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Abstract 

The use of Automated Valuation Models (AVMs) in the context of traditional real estate 

valuations and their performance has been discussed in the academic community for several 

decades. Most studies focus on finding which method is best suited for estimating property 

values. One aspect that has not yet been studied scientifically is the appropriate choice of the 

spatial training level. The published research on AVMs usually deals with a manually defined 

region and fails to test the methods used on different spatial levels. The aim of our research is 

thus to investigate the impact of training AVM algorithms at different spatial levels in terms of 

valuation accuracy. We use a dataset with about 1.2 million residential properties from 

Germany and test four different methods, namely Ordinary Least Square, Generalized Additive 

Models, eXtreme Gradient Boosting and Deep Neural Network. Our results show that the right 

choice of spatial training level can have a major impact on the model performance, and that this 

impact varies across the different methods. 
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Introduction 

The use of Automated Valuation Models (AVMs) in the context of traditional real estate 

valuations and their performance have been discussed in the scientific community for several 

decades, and increasingly scrutinized by practitioners in recent years.  Most studies focus on 

the comparison of different statistical methods. Accordingly, there is a large body of literature 

comparing traditional hedonic models with more modern approaches of machine learning 

(ML), or approaches from the field of spatial econometrics (see e.g.  Pace & Hayunga, 2020). 

The aim of these studies is to find out which method is best suited for estimating real estate 

values or prices.The use of Automated Valuation Models (AVMs) in the context of traditional 

real estate valuations and their performance have been discussed in the scientific community 

for several decades, and increasingly scrutinized by practitioners in recent years.  Most studies 

focus on the comparison of different statistical methods. Accordingly, there is a large body of 

literature comparing traditional hedonic models with more modern approaches of machine 

learning (ML), or approaches from the field of spatial econometrics (see e.g. Pace & Hayunga, 

2020). The aim of these studies is to find out which method is best suited for estimating real 

estate values or prices.The use of Automated Valuation Models (AVMs) in the context of 

traditional real estate valuations and their performance have been discussed in the scientific 

community for several decades, and increasingly scrutinized by practitioners in recent years.  

Most studies focus on the comparison of different statistical methods. Accordingly, there is a 

large body of literature comparing traditional hedonic models with more modern approaches of 

machine learning (ML), or approaches from the field of spatial econometrics (see e.g. Pace & 

Hayunga, 2020). The aim of these studies is to find out which method is best suited for 

estimating real estate values or prices. 

Apart from the method selection, AVMs can also be optimized in many other areas. For 

example, the data selection and the cleaning or preparation of the selected data play an 

important role for the performance of the AVM. Another aspect is the choice of spatial level on 

which to train the selected methods. This is decisive for determining which data are ultimately 

included in the estimation of the AVM and thus what information is used and what is ignored. 

Thanks to georeferencing, models can in principle be trained at any level. For example, a model 

can be trained either at the level of a city, the associated commuter belt, or even at a nationwide 

level. However, this aspect has received little to no attention from the academic community 

until now. The published research on AVMs usually deals only with a manually defined region 

and fails to test of the methods used on different spatial levels. One reason for this might be 
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that historically, the availability of suitable real estate data1 for academic purposes has been 

limited and therefore, analyses could only be conducted in the limited area where the data was 

available. However, data availability has improved massively in recent years, which is why this 

has now become less of a factor (Mortgage Bankers Association, 2019). In the meantime, there 

are providers of real-estate-related data in almost every country, which centrally force a 

collection of existing data and make them available for further analysis. Another reason could 

be the usually assumed heterogeneity of real estate markets. Traditionally, real estate markets 

are assumed to have a certain  regionality, which in turn would mean that data from other 

diverging regions would not provide further explanatory power. However, the fundamental 

question arises as to whether this heterogeneity is generally present or whether there are not 

also basic characteristics that apply consistently to all markets. If this is the case, then it may 

be possible to achieve a higher degree of valuation accuracy by adding further data from 

different markets.   

Therefore, the question arises as to whether the right choice of spatial level for training the 

models does not also represent an important, and so far underestimated role in improving the 

performance of AVMs. The aim of our research is to answer this question and to investigate the 

influence of training statistical models used for AVMs on different spatial levels.  

For this purpose, we compare a total of four different methods trained on four differing spatial 

levels each, and compare the overall performance of the models. Our objective is not primarily 

a comparison of the methods used, but a specific comparison within the individual methods 

with respect to their performance on different spatial levels. We are interested in whether 

different methods deliver different results, and whether there are any specific patterns to be that 

emerge. The methods we select for this purpose represent a collection of regularly used ones in 

academic studies related to AVMs. In addition to parametric Ordinary Least Square (OLS) 

regressions, we analyse semi-parametric Generalized Additive Models (GAM) as well as 

eXtreme Gradient Boosting (XGBoost) algorithms and Deep Neural Networks (DNN) from the 

field of modern ML. Our analysis is based on a dataset of about 1.2 million residential properties 

across Germany provided by professional real estate appraisers. The four spatial levels are 

based on the NUTS nomenclature of the European Union. The NUTS (Nomenclature of 

territorial units for statistics) classification is a hierarchical system for dividing up the economic 

territory of the EU and the UK. In total, there are four different subdivision levels, called NUTS-

 
1 In order to avoid a structural break within the dataset, the data should ideally come from one source or have 

been collected according to the same criteria. 
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0, NUTS-1, NUTS-2 and NUTS-3 which we use to train our models on a country, state, cross-

regional, and county level, respectively2. 

Our research has various theoretical and practical implications that collectively help to improve 

the valuation accuracy of AVMs. Our findings show that the right choice of spatial training 

level can have a significant influence on the model performance of different AVM algorithms, 

and that this influence varies considerably, depending on the type of method. The results 

indicate that for parametric and semi-parametric approaches, it is advisable to choose a training 

level that is relatively small. This shows that the trained OLS and GAM are not able to draw 

further explanatory power from observations that lie outside a certain region. The results for 

the two modern ML algorithms are quite different. We observe that they are able to gain a 

higher degree of explanatory power by adding further observations, and that this effect 

outweighs that of local heterogeneity. Therefore, we recommend for modern ML algorithms 

choosing, a generally higher training level. 

Literature Review  

AVMs are computer-based applications, which use various statistical and algorithmic 

approaches to assess the value or price of a property in an automated manner. Used correctly, 

they can be a cost-effective and rapid alternative to traditional valuation procedures (Schulz et 

al., 2014). AVMs emerged mainly from the results of research in the area of hedonic price 

models (HPM). HPMs were developed to estimate the effects of individual characteristics, so-

called marginal prices, of a good on its value or price. By aggregating these marginal prices, 

the overall value of a good can subsequently be calculated (Chau & Chin, 2002). HPMs were 

first brought into a real estate context by Lancaster (1966) and Rosen (1974). As Malpezzi 

(2003) and Sirmans et al. (2005) show, a diverse and dynamic field of research has emerged 

since then, addressing a wide variety of real-estate-specific issues. 

