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We generalize the tree doubling and Christofides algorithm to parameterized approxima-
tions for ATSP (constant factor approximations that invest more runtime with respect to 
a chosen parameter). The parameters we consider are upper bounded by the number of 
asymmetric distances, which yields algorithms to efficiently compute good approximations 
for moderately asymmetric TSP instances. As generalization of the Christofides algorithm, 
we derive a parameterized 2.5-approximation, with the size of a vertex cover for the sub-
graph induced by the edges with asymmetric distances as parameter. Our generalization 
of tree doubling gives a parameterized 3-approximation, where the parameter is the min-
imum number of asymmetric distances in a minimum spanning arborescence. Further, we 
combine these with a notion of symmetry relaxation which allows to trade approximation 
guarantee for runtime. Since the parameters we consider are theoretically incomparable, 
we present experimental results showing that generalized tree doubling frequently outper-
forms generalized Christofides with respect to parameter size.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The ubiquitous traveling salesman problem asks for a shortest round trip through a given set of cities. Its relation to 
the Hamiltonian cycle problem does not only imply NP-hardness, but also implies that efficient approximation is impossible 
for unrestricted instances, which is why distances are usually assumed to satisfy the triangle inequality. This restriction 
to metric instances is one of the most extensively studied problems in combinatorial optimization, yet its approximability 
prevails as an active research area. Despite the breakthrough by Svensson et al. [1], particularly the difference between 
symmetric and asymmetric distances remains rather poorly understood. In this paper we employ the tools of parameterized 
complexity as a new approach to explicitly study the effects of asymmetry on the approximability of the metric traveling 
salesman problem.

1.1. Motivation

Symmetric distance, meaning that traveling from A to B has the same cost as traveling from B to A, is certainly the most 
common assumption to the metric traveling salesman problem. In fact, it is so common that the name (metric) traveling 
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salesman problem (TSP) is usually associated with this symmetric version, while the more general case is explicitly referred 
to as asymmetric (ATSP).

It appears as if symmetry plays a vital role in view of approximations. For TSP it was known for over 40 years that a 3
2 -

approximation is possible with the famous algorithm of Christofides [2] (or Christofides-Serdyukov, see [3]). Recently, Karlin 
et al. [4] showed a randomized approximation with an expected ratio of 3

2 −ε for a small constant ε > 0. For ATSP, Svensson 
et al. [1] answered the longstanding open question for the existence of a constant-factor approximation in the affirmative. 
Although the current state of the art was very recently established by Traub and Vygen [5] with the ratio of 22+ε, this still 
leaves a significant gap between the positive results for TSP and ATSP, whereas the best currently known lower bounds by 
Karpinski et al. [6] of 123

122 for TSP and 75
74 for ATSP do not indicate such a vast difference. This raises the question of how 

symmetry truly affects approximability.
The assumption of symmetry does not seem very natural. A study by Martínez Mori and Samaranayake [7] shows that 

road networks exhibit asymmetry even when only the lengths of the shortest paths are considered. Phenomena like road 
blocks, one-way streets and rush hours can result in unbounded violations of symmetry while the triangle inequality re-
mains satisfied. In comparison, restricting to distances that satisfy the triangle inequality is a reasonable assumption in 
all scenarios where visiting cities more than once is acceptable. Finding a shortest tour that visits each city at least once 
translates to metric TSP by taking the shortest path metric, also called metric closure.

The asymmetry factor is the maximum ratio between the length of the shortest paths from A to B and B to A over all 
cities A, B . The investigation in [7] revealed that most asymmetries in road networks are insignificantly small. With these 
few but existing significant asymmetries in mind, we consider spending exponential time with respect to some measure of 
the degree of asymmetry. Our basic objective is to salvage the approximability of TSP for ATSP by allowing this increase in 
runtime. Formally, we give parameterized approximations (see e.g., [8]), which means a guaranteed performance ratio and 
a runtime of the form poly(n)f (k), where f is an arbitrary function, n is the size of the instance and k is a measure for 
asymmetry. This approach aims to offer efficiency for instances of low asymmetry and to improve our understanding of the 
challenges asymmetric distances pose to the design of approximation algorithms.

1.2. Our results

We derive parameterized approximations based on the Christofides and the tree doubling algorithm with respective 
suitable parameters. Both parameters under study are bounded by the number of asymmetric distances, i.e., pairs of vertices 
(u, v) for which traveling from u to v is cheaper than traveling from v to u. Further, we combine these parameters with the 
asymmetry factor � [7] in the sense that we treat distances with asymmetry factor � ≤ β for some β ≥ 1 as symmetric, 
which shrinks both parameters to consider only the more severe β-asymmetries (distance from v to u is at least β times 
the distance from u to v). In particular, we derive parameterized approximations with

• ratio 7
4 + 3

4 β for parameter k = size of a vertex cover for the subgraph induced by the β-asymmetric distances (gener-
alized Christofides);

• ratio 2 + β for parameter z = minimum number of β-asymmetric distances in a minimum spanning arborescence 
(generalized tree doubling).

For β = 1, we prove the ratio of 2.5 to be tight for generalized Christofides. The lack of such a tightness result and 
further observations lead us to conjecture that generalized tree doubling is actually a 2-approximation for β = 1. Since the 
two parameters k and z are theoretically incomparable, we conduct experiments which show that generalized tree doubling 
frequently outperforms generalized Christofides with respect to parameter size.

The paper is organized as follows. In Section 3 we generalize the Christofides algorithm. Our main result, the more 
elaborate generalized tree doubling algorithm, is presented in Section 4. In Section 5 we give the combination with the 
asymmetry factor and Section 6 describes our experimental results.

1.3. Related work

Conceptually, our approach can be seen as a study of stability with respect to asymmetry in the framework of stability 
of approximation by Böckenhauer et al. [9]. Probably the most extensively studied stability measure for (A)TSP is the β-
triangle inequality, also called parameterized triangle inequality, for some β > 0, which refers to the requirement c(u, v) ≤
β(c(u, w) + c(w, v)) for all u, v, w ∈ V with u �= v �= w . For ATSP with β-triangle inequality, the 1

2(1−β)
-approximation 

derived by Kowalik and Mucha [10] for β ∈ ( 1
2 , 1) improves upon a series of previous results [11–13] and is also known to 

be tight with respect to the cycle cover relaxation as lower bound. For TSP, the survey of Klasing and Mömke [14] gives a 
summary of the known results with β-triangle inequality.

Martínez Mori and Samaranayake [7] showed that the Christofides algorithm is 3
2 -stable with respect to the asymmetry 

factor, meaning that it can be used to compute a 3
2 �-approximation for instances with asymmetry factor at most �.

So far, there are only a few parameterized approximations for (variations of) TSP. Marx et al. [15] consider ATSP on 
a restricted graph class called k-nearly-embeddable. They derive approximations where the ratio and the runtime depend 
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on structural parameters of the given instance. A true parameterized approximation for a TSP type problem is given by 
Böckenhauer et al. in [16] for deadline TSP, a generalization of TSP where some cities have to be reached by the tour within 
a given deadline. They give a 2.5-approximation that requires exponential time only with respect to the number of cities 
with deadline.

