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CLIQUES IN HIGH-DIMENSIONAL GEOMETRIC
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LEON SCHILLER\S 

Abstract. A recent trend in the context of graph theory is to bring theoretical analyses closer
to empirical observations by focusing the studies on random graph models that are used to represent
practical instances. There, it was observed that geometric inhomogeneous random graphs (GIRGs)
yield good representations of complex real-world networks by expressing edge probabilities as a
function that depends on (heterogeneous) vertex weights and distances in some underlying geometric
space that the vertices are distributed in. While most of the parameters of the model are understood
well, it was unclear how the dimensionality of the ground space affects the structure of the graphs. In
this paper, we complement existing research into the dimension of geometric random graph models
and the ongoing study of determining the dimensionality of real-world networks by studying how
the structure of GIRGs changes as the number of dimensions increases. We prove that, in the limit,
GIRGs approach nongeometric inhomogeneous random graphs and present insights on how quickly
the decay of the geometry impacts important graph structures. In particular, we study the expected
number of cliques of a given size as well as the clique number and characterize phase transitions
at which their behavior changes fundamentally. Finally, our insights help in better understanding
previous results about the impact of the dimensionality on geometric random graphs.

Key words. random graphs, geometry, dimensionality, cliques, clique number, scale-free
networks

MSC codes. 68Q25, 68R10, 68U05

DOI. 10.1137/23M157394X

1. Introduction. Networks are a powerful tool to model all kinds of processes
that we interact with in our day-to-day lives. From connections between people in
social networks, to the exchange of information on the internet, and on to how our
brains are wired, networks are everywhere. Consequently, they have been in the focus
of computer science for decades. There, one of the most fundamental techniques
used to model and study networks is random graph models. Such a model defines a
probability distribution over graphs, which is typically done by specifying a random
experiment on how to construct the graph. By analyzing the rules of the experiment,
we can then derive structural and algorithmic properties of the resulting graphs. If the
results match what we observe on real-world networks, i.e., if the model represents the
graphs we encounter in practice well, then we can use it to make further predictions
that help us understand real graphs and utilize them more efficiently.

The quest to find a good model started several decades ago, with the famous
Erd\H os--R\'enyi (ER) random graphs [19, 24]. There, all edges in the graph exist inde-
pendently with the same probability. Due to its simplicity, this model has been stud-
ied extensively. However, because the degree distribution of the resulting graphs is
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1944 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

rather homogeneous and they lack clustering (due to the independence of the edges),
the model is not considered to yield good representations of real graphs. In fact,
many networks we encounter in practice feature a degree distribution that resembles
a power-law [3, 39, 40], and the clustering coefficient (the probability for two neigh-
bors of a vertex to be adjacent) is rather high [36, 41]. To overcome these drawbacks,
the initial random graph model has been adjusted in several ways.

In inhomogeneous random graphs (IRGs), often referred to as Chung--Lu random
graphs, each vertex is assigned a weight, and the probability for two vertices to be
connected by an edge is proportional to the product of the weights [1, 11, 12]. As a
result, the expected degrees of the vertices in the resulting graphs match their weight.
While assigning weights that follow a power-law distribution yields graphs that are
closer to the complex real-world networks, the edges are still drawn independently,
leading to vanishing clustering coefficients.

A very natural approach to facilitate clustering in a graph model is to introduce
an underlying geometry. This was done first in random geometric graphs (RGGs),
where vertices are distributed uniformly at random in the Euclidean unit square and
any two are connected by an edge if their distance lies below a certain threshold; i.e.,
the neighborhood of a vertex lives in a disk centered at that vertex [37]. Intuitively,
two vertices that connect to a common neighbor cannot be too far away from each
other, increasing the probability that they are connected by an edge themselves.
In fact, random geometric graphs feature a nonvanishing clustering coefficient [13].
However, since all neighborhood disks have the same size, they all have roughly the
same expected degree, again leading to a homogeneous degree distribution.

To get a random graph model that features a heterogeneous degree distribution
and clustering, the two mentioned adjustments were recently combined to obtain
geometric inhomogeneous random graphs (GIRGs) [29]. There, vertices are assigned
a weight and a position in some underlying geometric space and the probability for
two vertices to connected increases with the product of the weights but decreases with
increasing geometric distance between them. As a result, the generated graphs have
a nonvanishing clustering coefficient, and, with the appropriate choice of the weight
sequence, they feature a power-law degree distribution. Additionally, recent empirical
observations indicate that GIRGs represent real-world networks well with respect to
certain structural and algorithmic properties [5].

We note that GIRGs are not the first model that exhibits a heterogeneous de-
gree distribution and clustering. In fact, hyperbolic random graphs (HRGs) [31] feature
these properties as well and have been studied extensively (see, e.g., [7, 20, 21, 23, 26]).
However, in the pursuit of finding good models to represent real-world networks,
GIRGs introduce a parameter that sets them apart from prior models: the choice
of the underlying geometric space and, more importantly, the dimensionality of that
space.

Unfortunately, this additional parameter that sets GIRGs apart from previous
models has not gained much attention at all. In fact, it comes as a surprise that,
while the underlying dimensionality of real-world networks is actively researched
[2, 8, 15, 25, 32] and there is a large body of research examining the impact of the
dimensionality on different homogeneous graph models [13, 17, 18] with some advance-
ments being made on hyperbolic random graphs [42], the effects of the dimension on
the structure of GIRGs have only been studied sparsely. For example, while it is
known that GIRGs exhibit a clustering coefficient of \Theta (1) for any fixed dimension
[29], it is not known how the hidden constants scale with the dimension.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1945

In this paper, we initiate the study of the impact of the dimensionality on GIRGs.
In particular, we investigate the influence of the underlying geometry as the dimen-
sionality increases, proving that GIRGs converge to their nongeometric counterpart
(IRGs) in the limit. With our results we are able to explain seemingly disagreeing
insights from prior research on the impact of dimensionality on geometric graph mod-
els. Moreover, by studying the clique structure of GIRGs and its dependence on the
dimension d, we are able to quantify how quickly the underlying geometry vanishes.
In the following, we discuss our results in greater detail. We note that, while we give
general proof sketches for our results, the complete proofs are deferred to the full
version [22].

1.1. (Geometric) inhomogeneous random graphs. Before stating our re-
sults in greater detail, let us recall the definitions of the two graph models we mainly
work with throughout the paper.

Inhomogeneous random graphs (IRGs). The model of inhomogeneous random
graphs was introduced by Chung and Lu [1, 11, 12] and is a natural generalization
of the Erd\H os--R\'enyi model. Starting with a vertex set V of n vertices, each v \in V
is assigned a weight wv. Each edge \{ u, v\} \in 

\bigl( 
V
2

\bigr) 
is then independently present with

probability

Pr [u\sim v] =min

\biggl\{ 
1,

\lambda wuwv

n

\biggr\} 
for some constant \lambda > 0 controlling the average degree of the resulting graph. Note
that assigning the same weight to all vertices yields the same connection probabil-
ity as in Erd\H os--R\'enyi random graphs. For the sake of simplicity, we define \kappa uv =
min\{ \lambda wuwv, n\} such that Pr [u\sim v] = \kappa uv/n. Additionally, for a set of vertices
Uk = \{ v1, . . . , vk\} with weights w1, . . . ,wk, we introduce the shorthand notation
\kappa ij = \kappa vivj and write \{ \kappa \} (k) = \{ \kappa ij | 1\leq i < j \leq k\} .

Throughout the paper, we mainly focus on inhomogeneous random graphs that
feature a power-law degree distribution in expectation, which is obtained by sampling
the weights accordingly. More precisely, for each v \in V , we sample a weight wv from
the Pareto distribution \scrP with parameters 1 - \beta ,w0 and distribution function

Pr [wv \leq x] = 1 - 
\biggl( 

x

w0

\biggr) 1 - \beta 

.

Then the density of wv is \rho wv (x) = (\beta  - 1)x - \beta /w1 - \beta 
0 . Here, w0 > 0 is a constant that

represents a lower bound on the weights in the graph and \beta denotes the power-law
exponent of the resulting degree distribution. Throughout the paper, we assume \beta > 2
such that a single weight has finite expectation (and thus the average degree in the
graph is constant) but possibly infinite variance. We denote a graph obtained by uti-
lizing the above weight distribution and connection probabilities with IRG(n,\beta ,w0).
For a fixed weight sequence \{ w\} n1 , we denote the corresponding graph by IRG(\{ w\} n1 ).

Geometric inhomogeneous random graphs (GIRGs). Geometric inhomogeneous
random graphs are an extension of IRGs, where in addition to the weight, each vertex
v is also equipped with a position xv in some geometric space and the probability for
edges to form depends on their weights and the distance in the underlying space [29].
While, in its raw form, the GIRG framework is rather general, we align our paper
with existing analysis on GIRGs [6, 30, 35] and consider the d-dimensional torus \BbbT d

equipped with L\infty -norm as the geometric ground space, whereby \BbbT d can be described
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1946 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

as the d-dimensional hypercube [0,1]d with opposite boundaries identified with each
other. More precisely, in what we call the standard GIRG model, the positions x of the
vertices are drawn independently and uniformly at random from \BbbT d, according to the
standard Lebesgue measure. We denote the ith component of xv by xvi. Additionally,
the geometric distance between two points xu and xv, is given by

d(xu,xv) = \| xu  - xv\| \infty = max
1\leq i\leq d

\{ | xui  - xvi| C\} ,

where | \cdot | C denotes the distance on the circle, i.e.,

| xui  - xvi| C =min\{ | xui  - xvi| ,1 - | xui  - xvi| \} .

