr€>
Zg ()‘ﬁﬂAS\{u}> ZAB\{v} (AﬂﬁAaBu{uJ
and multiplying both sides with § proves the claim. O

While the first part of is sufficient to guarantee correctness of

the second part of the statement will be useful for bounding the running by allowing us to
control the probability of the event F; = 0 for each iteration ¢ € INg. Similarly as in the
setting of the hard-sphere model, we will not work directly with C, ;(S,v,7n), but rather use
a slightly scaled version, which is a Bayes filter correction in its own right.

Corollary 8.2. In the setting of it holds that e=¢  Cyp(S,v,7) is a Bayes filter

correction, and there are constants a’,b', only depending on a, b, v, X\ and d, such that

—¢

/ - AP,
1— CLlefb / < e—® ZCa,b(Sv'va 77) . AB( nﬂ/\as) < e
ZAB\{v} (AﬁﬂAaBu{v})

Proof. Since 0 < e=°~" < 1, it is obvious that e*e_ZCmb(S,'v, r) satisfies |Definition 4.1} Now,
note that for ¢ > 2 it holds that b(¢ — 1)r > b—;ﬁ. The statement directly follows from

Lemma 8.1{ by setting ¥ = min{1,br} and o’ = 2a3%%e’" ()\Td + e’\?’drd) + 1, and observing

that exp(—a'e_w) >1—dale O

Next, we focus on how to sample the Bayes filter, using e_eflCa,b(-) as in |Corollary 8.2

as Bayes filter correction. In contrast to our approach for the hard-sphere model, we do
not know how to compute C, () directly. Again, we solve this problem using a Bernoulli
factory.

Lemma 8.3. Let S CV be non-empty, v € S and n € N be feasible, and set B = B(S,v, /).
Suppose a,b > 0 are such that ¢ satisfies (a,b)-strong spatial mizing up to X and let Cop(-)
be as in[Lemma 8.1 We can sample a Bernoulli random variable with success probability

_ Zas(A
e_e ZCa,b(S;'UaT]) : AB( nﬂAc’?B)
ZAB\{v} (AnﬂAaBu{u})

with expected running time in O(}n N Apivon
and d.

), where the constants only depend on £, r, A
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Proof. Our goal is to use a Bernoulli factory of the form % to perform this task. To bring
the desired success probability into such a form, note that

1

Fnongpting ({01)
1

:“AnmAaBU{v}ﬂAB\{v} ({0})

Zhg ()‘nﬁAaB) =

ZAB\{v} (Aﬂm\asu{v}> =

Moreover, using |[Lemma C.2] we have
1

ZAB\{v}()‘T)ﬁAS) = ZAB\{u} ()‘Wﬂ/\(aBmS)u{v}) =

fix {0})

1
Fsng g 1ay ({03)

”nA(aBﬁS)u{v}ﬂAB\{v}

Zrp (Aﬁm\s\{v}) = ZAg ()‘nﬂAaBms) =

Finally, note that e=¢ " € [0,1] and, for § = § as in d & [0,1]. Thus, by setting
)
pi= e ity (0D a1y, (10D
q= “)\nﬂ/\(asmsw{u}lAB\{v} ({03) - Panansplag ({0})
we have p € [0,1],¢ € [0, 1] and

_ Zas(A
e Cap(S,0,m) - rsCntas) P

ZAB\{v} (/\nﬂAaBu{v}>

We are now going to use [Lemma 3.1|to prove that we can obtain a sample from Ber(g)

within the desired expected running time. To this end, we need to provide a positive lower
bound on ¢ — p and we need an efficient way for generating independent samples from Ber(q)
and Ber(p).

For the lower bound, note that by it holds that

- Za,(h .
e © ZCa,b(S’ v, 77) : AB( ﬁﬂAaB) < e E.
ZAB\{D} ()\WQABBU{D} )

Consequently, we have
q—p=> (1 - e’e_e)q

PR
= (1 —e ° ) : (ZAB\{V} <)‘nﬁA<aBmS)u{v}> 'ZAB (/\nﬂAaB>>

> (1 _ e—o—€>e—2>\\AB|‘

-1
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Using the upper bound |Ag| < (2¢ + 1)%r? yields ¢ — p > (1 — e*e_l"])e*/\(%ﬂ)d?"d.