To improve the quality of automated real estate appraisals, the focus of the research community 

in recent years has been almost exclusively on finding the best-fitting method. For this purpose, 

a large number of different approaches were either newly designed, or methods from other areas 

were adapted and applied. The applied methods cover the complete bandwidth of statistical 

methods and can be classified either as parametric, semi-parametric or non-parametric 

approaches. Regarding parametric approaches, most common multiple linear regression (MLR) 

models are applied and tested. Schulz et al. (2014), for example, use a flexible parametric 

 
2 Due to data availability, the models could not be analysed at an even smaller spatial level. 
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hedonic regression introduced by Bunke et al. (1999) to measure the potential predictive 

performance of an AVM applied to the housing market of Berlin in Germany. Other examples 

of parametric approaches can be found at Tse (2002), Pace and LeSage (2004), Páez et al. 

(2008), Bourassa et al. (2008) Osland (2010) and Zurada et al. (2011). Semi-parametric 

approaches can come in a variety of different forms. An often-used semi-parametric approach 

is the GAM, first introduced by Hastie and Tibshirani (1986). In contrast to traditional MLR 

models, the GAM is able to automatically control for non-linear relations between the 

dependent and independent variables. An early and prominent application within a real estate 

context is the study of Pace (1998). The author applies a GAM to a dataset for residential 

properties in Memphis (Tennessee) and finds that the GAM is able to outperform parametric 

and polynomial methods in terms of predictive behaviour. A more recent example of the GAM 

can be found in Dąbrowski and Adamczyk (2010). Non-parametric approaches are a category 

of methods which do not need an a-priori specified functional form regarding the predictor. 

Instead, the form is learned by the information derived from the data itself. Given this flexibility 

non-parametric approaches are usually able to account for non-linearities and interactions 

within datasets and able to outperform parametric and semi-parametric approaches (Stang et 

al., 2022). Prominent examples of non-parametric approaches include modern machine learning 

methods like Support Vector Machines, Artificial Neural Networks or Tree-Based Models. A 

real-estate-specific application of ML methods can be found in Mayer et al. (2019). The authors 

apply three commonly used basic techniques of modern ML (Random Forrest Regression, 

Gradient Boosting, Neural Networks) and compare their performance against some more 

traditional parametric approaches. Their findings show that the non-parametric methods are 

clearly able to outperform the more stricter parametric approaches. Other real-estate-specific 

applications of non-parametric modelling techniques can be found at Chun Lin and Mohan 

(2011), Yoo et al. (2012), Antipov and Pokryshevskaya (2012), W. J. McCluskey et al. (2013), 

Kok et al. (2017) and Yilmazer and Kocaman (2020). 

Another aspect with regard to the optimization of the valuation accuracy of AVMs is, besides 

the method selection, the choice of spatial level for training the models. The level at which the 

models are trained implies for which data, and thus ultimately also which information is 

considered in the context of the valuation and which is not. This could have a strong influence 

on the results of the models and is therefore a factor that should not be neglected. AVM-related 

studies currently always focus on a predefined region. The region to which the analyses are 

limited is in most cases the city level or the immediate surroundings of a city. Yao et al. (2018), 

for example, focus on the city level of Shenzhen (China), and W. McCluskey et al. (2012) 
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choose the Lisburn District Council area around Belfast (North Ireland) to test their hypotheses. 

Other authors go a step further and conduct their analysis at the city district level. Baldominos 

et al. (2018), for example, focused on the Salamanca district of Madrid (Spain), Hong et al. 

(2020) run their analysis for the Gangnam district of Soul (South Korea), and Yilmazer and 

Kocaman (2020) run their model at the Mamak district of Ankara (Turkey). However, none of 

the authors investigates whether the chosen level is also the best one for training the models. 

To the best of our knowledge, there is currently no study that deals with the optimal spatial 

level for training AVMs. Our aim is therefore to close this gap in the literature and to determine 

the influence of the choice of spatial level on the quality of statistical valuation results. In 

particular, we are interested in whether this influence is the same for different types of methods 

(parametric, semi-parametric, non-parametric) or whether there are fundamental differences. In 

our analysis, we hence calculate the valuation accuracy of four different statistical methods 

(OLS, GAM, XGBoost, DNN) each trained at four different spatial levels, and compare their 

results subsequently. 

Data 

We base our analysis on a dataset consisting of 1,212,546 residential properties. These 

observations are distributed across Germany and were collected between 2014 and 2020. The 

dataset originates from the valuation department of one of Germany's largest mortgage lenders. 

Table 1 shows the distribution of the data over the observation period.  

Table 1: Observations per year 

 2014 2015 2016 2017 2018 2019 2020 

n 196318 196403 176238 163365 165106 165996 149120 

(%) 0.1619 0.1620 0.1453 0.1347 0.1362 0.1369 0.1230 

Notes: This table reports the number of observations available for each year. Over the years, the trend is slightly 

downward. Especially in 2020, the number of observations is lower, due to the COVID restrictions prevailing at 

that time. Due to the contact restrictions in place, on-site visits by appraisers were limited. 

 

The data are actual valuation data collected by professional appraisers. We use the assessed 

market value as our target variable. An overview of the average market values across Germany 

is provided in Figure 1. The areas with the highest market values can be found in the so-called 

Top-73 cities and their commuter belts. Furthermore, the market values are by far the highest in 

the south of Germany and tend to be lower in the east. 

 
3 The Top-7 are the most important cities in Germany, namely Berlin, Munich, Hamburg, Frankfurt, Cologne, 

Dusseldorf and Stuttgart. 
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As hedonic characteristics, we use a set of features describing the structural characteristics, the 

micro-location and the macro-location of the properties. In addition, the year and quarter of the 

valuation are used to capture a temporal trend and seasonality. An overview of all the features 

used and their univariate distribution can be seen in Table 2.  Before being used, the dataset 

was cleaned to account for duplicates, incompleteness, and erroneous data points. There are no 

correlations of concern within the dataset, so that all variables can be integrated accordingly.4 

 

Figure 1: Average market value per district 

 

Notes: This figure shows the average market values per NUTS-3 district. The average was calculated using all 

available observations within the individual districts. The highest market values can be found in the vicinity of 

the major metropolitan regions and in the south of Germany. The strong discrepancy between the west and east 

of Germany is striking. The market values observed here are also consistent with other studies (see e.g., Just & 

Maennig, 2012), so that it can be assumed that the observations used are representative. 