In a standard GIRG, two vertices u \not = v are adjacent if and only if their distance
d(xu,xv) in the torus is less than or equal to a connection threshold tuv, which is
given by

tuv =
1

2

\biggl( 
\lambda wuwv

n

\biggr) 1/d

=
\Bigl( wuwv

\tau n

\Bigr) 1/d
,

where \tau = 2d/\lambda . Using L\infty is motivated by the fact that it is the most widely used
metric in the literature because it is arguably the most natural metric on the torus.
In particular, it has the ``nice"" property that the ball of radius r is a cube and ``fits""
entirely into \BbbT d for all 0\leq r\leq 1.

Note that, as a consequence of the above choice, the marginal connection prob-
ability Pr [u\sim v] is the same as in the IRG model, i.e., Pr [u\sim v] = \kappa uv/n. However,
while the probability that any given edge is present is the same as in the IRG model,
the edges in the GIRG model are not drawn independently. We denote a graph ob-
tained by the procedure described above with GIRG(n,\beta ,w0, d). As for IRGs, we
write GIRG(\{ w\} n1 , d) when considering standard GIRGs with a fixed weight sequence
\{ w\} n1 .

As mentioned above, the standard GIRG model is a commonly used instance
of the more general GIRG framework [29]. There, different geometries and distance
functions may be used. For example, instead of L\infty -norm, any Lp-norm for 1\leq p <\infty 
may be used. Then, the distance between two vertices u, v is measured as

\| xu  - xv\| p :=

\left\{   
\Bigl( \sum d

i=1 | xui  - xvi| p
\Bigr) 1/p

if p <\infty ,

max1\leq i\leq d\{ | xui  - xvi| \} otherwise.

With this choice, the volume (Lebesgue measure) of the ball Bp(r) of radius r under
Lp-norm is equal to the probability that a vertex u falls within distance at most r of
v (if r = o(1)). We denote this volume by \nu (r). We call the corresponding graphs
standard GIRGs with any Lp-norm and note that some of our results extend to this
more general model. Finally, whenever our insights consider an even broader variant
of the model (e.g., variable ground spaces, distances functions, weight distributions),
we say that they hold for any GIRG and mention the constraints explicitly.

1.2. Asymptotic equivalence. Our first main observations is that large values
of d diminish the influence of the underlying geometry until, at some point, our model
becomes strongly equivalent to its nongeometric counterpart, where edges are sampled
independently of each other. We prove that the total variation distance between the
distribution over all graphs of the two models tends to zero as n is kept fixed and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

5/
24

 to
 1

41
.8

9.
22

1.
17

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



CLIQUES IN HIGH-DIMENSIONAL GIRGs 1947

d\rightarrow \infty . We define the total variation distance of two probability measures P and Q
on the measurable space (\Omega ,\scrF ) as

\| P,Q\| TV = sup
A\in \scrF 

| P (A) - P (B)| = 1

2

\sum 
\omega \in \Omega 

| P (\omega ) - Q(\omega )| ,

where the second equality holds if \Omega is countable. In our case, \Omega is the set \scrG (n) of all
possible graphs on n vertices, and P,Q are distributions over these graphs. If G1,G2

are two random variables mapping to \Omega , we refer to \| G1,G2\| TV as the total variation
distance of the induced probability measures by G1 and G2, respectively. Informally,
this measures the maximum difference in the probability that any graph G is sampled
by G1 and G2.

Theorem 1.1. Let \scrG (n) be the set of all graphs with n vertices, let \{ w\} n1 be
a weight sequence, and consider GIRG = IRG(\{ w\} n1 ) \in \scrG (n) and a standard GIRG
GGIRG =GIRG(\{ w\} n1 , d)\in \scrG (n) with any Lp-norm. Then,

lim
d\rightarrow \infty 

\| GGIRG,GIRG\| TV = 0.

We note that this theorem holds for arbitrary weight sequences that do not nec-
essarily follow a power-law and for arbitrary Lp-norms used to define distances in the
ground space. For p \in [1,\infty ), the proof is based on the application of a multivariate
central limit theorem [38], in a similar way as used to prove a related statement for
spherical random geometric graphs (SRGGs), i.e., random geometric graphs with a
hypersphere as ground space [17]. Our proof generalizes this argument to arbitrary
Lp-norms and arbitrary weight sequences. For the case of L\infty -norm, we present a
proof based on the inclusion-exclusion principle and the bounds we develop in the full
version [22, section 4].

Remarkably, while similar behavior was previously established for SRGGs, there
exist works indicating that RGGs on the hypercube do not converge to their nongeo-
metric counterpart [13, 18] as d\rightarrow \infty . We show that this apparent disagreement is due
to the fact that the torus is a homogeneous space while the hypercube is not. In fact,
our proof shows that GIRGs on the hypercube do converge to a nongeometric model
in which edges are, however, not sampled independently. This lack of independence
is because, on the hypercube, there is a positive correlation between the distances
from two vertices to a given vertex, leading to a higher tendency to form clusters, as
was observed experimentally [18]. Due to the homogeneous nature of the torus, the
same is not true for GIRGs, and the model converges to the plain IRG model with
independent edges.

1.3. Clique structure. To quantify for which dimensions d the graphs in the
GIRG model start to behave similarly to IRGs, we investigate the number and size
of cliques. Previous results on SRGGs indicate that the dimension of the underlying
space heavily influences the clique structure of the model [4, 17]. However, it was
not known how the size and the number of cliques depends on d if we use the torus
as our ground space, and how the clique structure in high dimensions behaves for
inhomogeneous weights.

We give explicit bounds on the expected number of cliques of a given size k, which
we afterwards turn into bounds on the clique number \omega (G), i.e., the size of the largest
clique in the graph G. While the expected number of cliques in the GIRG model was
previously studied by Michielan and Stegehuis [35] when the power-law exponent of
the degree distribution satisfies \beta \in (2,3), to the best of our knowledge, the clique
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1948 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

number of GIRGs remains unstudied even in the case of constant (but arbitrary)
dimensionality. We close this gap, reproduce the existing results, and extend them
to the case \beta \geq 3 and the case where d can grow as a function of the number of
vertices n in the graph. Furthermore, our bounds for the case \beta \in (2,3) are more
explicit and complement the work of Michielan and Stegehuis, who expressed the
(rescaled) asymptotic number of cliques as converging to a nonanalytically solvable
integral. Furthermore, we show that the clique structure in our model eventually
behaves asymptotically like that of an IRG if the dimension is sufficiently large. In
summary, our main contributions are outlined in Tables 1, 2, and 3.

We observe that the structure of the cliques undergoes three phase transitions in
the size of the cliques k, the dimension d, and the power-law exponent \beta .

Transition in k. When \beta \in (2,3) and d \in o(log(n)), the first transition is at
k= 2

3 - \beta , as was previously observed for hyperbolic random graphs [7] and for GIRGs
of constant dimensionality [35]. The latter work explains this behavior by showing
that for k < 2

3 - \beta , the number of cliques is strongly dominated by ``geometric"" cliques

forming among vertices whose distance is of order n - 1/d regardless of their weight. For
k > 2

3 - \beta , on the other hand, the number of cliques is dominated by ``nongeometric""

cliques forming among vertices with weights on the order of
\surd 
n. This behavior is in

contrast to the behavior of cliques in the IRG model, where this phase transition does
not exist and where the expected number of k cliques is \Theta (n

k
2 (3 - \beta )) for all k \geq 3 (if

\beta \in (2,3)) [14].

Table 1
Asymptotic behavior of the expected number of k-cliques. Results marked with * were previously

known for constant k. For all depicted regimes, Kk concentrates well around its expectation, i.e.,
Kk/\BbbE [Kk] converges in probability to 1 if k is sufficiently small: for cells marked in light-gray, this
holds for k = o(n(3 - \beta )/4); for cells marked in dark-gray, it holds for k = o(log(n)/(log log(n) + d));
for white cells, it holds for all k (cf. Theorem 1.4).

E [Kk] for k ≥ 4

d = Θ(1) d = o(log(n)) d = ω(log(n))

2 < β < 3, k > 2
3−β n

k
2 (3−β)Θ(k)−k* n

k
2 (3−β)Θ(k)−k n

k
2 (3−β)Θ(k)−k

2 < β < 3, k < 2
3−β nΘ(k)−k* ne−Θ(1)dkΘ(k)−k n

k
2 (3−β)Θ(k)−k

β > 3 nΘ(k)−k ne−Θ(1)dkΘ(k)−k o(1)

equivalent to
HRGs [7]

equivalent to
IRGs [28]

Table 2
Asymptotic behavior of the expected number of triangles. The case \beta =\infty refers to the case of

constant weights. While in the case \beta < 3, the number of triangles already behaves like that of the
IRG model if d = \omega (log(n)), in the case \beta > 3, the number of triangles remains superconstant as

long as d= o (log3/2(n)).