We proceed by arguing that we can obtain an oracle for Ber(p) and Ber(q) as required
by [Lemma 3.1} In particular, we focus on Ber(p) since Ber(q) can be treated analogously.

Firstly, note that we can sample a Bernoulli random variable with success probability
e~°'§ in constant time, since we can compute it explicitly. It remains to argue that we
can sample Bernoulli random variables with success probability 1ix,q,, . 14, ({0}) and

Pt ey T8 o ({0}) in the desired running time. Again, we focus on Hnorp s A ({0})

and treat ) analogously. To this end, note that for Y ~ u)

nﬁAaBU{v}ﬂAB\{v} ({®})
it holds that Y N (Ap)¢ = ) almost surely. Thus, it holds that

1MAppns Iag

Pannnsplag {0}) = FXpangplag [AB]({0}),

and, for Y ~ iy, 9, [Ap], it holds that 1y _g is a Bernoulli random variable with success

probability fix,,, 1., ({0}). By we can obtain independent samples from
Hamnn,p s, [AB]; €ach in expected time at most (A|Ag|+ [nN Agpl) - AAg|eMAsl Noting
that |[Ag| < (204 1)%? and that |n N Agp| < ‘17 N A{v}u@B‘ yields an expected running time
of O(}n N Ao BD‘ Applying the same argument to sample a Bernoulli random variable
with success probability gy ({0}) yields an oracle for Ber(p) with expected

’IﬁAaBu{v}]lAB\{v}
running time in O(|n N A{v}U@B‘). Finally, applying the same procedure for Ber(q) and
using concludes the proof. O

We obtain the following bound for the running time of each iteration.

Corollary 8.4. Let a,b > 0 be such that ¢ satisfies (a,b)-strong spatial mixing up to .
Suppose we run |Algorithm 1| on ¢ with C(-) = e_efeCmb(-) as Bayes filter correction in
line[3, and let R, denote the running time for iteration t € IN. Then, for all t € N, it holds
that

where B = B(Ui—1,u—1,¢), and the constants in the asymptotic notation only depend on ¢,
r, A and d.

E[R; | X¢—1,Us—1,u-1] < O(|Xe—1 N Agy, 1 3uon

Proof. Set B = B(U;—1,u;—1,¢), and note that the bulk of the running time in each
iteration of is due to sampling the Bayes filter in and updating the point
configuration on Ag in

For note that X;_; is almost surely feasible by [Lemma 4.3] Thus, yields
that the expected time for sampling the Bayes filter, conditioned on X;_1,U;—1 and u;_1,

almost surely bounded by some function in O(‘Xt_l N Afu, 1300 BD' Further, for we

can use to bound the expected time for sampling from FAx, noapelag [Ap] is
bounded by (A|Ap| + | X¢—1 N Asp|) - A|[Ag|eMisl € O(’Xt,l N A{ut,l}uaBD as desired. [J

Next, we derive a bound on the expected number of iterations of given strong

spatial mixing.
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Lemma 8.5. Let a,b > 0 be such that ¢ satisfies (a,b)-strong spatial mizing up to A. Suppose
we Tun with C () = e_efzca,b(-) as Bayes filter correction in line @ and let
T = inf{t € No | Uy = 0} denote the number of iterations until the algorithm terminates.
Then, for € sufficiently large depending on a, b, r, A and d, it holds that E[T] < 2|V|, and
for all k > 4|V| it holds that P|T > k] < exp(—g) for some constant o € R~q that only
depends on £, d and r.

Proof. We aim for applying to prove our claim. For bounding IE[T], we proceed
analogously as in the proof of In particular, we consider the process (|U:|)ien,
with the filtration (F;):cnv, defined by F; = o((X;,U;,u;)j<¢) and rewrite our desired hitting
time as T = inf{t € No | [t4| < 0}. Since [a)] of [Theorem B.2]is trivially satisfied, we only
need to check [b)l Using the lower bound from and the same arguments as
in the proof of we can show that E[([th] — [Ust1|)Lrse | Fi] > dlpsy if £ s
sufficiently large, depending on a, b, 7, A and d. Thus, applying the first part of
proves our bound on E[T].

