
A Parameterized Theory of PAC Learning

Cornelius Brand,1 Robert Ganian,1 Kirill Simonov,2
1Algorithms and Complexity Group, TU Wien, Austria, 2Chair for Algorithm Engineering, Hasso Plattner Institute, Germany

{cbrand, rganian}@ac.tuwien.ac.at, kirill.simonov@hpi.de

Abstract

Probably Approximately Correct (i.e., PAC) learning is a core
concept of sample complexity theory, and efficient PAC learn-
ability is often seen as a natural counterpart to the class P
in classical computational complexity. But while the nascent
theory of parameterized complexity has allowed us to push
beyond the P-NP “dichotomy” in classical computational com-
plexity and identify the exact boundaries of tractability for nu-
merous problems, there is no analogue in the domain of sample
complexity that could push beyond efficient PAC learnability.
As our core contribution, we fill this gap by developing a the-
ory of parameterized PAC learning which allows us to shed
new light on several recent PAC learning results that incor-
porated elements of parameterized complexity. Within the
theory, we identify not one but two notions of fixed-parameter
learnability that both form distinct counterparts to the class
FPT—the core concept at the center of the parameterized
complexity paradigm—and develop the machinery required
to exclude fixed-parameter learnability. We then showcase the
applications of this theory to identify refined boundaries of
tractability for CNF and DNF learning as well as for a range
of learning problems on graphs.

1 Introduction
While a number of different models for sample complexity
have by now been considered in the literature, the fundamen-
tal concept of Probably Approximately Correct (i.e., PAC)
learning (Valiant 1984) remains a core pillar which can the-
oretically capture and explain the success of learning algo-
rithms in a broad range of contexts. Intuitively, in the classical
proper PAC setting we ask whether it is possible to identify
(or “learn”) a hypothesis from a specified hypothesis space
after drawing a certain number of labeled samples1 according
to an unknown distribution. As the best case scenario, one
would wish to have an algorithm that can learn a hypothesis
with arbitrarily high precision and with arbitrarily high prob-
ability after spending at most polynomial time and using at
most polynomially-many samples. These are called efficient
PAC-learning algorithms, and the class of learning problems
admitting such algorithms forms a natural counterpart to the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Formal definitions are provided in the Preliminaries.

class P in the classical complexity theory of computational
problems.

In spite of this parallel, our understanding of the sam-
ple complexity of learning problems remains significantly
behind the vast amounts of knowledge we have by now gath-
ered about the time complexity of computational problems.
Indeed, while understanding the distinction between NP-hard
and polynomially tractable classes of instances for computa-
tional problems remains an important research direction, over
the past two decades focus has gradually shifted towards a
more fine-grained analysis of the boundaries of tractability for
such problems. In particular, parameterized complexity (Cy-
gan et al. 2015; Downey and Fellows 2013) has emerged
as a prominent paradigm that yields a much deeper under-
standing of the limits of tractability than classical complexity
theory, and today we see research exploring the parameter-
ized complexity of relevant problems appear in a broad range
of venues spanning almost all areas of computer science. The
main idea behind the parameterized paradigm is to investi-
gate the complexity of problems not only with respect to the
input size n, but also based on a numerical parameter k that
captures some property of the input; the central notion is then
that of fixed-parameter tractability (FPT), which means that
the problem of interest can be solved in time f(k) · nO(1) for
some computable function f .

Given its ubiquitous applications, it is natural to ask
whether (and how) the principles of parameterized complex-
ity analysis can also be used to expand our understanding of
the foundations of sample complexity beyond what may be
possible through the lens of efficient PAC-learnability. In fact,
there already are a handful of papers (Li and Liang 2018;
Arvind, Köbler, and Lindner 2009; Alekhnovich et al. 2008;
Gärtner and Garriga 2007) that have hinted at the potential
of this novel field by identifying learning algorithms that
seem to act as intuitive counterparts to the fixed-parameter
algorithms emblematic of parameterized complexity. How-
ever, the theoretical foundations of a general parameterized
extension to the PAC-learning framework have yet to be for-
malized and developed, stifling further development of this
unique bridge between the two research communities.
Contribution. As our first conceptual contribution, we lay
down the foundations of a general parameterized extension
to the PAC-learning framework. Crucially, when defining
the analogue of fixed-parameter tractability in the sample

complexity setting, we show that there are two natural defini-
tions which need to be considered: a parameterized learning
problem is

1. fpt-time learnable if a suitable PAC hypothesis can be
learned from polynomially-many samples using a fixed-
parameter algorithm, and

2. fpt-sample learnable if a suitable PAC hypothesis can be
learned using a fixed-parameter algorithm.

Essentially, in the latter case the total number of sam-
ples used need not be polynomial, but of course remains
upper-bounded by the (fixed-parameter) running time of the
algorithm. An important feature of the framework is that pa-
rameters are allowed to depend not only on the sought-after
concept (as was considered in prior work (Arvind, Köbler,
and Lindner 2009)), but also on properties of the distribution.
This can be seen as analogy to how one utilizes parameters
in the classical parameterized complexity paradigm: they can
capture the properties we require on the output (such as the
size of a solution), but also restrictions we place on the input
(such as structural parameters of an input graph).

The parameterized PAC-learning framework proposed in
this paper also includes a machinery that can be used to ob-
tain lower bounds which exclude the existence of FPT-time
and fpt-sample learning algorithms; this is done by building a
bridge to the well-studied W-hierarchy in parameterized com-
plexity theory. Moreover, we provide the sample-complexity
analogues to the complexity class XP; similarly as in the
fixed-parameter case, it is necessary to distinguish whether
we restrict only the running time or the number of samples.