Expected number of triangles \BbbE [K3]

d= o(log(n)) d= \omega (log(n)) d= \omega (log2(n))

2<\beta < 7
3

n
3
2
(3 - \beta )\Theta (1) n

3
2
(3 - \beta )\Theta (1) n

3
2
(3 - \beta )\Theta (1)

7
3
<\beta < 3 ne - \Theta (1)d\Theta (1) n

3
2
(3 - \beta )\Theta (1) n

3
2
(3 - \beta )\Theta (1)

\beta > 3 ne - \Theta (1)d\Theta (1) \Omega 
\Bigl( 
exp

\Bigl( 
\mathrm{l}\mathrm{n}3(n)

d2

\Bigr) \Bigr) 
\Theta (1)

\beta =\infty ne - \Theta (1)d\Theta (1) \Theta 
\Bigl( 
exp

\Bigl( 
\mathrm{l}\mathrm{n}3(n)

d2

\Bigr) \Bigr) 
\Theta (1)
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1949

Table 3
Asymptotic behavior of the clique number of G for different values of d in the GIRG model.

The behavior of the first column is the same as in hyperbolic random graphs established in [7], and
the behavior in the third column is the same as that of IRG graphs established in [28]. All results
hold a.a.s. and under L\infty -norm.

\omega (G)

d=\scrO (log log(n)) d= o(log(n)) d= \omega (log(n))

\beta < 3 \Theta 
\bigl( 
n(3 - \beta )/2

\bigr) 
\Theta 
\bigl( 
n(3 - \beta )/2

\bigr) 
\Theta 
\bigl( 
n(3 - \beta )/2

\bigr) 
\beta = 3 \Theta 

\Bigl( 
\mathrm{l}\mathrm{o}\mathrm{g}(n)

\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}(n)

\Bigr) 
\Omega 
\Bigl( 

\mathrm{l}\mathrm{o}\mathrm{g}(n)
d

\Bigr) 
\scrO (1)

\beta > 3 \Theta 
\Bigl( 

\mathrm{l}\mathrm{o}\mathrm{g}(n)
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}(n)

\Bigr) 
\Theta 
\Bigl( 

\mathrm{l}\mathrm{o}\mathrm{g}(n)
d

\Bigr) 
\leq 3

equivalent to HRGs [7] equivalent to IRGs [28]

Transition in d. Still assuming \beta \in (2,3), the second phase transition occurs as
d becomes superlogarithmic. More precisely, we show that in the high-dimensional
regime, where d = \omega (log(n)), the phase transition in k vanishes, as the expected
number of cliques of size k \geq 4 behaves asymptotically like its counterpart in the
IRG model. Nevertheless, we can still differentiate the two models as long as d =
o(log3/2(n)) by counting triangles among low degree vertices as can be seen in Table 2.

The reason for this behavior is that the number of cliques in the case d= \omega (log(n))
is already dominated by cliques forming among vertices of weight close to

\surd 
n. For

those, the probability that a clique is formed already behaves like in an IRG, although,
for vertices of small weight, said probability it is still significantly larger as long as
d= o(log(n)3/2).

Regarding the clique number, in the case \beta > 3, we observe a similar phase transi-
tion in d. For constant d, the clique number of a GIRG is \Theta (log(n)/ log log(n)) = \omega (1).
We find that this asymptotic behavior remains unchanged if d=\scrO (log log(n)). How-
ever, if d= \omega (log log(n)) but d= o(log(n)), the clique number scales as \Theta (log(n)/d),
which is still superconstant. Additionally, if d= \omega (log(n)), we see that, again, GIRGs
show the same behavior as IRGs. That is, there are asymptotically no cliques of size
larger than 3.

Transition in \beta . The third phase transition in the high-dimensional case occurs
at \beta = 3, which is in line with the fact that networks with a power-law exponent
\beta \in (2,3) contain with high probability (w.h.p., meaning with probability 1 - O(1/n)) a
densely connected ``heavy core"" of \Theta (n

1
2 (3 - \beta )) vertices with weight

\surd 
n or above, which

vanishes if \beta is larger than 3. This heavy core strongly dominates the number of cliques
of sufficient size and explains why the clique number is \Theta (n

1
2 (3 - \beta )) regardless of d if

\beta \in (2,3). As \beta grows beyond 3, the core disappears and leaves only very small cliques.
Accordingly for \beta > 3 IRGs contain asymptotically almost surely (a.a.s., meaning with
probability 1 - o(1)) no cliques of size greater than 3. In contrast to that, for GIRGs
of dimension d = o(log(n)) (and HRGs), the clique number remains superconstant
and so does the number of k-cliques for any constant k \geq 3. If d = \omega (log(n)), there
are no cliques of size greater than 3 like in an IRG. However, as noted before, GIRGs
feature many more triangles than IRGs as long as d= o(log3/2(n)).

Characterizing the typical clique. Our analysis also yields insights into where
cliques typically form within the graph. Previously known in this regard was that, for
constant d,\beta \in (2,3) and constant k, cliques of size k > 2

3 - \beta form dominantly among

vertices of weight on the order of
\surd 
n, whereas for k < 2

3 - \beta , they form among vertices

of pairwise distance on the order of n - 1/d, as shown in [35]. We extend these results to
the case where k and d are allowed to be superconstant, where \beta > 3, and we provide
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1950 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

a characterization in terms of the weights of the vertices associated to a clique that
extend the known results even for the previously studied parameter regimes.

To be more precise, we denote by wmin,wmax the minimal and maximal vertex
weights associated to a randomly chosen clique and study for which weights w, wmin

and wmax are arbitrarily likely to be on the order of w. To this end, we define the
following.

Definition 1.2. For any w \in \BbbR and \varepsilon > 0 define

M (+)
\varepsilon (w) := \{ x\in \BbbR | x\leq w/\varepsilon \} and M ( - )

\varepsilon (w) := \{ x\in \BbbR | x\geq \varepsilon w\} .
Furthermore, define

M\varepsilon (w) :=M (+)
\varepsilon (w)\cap M ( - )

\varepsilon (w).

We proceed by studying for which w we can make the conditional probabilities
that wmin or wmax is in M

(+)
\varepsilon (w),M

( - )
\varepsilon (w), or M\varepsilon (w) arbitrarily large by adjusting \varepsilon .

Our results are summarized in Table 4. The central result of these two tables is
that assuming d = o(log(n)), if k < 2

3 - \beta or if k is arbitrary and \beta > 3, then cliques
dominantly form among vertices of very small weight, more precisely among vertices
of weight at most k

1
2 - \beta no(1), which (if you take our results on the clique number

into account) is no(1) in total for cliques of all sizes that appear in the model with
nonvanishing probability. On the other hand, if d = \omega (log(n)) and \beta \in (2,3), then
cliques of all sizes dominantly form among very high-weight vertices, more precisely
among vertices of weight at least on the order of

\surd 
n. Again, this is the same behavior

as in IRGs. We formalize this result in the following theorem.

Theorem 1.3. Let Uk be a set of k randomly chosen vertices. If \beta \in (2,3),
k < 2

3 - \beta , and d = o(log(n)), then there is a function f(n) = e\Theta (1)d = no(1) such that
for all p\in (0,1), there is an \varepsilon > 0 such that

Pr [wmax \leq f(n)/\varepsilon | Uk is clique]\geq p.

If \beta \in (2,3) and d = \omega (log(n)), then for all (potentially superconstant) k \geq 3 and all
p\in (0,1), there is an \varepsilon > 0 such that

Pr
\bigl[ 
wmin \geq \varepsilon 

\surd 
n | Uk is clique

\bigr] 
\geq p.

Table 4
Dominant regimes for the minimum/maximum vertex weight associated to a clique. An entry

of M\varepsilon (w) (as defined in Definition 1.2) means that for every p \in (0,1), there is an \varepsilon > 0 such that
Pr[w\mathrm{m}\mathrm{i}\mathrm{n} \in M\varepsilon (w) | Uk is clique] \geq p (resp., Pr[w\mathrm{m}\mathrm{a}\mathrm{x} \in M\varepsilon (w) | Uk is clique] \geq p), where Uk is a set
of k vertices chosen u.a.r.