To obtain the tail bound on T', we apply the second part of [IT’heorem B.2| For note
that |Uo| = |V| and, for [d)] observe that
0] — ]| < max{1, (26 + 3)r |

Thus, setting o > 64 - max{1, (2¢ + 3)*¥r??} concludes the proof. O

Note that, in contrast to [Corollary 7.8 [Corollary 8.4 does not give a deterministic bound
on the running time of each iteration. Due to potential dependencies between the running
time of each iteration and termination of the algorithm, it is unclear if we can simply apply
Wald’s equation to derive the total running time of the algorithm. Instead, we will use a
more subtle argument for this. As a first ingredient, we need upper-bound the probability
of ever observing a large number of points in any box A, for v € V up to a given iteration
k € INg.

Lemma 8.6. There is a constant o € R>1, only depending on ¢, d and r, such that, for all
ke Ny, all v > 1 and all x > Y Ar¢, it holds that

k
P UJAIX: N Al > a}| < (k+ Lae=0D7,
t=0veV

Proof. Let o > (20 +1)%. We show the statement via induction over k. First, for k = 0,
note that Xy = (). Thus, we have that the left-hand side is 0 for all z > 0 and the right-hand
side is at least 1 for x = 0, proving the base case.

Next, assume the statement holds for some fixed k € IN>g. Let B C V be the set
of boxes updated in iteration k + 1 (possibly the empty set). Formally, that is B =
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{veV | Xpi1NAy # XN Ay} By the induction hypothesis and union bound, it holds
that

k+1 rk
P U{xnA =2} =P| U{|XtﬁAv|2x}U{ElvEBs.t. |Xk+1ﬂA,,|2x}]
t=0veV Lt=0veY
[k
<P|{J XN Ay| > 2} +]PHEIv€Bs.t. | Xpp1 N Ayl Z;U}]
Lt=0veV

<(k+Da-e0-Dr L p Hav € B st | Xpo1 N Ayl > xH
It now suffices to show that
IPHEI'U € Bsit. [Xpp1 NAy| > :L"H <a-PlY >z
First, note that B = () if Fj, = 0. Thus, we have
]P[{av € B sit. | X1 N Ayl Z:c} ‘ F :o] <o P[Y >zl
for all x € R>¢. Now, fix § CV and w € S such that Py = S,ur, = w, Fj, = 1] > 0. Set

B = B(S,w,¢) and observe that, given U, = S, u, = u and F = 1, it holds that B = B.
Using union bound, we have

IPHEv € B st. | Xpr1 N Ayl Zx} ‘ Uy = S,uy, = w, Fy = 1}

=P | (IXern N Au| 2 7} uk:s,uk:w,pkzll
veEB
<Y P Xpr1 NAy| = 2 | Uy = S,uy = w, F = 1].
veEB

Given Uy, = S, up, = w and Fy, = 1, it holds that X} NAp is sampled from Fd g gyeLag [AB]
for some feasible 7 € Nj. Therefore, for all v € B, | X1 N Ay is dominated by a Poisson
random variable Y with parameter A|Ay| < Ar¢. Further, observing that |B| < a yields

IP|:{E|’U S B s.t. ‘Xk—O—l ﬂAv’ > Z‘} ’ U, = S7'u,k :’U),Fk — 1] < a IP[Y > JZ]
Using the law of total expectation and we obtain
IPHH'U € B st | Xpp1 N Ay| > “”H < a-e-0-De,

which proves the claim. O

Using we derive our main result on perfect sampling for repulsive bounded-
range potentials based on
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Theorem 8.7. Let a,b > 0 be such that ¢ satisfies (a,b)-strong spatial mixing up to .

Consider |Algorithm 1| with C(-) = e_eieCa,b(-) as Bayes filter correction in line @ On

termination, the algorithm outputs a sample from the Gibbs measure py on A. Moreover, if
¢ is chosen as a sufficiently large constant, depending on a, b, r, A and d, then we can run
the algorithm in expected time O(|A]).