 

 

 

 

 
4 The correlation matrix is available on request. 
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Table 2: Descriptive statistics 

Variable Unit Mean Median 
Standard 

Deviation 
Maximum Minimum 

Market value Integer 228157.10 200000.00 141717.54 3860000.00 20100.00 

Modernization year Integer 1989.10 1988.00 17.19 2020.00 1950.00 

Year of construction Integer 1978.48 1981.00 29.77 2023.00 1900.00 

Year of valuation Integer 2016.82 2017.00 2.00 2020.00 2014.00 

Quarter of valuation Integer 2.45 2.00 1.12 4.00 1.00 

Quality grade Integer 3.12 3.00 0.51 5.00 1.00 

Living area Float 120.31 114.68 51.69 440.00 15.00 

Lot size Float 436.48 323.00 541.66 10000.00 0.00 

Longitude Float 9.25 8.94 1.90 19.25 5.87 

Latitude Float 50.62 50.74 1.85 55.02 47.40 

Micro score Float 72.73 74.20 14.44 99.85 0.00 

Unemployment ratio Float 4.96 4.17 2.89 26.89 0.04 

Time on market Float 12.27 10.90 4.80 106.00 0.20 

Basement condominium Binary 0.38 0.00 0.48 1.00 0.00 

No basement Binary 0.19 0.00 0.39 1.00 0.00 

Basement Binary 0.44 0.00 0.50 1.00 0.00 

Owner-occupied & Non-owner-occupied Binary 0.09 0.00 0.29 1.00 0.00 

Owner-occupied Binary 0.70 1.00 0.46 1.00 0.00 

Non-owner-occupied Binary 0.21 0.00 0.41 1.00 0.00 

Object subtype condominium Binary 0.38 0.00 0.48 1.00 0.00 

Object subtype detached house Binary 0.42 0.00 0.49 1.00 0.00 

Object subtype no detached house Binary 0.20 0.00 0.40 1.00 0.00 

Condition good Binary 0.38 0.00 0.49 1.00 0.00 

Condition disastrous Binary 0.00 0.00 0.02 1.00 0.00 

Condition middle Binary 0.45 0.00 0.50 1.00 0.00 

Condition moderate Binary 0.02 0.00 0.14 1.00 0.00 

Condition bad Binary 0.00 0.00 0.05 1.00 0.00 

Conidition very good Binary 0.15 0.00 0.36 1.00 0.00 

Regiotype agglo commuter belt Binary 0.15 0.00 0.36 1.00 0.00 

Regiotype agglo cbd Binary 0.13 0.00 0.34 1.00 0.00 

Regiotype agglo middle order centre Binary 0.13 0.00 0.34 1.00 0.00 

Regiotype agglo upper order centre Binary 0.04 0.00 0.19 1.00 0.00 

Regiotype rural commuter belt Binary 0.15 0.00 0.36 1.00 0.00 

Regiotype rural middle order centre Binary 0.07 0.00 0.26 1.00 0.00 

Regiotype rural upper order centre Binary 0.01 0.00 0.07 1.00 0.00 

Regiotype urban commuter belt Binary 0.15 0.00 0.36 1.00 0.00 

Regiotype urban middle order centre Binary 0.10 0.00 0.29 1.00 0.00 

Regiotype urban upper order centre Binary 0.07 0.00 0.26 1.00 0.00 

NUTS-1 String - - - - - 

NUTS-2 String - - - - - 

NUTS-3 String - - - - - 

Notes: This table reports the descriptive statistics of the dataset. Polytomous variables are one-hot encoded to 

binary variables to account for the requirements of modern machine learning methods. For the rather traditional 

methods – OLS and GAM – these polytomous variables are dummy encoded. The numbers were determined on 

the basis of all available observations. Overall, both structural features and location-describing features were used 

for model estimation. The selection of the parameters was in accordance with other publications in the AVM 
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literature (see e.g., Metzner & Kindt, 2018). The parameter “market value” is the dependent variable in the model 

estimation.  

 

Features describing the structural characteristics of properties include the subtype of property, 

year of construction, modernization year, living area, lot size, use of the property, quality grade, 

condition and variable denoting whether the property has a basement or not. The subtype of a 

property can be either a “Condominium”, “Detached house” or “Not a detached house”. The 

year of modernization represents when the last major refurbishment took place. The use of the 

building describes the possible uses, whereby the characteristics are either “Owner-occupied & 

Non-owner-occupied”5, “Owner-Occupied” or “Non-owner-occupied”. Basically, the variable 

describes whether a property can be rented to a third-party or not. The quality of the property 

is measured via a grade, on a scale ranging from 1 (very poor) to 5 (very good). The general 

condition of the property is represented by a categorial variable with 5 different categories 

ranging from disastrous to very good. The variable “Basement condominium” measures 

whether an apartment has an extra cellar compartment or not, whereas the “Basement” and “No 

Basement” variables are only valid for detached and non-detached houses. 

The features describing the micro-location of the properties are the latitude and longitude, the 

different regiotypes, and the micro score. The regiotype is provided by Acxiom6, and clusters 

Germany into ten different area types. In general, Acxiom defines four different spatial types: 

“Central-Business-District”, “Agglomeration Area”, “Urban Area” and “Rural Area”. The last 

three can be divided further into three sub-categories each (“Upper Centers”, “Middle Centers”, 

“Commuter Belt”). All addresses in Germany can be allocated to one of the ten area types. The 

individual area types are determined according to the respective settlement structure and 

population density within the municipality and its surrounding area. The micro score of a 

location is calculated via a gravity model and reflects the accessibility in the sense of proximity 

to selected everyday destinations. A more detailed description of the construction of the micro 

score of a location can be found in Appendix I. In addition, the two socio-economic variables 

“unemployment ratio” and “Time-on-Market”, are included to represent the macro-location of 

the properties. All are available at the ZIP code level.  