Dominant Regimes for w\mathrm{m}\mathrm{i}\mathrm{n}

d=\Theta (1) d= o(log(n)) d= \omega (log(n))

2<\beta < 3, k > 2
3 - \beta 

M\varepsilon (
\surd 
n) M\varepsilon (

\surd 
n) M\varepsilon (

\surd 
n)

2<\beta < 3, k < 2
3 - \beta 

M\varepsilon (1) M
(+)
\varepsilon (no(1)) M\varepsilon (

\surd 
n)

\beta > 3 M\varepsilon (1) M
(+)
\varepsilon (no(1))

Dominant Regimes for w\mathrm{m}\mathrm{a}\mathrm{x}

d=\Theta (1) d= o(log(n)) d= \omega (log(n))

2<\beta < 3, k > 2
3 - \beta 

M\varepsilon (k
1

\beta  - 1
\surd 
n) M\varepsilon (k

1
\beta  - 1

\surd 
n) M\varepsilon (k

1
\beta  - 1

\surd 
n)

2<\beta < 3, k < 2
3 - \beta 

M\varepsilon (k
1

\beta  - 2 ) M
(+)
\varepsilon (k

1
\beta  - 2 no(1)) M\varepsilon (k

1
\beta  - 1

\surd 
n)

\beta > 3 M\varepsilon (k
1

\beta  - 2 ) M
(+)
\varepsilon (k

1
\beta  - 2 no(1))  - 
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1951

Moreover, it is worth noting that for d, k constant, cliques of size k < 2
3 - \beta , if

\beta \in (2,3), and cliques of size k \geq 3, if \beta > 3, dominantly form among vertices of
only constant weight. Additionally, we remark that the dependence of wmax on k as
given in Table 4 is the same as one would expect in a star centered at the vertex
of minimal weight vmin. That is, if the weight of vmin is much smaller than

\surd 
n,

then each neighbor u of vmin has a weight that is essentially a sample of a Pareto
distribution with exponent \beta  - 1 instead of \beta , since conditioning on u\sim vmin imposes
a bias towards a higher weight of u. Since there are \Theta (k) neighbors, the maximum
weight among these is essentially the maximum of \Theta (k) independent samples from

this distribution, which is typically of order k
1

\beta  - 2 . If wmin is already of order
\surd 
n,

the situation is similar; however, conditioning on u \sim vmin no longer imposes a bias
towards a higher weight of u as vertices with weight in this range are all connected
with probability \Omega (1). Thus, the weight of the neighbors of vmin continues to follow a
Pareto distribution with exponent \beta , and the maximal weight among them is of order
k

1
\beta  - 1 . Our results show that this known behavior for stars remains essentially true

for cliques; that is, conditioning on having a clique does not induce a bias towards
much larger weights than conditioning on having a star.

Concentration bounds. The above analysis not only gives insights into where
cliques dominantly form but also allows us to establish concentration bounds on the
number of cliques in a similar way as done in [35]. More precisely, it allows us to es-
tablish that Kk rescaled by its expectation converges in probability to 1 for almost all
the regimes we consider and almost all relevant sizes of k. We write Kk/\BbbE [Kk]\rightarrow p 1
to denote convergence in probability and formalize in our statement in the following
theorem.

Theorem 1.4. We have Kk/\BbbE [Kk]\rightarrow p 1; that is for all \delta > 0,

Pr

\biggl[ \bigm| \bigm| \bigm| \bigm| Kk

\BbbE [Kk]
 - 1

\bigm| \bigm| \bigm| \bigm| \geq \delta 

\biggr] 
= o(1)

if one of the following conditions holds.
(i) d= o(log(n)), \beta \in (2,3), k \not = 2

3 - \beta , and k= o(n(3 - \beta )/4).

(ii) d= \omega (log(n)), \beta \in (2,3), k= o(n(3 - \beta )/4).
(iii) d= o(log(n)), \beta > 3, and k= o (log(n)/(log log(n) + d)).

We remark that even for values of k larger than the ones stated above, our results
imply (slightly weaker) concentration bounds. General bounds on the variance of
cliques are given in subsection 3.3.

Proof techniques. The proofs of our results (i.e., the ones in the above tables) are
mainly based on bounds on the probability that a set of k randomly chosen vertices
forms a clique. To obtain concentration bounds on the number of cliques as needed
for deriving bounds on the clique number, we use the second moment method and
Chernoff bounds.

For the case of d= \omega (log(n)), many of our results are derived from the following
general insight. We show that for all \beta > 2, the probability that a set of vertices
forms a clique already behaves similarly to that in the IRG model if the weights of
the involved nodes are sufficiently large. For d = \omega (log(n)2), this holds in the entire
graph, that is, regardless of the weights of the involved vertices. In fact our statement
holds even more generally. That is, the described behavior applies not only to the
probability that a clique is formed but also to the probability that any set of edges
(or a superset thereof) is created.
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1952 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

Theorem 1.5. Let G be a standard GIRG and let k \geq 3 be a constant. Further-
more, let Uk = \{ v1, . . . , vk\} be a set of vertices chosen uniformly at random and let
\{ \kappa \} (k) = \{ \kappa ij | 1\leq i, j \leq k\} describe the pairwise product of weights of the vertices in
Uk. Let E(Uk) denote the (random) set of edges formed among the vertices in Uk.
Then, for any set of edges \scrA \subseteq 

\bigl( 
Uk

2

\bigr) 
,

Pr
\Bigl[ 
E(Uk)\supseteq \scrA | \{ \kappa \} (k)

\Bigr] 
=

\Biggl\{ 
(1\pm o(1))

\prod 
\{ i,j\} \in \scrA 

\kappa ij

n if d= \omega (log2(n)),

(1\pm o(1))
\prod 

\{ i,j\} \in \scrA 
\bigl( \kappa ij

n

\bigr) 1\mp \scrO ( \mathrm{l}\mathrm{o}\mathrm{g}(n)
d )

if d= \omega (log(n)).

For the proof we derive elementary bounds on the probability of the described
events and use series expansions to investigate their asymptotic behavior. Remarkably,
in contrast to our bounds for the case d= o(log(n)), the high-dimensional case requires
us to pay closer attention to the topology of the torus.

We leverage the above theorem to prove that GIRGs eventually become equivalent
to IRGs with respect to the total variation distance. Theorem 1.5 already implies that
the expected number of cliques in a GIRG is asymptotically the same as in an IRG
for all k \geq 3 and all \beta > 2 if d = \omega (log2(n)). However, we are able to show that
the expected number of cliques for \beta \in (2,3) actually already behaves like that of
an IRG if d = \omega (log(n)). The reason for this is that the clique probability among
high-weight vertices starts to behave like that of an IRG earlier than is the case for
low-weight vertices, and cliques forming among these high-weight vertices already
dominate the number of cliques. Moreover, the clique number behaves like that of an
IRG if d = \omega (log(n)) for all \beta > 2. However, the number of triangles among vertices
of constant weight asymptotically exceeds that of an IRG as long as d= o(log3/2(n)),
which we prove by deriving even sharper bounds on the expected number of triangles.
Accordingly, convergence with respect to the total variation distance cannot occur
before this point (this holds for all \beta > 2).

In contrast to this, for the low-dimensional case (where d = o(log(n))), the un-
derlying geometry still induces strongly notable effects regarding the number of suf-
ficiently small cliques for all \beta > 2. However, even here, the expected number of such
cliques decays exponentially in dk. The main difficulty in showing this is that we
have to handle the case of inhomogeneous weights, which significantly influence the
probability that a set of k vertices chosen uniformly at random forms a clique. To
this end, we prove the following theorem, which bounds the probability that a clique
among k vertices is formed if the ratio of the maximal and minimal weights is at most
cd. Note that the vertices forming a star is necessary for a clique to form. For this
reason we consider the event Ec

star of the vertices forming a star centered at the lowest
weight vertex. The theorem generalizes a result of Decreusefond et al. [16].

Theorem 1.6. Let G be a standard GIRG and consider k \geq 3. Furthermore,
let Uk = \{ v1, v2, . . . , vk\} be a set of vertices chosen uniformly at random and assume
without loss of generality that w1 \leq \cdot \cdot \cdot \leq wk. Let Ec

star be the event that v1 con-
nects to all vertices in Uk \setminus \{ v1\} and that wk \leq cdw1 for some constant c \geq 1 with
c2(w2

1/(\tau n))
1/d \leq 1/4. Then, the probability that Uk is a clique conditioned on Ec

star

fulfills \biggl( 
1

2

\biggr) d(k - 1)

kd \leq Pr [Uk is clique | Ec
star]\leq cd(k - 2)

\biggl( 
1

2

\biggr) d(k - 1)

kd.

Building on the variant by Decreusefond et al. [16], we provide an alternative
proof of the original statement, showing that the clique probability conditioned on
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1953

the event Ec
star is monotonous in the weight of all other vertices. Remarkably, this

only holds if we condition on the event that the center of our star is of minimal weight
among the vertices in Uk.

We apply Theorem 1.6 to bound the clique probability in the whole graph (where
the ratio of the maximum and minimum weights of vertices in Uk is not necessarily
bounded). Afterwards, we additionally use Chernoff bounds and the second moment
method to bound the clique number.

1.4. Relation to previous analyses. In the following, we discuss how our
results compare to insights obtained on similar graph models that (apart from not
considering weighted vertices) mainly differ in the considered ground space. We note
that, in the following, we consider GIRGs with uniform weights in order to obtain a
valid comparison.