Proof. If ¢ satisfies (a,b)-strong spatial mixing up to A, we know by |Corollary 8.2| that

e™ Cyp(-) is a Bayes filter correction. Thus, the first part of the statement follows from

Next, let £ be chosen as a sufficiently large constant, depending on a,b,r, A and d to

satisfy We rewrite the running time of as

T o)
Z Ry Z Ir>¢ Ry
t=1

t=1

E =E|E

utlath,utlll

=K

o0
> rE[R; | Ut—17Xt—1,Ut—1]]
=1

Moreover, by there are constants ap, as, only depending on ¢,d, A and r, such
that

E[R; | Up—1, Xy—1, 1] < on|Xym1 N Mgy, yuon,| + 02

where By = B(U—1,ut—1,£). Thus, we have
T
>
t=1

Note that by

E < a1E + aE

3 ﬂTZt] |

o0
Z Irs¢| Xeo1 0 Ay, yuos,|
=1 t=1

Y Ellrs] =) Pllrsy] = E[T] € O(A)).
t=1 t'=0

It remains to bound

E

Z Lyse - [ Xm0 A{ut_l}uaBt}] -
=1

To this end, write W = Z;’il Tr>y- ’Xt—l N A{ut,l}uaBt‘~ Since W is non-negative, we have
o

]E[W]:/R IP[W>w]dw<1ZJ+/ PW > w|dw

W

o1



for every w € R>o. Next, observe that for every t € IN
{u_1} UOBy| < |B,UOBy| < (20 + 1) = as.

Thus, for every w € R>p and every k£ : R>9 — IN the following holds: if W > w, then
T > k(w) or there is a time point ¢ < k(w) and a box v € V such that | X;—1 N Ay| > Tl
Consequently, we have

P[W > w] <P |[{T > k(w }uUU{|Xthy> Fw)os }

t=1 vey
k(w)

P(T > k(w)] + P | U{\Xt 1N Ay > Fw )ag} .

t=1 vey

Moreover, applying shows that there is a constant oy, only depending on ¢, r
and d, such that for all w > e?azAr?k(w) it holds that

P[W > w] < P[T > k(w)] + (k(w) — 1>0446XP<—;€<;UM>’

Now, suppose that k£ is measurable, we get for w € Rx>g

o

E[W] < + /w P[T > k(w)] dw + oy /: k(w)exp<—k(;"m> dw

We now claim that for a suitable choice of @& and k the right-hand side is in O(|A]).

To this end, let k(w) = max{[4e|V|], [2as In(w)]}, where as is the constant from the tail
bound in which only depends on ¢, r and d. Moreover, choose w > 1 sufficiently
large such that for all w > b it holds that w > k(w), w > e?az r?k(w) and % > 3agk(w).

Note that this can be achieved for some @ € O(|V|).
For our choice of k(w), yields

/OOIP[T > k(w)] dw < /OO w2 dw,

[0} W

which is bounded by 1 for w > 1. Moreover, for w > k(w) and % > 3agk(w) we have

eXp(‘kof)ag) : k<w1>w2

/Ujo k(w)exp (—@) dw < /;O w2dw < 1.

Consequently, we have

and thus

E[W] <4+ O(1) € O(|V))
and, since |V| € O(]A]), this concludes the proof. O
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Remark 8.8. Since requires knowing constants a,b such that the Point process
satisfies (a,b)-strong spatial mizing (in contrast to|Theorem 7.11|), we can use these constant

to compute a sufficiently large value for £. FElementary calculations suggest to choose
‘> max{”—;”, 16a’b’2}, where ¥ = min{1,br} and o’ = 2a3drde%’"()\rd n e*3d"d> T

9 Bernoulli Factories

In this section we prove [Lemma 3.1, showing how to sample a random variable from Ber(%)

given access to a Ber(p) and Ber(q) sampler, when ¢ — p > e. This happens in the following
three steps.