The spatial breakdown of our dataset is based on the NUTS nomenclature of the European 

Union. To account for local fixed effects, three features, namely “NUTS-1”, “NUTS-2” and 

 
5 Applies if the property is both partly owner-occupied and partly non-owner-occupied (e.g., single-family 

home with attached rental unit). 
6 Acxiom is an American provider of international macroeconomic and microeconomic data. Further information 

can be found at: https://www.acxiom.com/. 
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“NUTS-3”, are included in the dataset. NUTS-0 describes the country level, NUTS-1 describes 

major socio-economic regions within the country, NUTS-2 divides the corresponding NUTS-1 

region into smaller basic regions for the application of regional policies, and NUTS-3 again 

divides the individual NUTS-2 regions into small regions for specific diagnoses.7 In general, 

Germany can be divided into a single NUTS-0, 16 NUTS-1, 38 NUTS-2 and 401 NUTS-3 

regions. Since only a few observations were available in some NUTS-3 regions, we had to 

combine these regions and ended up with a total of 327 NUTS-3 regions for our analysis. Figure 

2 provides an overview of the different NUTS regions and the number of observations available 

for the specific regions. Analysing the NUTS-3 level, most observations are located around the 

largest German metropolitan areas like Berlin, Hamburg and Munich. In addition, the NUTS-2 

and NUTS-1 levels show that a difference can be observed between west and east Germany, 

with the east tending to have fewer observations. This is consistent with the widely diverging 

population figures between these regions. A comprehensive introduction to the structure of the 

German regions can be found at Just and Schäfer (2017), and a more detailed overview of the 

German real estate markets is given by Just and Maennig (2012).  

 

 

 

 
7 Further information about the NUTS nomenclature can be found at: 

https://ec.europa.eu/eurostat/web/nuts/background. 
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Figure 2: Number of observations per NUTS region 

NUTS-1

 

NUTS-2

 

NUTS-3 

 

Notes: This figure highlights the observations available for the individual NUTS regions. It can be seen that 

fewer observations are available, especially in the eastern part of Germany. This can be explained by the 

generally lower market activity in these regions. Structurally, these regions are mostly rural and characterized 

by a high level of out-migration and vacancies. The data distribution is therefore not a dataset-specific distortion, 

but rather a representative reflection of the German residential real estate market. 
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Methodology  

Ordinary Least Square Regression - OLS 

The first method applied is an Ordinary Least Square Regression (OLS). The main advantage 

of the OLS is that it is easy both to understand and to interpret. Therefore, it is the most 

commonly used machine learning method and often considered as a benchmark. The aim of an 

OLS is to explain a dependent variable 𝑦𝑖, 𝑖 ∈ {1, … , 𝑛}, with independent variables 

𝑥𝑖,1, … , 𝑥𝑖,𝑘, a-priori unknown parameters 𝛽0, 𝛽1, … , 𝛽𝑘  and an error term 𝜀𝑖: 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑘𝑥𝑖,𝑘 + 𝜀𝑖 , 

for all observations with 

𝜇𝑖 = 𝐸[𝑦𝑖] =  𝛽0 +  𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑘𝑥𝑖,𝑘. 

Thereby, the relationship between the dependent variable and independent variables is assumed 

to be linear in parameters, and the error terms 𝜀𝑖 are considered to be independent and to have 

a constant variance. For further information, we recommend a look at Fahrmeir et al. (2013). 

Several optimizations were performed to account for locational differences and to achieve the 

best model performance, including backward stepwise regression, interaction terms and 

variable transformations.  

Generalized Additive Model – GAM 

Our second method is a Generalized Additive Model (GAM). It is a further development of the 

OLS and based essentially on the concept of the Generalized Linear Model. A monotonic link 

function is used to model the relationship between the expected value of the dependent variable 

and the independent variables. The main advantage of the GAM over the OLS is that 

unspecified, non-parametric smoothing functions 𝑠𝑗, 𝑗 ∈ {1, … , 𝑘}, of the covariates can be 

included in the model: 

𝑔(𝜇𝑖) =  𝛽𝑜 + 𝑠1(𝑥𝑖,1) + ⋯ + 𝑠𝑘(𝑥𝑖,𝑘). 

For a more extensive description of the GAM, we recommend Wood (2017). 

Again, multiple model optimizations were carried out. Additional to the above-mentioned 

methods, this time, different penalized spline types like cubic and thin plane splines were 

considered. As in the OLS, these optimizations must be implemented manually. 

Extreme Gradient Boosting – XGBoost 
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The third method is a so-called Extreme Gradient Boosting (XGBoost) algorithm, is a tree-

based ensemble learning method. Ensemble learning algorithms train many weak learners ℎ𝑚, 

in our case, single decision trees and combine them to form one strong learner ℎ: 

ℎ(𝒚|𝒙) =  ∑ 𝑢𝑚ℎ𝑚(𝒚|𝒙)

𝑀

𝑖=1

, 

with 𝑢𝑚 being used to weight the weak learners. 𝑀 denotes the number of single trees, 𝒙 is the 

features space and 𝒚 the response variable. In boosting, the weak learners ℎ𝑚 are trained 

sequentially. The algorithm starts with one model and uses the errors made to improve the 

subsequent trees. In Gradient boosting, the so-called gradient descent algorithm is used to add 

new trees in order to minimize the loss of the model. The eXtreme Gradient Boosting is a 

computationally effective and highly efficient version of Gradient Boosting. The advantage of 

XGBoost is that it can recognise very complex patterns within a large amount of data. However, 

it is not clear from the model structure why a certain result occurs. The eXtreme Gradient 

Boosting is a computationally effective and highly efficient version of Gradient Boosting. The 

XGBoost can automatically detect complex non-linearities or higher-order interactions within 

a large dataset, with fewer manual optimizations needed, compared to the OLS and GAM. A 

detailed description of tree-based methods, ensemble learning and gradient boosting can be 

found in Hastie et al. (2001). 

Deep Neural Network – DNN  

Lastly, we consider deep neural networks (DNN), a popular and performant machine learning 

technique. DNNs are designed from biological neural networks (Pham, 1970), like the human 

brain, and consist of multiple layers, which are typically densely connected. In turn, each layer 

consists of numerous neurons, each processing the weighted output of all (hence the term dense) 

neurons of the previous layer, combined with a bias value, and applies a so-called activation 

function onto this linear combination. To capture this formally, let 𝑦  be a neuron in the current 

layer, and let 𝑛  be the number of neurons in the previous layer. For 𝑖  ∈  {1,   … ,  𝑛}, let 𝑥𝑖 be the 

output of the 𝑖 -th neuron in the previous layer and let 𝑤𝑖 be the according weight. Furthermore, 

let 𝑓  be the activation function of the current neuron and 𝑏 the bias term. Then, the output of 

the neuron 𝑦  is   

𝑦  =  𝑓(𝑏  +   ∑ 𝑥𝑖
𝑛
𝑖=1  𝑤𝑖). 

A DNN then consists of multiple such neurons and layers.  
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To train a DNN for a specific task and data, the weights and biases are adapted. In a forward-

propagation step, the data is passed through the DNN in batches. For each datum in a batch, a 

prediction is calculated and the predictions are then evaluated with regard to a loss function. 