Random geometric graphs on the sphere. Our results indicate that the GIRG
model on the torus behaves similarly to the model of spherical random geometric
graphs (SRGGs) in the high-dimensional case. In this model, vertices are distributed
on the surface of a d  - 1 dimensional sphere and an edge is present whenever the
Euclidean distance between two points (measured by their inner product) falls below
a given threshold. Analogously to the behavior of GIRGs, when keeping n fixed and
considering increasing d\rightarrow \infty , this model converges to its nongeometric counterpart,
which in their case is the Erd\H os--R\'enyi model [17]. It is further shown that the clique
number converges to that of an Erd\H os--R\'enyi graph (up to a factor of 1 + o(1)) if
d= \omega (log3(n)).

Although the overall behavior of SRGGs is similar to that of GIRGs, the magni-
tude of d in comparison to n at which nongeometric features become dominant seems
to differ. In fact, it is shown in [10, proof of Theorem 3] that the expected number
of triangles in sparse SRGGs still grows with n as long as d= o(log3(n)), whereas its
expectation is constant in the nongeometric, sparse case (as for Erd\H os--R\'enyi graphs).
On the other hand, in the GIRG model, we show that the expected number of triangles
in the sparse case converges to the same (constant) value as that of the nongeometric
model if only d = \omega (log3/2(n)). This indicates that, in the high-dimensional regime,
differences in the nature of the underlying geometry result in notably different behav-
ior, although in the case of constant dimensionality, the models are often assumed to
behave very similarly.

Random geometric graphs on the hypercube. The work of Dall and Christensen
[13] and the recent work of Erba et al. [18] show that RGGs on the hypercube do
not converge to Erd\H os--R\'enyi graphs as n is fixed and d \rightarrow \infty . However, our results
imply that this is the case for RGGs on the torus. These apparent disagreements are
despite the fact that Erba et al. use a similar central limit theorem for conducting
their calculations and simulations [18].

The tools established in our paper yield an explanation for this behavior. Our
proof of Theorem 1.1 relies on the fact that, for independent zero-mean variables
Z1, . . . ,Zd, the covariance matrix of the random vector Z =

\sum d
i=1Zi is the identity

matrix. This, in turn, is based on the fact that the torus is a homogeneous space,
which implies that the probability measure of a ball of radius r (proportional to
its Lebesgue measure or volume, respectively) is the same, regardless of where this
ball is centered. It follows that the random variables Z(u,v) and Z(u,s), denoting the
normalized distances from u to s and v, respectively, are independent. As a result
their covariance is 0 although both ``depend"" on the position of u.

For the hypercube, this is not the case. Although one may analogously define the
distance of two vertices as a sum of independent, zero-mean random vectors over all
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1954 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

dimensions just like we do in this paper, the random variables Z(u,v) and Z(u,s) do
not have a covariance of 0.

1.5. Conjectures and future work. While making the first steps towards un-
derstanding GIRGs and sparse RGGs on the torus in high dimensions, we encountered
several questions whose investigation does not fit into the scope of this paper. In the
following, we give a brief overview of our conjectures and possible starting points for
future work.

Noisy GIRGs. It would be interesting to extend our results to the temperate ver-
sion of GIRGs, where the threshold is softened using a temperature parameter. That
is, while the probability for an edge to exist still decreases with increasing distance,
we can now have longer edges and shorter nonedges with certain probabilities. The
motivation of this variant of GIRGs is based on the fact that real data is often noisy
as well, leading to an even better representation of real-world graphs. In this regard,
we remark that most of our proof techniques for the case of constant dimension carry
over quite directly to temperate GIRGs. However, when considering nonconstant
dimension, having an additional temperature parameter seems to complicate things
significantly, which is the reason why we concentrate on threshold GIRGs in this work.
Nevertheless, we note that both temperature and dimensionality affect the influence
of the underlying geometry, so it would be interesting to further investigate whether a
sufficiently high temperature has additional impact on how quickly GIRGs converge
to IRGs.

Testing thresholds for detecting underlying geometry. Another crucial question is
under which circumstances the underlying geometry of our model remains detectable
by means of statistical testing, and when (i.e., for which values of d) our model
converges in total variation distance to its nongeometric counterpart. A large body
of work has already been devoted to this question for SRGGs [17, 10, 9, 34, 33] and
recently also for random intersection graphs [9]. While the question of when these
graphs lose their geometry in the dense case is already largely answered, it remains
open for the sparse case (where the marginal connection probability is proportional
to 1/n), and progress has only been made recently [9, 33]. It would be interesting to
study this question for our model, both for the case of constant and for the case of
inhomogeneous weights. Our work indicates that GIRGs and RGGs on the torus might
lose their geometry earlier than SRGGs as the number of triangles is in expectation
already the same as in an Erd\H os--R\'enyi graph if d = \omega (log3/2(n)), while for SRGGs
this only happens if d= \omega (log3(n)) [10].

Furthermore, it remains to investigate dense RGGs on the torus in this regard,
where the marginal connection probability of any pair of vertices is constant and does
not decrease with n. For dense SRGGs, an analysis of the high-dimensional case
has shown that the underlying geometry remains detectable as long as d = o(n3),
while for sparse SRGGs it is conjectured that the respective threshold is only at d=
log(n)3. In the dense case, this is accomplished by counting so-called signed triangles
[10]. Although for the sparse case, signed triangles have no advantage over ordinary
triangles, they are much more powerful in the dense case and might prove useful for
analyzing dense RGGs on the torus as well. Additionally, as GIRGs contain both
very sparse and very dense parts, it is an interesting question whether inhomogeneous
weights actually result in different testing thresholds somewhere between that of the
dense and the sparse cases.

2. Preliminaries. We let G = (V,E) be a (random) graph on n vertices. We
let
\bigl( 
U
2

\bigr) 
be the set of all possible edges among vertices of a subset U \subseteq V and denote
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1955

the actual set of edges between them by E(U) = E \cap 
\bigl( 
U
2

\bigr) 
. A k-clique in G is a

complete induced subgraph on k vertices of G. We let Kk denote the random variable
representing the number of k-cliques inG. We typically use Uk = \{ v1, . . . , vk\} to denote
a set of k vertices chosen independently and uniformly at random from the graph. For
the sake of brevity, we simple write that Uk is a set of random vertices to denote that
Uk is obtained that way. Further, we write w1, . . . ,wk for the weights of the vertices
in Uk. The probability that Uk forms a clique is denoted by qk. Additionally, Estar is
the event that Uk is a star with center v1.

We use standard Landau notation to describe the asymptotic behavior of functions
for sufficiently large n. That is, for functions f, g, we write f(n) = \scrO (g(n)) if there
is a constant c > 0 such that for all sufficiently large n, f(n) \leq cg(n). Similarly, we
write f(n) = \Omega (g(n)) if f(n) \geq cg(n) for sufficiently large n. If both statements are
true, we write f(n) =\Theta (g(n)). Regarding our study of the clustering coefficient, some
results make a statement about the asymptotic behavior of a function with respect
to a sufficiently large d. These are marked by \scrO d(\cdot ),\Omega d(\cdot ),\Theta d(\cdot ), respectively.

2.1. Spherical random geometric graphs (SRGGs). In this model, n ver-
tices are distributed uniformly on the d-dimensional unit sphere \scrS d - 1 and vertices u, v
connected whenever their L2-distance is below the connection threshold tuv, which is
again chosen such that the connection probability of u, v is fixed. This model thus
differs from the GIRG model in its ground space (sphere instead of torus) and the fact
that it uses homogeneous weights; i.e., the marginal connection probability between
each pair of vertices is the same. We mainly use this model as a comparison, since its
behavior in high dimensions was extensively studied previously [4, 10, 17].

2.2. Useful bounds and concentration inequalities. Throughout this pa-
per, we use the following approximation of the binomial coefficient.

Lemma 2.1. For all n\geq 1 and all 1\leq k\leq 1
2n, we have\biggl( 

n

k

\biggr) 
= nk\Theta (k) - k.

That is, there are constants c1, c2 > 0 such that for all n\geq 1,

nk (c1k)
 - k \leq 

\biggl( 
n

k

\biggr) 
\leq nk (c2k)

 - k
.

Proof. We start with the upper bound and immediately get that for all n,k,\biggl( 
n

k

\biggr) 
\leq nk

k!
.

From Stirling's approximation, we get for all k\geq 1 that

\surd 
2\pi k

\biggl( 
k

e

\biggr) k

e
1

12k+1 \leq k!.

Because k\geq 1, the left side is lower bounded by
\bigl( 
k
e

\bigr) k
and hence\biggl( 

n

k

\biggr) 
\leq nk

\bigl( 
e - 1k

\bigr)  - k
.
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1956 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

For the lower bound, we observe that\biggl( 
n

k

\biggr) 
\geq 
\biggl( 
(n - k)

k

\biggr) k

= (n - k)kk - k.

We claim that there is a constant c > 0 such that (n - k)k \geq (cn)k, which is equiv-
alent to 1  - k

n \geq c. As k \leq 1
2n, this inequality is true for all c < 1

2 , which finishes
the proof.

We use the following well-known concentration bounds.

Theorem 2.2 (Theorem 2.2 in [29], Chernoff--Hoeffding bound). For 1 \leq i \leq k,
let Xi be independent random variables taking values in [0,1], and let X :=

\sum k
i=1Xi.