The first step is to sample a random variable according to Ber(#) given access to

Ber(p) and Ber(gq). This is achieved by [Algorithm 3| bellow. It is easy to verify that this

Algorithm 3: Ber(#) from Ber(p) and Ber(q)

1 Draw u ~ Ber(1/2)
2 if uw =1 then

3 Draw y ~ Ber(q)
4 return 1 —y

5 else

6 Draw z ~ Ber(p)
7 | returnz

algorithm returns 1 with the correct probability.
For the second step, let o = #. From [Algorithm 3 we now assume to have access to a

Ber(p) random variable. The next step is to use Huber’s algorithm [37] and obtain a Ber(2p).
For the algorithm to work within the required run-time guarantees, we need g < 156, which

holds since we assumed ¢ — p > €. For convenience, we provide the pseudocode of Huber’s
algorithm in [Algorithm 4], The correctness of the algorithm can be found in |37, Section 2.3].

Algorithm 4| now gives us access to a Ber(2¢) sampler and consequently to a Ber(1 — 2p) =
Ber(q — p) sampler, simply by flipping the returned bit. The final step is to sample from

Ber g) when given access to a sampler for Ber(q — p). This is done via [Algorithm 5

Regarding the correctness of note that, within a single while-Ioop, the
probability the algorithm returns 1 is p/2, while the probability that the algorithm enters
the while-loop again is 1 — ¢/2. Conditioned on the fact that the algorithm will terminate,

we observe that [Algorithm 5| returns 1 with probability p/q.
We are now ready to prove whose statement we repeat here for convinience.
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Algorithm 4: Ber(2p) from Ber(p)

1 e+ min{e,0.644}, k« 2, i+ 1, R+ 1,C + 2
2 while ¢ # 0 and R # 0 do

3 while 0 < ¢ < k do

4 Draw u ~ Ber(p)

5 Drawvngeo(%1
6 ii—14+(1—-u)g
7 if 4 > k then

8 Draw R ~ Ber((l + %)_Z>

9 if R =0 then

10 L return 0

11 | C+C(1+35), e 5,k 2k
12 return 1

Algorithm 5: Ber(%) from Ber(p) and Ber(q — p)

1 Set b= -1
2 while b = —1 do
3 Draw u; ~ Ber(1/2)
4 if u; = 1 then
5 Draw z ~ Ber(p)
6 if x =1 then
7 L Set b=1
8 else
9 Draw y ~ Ber(q — p)
10 if y =1 then
11 L Set b =10
12 return b
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Lemma 3.1. Fiz some p,q € [0,1] such that ¢ — p > € for some € > 0. Further assume that
we have oracle access to a sampler from Ber(p) and Ber(q) in the following sense:

1. every sample from Ber(p) (resp. Ber(q)) is independent from all previous samples;

2. the expected running time for obtaining a sample from Ber(p) (resp. Ber(q)), condi-
tioned on previously obtained samples, is uniformly bounded by some t € R>o.

Then we can sample from Ber(%) m O(t6_2) expected time.

Proof. We use which calls which in turn calls as we

explained above. For simplicity, we may assume that, every time we sample Ber(p), we also
sample from Ber(q) and vice versa. Thus, let (X;)iew € ({0,1}*)N be a sequence of samples
from the product distribution (Ber(p) ® Ber(q))®™ and assume that X; = (Xi(p),Xi(Q)) is
the outcome of the ith time the algorithm samples from Ber(p) and Ber(q). Moreover, let
(T;)ien be the running time for obtaining the X; using the assumed oracle, and let N denote
the total number of samples from Ber(p) and Ber(q) that requires.

Our goal is to show that E[Zf\;l TZ} € O(te*2). To this end, note that, for every ¢ € IN,

the event NV > i does only depend on the sequence (X;);cnv via the subsequence (Xj);<;.
Moreover, by our assumptions on the oracle, it holds that E[T; | (X;);<;] < 2t, where the
factor of 2 comes from the fact that we sample both Ber(p) and Ber(q). Thus, by Wald’s
equation, we have

N

> T

=1

I =E|Y InsE[T | (X))j<]| < 2E[N].

i>1

It remains to show that E[N] € O(e™?).

will do2/q € O(efl) while-loops in expectation, as each while-loop terminates
with probability ¢/2. Furthermore, each while-loop calls either Ber(p) or both
with probability 1/2. As the total number of loops is determined by the outcome of the
final loop, we can use Wald’s equation again to get that E[N] € O(e~! + e 'E[N']), where
N’ is the number of X; samples that requires. Observe (from the pseudocode

of [Algorithm 3)) that each Ber(p)-call [Algorithm 4| requires only a single X; sample. From
[37, Theorem 1.1] we get that |Algorithm 4| requires at most O(e_l) Ber(p) samples in
expectation, which implies that IE[N'] € O (e~ ) This concludes the proof of the lemma. [
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A Measure theory and conditional expectations

A.1 Conditional expectation

We start with a brief recap of the notation used in the appendix.