After laying down the foundations, we turn our attention
to two major problem settings with the aim of illustrating
how these notions can expand our knowledge of sample com-
plexity. First, we study the boundaries of learnability for the
fundamental problem of learning DNF and CNF formulas,
which are among the most classical questions in PAC learning
theory.

On one hand, k-CNF and k-DNF formulas are known to
be efficiently PAC-learnable for every fixed k, albeit the run-
ning time of the known algorithms have the form O(nk). As
our first result, we show that while both of these learning
problems are xp-time learnable, under well-established com-
plexity assumptions they are neither fpt-time nor fpt-sample
learnable when parameterized by k. On the other hand, for
each p > 1 it is well-known that p-term DNF and p-clause
CNF formulas are not efficiently PAC learnable (Pitt and
Valiant 1988; Alekhnovich et al. 2008) unless P = NP, and
here we ask the question whether a suitable parameterization
can be used to overcome this barrier to tractability. We show
that while learning p-term DNF and p-clause CNF formulas
remains intractable under the most natural parameterizations
of the target concept, one can learn such formulas by an
fpt-time algorithm by exploiting a parameterization of the
distribution. In particular, it is not difficult to observe that the
learning problem is tractable when each sample contains at
most one variable set to True, and we show that it is possible
to lift this to a non-trivial fpt-time learning algorithm when
parameterized by the number of variables which are exempt
from this restriction (i.e., can always contain any value).

While CNF and DNF learning is fundamental for PAC
learning, in the last part of our study we turn towards a set-
ting which has been extensively studied in both the sample
complexity and parameterized complexity paradigms: graph
problems. Indeed, fundamental graph problems such as vertex
cover and subgraph detection served as a testbed for the de-
velopment of parameterized complexity theory, and are also
heavily studied in machine learning and sample complexity
contexts (Nguyen and Maehara 2020; Abasi and Bshouty
2019; Abasi, Bshouty, and Mazzawi 2018; Damaschke and
Muhammad 2010; Alon and Asodi 2005; Choi and Kim
2010). Here, we obtain a meta-theorem showing that a large
class of graph problems is fpt-time learnable: in particular,
we provide an fpt-time learning algorithm for finding a ver-
tex deletion set to H, where H is an arbitrary graph class that
can be characterized by a finite class of forbidden induced
subgraphs. As one special case, this captures the problem
of learning hidden vertex covers (Damaschke and Muham-
mad 2010). We conclude by excluding a similar result for
classes H characterized by forbidden minors—hence, for in-
stance hidden feedback vertex sets are neither fpt-time nor
fpt-sample learnable when parameterized by their size.
Due to space constraints, proof details are provided in the
supplementary material.

2 Preliminaries
As basic notation and terminology, we set {0, 1}∗ =⋃

m∈N{0, 1}m. A distribution on {0, 1}n is a mapping D :
{0, 1}n → [0, 1] such that

∑
x∈{0,1}n D(x) = 1, and the

support of D is the set suppD = {x | D(x) > 0}. We first
recall the basics of both PAC-learning and parameterized
complexity theory.

PAC-Learning
Let us begin by formalizing the classical learning theory
considered in this article (Valiant 1984; Mohri, Rostamizadeh,
and Talwalkar 2012).

Definition 2.1. A concept is an arbitrary Boolean function
c : {0, 1}n → {0, 1}. An assignment x ∈ {0, 1}n is called
a positive sample for c if c(x) = 1, and a negative sample
otherwise. A concept class C is a set of concepts. For every
m ∈ N, we write Cm = C ∩ Bm, where Bm is the set of all
m-ary Boolean functions.

Definition 2.2. Let C be a concept class. A surjective map-
ping ρ : {0, 1}∗ → C is called a representation scheme of C.
We call each r with ρ(r) = c a representation of concept c.

In plain terms, while concepts may be arbitrary functions,
representations are what make these “tangible” and are what
we typically expect as the output of learning algorithms.

Definition 2.3. A learning problem is a pair (C, ρ), where C
is a concept class and ρ is a representation scheme for C.

Definition 2.4. A learning algorithm for a learning problem
(C, ρ) is a randomized algorithm such that:

1. It obtains the values n, ε, δ as inputs, where n is an integer
and 0 < ε, δ ≤ 1 are rational numbers.

2. It has access to a hidden representation r∗ of some con-
cept c∗ = ρ(r∗) and a hidden distribution Dn on {0, 1}n
through an oracle that returns labeled samples (x, c∗(x)),
where x ∈ {0, 1}n is drawn at random from Dn.

3. The output of the algorithm is a representation of some
concept, called its hypothesis.

Remark 2.5. Clearly, the algorithm can infer the value of n
from the samples that the oracle returns. Still, n is included
in the input for the sake of being explicit. We use s = |r∗| to
denote the size of the hidden representation.
Definition 2.6. Let A be a learning algorithm. Fix a hid-
den hypothesis c∗ and a distribution on {0, 1}n. Let h be
a hypothesis output by A and c = ρ(h) be the concept h
represents. We define

errh = Px∼Dn(c(x) ̸= c∗(x))

as the probability of the hypothesis and the hidden concept
disagreeing on a sample drawn from Dn, the so-called gener-
alization error of h under Dn.