Then, for all 0< \varepsilon < 1,
(i) Pr [X > (1 + \varepsilon )\BbbE [X]]\leq exp( - \varepsilon 2

3 \BbbE [X]),

(ii) Pr [X < (1 - \varepsilon )\BbbE [X]]\leq exp( - \varepsilon 2

2 \BbbE [X]), and
(iii) Pr [X \geq t]\leq 2 - t for all t\geq 2e\BbbE [X].

3. Cliques in the low-dimensional regime. We start by proving the results
from Tables 1, 2, and 3 for the case d = o(log(n)). We remind the reader that the
results in this section hold for the standard GIRG model but remark that our bounds
up to (and including) section 4 are also applicable if norms other than L\infty are used.

3.1. Bounds on the clique probability. Recall that we denote by Kk the
random variable that represents the number of cliques of size k in G and that qk is
the probability that a set of k vertices chosen uniformly at random forms a clique.
Then the expectation of Kk is

\BbbE [Kk] =

\biggl( 
n

k

\biggr) 
qk.

In the following, we derive upper and lower bounds on qk. Our bounds here are very
general and remain valid regardless of how the dimension scales with n and which
Lp-norm is used. One may also easily extend them to the nonthreshold version of the
weight sampling model. Although our bounds are asymptotically tight for constant
d, they become less meaningful if d scales with n. We therefore derive sharper bounds
in section 4 for the case d= \omega (log(n)).

An upper bound on qk. In this section, we derive an upper bound on qk by con-
sidering the event that a set of k random vertices forms a star centered around the
vertex of minimal weight. As this is necessary to form a clique, it gives us an upper
bound on qk that is very general and independent of d. To get sharper upper bounds,
we combine this technique with Theorem 1.6 in section 3.4.

Recall that Uk = \{ v1, . . . , vk\} is a set of k random vertices with (random) weights
w1, . . . ,wk. In the following, we assume without loss of generality that v1 is of minimal
weight among all vertices in Uk. We start by analyzing how the minimal weight w1

is distributed.

Lemma 3.1. Let G be any GIRG with a power-law weight distribution with ex-
ponent \beta > 2. Furthermore, let Uk = \{ v1, . . . , vk\} be a set of k random vertices and
assume that v1 is of minimal weight w1 among Uk. Then, w1 is distributed according
to the density function

\rho w1
(x) =

(\beta  - 1)k

w
(1 - \beta )k
0

\cdot x(1 - \beta )k - 1
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1957

in the interval [w0,\infty ]. Conditioned on the weight w1, the weight wi for all 2\leq i\leq k
is distributed independently as

\rho wi| w1
(x) =

\beta  - 1

w1 - \beta 
1

x - \beta .

Proof. Recall that the weight w of each vertex is independently sampled from the
Pareto distribution such that

Pr [w\leq x] = 1 - 
\biggl( 

x

w0

\biggr) 1 - \beta 

.(3.1)

Accordingly, the probability that the minimal weight w1 is at most x is

Pr [w1 \leq x] = 1 - Pr [w\geq x]
k
= 1 - 

\biggl( 
x

w0

\biggr) k(1 - \beta )

.

To find the density function of w1, we differentiate this term and get

\rho w1
(x) =

dPr [wv \leq x]

dx
=

d

dx

\Biggl( 
1 - 

\biggl( 
x

w0

\biggr) (1 - \beta )k
\Biggr) 
=

(\beta  - 1)k

w
(1 - \beta )k
0

\cdot x(1 - \beta )k - 1.

The conditional density function \rho wi| w1
(x) of wi is then

\rho wi| w1
(x) =

\rho w(x)\int \infty 
w1

\rho w(x)dx
=

x - \beta \int \infty 
w1

x - \beta dx
=

\beta  - 1

w1 - \beta 
1

x - \beta ,

where \rho w(x) =
\beta  - 1

w1 - \beta 
0

x - \beta is the (unconditional) density function of a single weight.

We proceed by bounding the probability of the event Estar that Uk is a star with
center v1. We start with the following lemma.

Lemma 3.2. Let G be any GIRG with a power-law weight distribution with expo-
nent \beta > 2, let Uk = \{ v1, . . . , vk\} be a set of k random vertices, and assume that v1
is of minimal weight w1 among Uk. Furthermore, let Estar be the event that Uk is a
star with center v1 and let w - ,w+ \geq w0. Then,

Pr [Estar \cap w - \leq w1 \leq w+]\leq \scrC 
\biggl( 
\lambda 

n

\biggr) k - 1\biggl( 
\beta  - 1

\beta  - 2

\biggr) k - 1 \Bigl( 
w

k(3 - \beta ) - 2
+  - w

k(3 - \beta ) - 2
 - 

\Bigr) 
with

\scrC :=
(\beta  - 1)kw

 - (1 - \beta )k
0

(3 - \beta )k - 2
.

Proof. Define P := Pr [Estar \cap w - \leq w1 \leq w+]. As the marginal connection prob-
ability of two vertices u, v with weights wu,wv is min\{ \lambda wuwv,1\} , we get

P \leq 
\int w+

w - 

\int \infty 

w1

. . .

\int \infty 

w1

\lambda k - 1wk - 1
1 w2 . . .wk

nk - 1
\rho w1(w1)\rho w2| w1

(w2) . . . \rho wk| w1
(wk)dwk . . .dw1

=

\biggl( 
\lambda 

n

\biggr) k - 1 \int w+

w - 

wk - 1
1 \rho w1

(w1)

\biggl( \int \infty 

w1

w2\rho w2| w1
(w2)dw2

\biggr) k - 1

dw1.
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1958 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

By Lemma 3.1, we have\int \infty 

w1

w2\rho w2| w1
(w2)dw2 =

\beta  - 1

w1 - \beta 
1

\int \infty 

w1

w1 - \beta 
2 dw2 =

\beta  - 1

\beta  - 2
w1,(3.2)

and therefore, our expression for P simplifies to

P \leq 
\biggl( 
\lambda 

n

\biggr) k - 1 \int w+

w - 

wk - 1
1 \rho w1(w1)

\biggl( 
\beta  - 1

\beta  - 2
w1

\biggr) k - 1

dw1

=

\biggl( 
\lambda 

n

\biggr) k - 1\biggl( 
\beta  - 1

\beta  - 2

\biggr) k - 1
(\beta  - 1)k

w
(1 - \beta )k
0

\int w+

w - 

w
k(3 - \beta ) - 3
1 dw1

= \scrC 
\biggl( 
\lambda 

n

\biggr) k - 1\biggl( 
\beta  - 1

\beta  - 2

\biggr) k - 1 \Bigl( 
w

k(3 - \beta ) - 2
+  - w

k(3 - \beta ) - 2
 - 

\Bigr) 
,

as desired.

Corollary 3.3. Let G be any GIRG with a power-law weight distribution with
exponent \beta > 2, let Uk = \{ v1, . . . , vk\} be a set of k random vertices, and assume that
v1 is of minimal weight w1 among Uk. Furthermore, let Estar be the event that Uk is
a star with center v1. Then,

qk \leq Pr [Estar]\leq 
\Biggl\{ 
\Theta (1)kn

k
2 (1 - \beta ) if k > 2

3 - \beta and 2<\beta < 3,

\Theta (1)kn1 - k otherwise.

Proof. Set w+ =
\sqrt{} 

n/\lambda and observe that

Pr [Estar] = Pr [Estar \cap w0 \leq w1 \leq w+] + Pr [Estar \cap w1 \geq w+].

Note that, if w1 \geq w+ =
\sqrt{} 
n/\lambda , the formation of a clique (and thus a star) is guaran-

teed and, hence,

Pr [Estar \cap w1 \geq w+] = Pr [w1 \geq w+] =

\biggl( 
w+

w0

\biggr) k(1 - \beta )

=\Theta (1)kn
k
2 (1 - \beta ).

To bound Pr [Estar \cap w0 \leq w1 \leq w+], we use Lemma 3.2 and observe that

\scrC =
(\beta  - 1)kw

 - (1 - \beta )k
0

(3 - \beta )k - 2

is positive if and only if k > 2
3 - \beta and 2< \beta < 3. In this case Lemma 3.2 implies that

Pr [Estar]\leq \Theta (1)kn
k
2 (1 - \beta ), as desired. Otherwise, we get Pr [Estar \cap w0 \leq w1 \leq w+]\leq 

\Theta (1)kn1 - k, which dominates Pr [Estar \cap w1 \geq w+] =\Theta (1)kn
k
2 (1 - \beta ).

The above lemma shows that there is a phase transition at k = 2
3 - \beta if 2< \beta < 3,

as previously observed by Michielan and Stegehuis [35]. We remark that our bound
is independent of the geometry and also works in the temperate variant of the model,
i.e., in the nonthreshold case.

A lower bound on qk. To obtain a matching lower bound, we employ a similar
strategy that yields the following lemma.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1959

Lemma 3.4. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with any Lp-norm
and let w0 \leq w+ \leq 

\sqrt{} 
n/\lambda . Then,

Pr [(Uk is clique)\cap (w0 \leq w1 \leq w+)]\geq 2 - d(k - 1)\scrC 
\biggl( 
\lambda 

n

\biggr) k - 1\Bigl( 
w

k(3 - \beta ) - 2
+  - w

k(3 - \beta ) - 2
0

\Bigr) 
with

\scrC :=
(\beta  - 1)kw

 - (1 - \beta )k
0

(3 - \beta )k - 2
.