Another interesting approach to invest moderate exponential time is given by Bonnet et al. in [17]. They derive a routine 
that allows to compute for any r ≤ n a log r-approximation for ATSP that requires time O(2

n
r poly(n)).

2. Preliminaries

Throughout the paper, instances of ATSP are always simple complete directed graphs denoted by G = (V , A, c) with 
non-negative cost function c on A. For u, v ∈ V , (u, v) denotes the arc from u to v and c(u, v) denotes its cost. For an 
arc (u, v) ∈ A we call (v, u) ∈ A the opposite arc. To refer to the connections between vertices without regarding any 
directedness, for an arc (u, v) ∈ A and its opposite arc, we call {u, v} an arc-pair or simply link. Links can be thought of like 
edges in an undirected graph. If the cost function c satisfies the triangle inequality, i.e., c(u, v) ≤ c(u, w) + c(w, v) for all 
u, v, w ∈ V , we call G metric. If the graph is not clear from context, we use V [G] and A[G] to denote the vertices and arcs 
of G , respectively.

In a not necessarily complete graph G ′ , a trail is a sequence of vertices where each vertex is equal to or has an arc to its 
successor. A path is a trail containing no vertex twice. Circuit and cycle denote a trail and a path where the last vertex has 
an arc to the first vertex, respectively. We denote a trail by v1, . . . , vn and a circuit by (v1, . . . , vn). A tour of G ′ is a cycle 
that visits each vertex of G ′ .

If G is metric, every trail can be turned into a path visiting the same vertices via a metric shortcut without increasing the 
cost, where metric shortcut means removing multiple occurrences of each vertex. All tours in G are valid ATSP solutions, 
and we use c∗(G) to denote the cost of an optimal solution for G .

For G = (V , A, c) we denote the vertex-induced subgraph of V ′ ⊆ V by G[V ′], the arc-induced subgraph of A′ ⊆ A by 
G[A′] and also the link-induced subgraph of a set of links E by G[E]. Slightly abusing notation, G[V ′] and G[A′] then also 
inherit the weights of G . Further, for a subgraph G ′ of G , we use c(G ′) to denote the sum of all arc costs in G ′ . For these 
notions we observe the following properties.

Lemma 1. Let G be a metric graph and V ′ ⊆ V . Then, G[V ′] is metric as well.

Proof. We give a proof by contradiction. Suppose that G[V ′] is not metric. Then there exist three vertices u, v, w ∈ V ′
for which c(u, v) + c(v, w) < c(u, w). Since every vertex and arc of an induced subgraph exists in the original graph, the 
triangle u, v, w violates the triangle inequality in G . This contradicts our original assumption that G is metric. �
Lemma 2. Let G be a metric graph and V ′ ⊆ V . Then, c∗(G[V ′]) ≤ c∗(G).

Proof. We offer a constructive proof. Starting with an optimum solution τ for G we iteratively remove vertices v /∈ V ′ from 
τ until it contains only vertices from V ′ . Removing a vertex is equal to performing a metric shortcut and thus does not 
increase the cost of the whole tour. The claim follows. �

We also use one other transformation we call minor. Here, G ′ is a minor of G if there is a series of contrac-
tions which, starting from G , result in G ′ . A contraction of (u, v) replaces u and v with a single vertex uv and sets 
c(w, uv) = min{c(w, u), c(w, v)} and c(uv, w) = min{c(u, w), c(v, w)} for all w ∈ V \ {u, v}.

3. Generalized Christofides algorithm

The Christofides algorithm [2] is a polynomial approximation for TSP with performance ratio 3
2 . On instance G it first 

computes a minimum spanning tree T for G and then adds a minimum cost perfect matching M on the vertices V ′ of 
odd degree in T . The resulting subgraph is connected and each vertex has an even degree, so it is possible to compute a 
Eulerian cycle for it, which is a circuit of cost c(T ) + c(M) that visits all vertices. Metric shortcuts turn this circuit into a 
tour. Since taking every second edge in an optimal tour for G[V ′] gives a perfect matching for the vertices of odd degree, 
the edges in M have a cost of at most 1

2 c∗(G[V ′]) ≤ 1
2 c∗(G). Together with the bound of c∗(G) on the cost of T , this proves 

the approximation ratio of 3
2 .

Regarding ATSP, the most dire problem of this approach is that combining T and M to an Eulerian circuit is impossible 
if some arcs point in the wrong direction, and it is unclear how to restrict T and M accordingly while keeping the relation 
of their cost to the optimum value. Due to this conceptual problem, we use a reduction to a TSP instance for which 
the Christofides algorithm can be applied. Observe that brute-force guessing the correct set of asymmetries in an optimal 
solution does not seem like a helpful first step. It is not apparent how to efficiently compute (or approximate) a spanning 
tree with a fixed subset of arcs in such a way that when transforming this tree into a tour, the fixed arcs are only used in 
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their intended direction. The design of our algorithm is instead based on a simple structural insight that allows the use of 
the Christofides algorithm on a symmetric subgraph.

We first explain an easier variant of the algorithm. The idea is to divide the graph into an asymmetric and a symmetric 
subgraph. For G = (V , A, c) we define the set of asymmetric links by Ea = {{u, v} | u, v ∈ V , c(u, v) �= c(v, u)} and the sets of 
asymmetric and symmetric vertices by Va = {v ∈ V | {u, v} ∈ Ea for some u ∈ V }, and V s = V \ Va , respectively.

We define the asymmetric subgraph by G[Va ∪ {v}], where v is an arbitrary but fixed vertex in V s , and the symmetric 
one by G[V s]. Note that tours through both subgraphs can be merged at the overlap in v and turned into a tour of the 
whole graph with metric shortcuts. Combining in this way an exact solution for G[Va ∪ {v}] and a 3

2 -approximate solution 
for G[V s], computed by the Christofides algorithm, overall yields a parameterized 5

2 -approximation with parameter |Va|.
To improve this, consider a vertex cover VC of G[Ea]. The complement of VC forms an independent set in G[Ea], implying 

that G contains no asymmetric links between vertices in V s ∪ (Va \ VC). This can be exploited to consider the smaller 
structural parameter z, the size of a vertex cover in G[Ea] and gives the following.

Theorem 3. Metric ATSP can be 5
2 -approximated in O(n3 + 2z z2) where z is the size of a minimum vertex cover of the subgraph 

induced by all asymmetric links.

Proof. The approximation algorithm to prove the claimed result performs the following steps:

1. Compute a minimum vertex cover VC for G[Ea] by some simple parameterized algorithm in O(|Ea| + 2z z2) (e.g. branch-
ing on the k2-kernel as discussed in the introduction of [18] for “Bar Fight Prevention”).

2. Pick an arbitrary vertex v ∈ V \ VC and use the algorithm by Held and Karp [19] for ATSP on the subgraph G ′ =
G[VC ∪ {v}] which computes an optimal solution τ ′ for this subgraph in O(2z z2).

3. Compute a 3
2 -approximate tour τ ′′ for G ′′ = G [V [G] \ VC] with the Christofides algorithm.

4. Consider τ ′ by τ ′′ as vertex sequences each starting with v . Create a circuit that visits each vertex in G by concatenation 
of the sequences for τ ′ and τ ′′ . Delete from the resulting circuit one occurrence of v to create a proper tour τ .