The algorithm A is called probably approximately correct
(PAC) if it outputs a hypothesis h such that errh ≤ ε with
probability at least 1− δ.

Usually, learning problems in this framework are regarded
as tractable if they are PAC-learnable within polynomial time
bounds. More precisely, we say that a learning problem L is
efficiently PAC-learnable if there is a PAC algorithm for L
that runs in time polynomial in n, s, 1/ε and 1/δ.

Parameterized Complexity
To extend the above concepts from learning theory to the
parameterized setting, we now introduce the parts of parame-
terized complexity theory that will become important later.
We follow the excellent exposition of the textbook by Cygan
et al. (2015) and define the following central notions:
Definition 2.7. A parameterized problem is a language L ⊆
{0, 1}∗ × N. For a pair (x, k) ∈ {0, 1}∗ × N, k is called
the parameter of the instance (x, k). The encoding length of
(x, k) is called the size of the instance.
Remark 2.8. The definition of parameterized decision prob-
lems can easily be extended to search problems, where we are
additionally required to output a witness in case our algorithm
outputs “yes.”
Definition 2.9. A parameterized problem L is fixed-
parameter tractable if there exists an algorithm A, a com-
putable non-decreasing function f : N → N and a polynomi-
ally bounded non-decreasing function p(·, ·) : N2 → N such
that A correctly decides for an input (x, k) whether or not
(x, k) ∈ L holds in time f(k) · p(n, k). We denote the class
of fixed-parameter tractable problems by FPT.
Remark 2.10. While fixed-parameter tractability lies at the
heart of parameterized complexity theory, the class XP de-
fined below captures a weaker notion of tractability that is
still desirable for parameterized problems which are not be-
lieved to be in FPT.
Definition 2.11. A parameterized problem L is in the com-
plexity class XP if there exists an algorithm A, a computable

non-decreasing function f : N → N and a polynomially
bounded non-decreasing function p(·, ·) : N2 → N such
that A correctly decides for an input (x, k) whether or not
(x, k) ∈ L holds in time p(n, k)f(k).
Remark 2.12. Less formally, XP is the class of problems
that are solvable in polynomial time for a constant parameter
value. The difference to FPT is that for XP, we allow this
polynomial (and in particular, its degree) to depend on k,
while it is fixed for all k in the definition of FPT.

We also assume basic familiarity with the complexity
classes W[1] and W[2] (Downey and Fellows 2013). It is a
well-established conjecture that these are strictly larger than
FPT, and hence establishing W[1]- or W[2]-hardness for a
problem essentially rules out its fixed-parameter tractability.

3 Parameterized PAC-Learning
As the first step towards defining a theory of parameterized
PAC learning, we need to consider the parameters that will be
used. In the computational setting we associated a parameter
with each instance, but in the learning setting this notion does
not exist—instead, a learning algorithm needs to deal with a
hidden concept representation and a hidden distribution, and
we allow both of these to be tied to parameterizations.
Definition 3.1 (Parameterization of Representations). Let
{Rk}k∈N with Rk ⊆ {0, 1}∗ be a mapping assigning a set
of representations to every natural number k such that for
every r ∈ {0, 1}∗, there is some k such that r ∈ Rk, that is,⋃

k Rk = {0, 1}∗. We call {Rk}k∈N a parameterization of
representations. Given a parameterization of representations
{Rk}k∈N, we associate a value κR(r) to single representa-
tions r ∈ {0, 1}∗ by defining

κR(r) = min{k : r ∈ Rk}.
Remark 3.2. In line with the usual notion of parameteriza-
tions, we will assume κR to be a computable function.
Example. Let ρ be the representation scheme taking a (binary
representation of a) k-term DNF formula to its underlying
Boolean function. If we are interested in learning k-term
DNFs, we probably want to consider a k′-term DNF a k-term
DNF for k′ ≤ k, too. Therefore, we let Rk be the set of all
k′-term DNFs for k′ ≤ k. The associated mapping κR then
maps every k-term DNF to the value of k.
Definition 3.3 (Parameterization of Distributions and Sam-
ples). Let λ be a mapping assigning a natural number to every
distribution on {0, 1}n for each n, such that for every two
distributions D,D′ on {0, 1}n, if suppD ⊆ suppD′, then
λ(D) ≤ λ(D′). In this case, we call λ a parameterization of
distributions.

We extend every parameterization of distributions λ to
subsets X ⊆ {0, 1}n by defining its corresponding parame-
terization of sample sets via:

λ(X) = min
D : X = suppD

λ(D). (3.1)

Remark 3.4. Note that the definition implies that, equiv-
alently, λ(X) = minD : X ⊆ suppD λ(D); in other words,
λ(X) is the lowest parameter that can be obtained from a
distribution that has X as its support.

All parameterizations considered in our exposition depend
solely on the support; however, we do want to explicitly
also allow more expressive parameterizations that depend
on the distribution. To build a theory allowing such parame-
terizations, it is necessary to impose an additional technical
condition which ensures that the distributions minimizing the
parameter values for λ are “well-behaved”.

Definition 3.5. We say that a distribution D∗ is called typical
for X under λ if D∗ attains the minimum in Eq. (3.1), that
is, λ(X) = λ(D∗) and suppD∗ = X .

Definition 3.6 (L-Sampleable Parameterizations). Let A be
a randomized algorithm that receives input X ⊆ {0, 1}n and
outputs a concept c in time L(n, |X|, λ(X)) for some non-
decreasing function L(·, ·, ·). We say that λ is L-sampleable
if the following holds true for the random variable C that
corresponds to the output of A over all random bits used by
A to output c: There is some distribution D∗ that is typical
for X under λ such that C ∼ D∗ holds, i.e., C has the same
distribution as D∗.