The weights and biases are then adjusted to minimize the loss function using gradient descent. 

After all the data is passed through the DNN once, we say that one epoch has passed. After 

sufficiently many epochs, the DNN is trained and predictions for a new object can be obtained 

by passing the object through the DNN again. 

Finding the right architecture of a DNN for the task at hand is an important yet tedious task. 

We use the hyperparameter optimization framework Optuna (Akiba et al., 2019) to find suitable 

architectures for each considered region. In particular, we allow Optuna to choose the number 

of layers, the number of neurons per layer and the activation function per layer. Furthermore, 

we allow Optuna to choose the dropout rate per layer, which controls how many neurons per 

layer are actually activated. 

The advantages of deep neural networks are that they are very flexible and adapt automatically 

to all data. Therefore, they can capture complex non-linearities and higher order interactions by 

themselves. Besides that, compared to other modern machine learning approaches, deep neural 

networks require less computation power in order to produce reliable results. For more 

information about DNNs, see Goodfellow et al. (2016). 

Testing concept  

To evaluate the predictive performance of the models, an extending window approach is 

implemented according to Mayer et al. (2019). Figure 3 illustrates the testing concept.  
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Figure 1: Extending window approach 

 
Notes: This figure visualizes the applied extending window approach-testing strategy. The 

strategy is the right choice for the purposes of this study, as it best reflects the test procedure of 

conventional AVM providers and thus provides a strong reference to reality. AVM providers 

usually update their models on a quarterly basis as well. The results obtained in this way 

therefore represent an extract that is in all probability also achievable in a real-life situation. 

 

 

The first iteration divides the dataset into a training set with observations from Q1/2014 to 

Q4/2019 and a test set from Q1/2020. In the next steps, the data of the tested quarter is added 

to the training set, and the models are retrained and tested on data of the next quarter. The 

advantages of this approach are that all algorithms are tested on unseen data and thus produce 

unbiased, robust results. Furthermore, the testing approach provides a realistic testing scenario. 

In Table 3, the number of training and test observations for each iteration are presented.  

Table 3: Training and test observations 

Notes: This table shows the number of training and test observations over the four quarters of 2020. The number 

of training data increases over the quarters by the number of test data from the previous quarter. With regard to 

the test data, it can be seen in particular that fewer observations are available in Q2 and Q4. This can be attributed 

to COVID restrictions which made it difficult to conduct assessment visits, especially shortly after the pandemic 

outbreak (Q2) and during the winter (Q4).   

  

Data split Q1 Q2 Q3 Q4 

Training 1,063,426 1,106,866 1,141,612 1,180,741 

Test 43,440 34,746 39,129 31,805 
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Evaluation metrics 

For each model, we compute the Mean Absolute Percentage Error (MAPE) and the Median 

Absolute Percentage Error (MdAPE) as accuracy measures. Unlike Mayer et al. (2019), we use 

the relative rather than the absolute measures of error to enable a better comparison between 

the different spatial levels. In order to obtain an overall picture of the strength and weaknesses 

of the algorithms, we additionally provide the proportion of predictions within 10 and 20 

percent (PE(x)), as well as the coefficient of determination R2, following Cajias et al. (2019) 

and Stang et al. (2022). A detailed description of all metrics can be found in Table 4. 

Table 4: Evaluation metrics  

Error Formula Description 

Mean Absolute 

Percentage Error 

(MAPE) 

 

𝑀𝐴𝑃𝐸(𝑦, �̂�) =  
1

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1

 

Mean of all absolute 

percentage errors. A lower 

MAPE signals higher 

overall prediction 

accuracy in percent. 

 

Median Absolute 

Percentage Error 

(MdAPE) 

 

𝑀𝑑𝐴𝑃𝐸(𝑦, �̂�) =  𝑚𝑒𝑑𝑖𝑎𝑛(|
𝑦𝑖 − �̂�𝑖

𝑦𝑖
|) 

Median of all absolute 

percentage errors. A lower 

MdAPE denotes a higher 

precision in percent 

without being sensitive to 

outliers. 

 

Error buckets 

(PE(x)) 
𝑃𝐸(𝑥) = 100 |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
| < 𝑥 

Percentage of predictions 

where the relative 

deviation is less than 𝑥%, 

with 𝑥 being 10 and 20. A 

larger PE(x) signals a 

lower variation in the 

predictions.  

 

R² 𝑅2(𝑦, �̂�) = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

Coefficient of 

determination. A high R2 

is an indication of better 

goodness of fit of the 

model. 
Notes: This table reports the evaluation metrics used to determine the valuation accuracy of the different 

algorithms. All four metrics are regularly used to assess the quality of AVMS. The choice of several metrics in 

total allows a more differentiated statement to be made than would be the case with just one metric. 
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Results 

The aim of our study is to find out whether the choice of spatial level for training statistical 

models has an influence on their performance, and whether this influence is the same for all 

methods, or whether there are differences between more traditional and modern ML methods. 

In contrast to other publications, the main focus is not on which method performs best overall, 

but on an intra-method comparison, in order to determine which spatial level seems best suited 

for which method. Essentially, this enables finding out whether the assumed local heterogeneity 

of real estate markets is also reflected in the results of the valuation methods, or whether greater 

valuation accuracy can be achieved by adding further observations from other submarkets. For 

this purpose, two traditional approaches (OLS & GAM) as well as two modern ML approaches 

(XGBoost & DNN) are each trained for different spatial levels (NUTS-0, NUTS-1, NUTS-2, 

NUTS-3). 

Below, we show the results for all four methods. In order to achieve comparability and to be 

able to make a valid statement, we evaluate the results on an aggregated level. For this purpose, 

we first provide a table for each method that shows the individual evaluation metrics for the 

four spatial levels of all test observations. For the metrics in the “NUTS-3” row, for example, 

all test data is predicted with the various different models calculated at the NUTS-3 level and 

finally, the metrics are calculated for the nationwide aggregated residuals. For the other three 

levels, the procedure is then the same. Furthermore, four maps are shown for each method. The 

maps are essentially a cartographic representation of the results of the MAPE on a NUTS-3 

level from the tables presented earlier. The representation allows for more detailed 

interpretations with respect to regional performance. For example, it allows us to determine 

whether the results differ across different regions and whether general data availability plays a 

role.  