In step 3, the Christofides algorithm is used to compute an approximate tour on a subgraph. This is possible because 
the subgraph G ′′ consists of the complement of the vertex cover for the asymmetric links. Hence, the Christofides algorithm 
receives a symmetric subgraph as input. This yields τ ′′ , a 3

2 -approximation for G ′′ , and by Lemma 2 we obtain c(τ ′′) ≤
3
2 · c∗(G).

In step 4 we make use of the fact that v appears both in τ ′ and τ ′′ to combine the two tours into a single circuit. This 
circuit uses every arc in τ ′ and τ ′′ exactly once, and visits every vertex visited by τ ′ or τ ′′ .

Since τ ′ and τ ′′ span all vertices of G , the metric shortcut (the deletion of one occurrence of v in the tuple) to create τ
yields a tour of G with cost at most

c(τ ) ≤ c(τ ′) + c(τ ′′) ≤
(

1 + 3

2

)
· c∗(G). (1)

Hence the claimed approximation ratio of 5
2 follows. Lastly, the running time for the first two steps is dominated by com-

puting τ ′ in O(2z z2), and the last steps are dominated by the min cost perfect matching for the Christofides algorithm, 
which can be estimated by O(n3) [20]. �

Instead of exact algorithms for the vertex cover for G[Ea] and the solution on G[VC ∪ {v}], we can also use approxima-
tions. A 2-approximation for vertex cover and the 2

3 log n-approximation of Feige and Singh [21] on G[VC ∪ {v}] yields the 
following interesting result.

Corollary 4. Metric ATSP can be ( 2
3 log x + 3

2 )-approximated in polynomial time, where x = min (2z + 1, |Va|), Va is the set of asym-
metric vertices and z is the size of a minimum vertex cover for the subgraph induced by all asymmetric links.

This improves upon the approximation ratio of 2
3 log n if x

n < 2− 9
4 , meaning that G[VC ∪ {v}] only contains a sufficiently 

small fraction of the vertices. We note that the result of Asadapour et al. [22] gives a polynomial (8 log(z)/ log log(z) + 3
2 )-

approximation, which is asymptotically stronger but less suitable for the instances with small values of z we are interested 
in. Also, note that plugging in constant-factor approximations for ATSP (like the ones from Svensson et al. [1] or Traub and 
Vygen [5]) is of course possible, but theoretical analysis then only yields worse approximation ratios (specifically + 3

2 to 
their respective ratios).

Further, note that one can also use any approximation for TSP (not just the Christofides algorithm) for the symmetric 
subgraph and obtain an (α + 1)-approximation for ATSP from any α-approximation for TSP.

It remains to see if this approach can be improved. Aiming for a smaller parameter seems difficult as this would not split 
off a symmetric subgraph. Regarding a possible improvement of the ratio, one might hope to salvage the ratio of 3

2 for TSP, 
obtained by the Christofides algorithm, for ATSP. However, such an improvement requires a different algorithmic strategy as 
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Fig. 1. Gk for k = 7: Black and gray links are symmetric with cost 2, dotted links are symmetric with cost 1. Dashed links are asymmetric, with cost 1 from 
gray to black vertex and cost 2 from black to gray vertex.

we can show that the ratio in Theorem 3 is asymptotically tight by giving a family of instances Gk for k ∈ N, k > 2 such 
that the approximation ratio converges to 2.5 for increasing k. For an intuition of this construction, consider the instance 
described in Fig. 1. The black zig-zag pattern is the textbook example for the tightness of the Christofides algorithm. The 
idea is that the gray vertices build the minimum vertex cover such that the black zig-zag pattern becomes the symmetric 
instance. The gray cycle is then the asymmetric subgraph and solving it exactly yields a tour of cost 2k. Together with the 
approximation on the symmetric subgraph, which converges to 3k, this results in a tour of length 5k, while the optimal tour 
takes the dotted and dashed links in the cheaper direction and has cost 2k.

To formally define this family of instances, it is more convenient to describe the indicated non-complete graph and show 
that it can be turned into a complete graph with metric distances (i.e., a metric ATSP instance). To this end, we first define 
a generalized form of the triangle inequality for incomplete graphs, which we call polygon inequality. We then show that 
every graph which satisfies the polygon inequality can be transformed into a complete graph which satisfies the triangle 
inequality without modifying the existing arc costs.

Definition 5. In a directed graph G = (V , A, c) with non-negative arc costs c, the polygon inequality holds if and only if for 
every arc (u, v) ∈ A any path P between any two vertices u, v ∈ V is at least as expensive as c(u, v):

∀v1, . . . , v j ∈ v with (vi, vi+1) ∈ A,1 ≤ i < j :
j−1∑
i=1

c(vi, vi+1) ≥ c(v1, v j)

Note that in complete graphs, the polygon inequality and the triangle inequality are equivalent. We now show that any 
strongly connected graph where the polygon inequality holds, can be turned into a complete graph without changing the 
original arc costs.

Lemma 6. Let G be a directed, strongly connected graph G = (V , A, c) with non-negative arc costs c and with polygon inequality. 
Then, G can be turned into a metric ATSP instance G ′ = (V , A′, c′) with c(u, v) = c′(u, v) for all (u, v) ∈ A.

Proof. Since the polygon inequality implies the triangle inequality in complete graphs, it suffices to show that we can make 
the graph complete without violating the polygon inequality. To do so, missing arcs are iteratively inserted and assigned the 
cost of the cheapest path between the connected vertices that existed in the graph prior to the insertion. We show that this 
never violates the polygon inequality by induction over the number of added arcs.

As the base case, we have G ′ = G and know that the polygon inequality holds in G . For the induction step, we choose 
two arbitrary vertices u, v that are not yet connected by an arc (u, v) and compute a cheapest path Puv from u to v . Since 
G is strongly connected, such a path Puv always exists. We insert the arc (u, v) into G ′ with c′(u, v) set to the cost of 
Puv and show that this does not violate the polygon inequality. For the insertion to violate the inequality, one of two cases 
would have to apply:

1. There exists a path from u to v which has a cost less than (u, v). This cannot occur, as the cost of (u, v) was chosen 
equal to the cost of the cheapest path from u to v .

2. (u, v) is part of a path P xy between two vertices x and y that has a lower cost than c′(x, y).
We show that this cannot occur as well. Already before the insertion of (u, v) there existed a path P ′

xy from x to y, 
which can be obtained from P xy by replacing (u, v) with a cheapest path from u to v and skipping loops. Since we 
chose c′(u, v) to be the cost of a cheapest path from u to v , it follows that c′(P ′

xy) ≤ c′(P xy). By induction hypothesis, 
the polygon inequality holds for any path not containing (u, v), and thus the cost of P ′

xy is at least c′(x, y).

In both cases, the polygon inequality still holds after inserting the new arc. The claim follows.
Note that every cheapest path in G is still a cheapest path in G ′ . The reason is that for every new arc (u, v), G already 

contained a path u, . . . , v with equal cost. �
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With these tools, we can now nicely define our worst-case instance for Theorem 3.

Theorem 7. There exists an infinite family of metric ATSP instances Gk, k ≥ 2 with optimum value 2k such that the generalized 
Christofides algorithm produces a solution of cost 5k − 3.