Remark 3.7. Every parameterization λ that depends only on
the support X is linear-time-sampleable, since the uniform
distribution on X will be typical for X under λ. More gener-
ally, we believe that every “reasonable” parameterization is
polynomial-time-sampleable.
Example. For instance, a valid choice of λ is the mapping that
selects the largest number k such that there is a concept x in
the support of D that has k non-zero entries. This parameter
can obviously be computed on sets of concepts, as demanded
by the condition, and is linear-time sampleable (in the size of
the input, n · t).
Definition 3.8 (Parameterized Learning Problems). A pa-
rameterized learning problem is a learning problem (C, ρ)
together with a pair ({Rk}k∈N, λ), called its parameters,
where {Rk}k∈N is a parameterization of representations and
λ is a parameterization of distributions.

At this point, a note on the relation between the definitions
presented above and the formalism developed by Arvind,
Köbler, and Lindner (2009) is in order. While the latter is
capable of expressing learning problems such as k-juntas,
where k is the parameter, it cannot account for properties of
the sample space. For example, one might be interested in
learning Boolean formulas from samples that have a limited
number of k variables set to true. Our framework captures this
by including the distribution into the parameterization. This
can be likened on a conceptual level to the difference that
exists in ordinary parameterized complexity theory between
parameterizations by solution properties versus parameteriz-
ing by properties of the input instance.

Definition 3.9 (Parameterized Learning Algorithm). A pa-
rameterized learning algorithm for a parameterized learning
problem (C, ρ, {Rk}k∈N, λ) is a learning algorithm for (C, ρ)
in the sense of Definition 2.4. In addition to n, ε, δ, a parame-
terized learning algorithm obtains two inputs k and ℓ, which
are promised to satisfy k = κR(r∗) as well as ℓ = λ(Dn),
and the algorithm is required to always output a hypothesis h
satisfying κ(h) ∈ Rk.

Remark 3.10. By requiring the hidden hypothesis and the out-
put hypothesis to adhere to the same representation scheme,
we limit ourselves to the setting of proper learning. In princi-
ple, nothing speaks against extending our framework also to
the improper case, as is done in Arvind, Köbler, and Lindner
(2009) for their formalization. Since all our examples speak
about proper learning, we restrict our definitions to this case.
Remark 3.11. As readers acquainted with parameterized com-
plexity theory may find noteworthy, parameterized learning
problems as defined here depend on two parameters, as op-
posed to a single parameter. For parameterized algorithms,
it is customary to combine multiple parameters k, ℓ into one
via defining a new parameter such as k + ℓ or max{k, ℓ}.
Indeed, this leads to less heavy notation, while sacrificing
nothing in terms of expressive power of the obtained theory.

We shall see towards the end of this section that for the
purposes of this article, it is more convenient to make do
with two separate parameters, in order to establish a mean-
ingful link between ordinary parameterized algorithms and
parameterized learning algorithms.

Let poly(·) denote the set of functions that can be
bounded by non-decreasing polynomial functions in their
arguments. Furthermore, fpt(x1, . . . , xt; k1, . . . , kt) and
xp(x1, . . . , xt; k1, . . . , kt) denote those functions bounded
by f(k1, . . . , kt) ·p(x1, . . . , xt) and p(x1, . . . , xt)

f(k1,...,kt),
respectively, for any non-decreasing computable function f
in k1, . . . , kt and p ∈ poly(x1, . . . , xt).
Definition 3.12 ((T, S)-PAC Learnability). Let
T (n, s, 1/ε, 1/δ, k, ℓ), S(n, s, 1/ε, 1/δ, k, ℓ) be any two
functions taking on integer values, and non-decreasing in all
of their arguments.

A parameterized learning problem L =
(C, ρ, {Rk}k∈N, λ) is (T, S)-PAC learnable if there
is a PAC learning algorithm for L that runs in time
O(T (n, s, 1/ε, 1/δ, k, ℓ)) and queries the oracle at most
O(S(n, s, 1/ε, 1/δ, k, ℓ)) times.

We denote the set of parameterized learning problems
that are (T, S)-PAC learnable by PAC[T, S]. This is ex-
tended to sets of functions S,T through setting PAC[T, S] =⋃

S∈S,T∈T PAC[T, S].

Definition 3.13. We define the following complexity classes:

FPT-PACtime = PAC[fpt,poly], (3.2)
FPT-PAC = PAC[fpt, fpt], (3.3)

XP-PACtime = PAC[xp,poly], (3.4)
XP-PAC = PAC[xp, xp], (3.5)

where we fixed

poly = poly(n, s, 1/ε, 1/δ, k, ℓ),

fpt = fpt(n, s, 1/ε, 1/δ; k, ℓ),

xp = xp(n, s, 1/ε, 1/δ; k, ℓ).

Remark 3.14. In addition to the complexity classes just de-
fined, there is a fifth class that may be considered here:
PAC[xp, fpt]. However, this class does not play a role in
any of the examples presented in this work, and hence we
leave its exploration to future works.

PAC

XP-PAC

XP-PACtime FPT-PAC
FPT-PACtime

PAC[poly, poly]

Figure 1: A schematic view of the parameterized learning
classes defined in Definition 3.13.