Let (£2,.A,P) be a probability space. For an event A € A with P[A] > 0, we write P4
for the probability measure P4[-] = P[- | A] on (©,.4). Note that for all events A, B € A
with IP[A N B] > 0 it holds that P4np = (P4)p. Let f,g9: Q@ — R be measurable maps. We
denote by E[f] the expectation of f under the measure IP. For a sub-o-field F C A, we write
E[f | F] as a placeholder for any version of a conditional expectation of f given F under the
probability measure P. Further, we write E[- | f] for conditional expectations given o(f),
the o-field generated by f, and E[- | f, ¢g] for conditional expectations given o(o(f)Uo(g)).
Finally, for an event A € A with P[A] > 0 and a sub-o-field F C A, we write E[f | A] for
the expectation of f under P4 and E[f | F; A] for the conditional expectation of f given F
under the measure IP 4.

The following two statements allow us to relate conditional expectations under different
probability distributions.

Lemma A.1. Let (2, A, P) be a probability space, X be an integrable random variable, let
F C A be a sub-o-field and let A € A with P[A] > 0. Then

ElaX [ F] =EX | F;AJE[1, | F]
P-almost surely. Moreover, it holds that

E[lsX | F]

A= T A

P 4-almost surely.

61



Proof. By definition, E[X | F; A|E[L4 | F] is F-measurable. Moreover, for any B € F it
holds that

Thus, it holds that
El1,X | F]=E[X | F;AJE[14 | F]

P-almost surely. Next, observe that for A € A with P[A] > 0 it holds that E[A | F] >0
P 4-almost surely. Thus, it follows immediately that

E[ls X | F]

E[ls | F]

P 4-almost surely. O

EX | FA]l=

The following properties can be concluded.

Lemma A.2. Let (2, A, P) be a probability space, X be an integrable random variable and
F C A be a sub-o-field. Let Ay,..., A, € A be disjoint and such that P[A;] > 0 for all
1 <i<mnand P|J;_, Ai] = 1. If an F-measurable function f : Q — R is a version of
E[X | F; Ai] for all 1 < i <mn, then f is also a version of E[X | F].

Proof. Since the events Ay, ..., A, € A and satisfy P[|J;_; A;] = 1, we have

n
X=Xy 0 = DX
=1

P-almost surely. Thus, by linearity of expectation, we have

E[X | F] =) E[X1y4, | F].
i=1

Furthermore, since P[A4;] >0 forall 1 <i<mn gives

n n

Y E[X1y4, | F]= anE[X | F AiE[La, | Fl=f> E[la, | F]

=1 =1 =1

P-almost surely. Finally, observing that

f]:l

> E[la, | FI=E[lyy, 4,
=1

concludes the proof. O
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Lemma A.3. Let (2, A,P) be a probability space, X be an integrable random variable, let
F C A be a sub-o-field and let A € A with P[A] > 0.

(1) If A€ F then E[X | F] =E[X | F; A] Pa-almost surely.

(2) If E[ly | F] = E[1a | F,G] for a o-field G C A with o(X) C G, then E[X | F] =
E[X | F; A] Pa-almost surely.

Proof. For |(1)} note that for A € F we have E[X1,4 | F] = 14E[X | F]. Moreover,
Cemima &) yields
EXT1, | F]=E[l4 | FIE[X | F;A] = 14E[X | F; A].

Thus, we have T4E[X | F|] = 14E[X | F; A] and, in particular, E[X | F| = E[X | F; A]
P 4-almost surely.