 

Results of the ordinary least squares regression 

The OLS results presented in Table 5 yield a clear pattern: The smaller the spatial level, the 

better the performance. In terms of the MAPE, the NUTS-3 models, which divide Germany 

into a total of 327 submarkets, are more than 3 percentage points better than the NUTS-0 model, 

which considers Germany as one overall market. In relative terms, this represents a performance 

increase of 18.0%. R² also shows that the NUTS-3 models are far superior to the NUTS-0 

model. They are able to explain 4.8% more of the variance of the dependent variable.  
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Table 5: OLS – model prediction errors 2020 throughout Germany 

Models MAPE MdAPE PE(10) PE(20) R² 

OLSNUTS-0 0.2023 0.1521 0.3423 0.6236 0.8214 

OLSNUTS-1 0.1914 0.1454 0.3577 0.6473 0.8389 

OLSNUTS-2 0.1852 0.1407 0.3688 0.6612 0.8487 

OLSNUTS-3 0.1714 0.1294 0.3985 0.7004 0.8692 
Notes: This table reports the model prediction errors for the OLS. The results are clear across all metrics and show 

that model performance improves with a decreasing spatial training level. This result confirms the correctness of 

the proceeding that in parametric approaches, a data selection that is as granular as possible must be conducted in 

each case. 

 

The cartographic representation in Figure 4 illustrates once more the results from Table 5. It 

can be clearly seen that the lower the spatial training level, the better the MAPE for each region. 

The maps further show that the increased performance at the aggregate level can essentially be 

attributed to improved performance in the eastern parts of Germany. In addition, the German 

North Sea Island group around Sylt stands out on the top left of the maps. Here, it can be seen 

that the performance in the NUTS-3 models is much better than in the NUTS-0 model. The real 

estate market on Sylt and the surrounding islands is characterized by very distinct peculiarities. 

Residential properties are traded there only at top prices and there is a strong dependency 

between the specific location of the property and its value. 

Figure 4: MAPE of the different OLS models 

NUTS-0 

 

NUTS-1 
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NUTS-2 

 

NUTS-3 

 

Notes: This figure visualizes the MAPE of the four different OLS models. The maps show the average absolute 

percentage error obtained when applying the individual models within a given region. For a granular 

representation, the 327 NUTS-3 regions were selected as the coresponding levels of representation. The 

representation of the scale is chosen so that the minimum and maximum are the largest and smallest errors 

respectively of all four methods. 

  

In summary, the OLS is only able to capture local effects of the German residential real estate 

market, when trained on a small spatial level. Therefore, it is advisable to use the smallest 

possible spatial level, in our case NUTS-3, for training the OLS. These results also seem to 

make sense in theory, since the OLS is very generalizing in its structure and therefore can hardly 

(or not at all) take into account local characteristics of individual regions, if training is done on 

a global level. For the NUTS-0 model, the coefficients of the OLS are smoothed by too many 

individual regional effects and this leads to a significant deterioration in performance. In the 

case of an OLS, it should therefore always be ensured that only regional data are used to 

determine the coefficients, and ideally that different submarkets are delimited from one another 

in advance. 

 

Results of the generalized additive model 

The results for the GAM, shown in Table 6, are also clear and similar to those for the OLS. The 

more granular the spatial level for training, the better the estimation accuracy. This is true for 

all five evaluation metrics used. This time, the MAPE at NUTS-3 level is even 23.8% better 

than the NUTS-0 model. The R² also shows that the NUTS-3 models can explain 4.4% more of 

the variance of the dependent variable than the NUTS-0 model. If we look at the general 
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performance of the GAM and compare it with the results of the OLS, we see that the GAM is 

generally better able to correctly estimate the market values of the properties. It can be seen that 

the use of non-linear functions, which characterizes the GAM, results in a boost in performance. 

It is interesting to note, however, that this effect only seems to really come into play at a granular 

level. While the relative difference between the MAPEs of the NUTS-0 models of the OLS and 

the GAM is only 2.6%, it increases continuously and amounts to 7.7% at the level of the NUTS-

3 models. 

Table 6: GAM – model prediction errors 2020 throughout Germany 

Models MAPE MdAPE PE(10) PE(20) R² 

GAMNUTS-0 0.1971 0.1423 0.3641 0.6504 0.8299 

GAMNUTS-1 0.1832 0.1339 0.3852 0.6800 0.8478 

GAMNUTS-2 0.1734 0.1273 0.4044 0.7028 0.8656 

GAMNUTS-3 0.1592 0.1160 0.4398 0.7426 0.8737 
Notes: This table reports the model prediction errors for the GAM. The results are also clear across all metrics and 

similar to the results of the OLS. They show that model performance improves with a decreasing spatial training 

level. Again, the implication is that the smallest spatial level should be chosen to achieve the best model 

performance. 

 

The cartographic representation in Figure 5 again shows the same picture as the OLS. Once 

again, it is noticeable that especially the estimation accuracy in the eastern part of Germany can 

be improved by implementing the method on a granular level. Furthermore, the group of islands 

around Sylt stands out again and again it applies that the smaller the spatial level for training 

the model, the better the performance.  
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Figure 5: MAPE of the different GAM models 

NUTS-0  

 

NUTS-1 

 

NUTS-2 

 

NUTS-3 

  

Notes: This figure depicts the MAPE of the four different GAM models. The maps show the average absolute 

percentage error obtained when applying the individual models within a given region. For a granular 

representation, the 327 NUTS-3 regions were selected as the coresponding levels of representation. The 

representation of the scale is chosen so that the minimum and maximum are the largest and smallest errors 

respectively of all four methods. 
 

In summary, the same feedback as for the OLS can be formed for the GAM. On a higher spatial 

level, the GAM does not manage to represent the heterogeneity of the individual residential real 

estate markets as well as it does on a granular level. Therefore, when using a GAM for 

estimating residential property values, the smallest possible level should be used for training.  
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Results of eXtreme gradient boosting 

Compared to the first two methods, the results of the XGBoost yield a different picture. The 

evaluation metrics from Table 7 show that the performance is very similar on all four NUTS 

levels, and the greatest accuracy is achieved this time on the NUTS-1 level and not, as with the 

OLS and the GAM, on the NUTS-3 level. This is interesting in that, as shown in the literature 

review, most of the academic studies dealing with ML algorithms focus on the NUTS-3 level, 

and this spatial level even yield the worst performance in our case. Relative to the NUTS-1 

level, the NUTS-3 level based on MAPE is 2.9% worse in terms of valuation accuracy. 

Although the differences between the individual metrics are only small in absolute values, if 

these are considered in relative terms, then a small performance boost is shown by the correct 

choice of the spatial level. 