Figure 1 provides an overview of these complexity classes
and their relationships. As does XP, the class XP-PAC in
the learning setting contains precisely those parameterized
learning problems which become efficiently PAC-learnable
whenever the parameters are fixed to an arbitrary constant.
Example. A problem that fits into the class XP-PAC is learn-
ing of k-CNF and k-DNF formulas, parameterized by k. On
the other hand, the upcoming Theorems 5.6 and 6.2 furnish
the class FPT-PACtime. An example for the class FPT-PAC
in spirit can be found in Li and Liang (2018). Finally, an
example of a learning problem in XP-PACtime is provided in
Observation 6.5.

Consistency Checking: A Link between Theories
With the basic complexity classes in place, we turn to estab-
lishing links between the newly developed theory and the
by now well-established parameterized complexity paradigm
for decision problems. Crucially, these links will allow us to
exploit algorithmic upper and lower bounds from the latter
also in the learning setting.

Definition 3.15 (Parameterized Consistency Checking).
With every parameterized learning problem L =
(C, ρ, {Rk}k∈N, λ) and every function f(n, t, k, ℓ) we asso-
ciate a parameterized search problem f -CONSISTENCY(L)
as follows:

1. Its input is a list of labeled samples
((x1, a1), . . . , (xt, at)), with xi ∈ {0, 1}n for all i
and xi pairwise distinct, as well as ai ∈ {0, 1}.

2. Its parameters are k ∈ N, given as part of the input, and
ℓ = λ({x1, . . . , xt}).

3. The task is to decide whether there is a representation r
that has κ(r) ∈ Rk with |r| ≤ f(n, t, k, ℓ) and for the
concept c = ρ(r), it holds that c(xi) = ai for all i.

We call this parameterized problem the parameterized con-
sistency checking problem associated with L and f .

Ignoring all parameters in Definition 3.15 gives the usual
notion of consistency checking problems (Pitt and Valiant
1988). The function f is required to provide an explicit upper-
bound on the sought-after representation; indeed, while each
learning instance comes with a hidden representation of a
certain size, this is not the case with the consistency checking

problem and we need to allow the running time bounds to
take the size of the representation into consideration.

It is well-known that, under the assumption that the hypoth-
esis space is not too large, there is an equivalence between a
learning problem being PAC-learnable and the corresponding
decision problem being solvable in randomized polynomial
time. We now observe that a similar equivalence holds also
in the parameterized setting.
Lemma 3.16. Let L = (C, ρ, {Rk}k∈N, λ) be a param-
eterized learning problem, and let f(n, t, k, ℓ) be a func-
tion. If L is (T, S)-PAC learnable and λ is L-sampleable,
then there exists a randomized algorithm that, upon in-
put labeled samples {(x1, a1), . . . , (xt, at)} and parame-
ters k, ℓ with λ({x1, . . . , xt}) = ℓ, returns a consistent
hypothesis h ∈ Rk of size |h| ≤ s = f(n, t, k, ℓ) with
probability at least 1 − δ if it exists, and runs in time
O(T (n, s, t, δ, k, ℓ) + L(n, t, ℓ) · S(n, s, t, δ, k, ℓ)).
Theorem 3.17. Let L = (C, ρ, {Rk}k∈N, λ) be a parameter-
ized learning problem, and let f(n, t, k, ℓ) be a function.

If L is in FPT-PAC, f ∈ fpt(n, t; k, ℓ) and λ is S-
sampleable for some S ∈ fpt(n, t; ℓ), then the parameterized
consistency checking problem f -CONSISTENCY(L) associ-
ated with L and f is in FPT.

Similarly, if L is in XP-PAC, f ∈ xp(n, t; k, ℓ) and λ is
S-sampleable for some S ∈ xp(n, t; ℓ), then the parame-
terized consistency checking problem f -CONSISTENCY(L)
associated with L and f is in XP.
Lemma 3.18. Let L = (C, ρ, {Rk}k∈N, λ) be a parame-
terized learning problem, and let Hn,k = Rk ∩ ρ−1(Cn)
be the set of all representations under ρ in Rk of concepts
in Cn. Suppose there is a deterministic algorithm running
in time T (n, t, δ, k, ℓ) for the consistency checking prob-
lem log |Hn,k|-CONSISTENCY(L). Then, L is (T ′, S)-PAC
learnable, where

S(n, s, 1/ε, 1/δ, k, ℓ) =
1

ε
(log |Hn,k|+

1

δ
)),

T ′(n, s, 1/ε, 1/δ, k, ℓ) = T (n, s,
1

ε
(log |Hn,k|+

1

δ
), k, ℓ).

Theorem 3.19. Let L = (C, ρ, {Rk}k∈N, λ), and denote the
set of representations of Cn in Rk under ρ as Hn,k.

If the parameterized consistency checking problem
log |Hn,k|-CONSISTENCY(L) is in FPT and log |Hn,k| ∈
fpt(n; k), then L is in FPT-PACtime.

Similarly, if the parameterized consistency checking prob-
lem log |Hn,k|-CONSISTENCY(L) is in XP and log |Hn,k| ∈
xp(n; k), then L is in XP-PACtime.

The significance of the previous theorems lies in trans-
ferring parameterized algorithmic upper and lower bounds
for consistency checking into upper and lower bounds for
parameterized learning problems, respectively.

To wit, Theorem 3.17 allows us to conclude from the fact
that a parameterized consistency checking problem is effi-
ciently solvable by a parameterized algorithm that also the
parameterized learning problem it belongs to is efficiently
solvable. This will be exploited in Theorems 5.6, 6.2.