For observe that

XE[l4 | F,G] | F]
XE[La | F] | F]
X | FIE[L4 | F]

PP-almost surely, where the second equality follows from o(X) C G and the third follows

from E[l4 | F]=E[14 | F,G]. The claim now follows from
O

A.2 Regular conditional distributions

Consider a probability space (2, A, IP) with a sub-o-field 7 C A, a measure space (D, D) and
(D, D)-valued random variable X. A map @ : Q x D — [0, 1] is called a regular conditional
distribution of X given F if

(1) Q(w, ) is a probability measure on (D, D) for all w € £ and
(2) Q(-,A) is a version of E[lxea | F] for all A € D.
The following statements makes regular conditional distributions particularly useful.

Theorem A.4 ([11][Theorem 2.19|). Let (22, A, P) be a probability space, let X be a (D,D)-
valued random variable and let Y be a (E, E)-valued random variable. If Q : QXD is a reqular
conditional distribution of X given o(Y'), then, for all D @ £-measurable f : D x E — R
it holds that

E[f(X,Y) | Y](w) = /D f(@,Y (@) Q(w, do)

for P-almost all w € Q2.
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Moreover, the following lemma helps to identify regular conditional distributions based
on a m-system.

Lemma A.5. Let (2, A,P) be a probability space and let F C A be a sub-o-field. Let X be a
(D, D)-valued random variable on (2, A,P) and let G C D be a w-system that generates D.
Assume there is a function @ :  x D such that

(1) Q(w,-) is a probability distribution on (D, D) for allw € Q and
(2) Q(-,G) is a version of E[lxeq | F] for allG € G .

Then Q(-, A) is a version of E[lxca | F| for all A € D and, in particular, Q is a reqular
conditional distribution for X given F.

Proof. Consider the set of events
H={AeD|Q(A)is aversion of E[lxeca | F]}.

Our goal is to prove H = D. To this end, note that G C H C D. Thus, if we prove that H
is a Dynkin system, then the m-A Theorem implies that D = o(G) C H, which proves our
claim. To show that H is a Dynkin system, we need to argue that D € H and that H is
closed under complements and countable disjoint unions.

To see that D € H, note that Q(w,D) = 1 for all w € Q. Thus, Q(-,Q) is trivially
JF-measurable. Moreover, for any B € F, it holds that

E[1pQ(, D) | F]=E[lp | F] = E[lplxep | F],

which shows that Q(-, D) is indeed a version of E[lxep | F].

Next, fix some G € ‘H and observe that Q(w, (G)¢) =1 — Q(w, G) for all w € Q. Since
Q(-,G) is by assumption a version of E[lxeq | F] (therefore F-measurable), this shows
that Q(-, (G)°) is F-measurable. Moreover, for all B € F, we have

E[1pQ(-, (G)°) | Fl=E[lp | F] - E[1pQ(-,G) | F]
=E[lplxep | F] - E[lglxec | F]
= Fl,

HBﬂxaGV

which proves that (G)° € H.

Finally, consider some sequence of disjoint events (Gy)new € HY and set G = (J,,cy Gn-
Note that Q(w,G) = > o Q(w, Gy) for all w € Q. Since each function Q(-, G,) is a version
of E[lxeq, | F], this implies that Q(-,G) is F-measurable. Moreover, for all B € F it
holds that

ElpQ(-G) | Fl=> ElpQ(,Gn) | F1= Y Ellplxeq, | F] =E[lplxec | Fl,
nelN nelN

showing that G € ‘H. Thus, H is a Dynkin system, which concludes the proof. O
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B Hitting times and tail bounds

We frequently make use of the following version of Wald’s identity.

Lemma B.1. Let (2, A, P) be a probability space, let (Xy,)nen., be a sequence of random
variables on (Q, A, P) with values in R>o and let F C A be a sub-o-field. Suppose there
is a F-measurable random variable M such that for all n € N it holds that E[X,, | F] <
M almost surely. Let N be a random wvariable in IN such that for all n € IN it holds

that E[ Xy In>y | F] = E[X,, | FIE[1N>y | F| almost surely. Then E[Zgzl X .7-"} <
ME[N | F] almost surely.
Proof. Using monotone convergence we have

N 00 %)

E[> X, ]-"] = EllyenX, | Fl=> E[X, | FIE[lyz, | F]
n=1 n=1 n=1
<SME|> lyzn ]-"] = ME[N | F] O
n=1

Moreover, we use the following drift theorem to bound the expected number of iterations
of our sampling algorithm.