Table 7: XGBoost – model prediction errors 2020 throughout Germany 

Models MAPE MdAPE PE(10) PE(20) R² 

XGBNUTS-0 0.1426 0.1077 0.4693 0.7780 0.9051 

XGBNUTS-1 0.1402 0.1064 0.4739 0.7869 0.9078 

XGBNUTS-2 0.1407 0.1071 0.4719 0.7850 0.9074 

XGBNUTS-3 0.1442 0.1107 0.4578 0.7733 0.9036 
Notes: This table reports the model prediction errors for the XGBoost. Here, too, the results are the same across 

all evaluation metrics. Unlike for the first two methods, however, the model performance of the XGBoost does not 

improve with a decreasing spatial training level, but is relatively constant across all levels. The best performance 

is achieved at the NUTS-1 level, indicating that the XGBoost can gain a higher degree of explanatory power by 

adding more data. 

 

The analysis of the maps from Figure 6 shows in particular that in the parts of Germany where 

few observations are available (see Figure 2), the choice of a higher spatial level for training 

the models leads to a performance improvement. It is an important implication that in regions 

where little data are available, it can be useful in the case of the XGBoost to include data from 

other surrounding districts. This represents an essential difference to the results of the GAM 

and the OLS. For them, especially in the parts of Germany with low data availability, the results 

deteriorates with the choice of a higher spatial level for training the models.  

 

 

 

Electronic copy available at: https://ssrn.com/abstract=4272379



 

Figure 6: MAPE of the different XGB models 

NUTS-0  

 

NUTS-1 

 

NUTS-2 

 

NUTS-3 

 

Notes: This figure visualizes the MAPE of the four different XGBoost models. The maps show the average 

absolute percentage error obtained when applying the individual models within a given region. For a granular 

representation, the 327 NUTS-3 regions were selected as the coresponding levels of representation. The 

representation of the scale is chosen so that the minimum and maximum are the largest and smallest errors 

respectively of all four methods. 
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In summary, it can be seen that the heterogeneity of local real estate markets can still be detected 

by the XGBoost when it is trained at a higher spatial level. In some cases, the use of additional 

data even leads to a further improvement of the estimation accuracy. Therefore, unlike OLS 

and GAM, the NUTS-3 level is not the optimal spatial level for training the XGBoost, but the 

NUTS-1 level.  However, the results of Table 7 also show that there seems to be a limit 

regarding the optimal size of the spatial level. The results at NUTS-0 level are still better than 

those at NUTS-3 level, but not as good as on NUTS-1 and NUTS-2 level.  

 

Results of the neural network  

Finally, in analysing the results of the DNN, we again see a different picture. The evaluation 

metrics presented in Table 8, show that the DNN can clearly improve its valuation accuracy as 

the spatial training level increases. This is the exact opposite of the OLS and GAM results, and 

also a different result compared to the XGBoost. Although the results of the MAPE indicate 

that the NUTS-1 level performs best here as well, the four other metrics yield a slightly different 

picture for this specific algorithm. They evaluate the NUTS-0 level as the best suited. In 

principle, therefore, the situation between the NUTS-0 and NUTS-1 levels is quite similar, 

influenced only by marginal changes. Compared to the other modern ML algorithm, the 

XGBoost, it seems that the number of observations used to optimize the algorithm plays an 

more important role. This is also logical from the point of view of the complexity of the method. 

The DNN can only show its strength in recognising non-linear relationships and multi-layer 

interactions, if a sufficiently large number of observations is available. This finding is also in 

line with those of  Nghiep and Al (2001), which show on the basis of a dataset for Rutherford 

County, Tennessee, that neural networks perform better than multiple regression analysis only 

with increasing dataset size.8 

Table 8: DNN – model prediction errors 2020 throughout Germany 

Models MAPE MdAPE PE(10) PE(20) R² 

DNNNUTS-0 0.1551 0.1080 0.4700 0.7620 0.8705 

DNNNUTS-1 0.1542 0.1090 0.4648 0.7595 0.8664 

DNNNUTS-2 0.1595 0.1142 0.4471 0.7448 0.8606 

DNNNUTS-3 0.1656 0.1176 0.4356 0.7281 0.8461 

Notes: This table reports the model prediction errors for the DNN. The results clearly show that model performance 

can be increased by choosing the highest possible spatial training level. Unlike the XGBoost results, the increase 

 
8 However, unlike in our study, these authors only work at a county level and only vary the amount of data available 

within the county. In our case, the amount of data is varied by adding observations from other spatial levels. 
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in performance is much more significant. The results indicate that the DNN is only able to show its strength from 

a certain amount of data. 

 

The visual representation of the results in Figure 7 yield a very similar picture to the XGBoost 

results. It can be seen that by choosing a higher training level for the DNN, the valuation 

performance can be increased, especially in areas with few observations. Again, the same 

implication emerges as with the XGBoost, that in regions where few data are available, it can 

be useful to include data from other surrounding districts. With respect to the four algorithms 

used for the analysis, this can only be empirically proven for the modern ML algorithms, which 

represents a significant contribution to the literature of this study.  

In summary, the DNN is only able to estimate property values as accurately as possible once a 

certain number of observations has been used. The effect of adding more observations therefore 

outweighs the effect of local heterogeneity. Thus, the DNN is independently able to generate 

further explanatory power for a specific real estate market, even from data outside the specific 

market. Regional effects can thus be more effectiveley detected, extracted and extrapolated by 

modern ML algorithms. With respect to the DNN, it is therefore advisable to choose as high as 

possible a training level or to maximize the available observations for training the algorithm. 

 

Figure 7: MAPE of the different DNN models 
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Notes: This figure visualizes the MAPE of the four different DNN models. The maps show the average absolute 

percentage error obtained when applying the individual models within a given region. For a granular 

representation, the 327 NUTS-3 regions were selected as the coresponding levels of representation. The 

representation of the scale is chosen so that the minimum and maximum are the largest and smallest errors 

respectively of all four methods. 
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Conclusion 

This study is intended to answer the question of whether the right choice of the appropriate 

spatial level for training AVM algorithms also plays an important and so far underestimated 

role in improving the valuation accuracy of AVMs. We use a dataset consisting of about 1.2 

million residential properties across Germany to test our hypotheses for a total of four different 

but typical AVM algorithms (OLS, GAM, XGBoost, DNN). All four algorithms are each 

trained on four different spatial levels after which the results are evaluated. The four spatial 

levels are based on the NUTS nomenclature of the European Union. We use the NUTS-0, 