On the other hand, Theorem 3.19 tells us that an efficient
algorithm for a parameterized learning problem implies an

efficient algorithm for the corresponding paramerized con-
sistency checking problem. Turning this around, we see that
lower bounds on consistency checking imply lower bounds
for learning. This will be exploited in Theorems 5.1, 6.4.

4 Previous Work on Parameterized Learning
After having introduced this new framework, we dedicate a
separate section to how it fits in with the few papers that have
considered parameterized approaches to learning theory, and
how it differs from them.

Proceeding chronologically, the earliest link between pa-
rameterized complexity theory and learning theory was es-
tablished already by the pioneers of paramerized complexity
(Downey, Evans, and Fellows 1993). While they also es-
tablish a parameterized learning model and link learning
complexity with well-studied graph problems, in contrast to
our work, they study exact learning by extended equivalence
queries. Gärtner and Garriga (2007) study the complexity
of learning directed cuts in various learning models, includ-
ing PAC learning. While their respective result falls under
the standard poly-time PAC learning, it is notable that the
improved learning bound they show is in terms of a struc-
tural parameter of the graph. Better-than-trivial exponential
running-time bounds for learning k-term DNF formulas have
been studied, e.g., nÕ(

√
n log k) (Alekhnovich et al. 2008).

We already compared our framework to the earlier work by
Arvind, Köbler, and Lindner (2009) in Section 3, which only
identified the class FPT-PAC.

The more recent work of Li and Liang (2018) on parame-
terized algorithms for learning mixtures of linear regressions
is not, strictly speaking, within our framework of parame-
terized PAC learning, since their error parameter is the dis-
tance to the hidden concept rather than the probability of
mislabelling under any distribution. However, their sample
complexity bound is FPT, turning into infinite when the pa-
rameters are not bounded, and it is also a notable example
of a PAC-learning result that holds only for a certain family
of distributions (an approach which is also covered by our
framework; see the intuition behind Definition 3.6). Finally,
van Bergerem, Grohe, and Ritzert (2022) consider parame-
terized complexity of learning first-order logic; they show
hardness results via parameterized reductions as well as FPT-
time learning via consistency checking, which aligns well
with our framework.

5 Parameterized DNF and CNF Learning
For the most of this section, we consider the problem of learn-
ing a hidden DNF formula under various parameterizations,
which are formally defined throughout the section. We first
observe that the problem of learning a CNF formula is equiv-
alent to learning a DNF formula under any parameterization
that is preserved under negation of the formula: indeed, by
negating the input to a DNF-learning algorithm and then
negating the output formula we obtain a CNF-learning algo-
rithm, and vice versa. Thus our results hold for learning CNF
formulas as well, which we do not show explicitly below.

Let LEARNING DNF be the learning problem (C, ρ) where
C is the set of boolean functions corresponding to formulas in

disjunctive normal form and ρ is the straightforward represen-
tation of the terms of the formula. To define a fundamental
variant of the problem where the number of terms in the
target formula is bounded, let LEARNING k-TERM DNF
be the parameterized learning problem (C, ρ, {Rk}k∈N, λ)
where C and ρ are as above, κ maps the representation of
the formula to the number of terms in it, and λ is any con-
stant parameterization. Alas, it is well-known that the con-
sistency checking problem for learning even 2-term DNF
is NP-hard (Alekhnovich et al. 2008), and thus by a non-
parameterized variant of Theorem 3.17, LEARNING k-TERM
DNF is not in XP-PACtime unless P = NP. Thus, in this pa-
rameterization one should not expect any tractability results.

Another natural way to parameterize LEARNING DNF
would be to bound the maximum length of a term. Specifi-
cally, let LEARNING k-DNF be the parameterized learning
problem (C, ρ, {Rk}k∈N, λ) where C and ρ are as in LEARN-
ING DNF, κ = κR maps the representation of the formula
to the maximum length of a term in it, and λ is trivial. It is
well-known that, for every fixed k, LEARNING k-DNF is ef-
ficiently PAC-learnable by a brute-force argument and hence
the problem is immediately in XP-PACtime parameterized
by k (Mohri, Rostamizadeh, and Talwalkar 2012, Example
2.9). On the other hand, we show that under standard param-
eterized complexity assumptions this learning result is tight,
extending the hardness reduction of Arvind et al. (Arvind,
Köbler, and Lindner 2009) for k-juntas and –monomials.

Theorem 5.1. Assuming W[2] ̸= FPT, LEARNING k-DNF
and LEARNING k-CNF are not in FPT-PACtime.

The above covers the two most natural parameterizations
of the hypothesis class — the number of terms and the max-
imum size of a term in the target formula — however, we
did not yet touch parameterizations of the sample space. As
a simple step, observe that solving the consistency problem
is easy when each assignment assigns at most one variable
to “true”; a one-term DNF can always be produced in this
case. On the other hand, the previously-known coloring re-
duction (Pitt and Valiant 1988) shows that even when each
assignment has at most two variables assigned to “true”, the
problem becomes NP-hard. In the following, we analyze
the tractability of learning k-term DNF and k-clause CNF
“between” these two cases, and show the following positive
result based on parameterizing by a notion of “backdoor to
triviality” (Gaspers and Szeider 2012; Semenov et al. 2018).