Proof. We construct a family of ATSP instances Gk , k ≥ 2 as follows.
Gk consists of k vertices g1, . . . , gk (which we call gray vertices) and k vertices b1, . . . , bk (which we call black vertices). 

The gray vertices form a cycle (g1, . . . , gk), which we denote by gray cycle. The black vertices also form a cycle (b1, . . . , bk), 
which we denote by black cycle. All links in the gray and black cycles are symmetric and have a cost of 2. Furthermore, the 
black cycle has a series of additional internal arcs. These form a path b1, bk, b2, bk−1, . . . , b�k/2� , which alternates between 
vertices at the start and at the end of the cycle, and ends in a vertex in the middle. All links on this path are symmetric and 
have a cost of 2. Note that this path thus forms a minimum spanning tree of the subgraph induced by the black vertices, 
and that the start and end vertices of the path are as distant as possible: this constitutes a worst case instance for the 
Christofides algorithm.

In order to allow an optimum tour to alternate between the gray and black cycle, the gray cycle is connected to the 
black cycle with a number of asymmetric links: for 1 ≤ i ≤ k there is an arc (bi, ri) with cost 2 and an opposite arc with 
cost 1. Additionally, bi is connected to ri+1 by a symmetric link of cost 1 for 1 ≤ i ≤ k.

Then, we use Lemma 6 to turn Gk = (Vk, Ak, ck) into a complete graph. To this end, we have to show that the polygon 
inequality holds in Gk . Let Puv be an arbitrary path from u to v with u, v ∈ Vk . There are two cases to consider:

1. Puv consists of a single arc. In this case the path consists only of the arc (u, v). Thus, ck(Puv) = ck(u, v), which satisfies 
the polygon inequality.

2. Puv consists of at least two arcs. The cheapest arc in Gk has cost 1, thus ck(Puv) ≥ 2. The most expensive arc in Gk has 
cost 2, so 2 ≥ ck(u, v). As a result, ck(Puv) ≥ ck(u, v), which satisfies the polygon inequality.

We use G ′=(V ′
k, A

′
k, c

′
k) to denote the metric ATSP instance created from Gk by Lemma 6 and observe the following 

properties of this instance. We claim that the cycle (g1, b1, . . . , gk, bk), which alternates between the gray and black vertices, 
is an optimum tour for G ′

k . Its cost is 2k, as it contains only arcs with cost 1. Since there are no arcs with cost less than 1, 
the tour is an optimal solution.

The first step of the generalized Christofides algorithm is to find a minimum vertex cover on the graph induced by the 
asymmetric links. We claim that such a cover is given by the set of gray vertices which can be seen as follows.

1. The gray vertices form a vertex cover. This is equivalent to stating that the black vertices form an independent set, thus 
there are no asymmetric links between any of the black vertices. For this, recall that all links between black vertices 
are symmetric in Gk . Further, as can be seen in Fig. 1, for every pair of black vertices u, v there always is a cheapest 
path P∗

u,v = u, . . . , v that uses only black vertices, and thus c′
k(P∗

u,v) equals c′
k(P∗

v,u). As a result, all links between black 
vertices in G ′

k must be symmetric as well.
2. There exists no smaller vertex cover. Already in the underlying subgraph Gk , there is an asymmetric link between every 

pair of vertices bi and ri . In order to cover those edges in the asymmetric subgraph, at least one vertex per edge needs 
to be taken into the vertex cover, therefore there cannot be a vertex cover with fewer than k vertices.

So let this set of gray vertices be the vertex cover chosen by the generalized Christofides algorithm, and let w.l.o.g. b1 be 
the vertex v chosen to be added to this set. Generalized Christofides then computes an exact solution for the asymmetric 
subgraph (induced by the vertices g1, . . . , gk, b1), and uses the Christofides algorithm on the symmetric subgraph (induced 
by the black vertices, interpreted as undirected graph).

There is an optimum solution for the asymmetric subgraph which traverses almost the whole gray cycle once, only 
leaving once to pick up b1. The cost of this solution is 2k.

For Christofides, we assume an unlucky choice of the MST, namely the path we added to the black cycle in Gk . The path 
has a cost of 2k − 2. Since we need k − 1 edges for a spanning tree and each edge between black vertices has at least cost 
2, we know that our path is really an MST. The MST has only two vertices of odd degree: start and end vertex of the path, 
which have the biggest possible distance to each other (which is 
 k

2 �). As a result, the edge chosen in the matching step 
has cost 2
 k

2 �, which is at least k − 1. The total cost of the solution returned by the Christofides algorithm is thus at least 
2k − 2 + k − 1. Overall, this leads to a cost of at least 5k − 3 for the cost of the combined tour; note that metric shortcuts 
after combining the tours at b1 do not have an effect on the cost. �
4. Generalized tree doubling algorithm

One other widely known approximation for TSP is the tree doubling algorithm. It computes a minimum spanning tree 
(MST) and doubles every edge in it to ensure the existence of an Eulerian circuit. Since the circuit uses every MST edge 
exactly twice, it is twice as expensive as the tree, which itself is at most as expensive as the optimum tour. Thus, transform-
ing the circuit with metric shortcuts gives a 2-approximation. To adapt this approach to ATSP we use a minimum spanning 
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arborescence (MSA) as the directed variant of an MST. (The notion spanning arborescence in this context denotes a rooted 
tree in a directed graph such that for each vertex v there is a unique path in the tree from the root to v . In particular, like 
a tree, an arborescence containing n vertices has exactly n − 1 arcs.) Tree doubling then runs into trouble when the cost of 
an opposite arc is arbitrarily higher than the direction contained in the MSA. These arcs are the core of the problem and 
hence our basis to generalize the tree doubling algorithm.

Formally, we call (u, v) ∈ A a one-way arc in G = (V , A, c) if c(u, v) < c(v, u). In a nutshell, our algorithm removes all 
one-way arcs from an MSA, computes a tour for each resulting connected component by an altered tree doubling routine 
and uses exponential time in the number of removed one-way arcs to connect these subtours to a solution for the whole 
graph. For a best runtime, we hence want to keep the number of one-way arcs in the starting MSA as small as possible. For 
our parametrization, we formally define k to be the minimum number of one-way arcs in an MSA for G .

At first glance, it might seem that finding an MSA with k one-way arcs is a difficult task. However this can be accom-
plished by searching for an MSA with an altered weight function and gives the following result.

Lemma 8. Let G be a metric ATSP instance, then an MSA of G with a minimum number of one-way arcs can be computed in O(n3).

Proof. For G = (V , A, c) let Ao ⊆ A be the set of one-way arcs in G . Assume w.l.o.g. that c assigns integer weights (other-
wise scaling transforms the weights into integers without altering the property of a spanning arborescence being an MSA). 
We define a new ATSP instance G ′ = (V , A, c′) by altering the weights in G as follows:

c′(e) =
{

|V |c(e) + 1 if e ∈ Ao

|V |c(e) else

Let r ∈ V be any chosen root vertex. We claim that an MSA with root r for G ′ is an MSA with root r in G with a minimum 
number of one-way arcs (minimum among all MSAs with root r for G). Let L be an MSA with root r of G ′ .