NUTS-1, NUTS-2 and NUTS-3 levels to train our models on a country, state, cross-regional, 

and county level, respectively 

Our results indicate that the correct choice of spatial training level can exert a significant 

influence on the model performance, and that this can vary considerably, depending on the type 

of method. With respect to the OLS results, it is advisable to select a training level that is as 

granular as possible, since this is the only way to ensure that the most accurate valuations are 

made. It can be seen that there are regional differences and thus certain heterogeneities, which 

the OLS can only recognise as accurately as possible if they are locally limited. The results for 

the GAM yield a similar picture to the OLS. Here, too, the model performance correlates 

positively with a smaller spatial training level. Accordingly, the same findings can be generated 

for the parametric and the semi-parametric approaches. These confirm the correctness of the 

current trend in academic publications and in practice, of choosing the most granular analysis 

level possible for traditional econometric methods. These two methods are not able to draw 

further explanatory power from observations that lie outside a certain region. On the contrary, 

they even suffer from it. The results of the two applied modern ML algorithms are quite 

different. With respect to the XGBoost, the evaluation metrics show that the choice of the most 

suitable spatial level can be made relatively indifferently. Although there are marginal 

differences with respect to the evaluation accuracy, these are only minor compared to OLS and 

GAM. In contrast to the parametric and semi-parametric approaches, the results of the non-

parametric XGBoost show that the performance actually increases slightly with increasing 

spatial training level, and the NUTS-1 level seems to be the most appropriate. This trend can 

be observed even more clearly for the results of the DNN. Here, it can be seen that the 

performance does not decrease with an increasing training level, as is the case with the OLS 

and the GAM, but clearly improves. With respect to the two modern ML algorithms, it can be 

seen that they are able to gain a higher degree of explanatory power by adding further 

observations, and that this effect outweighs that of local heterogeneity. In particular, their ability 
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to recognise and map non-linear relationships and multi-layered interactions allows them to 

exploit overlapping effects of different regions to achieve more accurate real estate valuations. 

This is particularly evident in regions, so as where there are few observations. In these cases, it 

is advisable to train a modern ML algorithm with additional regions in order to benefit from 

their basic commonalities. 

In summary, the choice of the right training level should always depend on the method. For 

parametric and semi-parametric methods, we recommend using a spatial level which is as 

granular as possible for training the models, since these are only able to separate local 

heterogeneities from each other to a limited extent. For non-parametric modern ML methods, 

however, we generally recommend a higher training level. These complex methods are able to 

detect regional differences independently and to separate them. Furthermore, they benefit from 

the fact that there are basic commonalities in the functioning of local real estate markets, and 

that these can be used to increase their explanatory power. With respect to the practical 

application and implementation of AVM algorithms, this offers the additional advantage that 

the higher training level means that fewer models have to be trained and calibrated overall. For 

example, less effort is required with regard to data preparation and processing. Thus, 

efficiencies can be increased for AVM providers operating nationwide, and significant 

economic advantages can be achieved. 
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Appendix 

Appendix 1 – Micro Score  

The micro score of a location is calculated via a gravity model, and reflects the accessibility in 

the sense of proximity to selected everyday destinations. A gravity model is a common method 

for approximating the accessibility of a location and is based on the assumption that nearby 

destinations play a greater role in everyday life than more distant destinations (Handy and 

Clifton (2001)). The relevant points-of-interest (POIs) are selected from the findings of Powe 

et al. (1995), Metzner and Kindt (2018), Yang et al. (2018),  Nobis and Kuhnimhof (2018) and 

Huang and Dall’erba (2021) and are provided in Table 3.  

Table 3: Features of the micro score of a location 

Note: The descriptions of the selected Points-of-Interest is based on the explanations of Open Street Map.9 

 
9 See https://wiki.openstreetmap.org/wiki/Map_features. 

Points-of-Interests Category Description 

University Education & Work University campus: institute of higher education 

School Education & Work Facility for education  

Kindergarten Education & Work Facility for early childhood care 

CBD Education & Work Center of the next city 

Supermarket Local Supply Supermarket – a large shop with groceries 

Marketplace Local Supply A marketplace where goods are traded daily or weekly 

Chemist Local Supply 
Shop focused on selling articles for personal hygiene, 

cosmetics, and household cleaning products 

Bakery Local Supply Place for fresh bakery items 

ATM Local Supply ATM or cash point 

Hospital Local Supply Facility providing in-patient medical treatment 

Doctors Local Supply Doctor's practice / surgery 

Pharmacy Local Supply Shop where a pharmacist sells medications 

Restaurant Leisure & Food Facility to go out to eat 

Café Leisure & Food Place that offers casual meals and beverages 

Park Leisure & Food A park, usually urban (municipal) 

Fitness Centre Leisure & Food Fitness Centre, health club or gym  

Movie Theater  Leisure & Food Place where films are shown 

Theater Leisure & Food Theatre where live performances take place 

Shopping Mall Leisure & Food Shopping Centre– multiple shops under one roof 

Department Store Leisure & Food Single large shop selling a large variety of goods  

Subway Station Transportation City passenger rail service 

Tram Station Transportation City passenger rail service 

Railway Station Transportation Railway passenger only station. 

Bus Stop Transportation Bus stops of local bus lines. 

E-Charging Station Transportation Charging facility for electric vehicles 
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Our gravity model can be described using an activity function 𝑓(𝐴𝑝) and a distance function 

𝑓(𝐷𝑖,𝑝): 

𝐴𝑖,𝑝 = ∑ 𝑓(𝐴𝑝)𝑓(𝐷𝑖,𝑝). 

Here, 𝐴𝑖,𝑝  ∈ [0,100] denotes the accessibility of point 𝑖 for the POI 𝑝, whereby the activity 

function 𝑓(𝐴𝑝) specifies the relative importance of POI 𝑝, with 𝑓(𝐴𝑝)  ∈ [0,1]. The function 

𝑓(𝐷𝑖,𝑝) measures the travel time from point 𝑖 to the POI 𝑝 by using a non-symmetric sigmoidal 

distance function. The travel time was obtained for the selected POIs via Open Street Map10 

and normalized using the following function:  

𝐿(𝑥) =
𝐾

(1 + 𝑄𝑒0.5𝑥)
1
𝑣

 , 

where 𝐾, 𝑄 ∈  ℝ and 𝑣 ∈  ℝ+ are defined for all possible distances 𝑥 ∈ ℝ. Furthermore, we 

have: 

𝐾 = (1 + 𝑄)1+𝑣, 

𝑄 =  𝑣 ∙ exp(𝐵 ∙ 𝑥∗) , 

𝑣 =
exp(𝐵 ∙ 𝑥∗) − 1

ln(𝑦𝑖) − 1 
, 

where 𝑥∗ denotes a feature specific point of inflection and 𝑦∗ is 0.5. 

 

 
10 https://www.openstreetmap.org/ 
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