Theorem 5.2. LEARNING k-CLAUSE CNF and LEARNING
k-TERM DNF are both FPT-PACtime parameterized by k+s,
where s is the minimum size of a set S of variables such that
the support of the distribution satisfies the following:

• each assignment assigns at most one variable outside of
S to “false” (respectively “true”), and

• each of the remaining variables, at most one assignment
assigns it to “false” (respectively “true”).

Proof Sketch. By Theorem 3.19, it is enough to provide a
fixed-parameter algorithm for the consistency checking prob-
lem with f = fpt(n; k + s); in particular, it suffices to argue
that we can bound the length of all possible hypotheses by
such an f . The main technique used in the proof is that of

kernelization (Cygan et al. 2015), i.e., preprocessing of the
instance of the consistency checking problem.

We begin by partitioning the set of labelled samples into
equivalence classes, where two samples are equivalent if and
only if they agree on S. By a series of claims, one can show
that if an equivalence class contains more than k+2 samples,
one can be safely deleted without changing the instance.

6 Learning on Graphs
Let H1, . . . , Hp be a fixed family of graphs. Let H be a
class of graphs that do not contain any of H1, . . . , Hp as
an induced subgraph. In a classical H-VERTEX DELETION
problem the task is, given a graph G and a parameter k, to
determine whether there exist a subset of vertices S ⊂ V (G)
of size at most k such that G− S belongs to H. Produced in
the standard fashion, the consistency version of this problem
receives as input a sequence of graphs G1, . . . , Gt over the
same vertex set V , together with the sequence of labels λ1,
. . . , λt, and the task is to find a subset S ⊂ V of size at most
k such that Gi − S ∈ H if and only if λi = 1. Let us call the
respective learning problem LEARNING H-DELETION SET.

In particular, when the forbidden family consists of a single
graph K2, H is a class of empty graphs, and H-VERTEX
DELETION is equivalent to VERTEX COVER. If the family is
P3, the problem becomes CLUSTER VERTEX DELETION —
find a subset of vertices to delete so that the graph turns into a
cluster graph, i.e., a disjoint union of cliques. LEARNING H-
DELETION SET thus generalizes both LEARNING VERTEX
COVER and LEARNING CLUSTER DELETION SET, where
the task is to learn a hidden vertex cover and deletion set to a
cluster graph, respectively.

Let us tie this explicitly to the formal framework of parame-
terized learning developed above. In this context, we interpret
an element x ∈ {0, 1}n as the adjacency matrix of a graph on
N vertices, where n = N2. A concept c : {0, 1}n → {0, 1}
is represented by a subset S of the N vertices. The value
c(x) indicates whether or not S is an H-Deletion set for the
graph with adjacency matrix x. As noted, the representation
scheme of c takes the subset S to c as just described. Hence,
Cn corresponds to all H-Deletion sets on N -vertex graphs.
We parameterize by taking Rk to be the set of all vertex
subsets of size at most k, and let the distributions carry the
trivial constant parameterization λ(D) = 1.

Note that, for graph problems, the length of hypotheses
is always naturally bounded linearly in n, so we will omit
explicit references to f for consistency checking.

Next, we show that the well-known fpt-time algorithm (Cy-
gan et al. 2015) for H-VERTEX DELETION extends to the
respective consistency problem, implying that the wide class
of problems characterized by finite family of forbidden in-
duced subgraphs is fpt-time learnable.

Lemma 6.1. Let H be a class of graphs forbidding induced
H1, . . . , Hp. Then, the parameterized consistency checking
problem associated with LEARNING H-DELETION SET is
fixed-parameter tractable.

Theorem 6.2. Let H be a class of graphs forbidding induced
H1, . . . , Hp. LEARNING H-DELETION SET is fpt-time PAC-
learnable parameterized by the size of the deletion set.

In contrast, we now show that another well-studied family
of deletion problems does most likely not admit a positive
result similar to the above. Namely, for a graph H , let H
be a class of graphs that are H-minor-free. In particular,
when H = K3, H-VERTEX DELETION is equivalent to
FEEDBACK VERTEX SET. This problem is well-known to
admit fpt-time algorithms when parameterized by the size
of the vertex set to delete (Cygan et al. 2015), however we
show that the consistency checking problem associated with
LEARNING FEEDBACK VERTEX SET is W[2]-hard. That is,
unless the two parameterized complexity classes FPT and
W[2] coincide, the consistency problem is not in FPT. The
consequence FPT = W[2] is a parameterized analogue to
P = NP, and considered highly unlikely.

Lemma 6.3. The consistency checking problem for LEARN-
ING FEEDBACK VERTEX SET is W[2]-hard, even with only
yes-instances in the input.

Theorem 6.4. Unless FPT = W[2], the learning problem
LEARNING FEEDBACK VERTEX SET is not in FPT-PAC.

On the other hand, the consistency checking problem
for LEARNING FEEDBACK VERTEX SET is trivially in XP.
Since log |Hn,k| is trivially upper-bounded by O(n), by The-
orem 3.19 we immediately obtain:

Observation 6.5. LEARNING FEEDBACK VERTEX SET is
in XP-PACtime.

The same argument can be made for learning many other
graph structures, such as dominating and independent sets.

7 Conclusion
Over the last two decades, the parameterized complexity
paradigm has arguably revolutionized our understanding of
computational problems throughout computer science. We
firmly believe that applying a more fine-grained, parameter-
ized lens on learning problems can similarly reveal a wealth
of research questions and potential breakthroughs that have
remained hidden up to now. This article provides researchers
with the tools and concepts they need to begin a rigorous
exploration of this novel research direction, while also laying
the foundations of a bridge that will connect the research
communities surrounding learning theory and time complex-
ity. It is perhaps worth noting that these communities have so
far remained fairly isolated from each other, with their few
interactions occurring at venues dedicated to AI research.