Assume that L is not an MSA with root r of G , so there exists a spanning arborescence T with root r of G such 
that c(L) > c(T ). With the assumed integer weights, it follows that c(L) ≥ c(T ) + 1. By the definition of c′ , and the fact 
that each spanning arborescence of G contains at most |V | − 1 one-way arcs, it follows that c′(T ) ≤ |V |c(T ) + |V | − 1 ≤
|V |(c(L) − 1) + |V | − 1 < c′(L), a contradiction to L being an MSA with root r for G ′ .

Hence L is an MSA with root r for G . Now let k be the number of one-way arcs in L, and assume that this is not the 
minimum among all MSAs with root r for G . Then there exists an MSA T for G with root r and with k′ < k one-way arcs. 
This gives c′(T ) = |V |c(T ) + k′ < |V |c(T ) + k = c′(L) (observe that c(L) = c(T ) since these are both MSA for G), again a 
contradiction to the minimality of L for G ′ .

Lastly, an MSA for G ′ with fixed root r can be computed in O(n2) (observe that we have a complete graph, so |A| = |V |2), 
e.g., with the Chu–Liu/Edmonds algorithm [23] with Fibonacci heaps [24]. We do not care about a specific vertex r to be 
the root, actually we would rather pick it to minimize the number of one-way arcs, so we try all vertices in V as root and 
pick the one that minimizes the number of one-way arcs in the resulting MSA. This gives the total runtime in O (n3). �

With this best MSA, we can describe our generalized tree doubling algorithm. Let T be the MSA for G computed 
with Lemma 8, and let T1, . . . , Tk+1 be the connected components in the graph created by deleting all k one-way 
arcs from T . We construct a graph M by contracting each set of vertices V [Ti] to one vertex v M

i with our notion 
of contraction to a minor. This results in V [M] = {v M

1 , . . . , v M
k+1} and for all v M

i , v M
j ∈ V [M] with i �= j, c(v M

i , v M
j ) =

min
({

c(ti, t j) | ti ∈ V [Ti], t j ∈ V [T j]
})

.

Lemma 9. Let G be a metric ATSP instance and M be a minor of G, then c∗(M) ≤ c∗(G).

Proof. Consider an arbitrary sequence of contractions of G that result in M . Map each vertex v ∈ M to the subset of vertices 
S v ⊆ V [G] that v was contracted from. Let τ ∗ be an optimal tour for G . Arbitrarily pick for each such set S v exactly one 
vertex rv . Create a tour τ ′ from τ ∗ by shortcutting all vertices that were not picked to be some rv . Note that since G is 
metric, τ ′ is at most as expensive as τ ∗ . Finally, let τ be the tour obtained from τ ′ renaming rv to v , to formally obtain a 
tour in M .

Consider an arbitrary arc (x, y) in τ ′ and let x = v v and y = v w . It follows by the construction of M that the arc from 
the vertex created from S v to the vertex created from S y in M has the cost min{c(a, b) | a ∈ S v , b ∈ S w} ≤ c(x, y). Thus 
every arc in τ costs at most as much as its corresponding arc in τ ′ , and we conclude that c(τ ) ≤ c(τ ′) ≤ c(τ ∗) = c∗(G). �

The idea for our generalized tree-doubling algorithm now is to extend an optimal tour τ ′ for M to a tour for G . Con-
sider a vertex v M

i in M (which corresponds to the component Ti ) and assume w.l.o.g. that in τ ′ it is preceded by v M
i−1

and precedes v M
i+1. Further, let (v

Ti−1
out , v Ti

in ) and (v Ti
out, v

Ti+1
in ) be the cheapest arc between Ti−1 and Ti , and Ti and Ti+1, 

respectively. The goal is to find a path χi that starts in v Ti , ends in v Ti
out , and spans all vertices in Ti (formally a solution to 
in
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Fig. 2. Exemplary construction for a suitable path χi . Left: spanning tree with Pi dashed; Middle: trail through partially doubled edges; Right: resulting 
path.

s-t-path TSP for G[Ti] with s = v Ti
in and t = v Ti

out). Replacing v Ti in τ ′ by χi for each i turns τ ′ into a tour. However, the cost 
of χi has to be bounded.

Such a path χi through Ti can be found by adapting the tree doubling algorithm as given in Algorithm 1. For this 
algorithm, we treat Ti as undirected and double all its edges that are not on the shortest path Pi from v Ti

in to v Ti
out . The 

resulting graph contains an Eulerian trail from v Ti
in to v Ti

out , which is turned into a path by metric shortcuts ensuring that v Ti
in

and v Ti
out remain start and end vertex, see Fig. 2 for an example. Observe that we cannot use any of the better approximations 

for s-t-path TSP, such as [25], since the subgraph induced by the vertices in Ti is not necessarily completely symmetric. 
Further, even if this was possible, the only information we can use to compare the tour through Ti with the optimum for 
the whole graph G are the arcs from the MSA, which in the worst case always results in a ratio of 2.

Algorithm 1: Adjusted tree doubling for a spanning path of component Ti .

Input: Symmetric tree Ti , vertices v Ti
in , v Ti

out ∈ Ti

Output: A spanning path
1 Pi ← the unique path from v Ti

in to v Ti
out in Ti

2 T M
i := Ti

3 foreach edge e in Ti do
4 if e /∈ Pi then
5 double e in T M

i

6 πi ← an Eulerian trail from v Ti
in to v Ti

out in T M
i

7 χi ← the metric shortcut of πi

8 return χi

For the cost of χi , note that it contains for each arc (u, v) in Ti at most both (u, v) and (v, u). Since there are no 
one-way arcs in Ti , any opposite arc is at most as expensive as the original arc in Ti . Consequently, the cost of χi is at most 
twice the cost of the arcs in Ti and the sum of all χi is at most 2c∗(G). In combination with the cost of at most c∗(G) for 
τ ′ , this yields the following result.

Theorem 10. Metric ATSP can be 3-approximated in O(2k · k2 + n3), where k is the minimum number of one-way arcs in a minimum 
spanning arborescence.

Proof. Consider the procedure described in Algorithm 2. We claim that first computing an MSA L with Lemma 8 and then 

Algorithm 2: Generalized tree doubling algorithm.