Theorem B.2 ([48, Theorem 1|, [47, Theorem 2|). Let (Xi)iew, be an integrable random
process over R that is adapted to a filtration (Fi)ien, and let T = inf{t € Ny | X; < 0}.
Assume

a) Xelpse >0 for allt € N and
b) there is some € € Rxg such that BE[(X; — Xi41)Lrse | Fi] > elpsy for allt € N.
Then E[T] < %. Further, suppose that

c) Xo < x for some x € R~y and

d) there is some ¢ € Rxq such that | Xy — Xy 41| < ¢ for all t € Ny.

Then, for all s > 2?1", P[T > 5] < exp(f fg;).
Finally, we make use of the following tail bound for Poisson random variables.

Theorem B.3 (|59, Theorem 5.4|). Let Y ~ Pois(p) for some p € Rsg. For ally > p it
holds that P[Y > y] < e_p<%)y.

In particular, we use the following corollary of the above bound.

Corollary B.4. Let Y ~ Pois(p) for some p € Rsg. For all vy > 1 all y > eYp it holds that
PlY >y] < e—(v-1y

Proof. Since y > €7p > p, implies that

Yy Yy
Py >yl <e (L) < (L) =e -y, 0
Yy e’p
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C Gibbs point processes

Here we collect some useful lemmas about Gibbs point processes.
The following technical lemma will come in handy.

Lemma C.1. Let A’y C A’ C R? be bounded and measurable. Denote by mar ar, : Npv — Ny,
the projection n — n N A'v. Then war pr, is Rpr-measurable. Moreover, for A'y = A"\ A’y it
holds that

g= {W/:},A’l(Al) N WX’l,A’Q (Ag) A€ 9‘{/\/1,142 S S)QA/2 }

is a w-system that generates Rp:.

Proof. We start by showing that mps zr, is Sip-measurable. To this end, set E](Sl)k =

{neNn, | InNB| =k} € Ry, for every Borel set B C A’y and k € Ny, and observe that
EW ={Epy | k € No, B C A’y Borel} generates ®/,. Thus, it suffices to show for every

Eg)k e €D that WX'IA'l (Eg)k) € Rys. By definition, we have

mxan (Bok) = {n€ N

which proves the first part of the claim.

For the second part, note that G is non-empty and, since R/, and 2Ry, are closed under
countable intersections, the same holds for G. In particular, G satisfies the definition of a
m-system. It remains to show that G generates $Rp,. Analogously to the first part of the
proof, set Eg}k ={neNp, | InNB| =k} € Ry, for every Borel set B C A’y and k € INy,
set Epr = {neNa | InNB| =k} € Rp for every Borel set B C A’ and k € INy, and
define £ = {Epy, | k € Ng, B C A’ Borel }. Since € generates Ry, it suffices to show that
£ C o(G). To this end, fix some Epj € £ and observe that

(1N AN Bl =k} = {ne Ny | [1n B =k} € Ry,

k
EB,k: U({T]GNA/ ‘nﬂ(BﬂA/1)|:k1}ﬂ{T]€NA/ ‘nﬂ(BﬂAlg){:k—kl})
k1=0
F 1) 2)
= U (WX'I,Aq (E(BOA’l,kl) N WX/I,A/Q <E1(3ﬂA’2,k—k1>)'
k1=0

Thus, every Epj € £ can be written as a finite union of sets in G and £ C ¢(G), which
proves the claim. O

In this bounded-range setting, the following lemma might be seen as a version of the
spatial Markov property for partition functions.

Lemma C.2. Let ¢ be a repulsive potential with bounded range r € R>¢. Moreover, let
A C A and let be any activity function X : RY — Rsq. For every two point configurations
N1, M2 € Np with dist(A',m ©n2) > r, where & denotes the symmetric difference, it holds
that ZA/ ()‘771) = ZAr ()‘772)'
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Proof. Since the range of ¢ is bounded by r, it holds that A, (x) = Ay, (x) for all z € A.
Therefore, we have

1 _ 1 _
Zy ) =Y i o X e @) g =) i o X, e 1@ Az = Zy(Ay,),
k>0 k>0

which proves the claim. ]
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