Unlike in typical complexity-theoretic papers, we view the
greatest contribution of this article to be the theory-building
part, i.e., Section 3. Indeed, while the specific algorithms
and lower bounds that we use to showcase the theory are
non-trivial and interesting in their own right, ensuring that
the theoretical foundations fit together, are broad enough
to capture potential future parameterizations, but also can
support the crucial link to the parameterized consistency
checking problem was a highly challenging task.

The introduced parameterized PAC learning framework
opens many avenues for future study. For instance, there
are interesting and non-trivial examples of parameterized
learning problems in the class PAC[xp, fpt]?

Acknowledgements
The authors acknowledge support from the Austrian Science
Foundation (FWF, project Y 1329 START-Programm).

References
Abasi, H.; and Bshouty, N. H. 2019. On Learning Graphs
with Edge-Detecting Queries. In Garivier, A.; and Kale, S.,
eds., Algorithmic Learning Theory, ALT 2019, 22-24 March
2019, Chicago, Illinois, USA, volume 98 of Proceedings of
Machine Learning Research, 3–30. PMLR.
Abasi, H.; Bshouty, N. H.; and Mazzawi, H. 2018. Non-
adaptive learning of a hidden hypergraph. Theor. Comput.
Sci., 716: 15–27.
Alekhnovich, M.; Braverman, M.; Feldman, V.; Klivans,
A. R.; and Pitassi, T. 2008. The complexity of properly
learning simple concept classes. J. Comput. Syst. Sci., 74(1):
16–34.
Alon, N.; and Asodi, V. 2005. Learning a Hidden Subgraph.
SIAM J. Discret. Math., 18(4): 697–712.
Arvind, V.; Köbler, J.; and Lindner, W. 2009. Parameterized
learnability of juntas. Theor. Comput. Sci., 410(47-49): 4928–
4936.
Choi, S.; and Kim, J. H. 2010. Optimal query complexity
bounds for finding graphs. Artif. Intell., 174(9-10): 551–569.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.; Marx,
D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S. 2015. Pa-
rameterized Algorithms. Springer. ISBN 978-3-319-21274-6.
Damaschke, P.; and Muhammad, A. S. 2010. Competitive
Group Testing and Learning Hidden Vertex Covers with Min-
imum Adaptivity. Discret. Math. Algorithms Appl., 2(3):
291–312.
Downey, R. G.; Evans, P. A.; and Fellows, M. R. 1993. Param-
eterized Learning Complexity. In Pitt, L., ed., Proceedings of
the Sixth Annual ACM Conference on Computational Learn-
ing Theory, COLT 1993, Santa Cruz, CA, USA, July 26-28,
1993, 51–57. ACM.
Downey, R. G.; and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. Springer.
ISBN 978-1-4612-6798-0.
Downey, R. G.; and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer. ISBN 978-1-4471-5558-4.
Gärtner, T.; and Garriga, G. C. 2007. The Cost of Learning
Directed Cuts. In Kok, J. N.; Koronacki, J.; de Mántaras,
R. L.; Matwin, S.; Mladenic, D.; and Skowron, A., eds., Ma-
chine Learning: ECML 2007, 18th European Conference on
Machine Learning, Warsaw, Poland, September 17-21, 2007,
Proceedings, volume 4701 of Lecture Notes in Computer
Science, 152–163. Springer.
Gaspers, S.; and Szeider, S. 2012. Backdoors to Satisfac-
tion. In Bodlaender, H. L.; Downey, R.; Fomin, F. V.; and
Marx, D., eds., The Multivariate Algorithmic Revolution and
Beyond - Essays Dedicated to Michael R. Fellows on the Oc-
casion of His 60th Birthday, volume 7370 of Lecture Notes
in Computer Science, 287–317. Springer.

Li, Y.; and Liang, Y. 2018. Learning Mixtures of Linear
Regressions with Nearly Optimal Complexity. In Bubeck,
S.; Perchet, V.; and Rigollet, P., eds., Conference On Learn-
ing Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018,
volume 75 of Proceedings of Machine Learning Research,
1125–1144. PMLR.
Mohri, M.; Rostamizadeh, A.; and Talwalkar, A. 2012. Foun-
dations of Machine Learning. Adaptive computation and
machine learning. MIT Press. ISBN 978-0-262-01825-8.
Nguyen, H.; and Maehara, T. 2020. Graph Homomorphism
Convolution. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine Learn-
ing Research, 7306–7316. PMLR.
Pitt, L.; and Valiant, L. G. 1988. Computational limitations
on learning from examples. J. ACM, 35(4): 965–984.
Semenov, A. A.; Zaikin, O.; Otpuschennikov, I. V.; Kochema-
zov, S.; and Ignatiev, A. 2018. On Cryptographic Attacks
Using Backdoors for SAT. In McIlraith, S. A.; and Wein-
berger, K. Q., eds., Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, 6641–6648. AAAI Press.
Valiant, L. G. 1984. A Theory of the Learnable. Commun.
ACM, 27(11): 1134–1142.
van Bergerem, S.; Grohe, M.; and Ritzert, M. 2022. On the
Parameterized Complexity of Learning First-Order Logic.
In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’22,
337–346. New York, NY, USA: Association for Computing
Machinery. ISBN 9781450392600.