1 Input: MSA L = (V , A)

2 T1, . . . , Tk+1 ← components of L[{e ∈ A | e is not a one-way arc}]
3 M ← complete graph with vertices v M

1 , . . . , v M
k+1

4 foreach v M
i , v M

j ∈ V [M] with i �= j do
5 c(v M

i , v M
j ) ← min

({
c(ti , t j) | ti ∈ V [Ti ], t j ∈ V [T j ]

})
6 τ ′ ← an optimum tour of M

7 foreach subsequent v M
i , v M

j ∈ τ ′ do

8 v Ti
out , v

T j

in ← argmin{(c(ti , t j)) | ti ∈ V [Ti ], t j ∈ V [Ti ]}
/* Arc (v Ti

out , v
T j

in ) thus has cost c(v M
i , v M

j ) */

9 foreach i ∈ {1, . . . , k + 1} do
10 χi ← path from v Ti

in to v Ti
out spanning Ti computed by Algorithm 1

11 τ ← tour created from τ ′ by replacing v M
i by χi for each i

12 return τ

running Algorithm 2 for this L yields a tour with the desired properties. Consider the computed solution τ = (χ1, . . . , χk+1). 
Since τ contains a path of each of the k + 1 components, τ visits each vertex exactly once and is thus a tour of G . In total, 
τ consists of the paths through each component in addition to the arcs (v Ti

out, v
Ti+1
out ) for i ∈ [1, k + 1], which correspond to 
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the arcs in an optimal solution for M . Since the subtours χi through the components Ti are computed by the adapted tree 
doubling algorithm, they satisfy the following inequality

k+1∑
i=1

c(χi) ≤
k+1∑
i=1

2 · c(Ti) ≤ 2c∗(G). (2)

Together with Lemma 9 it follows that the constructed tour is at most 3 times as expensive as the optimum tour for G .
The runtime of the algorithm is dominated by step 6 of Algorithm 2, where we use the dynamic programming algorithm 

by Held and Karp [19] that runs in O(2kk2). The runtime of all remaining steps is polynomial in n, where the most expensive 
part is the cubic runtime of Lemma 8. The overall runtime of the algorithm is therefore in O(n3 + 2kk2). �

Contrary to the approach in Section 3, we cannot plug in some approximation for finding a good tour τ ′ for M to derive 
something like Corollary 4. Note that the minor M is not necessarily metric since contractions do not preserve the triangle 
inequality. Still, one might ask if M , as minor of a metric graph, has useful structural properties. However, the following 
result discourages such ideas.

Lemma 11. Let G be a complete, directed graph with cost function c. Then, there exists a complete, metric graph Ĝ of which G is a 
minor.

Proof. Let G = (V , A, c) be a complete, directed graph. We construct a metric graph Ĝ as follows. For each vertex pair 
{u, v} ∈ V × V with u �= v , we add the vertices uv and vu in Ĝ . We create the arcs (uv , vu) and (vu, uv), and assign them 
the costs c(u, v) and c(v, u), respectively. Finally, we connect every vertex pair that is not yet connected with arcs in both 
directions with cost m + 1, where m is the maximum arc cost in G . Every vertex in Ĝ is incident to exactly one arc whose 
cost is not m + 1. Therefore, every triangle in Ĝ consists either of three arcs with cost m + 1, or of two arcs with cost m + 1
and one arc with cost less than m + 1. For all these triangles, the triangle inequality holds.

Every vertex u in G is represented by a set of vertices V u in Ĝ: V u = {uv | v ∈ V [G], v �= u}. Similar to a vertex u having 
exactly one arc to every vertex v in G , a vertex set V u has exactly one arc with cost c(u, v) < m + 1 to every vertex set V v

in Ĝ , while all other arcs that begin in V u have cost m + 1. In particular, for every arc (u, v) in G there is exactly one arc 
from V u to V v in Ĝ with the same cost.

In order to transform Ĝ into G we iteratively contract all the vertices in each set V u . We show that during these 
contractions an arc with cost less than m + 1 is never deleted. When contracting two vertices x, y ∈ V u , an arc can be 
deleted for two reasons:

1. The arc connects x and y. Then we do not care about its deletion since arcs within sets have cost m + 1.
2. The arc connects x and some vertex w , w.l.o.g. in the direction from x to w , and c(y, w) ≤ c(x, w). The vertices x and 

y belong to the same vertex set, thus there is at most one arc (in each direction) with cost less than m + 1. Since 
c(y, w) ≤ c(x, w), the arc (x, w) must have cost m + 1. The case of an arc from w to x is analogous.

After contracting all n vertex sets V i , there are exactly n vertices (and thus n2 − n arcs) left. Since we did not delete any 
arc with cost less than m + 1 and G has n2 − n arcs as well, we know that there cannot be any arc with cost m + 1 left in 
the contracted graph.

In the following we show that the contractions of Ĝ result in G . Consider an arbitrary arc (u, v) ∈ A(G). Let cu be the 
vertex obtained by contracting all vertices in V u . We know that all arcs from V u to V v have cost m + 1, except exactly one 
arc with cost c(u, v). Since contractions always keep the cheaper arc, the cost of the remaining arc (cu , cv) also has cost 
c(u, v). As a result, each cu in the contracted graph can be considered as u in G . �

Computing a tour for M is related to the generalized traveling salesman problem (GTSP) which can be tracked back to 
publications of Henry-Labordère and Saksena [26,27]. Given a partition of the cities into r sets, GTSP asks for a minimum 
cost tour containing (at least) one vertex from each of the r sets. Unfortunately, there are no known efficient ways to solve or 
approximate GTSP. However, we observe that using an optimal GTSP tour for the vertex sets corresponding to T1, . . . , Tk+1
instead of the tour through M still yields a 3-approximation. In fact, this remains true even if we fix one arbitrary city 
for each set which can be seen as follows. Consider a metric ATSP instance G with minimum spanning arborescence T
computed by Lemma 8. Let T1, . . . , Tk+1 be the connected components of the graph created from removing all one-way 
arcs from T . Pick arbitrarily one vertex vt

i from Ti for each i ∈ {1, . . . , k + 1} and consider as asymmetric subgraph to be 
brute-forced the graph M ′ = G[{vt

1, . . . , v
t
k+1}]. Note that as induced subgraph of G , M ′ is a metric instance of ATSP; in 

contrast to the graph M used for Theorem 10.
To turn an optimum tour τ ′ for M ′ into a solution for G , we replace each vertex vt

i by a tour through the vertices in 
Ti . These tours are computed by tree doubling for Ti . Since M ′ is a subgraph of G , an optimal tour for it is at most as 
expensive as an optimal tour for G by Lemma 2. The cost of the total tour is hence at most γ c∗(M ′) ≤ c∗(G) for the tour 
connecting the components, plus 2c∗(G) for the subtours for each Ti , which overall is a 3-approximate solution.
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Fig. 3. The constructed graph that shows the tightness of the simplified parameterized 3-approximation.

To see that the ratio 3 for this simplified approach, which we refer to as simplified parameterized 3-approximation, is tight, 
consider for a fixed n ∈ N a cycle on 2n vertices where only the first and the (n + 1)st links are asymmetric, see Fig. 3. 
Assign a cost of 1 to all arcs of the cycle. Let G be the metric closure of this graph and let T be an MSA for G that only 
contains one of the asymmetric links; observe that any MSA for G has to be built by removing exactly one link from the 
cycle, and one with a minimum number of one-way arcs hence deletes one of the asymmetric links. This results in two 
components, the path from v1 to vn and the path from vn+1 to v2n . Pick vn and v2n as representatives for M ′ .

Trivially, (vn, v2n) is an optimal solution for M ′ and replacing vn by the subtour S1 = (vn, vn−1, . . . , v1), and v2n by the 
subtour S2 = (v2n, v2n−1 . . . , vn+1) results in a tour for G of cost 6n − 4. Since an optimal solution has cost 2n, this shows 
that the ratio of 3 for the simplified parameterized 3-approximation is asymptotically tight.

Aside from the fact that we did not find a tight example for Theorem 10, seeing that the choice of any arbitrary vertex 
still yields a 3-approximation causes us to conjecture that our more sophisticated generalization of the tree doubling algo-
rithm is in fact a 2-approximation. Proving such a ratio however requires an exploitable connection between the cost for 
the paths χi and the cost of τ ′ .