Proof. To get a lower bound on Pr [Uk is clique\cap w0 \leq w1 \leq w+], we consider the
event that every u\in Uk \setminus \{ v1\} is placed at a distance of at most tuv1/2 from v1. Then,
by the triangle inequality, for any u, v \in Uk\setminus \{ v1\} , we may bound the distance d(u, v) as

d(u, v)\leq 1

2
tuv1 +

1

2
tvv1 \leq tuv

because w1 \leq wv,wu. Hence, u and v are adjacent. The probability that a random
vertex u is placed at distance of at most tuv/2 from v is equal to the volume \nu (r) of
the ball of radius r= tuv/2 (but at most 1), i.e.,

min\{ 1, \nu (tuv/2)\} =min
\bigl\{ 
1,2 - d\nu (tuv)

\bigr\} 
=min

\Bigl\{ 
1,2 - d\lambda 

wuwv

n

\Bigr\} 
.

We remark that it is easy to verify that the above term is also a valid lower bound
for the probability of the described event if we are working with some Lp-norm where
p <\infty . Conditioned on a value of w1 smaller than

\sqrt{} 
n/\lambda , the probability that a vertex

u\in Uk\setminus \{ v1\} is placed within distance tuv1/2 from v1 is thus at least 2
 - d\lambda w2

1/n. Thus,

Pr [(Uk is clique)\cap (w0 \leq w1 \leq w+)]\geq 
\int w+

w0

2 - d(k - 1)\lambda k - 1w
2(k - 1)
1

nk - 1
\rho w1(w1)dw1

=

\biggl( 
2 - d\lambda 

n

\biggr) k - 1
(\beta  - 1)k

w
(1 - \beta )k
0

\int w+

w0

w
k(3 - \beta ) - 3
1 dw1

= 2 - d(k - 1)\scrC 
\biggl( 
\lambda 

n

\biggr) k - 1\Bigl( 
w

k(3 - \beta ) - 2
+  - w

k(3 - \beta ) - 2
0

\Bigr) 
,

where the first equality is due to Lemma 3.1.

Corollary 3.5. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with any Lp-
norm. Then,

qk \geq 
\Biggl\{ 
\Theta (1)kn

k
2 (1 - \beta ) if k > 2

3 - \beta and 2<\beta < 3,

\Theta (1)k2 - dkn1 - k otherwise.

Proof. The proof is identical to that of Corollary 3.3 with Lemma 3.4 instead of
Lemma 3.2.

Hence, the asymptotic behavior of our lower bound for qk is the same as that
of the upper bound up to a factor of 2 - d(k - 1)\Theta (1)k. We remark that our bounds
are easily adaptable to the nonthreshold version of the GIRG model as here it is still
guaranteed that a pair of vertices placed within its respective connection threshold is
adjacent with a constant probability.
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1960 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

3.1.1. A sharper upper bound on \bfitq \bfitk for bounded weights. Our upper
and lower bounds for the cases k < 2

3 - \beta and \beta \geq 3 still differ by a factor that is
exponential in d. In this section, we prove Theorem 1.6, which we restate for the
sake of readability, and thereby narrow this gap down under the assumption that the
weights of the vertices in Uk are bounded. While this condition is not always met
w.h.p. if we choose Uk at random from all vertices, we show how to leverage it to obtain
a better bound on the number of cliques in the entire graph in the subsection 3.4.

Theorem 1.6. Let G be a standard GIRG and consider k \geq 3. Furthermore,
let Uk = \{ v1, v2, . . . , vk\} be a set of vertices chosen uniformly at random and assume
without loss of generality that w1 \leq \cdot \cdot \cdot \leq wk. Let Ec

star be the event that v1 con-
nects to all vertices in Uk \setminus \{ v1\} and that wk \leq cdw1 for some constant c \geq 1 with

c2
\bigl( 
w2

1/(\tau n)
\bigr) 1/d \leq 1/4. Then, the probability that Uk is a clique conditioned on Ec

star

fulfills \biggl( 
1

2

\biggr) d(k - 1)

kd \leq Pr [Uk is clique | Ec
star]\leq cd(k - 2)

\biggl( 
1

2

\biggr) d(k - 1)

kd.

Recall that \tau = 2d/\lambda is a parameter controlling the average degree by influencing
the connection threshold. We require the condition c2(w2

1/(\tau n))
1/d \leq 1/4 to ensure

that the maximal connection threshold of any pair of vertices in Uk is so small that we
can measure the distance between two neighbors of a given vertex as we would in \BbbR d,
i.e., without having to take the topology of the torus into account. We remark that
this condition is asymptotically fulfilled as long as d= o(log(n)) and w1 =\scrO (n1/2 - \varepsilon )
for any \varepsilon > 0.

In the following, we let \{ wi\} ki = \{ w1, . . . ,wk\} be the sequence of weights of the
vertices in Uk = \{ v1, . . . , vk\} whereby we assume without loss of generality that w1 \leq 
\cdot \cdot \cdot \leq wk. We denote by ``Uk is star"" the event that Uk is a star centered at the
vertex of minimum weight (which is v1). In order to prove Theorem 1.6, we start by
showing that Pr

\bigl[ 
Uk is clique | Uk is star,\{ wi\} ki

\bigr] 
is monotonically increasing in wi for

all 2 \leq i \leq k. We remark that this property only holds if we condition on having a
star centered at the vertex of minimal weight in Uk. With this statement, we may
subsequently assume all u\in Uk \setminus \{ v1\} to have a weight of w1 and cdw1 for deriving a
lower and upper bound on Pr [Uk is clique | Ec

star], respectively.

Lemma 3.6. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG and denote by ``Uk

is star"" the event that Uk forms a star centered at the vertex of minimal weight in
Uk. Let further Uk = \{ v1, . . . , vk\} be a set of k random vertices with w1 \leq \cdot \cdot \cdot \leq wk.
Then, the conditional probability Pr

\bigl[ 
Uk is clique | Uk is star,\{ wi\} ki

\bigr] 
is monotonically

increasing in w2, . . . ,wk.

Proof. For any 1 \leq i, j \leq k, denote by tij the connection threshold tvivj =\bigl( wiwj

\tau n

\bigr) 1/d
. In the following, we abbreviate ti1 by ti for 2 \leq i \leq k. Note that, since

we assume the use of L\infty -norm and condition on Ec
star, the vertex vi is uniformly

distributed in the cube of radius ti around v1 for all 2\leq i\leq k. Thus, all components
of xvi are independent and uniformly distributed random variables in the interval
[ - ti, ti] (we choose our coordinate system such that xv+1 is the origin). The probabil-
ity that Uk is a clique conditioned on Ec

star is hence equal to the probability that the
distance between each pair of points is below their respective connection threshold in
every dimension. If we denote by p the probability that this event occurs in one fixed
dimension, we get that Pr

\bigl[ 
Uk is clique | Ec

star,\{ wi\} ki
\bigr] 
= pd because all dimensions are

independent. Therefore, it suffices to show the desired monotonicity only for p. In the
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1961

following, we therefore only consider one fixed dimension and denote the coordinate
of the vertex vi in this dimension with xi.

Note that the probability p is equal to

p=

\int t2

 - t2

\int t3

 - t3

\cdot \cdot \cdot 
\int tk

 - tk

\rho (x2) . . . \rho (xk)1(x2, . . . , xk)dxk . . .dx2,

where \rho (xi) =
1
2ti

is the density function of xi as xi is uniformly distributed in the
interval [ - ti, ti], and 1(x2, . . . , xk) is an indicator function that is 1 if and only if for
all 2 \leq i, j \leq k, we have | xi  - xj | \leq tij . We show that p is monotonically increasing
in wi for all 2 \leq i \leq k. For this, assume without loss of generality that we increase
the weight of v2 by a factor \xi > 1. This weight change increases the threshold t2 by
a factor of \xi 1/d and we denote the connection threshold between vi and vj after the
weight change by \~tij . The connection probability \~p after this weight increases is

\~p=

\int \xi 1/dt2

 - \xi 1/dt2

\int t3

 - t3

\cdot \cdot \cdot 
\int tk

 - tk

\~\rho (x2)\rho (x3) . . . \rho (xk)\~1(x2, . . . , xk)dxk . . .dx2,

where \~\rho (x2) = 1
2\xi 1/dt2

= \rho (x2)/\xi 
1/d, and where \~1 is defined like 1 with the only

difference that it uses the new weight of v2, i.e., \~1 is 1 if and only if | xi  - xj | \leq \~tij for
all 2\leq i, j \leq k. Substituting x2 = \xi 1/dy, we get

\~p= \xi 1/d
\int t2

 - t2

\int t3

 - t3

\cdot \cdot \cdot 
\int tk

 - tk

\~\rho (\xi 1/dy)\rho (x3) . . . \rho (xk)\~1(\xi 
1/dy, . . . , xk)dy . . .dxk

=

\int t2

 - t2

\int t3

 - t3

\cdot \cdot \cdot 
\int tk

 - tk

\rho (y)\rho (x3) . . . \rho (xk)\~1(\xi 
1/dy, . . . , xk)dy . . .dxk.