5. Trading approximation quality for runtime

In real life, we expect instances with many small asymmetries which have little impact but lead to relatively large 
parameter values. Therefore, ignoring asymmetric links where both directions have similar cost and trading some approxi-
mation quality for running time yields an intriguing perspective. As a formal way to describe moderate asymmetry, we use 
the asymmetry factor of Martínez Mori and Samaranayake [7] as introduced in Section 1.3. Since � is commonly used for 
the maximum degree, and we want to describe variable restrictions of the asymmetry factor, we use β instead. For β ≥ 1
we call a link {u, v} or arc (u, v) β-symmetric if 1

β
≤ c(u,v)

c(v,u)
≤ β , otherwise it is called β-asymmetric. We show that our 

algorithms support a quality-runtime trade-off with respect to β .

5.1. Relaxed generalized Christofides algorithm

For a given β we modify the algorithm presented in Section 3 by treating every β-symmetric link as symmetric. This 
results in parametrization by the vertex cover of the subgraph induced by all β-asymmetric links. We denote this param-
eter by zβ . Since the β-symmetric subgraph is not completely symmetric, the Christofides algorithm cannot be directly 
used. Martínez Mori and Samaranayake [7] showed that it is 3

2 -stable by replacing every link with an undirected edge and 
assigning it the cost of the more expensive direction. Combined with the arguments used for Theorem 3, this gives a param-
eterized ( 3

2 β + 1)-approximation for parameter zβ . This can be improved by turning the β-symmetric subgraph symmetric 
by assigning the cost of the cheaper direction. Although this may not yield a metric graph, it suffices that the original graph 
is metric to prove that the Christofides algorithm yields a good solution.

Theorem 12. For any β≥1, metric ATSP can be ( 3
4 β + 7

4 )-approximated in O(n3 + 2zβ z2
β) where zβ is the size of a minimum vertex 

cover of the subgraph induced by all β-asymmetric links.

Proof. Let G be a β-symmetric metric graph and let G< be the undirected graph created from G by replacing each pair 
of arcs (u, v), (v, u) with cost c1 and c2 in A by an undirected edge between u and v with cost min{c1, c2}. Let T be a 
minimum spanning tree for G . Since all costs in G< are smaller or equal to the costs in G , the cost of T is at most the cost 
of a minimum spanning arborescence for G and hence at most c∗(G).

Let V ′ ⊆ V [G<] be the set of vertices with odd degree in T . Since the original graph G is metric, a min-cost perfect 
matching for V ′ in G has a cost of at most 1

2 c∗(G). Again, the cost of such a matching in G< is smaller or equal to its 
corresponding cost in G , hence a min-cost perfect matching M of V ′ in G< has cost at most 1

2 c∗(G). Let W be an Eulerian 
circuit for the edges in T ∪ M . Consider both directions to traverse W in G and the resulting cost of the tour. For each 
edge in W at most one of the corresponding two arcs in G has a larger cost than the undirected edge in G< . In the worst 
case, all edges in W correspond to asymmetric links in G and have in one direction a cost of β times the cost of their 
counterparts in G< . The better of the two traversal directions hence corresponds to a tour of cost at most 1

2 (1 + β) times 
the cost of W in G< , which is at most C(T ∪ M) ≤ 3

2 · c∗(G). In the metric graph G , metric shortcuts can be used to turn 
W into a proper TSP tour without increasing the cost, which overall yields a 3

4 (1 + β)-approximate solution.
Applying this 3

4 (1 + β)-approximate solution for the β-symmetric subgraph G ′′ in step 3 of the algorithm used to prove 
Theorem 3 yields the claimed result. �
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5.2. Relaxed generalized tree doubling algorithm

For the generalized tree doubling algorithm, we define a β-one-way arc as a one-way arc that is β-asymmetric. We 
denote by kβ the minimum number of β-one-way arcs in an MSA. Note that the strategy in Lemma 8 can also be used to 
find an MSA with kβ β-one-way arcs. The generalization of Theorem 10 is straightforward, instead of deleting all one-way 
arcs we only delete β-one-way arcs. This results in fewer components and a smaller graph Mβ . The drawback is a change to 
the cost analysis: so far, we considered the component trees Ti to be symmetric. Now for every (u, v) ∈ A[Ti], the opposite 
arc (v, u) can be up to β times as expensive. The adjusted tree doubling algorithm for the path through Ti uses every arc 
in Ti and its opposite arc at most once, which in total costs at most (1 + β)c∗(G). Combined with the cost of at most c∗(G)

for an optimum tour through Mβ , this yields:

Theorem 13. For any β ≥ 1, metric ATSP can be (2 + β)-approximated in O(2kβ k2
β + n3) where kβ is the minimum number of 

β-one-way arcs in an MSA.

6. Experimental results

To test the practical viability of our algorithms, we implemented them in their relaxed form (see Section 5) to also 
observe their behavior when certain asymmetries are ignored. We evaluated on the asymmetric graphs from the TSPLIB 
collection [28], the standard benchmark for TSP solvers, and on a set of specific ATSP instances extracted from road networks 
by Rodríguez and Ruiz [29].

6.1. Implementation details

Our implementation (available on GitHub1) is written in Python 3, except for the vertex cover solver, which is written in 
Java. We used the Python library NetworkX [30] for graph manipulation, the C++ library Lemon [31] for computing MSAs, and 
Concorde [32] for solving TSP exactly. Since Concorde is a TSP solver, we transformed the ATSP instances into TSP instances 
with the transformation presented by Jonker and Volgenant [33,34].

We note that the runtime of our implementations is incomparable to state-of-the-art ATSP solvers. Among others, the 
reason is Python’s inherently low performance and the inefficiency of solving ATSP with Concorde. However, this is of no 
importance for our evaluation of approximation ratio, parameter size, and the proof of concept.

6.2. Experiments

Many instances in the TSPLIB are not metric, thus our algorithms cannot be directly applied. We therefore computed the 
metric closure of each graph by setting the cost of each arc (u, v) to the cost of the shortest path from u to v and used this 
as input for our algorithm. The TSPLIB contains 19 asymmetric instances ranging from 17 up to 443 vertices with different 
underlying properties. The instances’ names contain the number of vertices (e.g. ftv33) and similar names indicate similar 
properties. For example, all instances starting with rbg have relatively high symmetry and a high number of zero-cost arcs, 
which distinguishes them from the other instances. Table 1 depicts an overview of the instances and the characteristics of 
their metric closures. In particular, the metric closure of br17 is completely symmetric, so we ignored it in our experiments.

For each TSPLIB instance we executed each algorithm five times with different values for β and recorded the value of 
the parameter as well as the approximation ratio. Starting with β = 1 (which corresponds to 100% of the asymmetric links), 
we raised the value of β each step, reducing the number of asymmetric links treated as asymmetric to a quarter of the 
previous experiment. Some instances include many zero-cost arcs, so there is no value of β ignoring those. We considered 
zero-cost arcs to have a small positive cost (set to 0.1) when calculating the asymmetry factor, thus treating links with a 
small additive error as symmetric in case of these otherwise undauntedly asymmetric one-way arcs of cost 0. Note that we 
did not alter the instance, but only used these additive errors for relaxation decisions. Finally, β was set to ∞, such that the 
graph is treated as completely symmetric. This results in the non-generalized versions of the tree doubling and Christofides 
algorithm. The results are shown in Table 2.

The second dataset contains 450 ATSP instances based on travel distances between random points sampled across differ-
ent regions and cities in Spain. The graphs in this dataset have between 50 and 500 vertices. On average 98.8% of the links 
are asymmetric (std. dev. 1.08%) and no graph contains arcs of cost zero. Most links are however only slightly asymmetric: 
denoting by asymmetry factor the relative difference between the cost of a link’s more expensive arc and its opposite arc, 
the mean asymmetry factor is 3.55% on average over all graphs (std. dev. 0.040%). The median asymmetry factor is 1.32%
(std. dev. 1.56%) on average. There are however also links with large asymmetry factor. The highest asymmetry factor is 
15.0 (std. dev. 58.8) on average. Overall this makes the graphs in the second dataset very relevant to the algorithms we 
present. Unfortunately, due to computational constraints and the size of the dataset and the graphs therein, we could only 

1 https://github .com /Blaidd -Drwg /atsp -approximation.
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Table 1
An overview of the 19 asymmetric TSPLIB instances and the properties of their met-
ric closures. The asymmetry factor of each vertex pair u, v is calculated by the formula 
max(

c(u,v)
c(v,u)

, c(v,u)
c(u,v)

) if there is no arc with cost zero between the two vertices and undefined 
otherwise. The median and maximum asymmetry factors were calculated ignoring undefined 
values.

instance 
name

symmetric 
links

median 
asymmetry factor

maximum 
asymmetry factor

zero-cost 
arcs

ft53 0% 2.04 23.04 None

ft70 0% 1.40 5.87 None

ftv170 6% 1.22 34.00 None

ftv33 6% 1.31 18.75 None

ftv35 5% 1.31 18.75 None

ftv38 6% 1.30 18.75 None

ftv44 5% 1.28 18.75 None

ftv47 3% 1.31 11.17 None

ftv55 5% 1.28 18.75 None

ftv64 4% 1.29 34.00 None

ftv70 4% 1.29 34.00 None

kro124p 0% 1.04 3.42 None

p43 63% 13.61 14.64 3%

rbg323 33% 3.00 20.00 47%

rbg358 50% 3.00 18.00 65%

rbg403 49% 2.50 12.00 68%

rbg443 49% 2.67 11.00 69%

ry48p 1% 1.04 3.63 None

Table 2
Experimental results on TSPLIB instances with percentage of asymmetric links that were treated as asymmetric shown in the 
column header. Each cell contains parameter value and approximation factor, separated by a slash (trivial parameter value 0 
omitted in 0% column). Superiority in the sense of smaller parameter or better approximation ratio is highlighted with bold 
font.

Generalized Christofides algorithm Generalized tree doubling algorithm

100% 25% 6.25% 1.56% 0% 100% 25% 6.25% 1.56% 0%

ft53 53/1.00 29/1.54 13/1.70 6/1.69 1.72 45/1.08 25/1.36 6/1.42 1/1.57 1.97

ft70 69/1.02 34/1.24 12/1.26 7/1.41 1.24 64/1.02 27/1.13 4/1.20 2/1.21 1.28

ftv170 155/1.17 123/1.38 97/1.57 64/1.85 2.37 108/1.14 107/1.14 103/1.21 75/1.46 1.81

ftv33 29/1.12 19/1.45 11/1.43 5/1.56 1.33 19/1.34 16/1.34 11/1.44 2/1.23 1.50

ftv35 32/1.07 21/1.51 12/1.55 6/1.49 1.38 23/1.15 17/1.23 11/1.47 2/1.28 1.58

ftv38 33/1.13 23/1.38 12/1.43 7/1.47 1.39 23/1.24 18/1.33 12/1.54 3/1.30 1.62

ftv44 40/1.09 32/1.38 19/1.46 10/1.56 1.54 32/1.24 25/1.41 18/1.41 7/1.50 1.79

ftv47 44/1.05 32/1.47 19/1.66 13/1.65 1.66 35/1.09 30/1.16 19/1.34 9/1.38 1.58

ftv55 49/1.13 38/1.44 23/1.57 15/1.65 1.84 37/1.20 32/1.26 25/1.34 12/1.58 2.00

ftv64 57/1.11 46/1.46 30/1.66 18/1.73 1.72 50/1.10 43/1.15 31/1.29 14/1.71 1.45

ftv70 63/1.11 50/1.43 32/1.64 20/1.72 1.96 53/1.26 47/1.14 33/1.21 16/1.57 1.51

kro124p 99/1.11 86/1.30 65/1.36 40/1.41 1.24 81/1.06 70/1.13 57/1.20 34/1.28 1.37

p43 15/1.01 6/1.01 0/1.01 0/1.01 1.01 0/1.01 0/1.01 0/1.01 0/1.01 1.01

rbg323 148/1.02 59/1.17 43/1.19 18/1.30 1.34 235/1.09 22/1.27 6/1.27 0/1.30 1.30

rbg358 108/1.01 47/1.13 27/1.15 22/1.14 1.18 232/1.03 39/1.14 18/1.19 13/1.20 1.22

rbg403 125/1.01 41/1.12 11/1.26 11/1.26 1.17 113/1.05 30/1.14 0/1.24 0/1.24 1.24

rbg443 138/1.00 43/1.14 12/1.24 12/1.24 1.15 127/1.04 32/1.17 0/1.24 0/1.24 1.24

ry48p 47/1.20 37/1.40 23/1.46 11/1.47 1.16 28/1.10 22/1.14 11/1.24 5/1.29 1.21

determine the values of the parameters and not the cost of all optimal tours and the obtained approximation ratio. Fig. 4
presents the relative value of z and k for different values of β .
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Fig. 4. Parameter values relative to graph size for generalized Christofides and tree doubling algorithms for different values of β . Each box spans the second 
and third quartile of the data and whiskers extend for 1.5 inter-quartile-ranges. The median is marked as a line, the mean as a rhombus and outliers as 
disks. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

6.3. Evaluation

First, we note that most graphs in the TSPLIB contain very little symmetry. This leads to large parameter values for 
β = 1, i.e., only some graphs with more than 10% symmetry have parameter values below 50% of the graph size. Still, we 
observe that the approximation factor is always far below the upper bound, never exceeding even 2.0. Also, we see that 
interpolating β to reduce the number of relevant asymmetric links produces a valuable trade-off between approximation 
quality and parameter value. Comparing both algorithms, we observe that on the majority of instances and values for β the 
generalized tree doubling algorithm produces smaller parameter values.

This can also be observed on the instances of the second dataset, which we consider to be more representative of realistic 
inputs. We want to highlight that the parameters are significantly smaller than the size of the input graphs even for small 
values of β . E.g., for the generalized tree doubling algorithm with β = 1.1 the median relative parameter value over all 
instances is 0.045. It also seems that the relative size of the parameters is stable for different input sizes.

These results underline the practicality of our approach, especially with regards to the parameter values obtained by 
choosing a suitable β .
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