We claim that \~p \geq p, which we show by proving that 1(y, . . . , xk) = 1 implies
\~1(\xi 1/dy, . . . , xk) = 1. For this, assume that y,x3, . . . , xk are such that 1(y, . . . , xk) = 1.
Note that it suffices to show that for all 3 \leq i \leq k, if | xi  - y| \leq t2i, then | xi  - 
\xi 1/dy| \leq \xi 1/dt2i. More formally, we have to show that di := | xi  - y| \leq t2i implies
di

\prime := | xi  - \xi 1/dy| \leq \xi 1/dt2i.
We note that | y  - \xi 1/dy| \leq \xi 1/dt2  - t2 = t2(\xi 

1/d  - 1), as | y| is at most t2. Hence,
the distance between vi and v2 increases by at most t2(\xi 

1/d - 1) as well. Furthermore,
recall that t2 \leq t2i as we assume wi \geq w1. Accordingly,

d\prime i \leq di + (\xi 1/d  - 1)t2

\leq t2i + (\xi 1/d  - 1)t2

\leq t2i + (\xi 1/d  - 1)t2i

= \xi 1/dt2i,

which finishes the proof.

Before proceeding with the proof of Theorem 1.6, we remark that the above
statement implies that the entire clique probability (conditional on a given weight
sequence) is monotonically increasing in the involved weights. This will be useful in
the next section.

Corollary 3.7. Let \{ wi\} wi = \{ w1, . . . ,wk\} be a weight sequence with w1 \leq 
\cdot \cdot \cdot \leq wk. Then, the probability Pr [Uk is clique | \{ wi\} wi ] is monotonically increasing in
w1, . . . ,wk.
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1962 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

Proof. Recall that ``Uk is star"" denotes the event that Uk is a star centered at the
vertex of minimal weight in Uk and note that

Pr [Uk is clique | \{ wi\} wi ] = Pr [Uk is clique | Uk is star,\{ wi\} wi ]Pr [Uk is star | \{ wi\} wi ].
Hence, if we increase any of the weights w2, . . . ,wk, then both of the above terms on
the right-hand side are increasing. If we increase w1, then note that

Pr [Uk is clique | \{ wi\} wi ]
= Pr [Uk is clique | Uk \setminus \{ v1\} is clique,\{ wi\} wi ]Pr [Uk \setminus \{ v1\} is clique | \{ wi\} wi ].

Here, the second factor remains the same if we change w1, and the first factor can only
increase if we increase w1 as---no matter how v2, . . . , vk arrange to form a clique---
increasing w1 only increases the probability that v1 is adjacent to all of them.

We go on with calculating Pr [Uk is clique | Ec
star] under the assumption of uniform

weights, which afterwards implies Theorem 1.6.

Lemma 3.8. Let G=GIRG(n,\beta ,w0, d) be a standard GIRG, let Uk and Ec
star be

defined as in Theorem 1.6, and assume that all vertices in u \in Uk \setminus \{ v1\} have weight
wu \geq w1. Then,

Pr [Uk is clique | Ec
star] =

\biggl( 
wu

w1

\biggr) k - 2
\Biggl( 
2 - (k - 1)

\Biggl( 
(2 - k)

\biggl( 
wu

w1

\biggr) 1/d

+ 2(k - 1)

\Biggr) \Biggr) d

.

Proof. Again, we only consider one fixed dimension and denote the coordinate of
a vertex u \in Uk in this dimension by xu. Note that by Lemma 3.6, we may assume
that the vertices v2, . . . , vk all have the same weight. We further refer to the connec-
tion threshold between any u\in Uk \setminus \{ v1\} and v1 as t0 and to the connection threshold
between two vertices in Uk \setminus \{ v1\} as tu. This enables us to set the origin of our coordi-
nate system such that xu takes values in [0,2t0] for all u\in Uk, i.e., such that xv1 = t0.
Recall that for all u\in Uk \setminus \{ v1\} , xu is a uniformly distributed random variable.

We refer to the event that the pairwise distance in the coordinates of all u, v \in 
Uk \setminus \{ v1\} in our fixed dimension is below the connection threshold tuv as Uk being
a 1-D clique. We calculate p := Pr [Uk is 1-D clique | Ec

star] by integrating over the
conditional probability Pr [Uk is 1-D clique | Ec

star, xmax] where xmax is the coordinate
of the rightmost vertex (the one with the largest coordinate) in Uk \setminus \{ v1\} . Note that
Uk is a 1-D clique if and only if we have | xu  - xmax| \leq tu for all u \in Uk \setminus \{ v1\} . We
further note that

Pr [Uk is 1-D clique | Ec
star, xmax] =

\left\{   1 if xmax \leq tu,\Bigl( 
tu

xmax

\Bigr) k - 2

otherwise.

It remains to derive the distribution of xmax. For this, we derive its density function as

\rho (xmax) =
dPr [xmax \leq x]

dx

=
d

dx

\Bigl( 
Pr [y\leq x]

k - 1
\Bigr) 

=
d

dx

\Biggl( \biggl( 
x

2t0

\biggr) k - 1
\Biggr) 

=
k - 1

(2t0)k - 1
xk - 2.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1963

With this, we may deduce

Pr [Uk is 1-D clique | Ec
star] =

\int 2t0

0

\rho (xmax)Pr [Uk is 1-D clique | xmax]dxmax

=
k - 1

(2t0)k - 1

\biggl( \int tu

0

xk - 2dx+ tk - 2
u

\int 2t0

tu

1dx

\biggr) 
= 2 - (k - 1)

\Biggl( \biggl( 
tu
t0

\biggr) k - 1

+ (k - 1)
tk - 2
u

tk - 1
0

(2t0  - tu)

\Biggr) 

= 2 - (k - 1)

\Biggl( \biggl( 
tu
t0

\biggr) k - 1

+ 2(k - 1)

\biggl( 
tu
t0

\biggr) k - 2

 - (k - 1)

\biggl( 
tu
t0

\biggr) k - 1
\Biggr) 

= 2 - (k - 1)

\biggl( 
wu

w1

\biggr) k - 2
d

\Biggl( 
(2 - k)

\biggl( 
wu

w1

\biggr) 1/d

+ 2(k - 1)

\Biggr) 
.

Since Pr [Uk is clique | Ec
star] = Pr [Uk is 1-D clique | Ec

star]
d
, this finishes the proof.

Proof of Theorem 1.6. We use the monotonicity of Pr [Uk is clique | Ec
star] obtained

by Lemma 3.8. Due to this monotonicity, it is sufficient to assume that wu = w1 for
all u\in Uk for deriving the lower bound. Hence, we have wu/w1 = 1 and the expression
in Lemma 3.8 simplifies to

2 - d(k - 1)kd.

For the upper bound, we instead assume wu = cdw1 implying that (wu/w1)
1/d = c.

Lemma 3.8 implies that

Pr [Uk is clique | Ec
star]\leq cd(k - 2)2 - d(k - 1) ((2 - k)c+ 2(k - 1))

d

\leq cd(k - 2)2 - d(k - 1)kd =
1

cd

\Bigl( c
2

\Bigr) d(k - 1)

kd,

where we used that (2 - k)c+ 2(k - 1)\leq k for all c\geq 1 and k\geq 2.

3.2. Characterizing cliques by vertex weights. After establishing bounds
on the clique probability in the whole graph, we now turn to characterizing the clique
probability in specific parts of the graph in order to prove the statements in Table 4.
Note that the proofs for the regime k < 2

3 - \beta and d= \omega (log(n)) are in subsection 4.2;
all the rest is proven here.

Recall that wmin and wmax are the minimum and maximum weights among Uk.
Furthermore we assume that Uk = \{ v1, . . . , vk\} with associated weights w1 \leq w2 \leq 
\cdot \cdot \cdot \leq wk. Note that w1 = wmin,wk = wmax. We start by showing that cliques of size
k > 2

3 - \beta dominantly form within the heavy core.

Lemma 3.9. Let k > 2
3 - \beta , \beta \in (2,3). Then for any p \in (0,1), there is an \varepsilon > 0

such that

Pr
\bigl[ 
wmin \in M\varepsilon (

\surd 
n) | Uk is clique

\bigr] 
\geq p.

Proof. In the first part, we show that Pr [wmin < \varepsilon 
\surd 
n | Uk is clique ] \leq 1 - p for

some \varepsilon > 0. To this end, recall that Uk = \{ v1, v2, . . . , vk\} is a set of k random
vertices with weights w1, . . . ,wk whereby we assume without loss of generality that
w1 \leq w2 \leq \cdot \cdot \cdot \leq wk. We have

Pr [wmin < \varepsilon w | Uk is clique ] =
Pr [(wmin < \varepsilon w)\cap (Uk is clique )]

Pr [Uk is clique ]
.
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1964 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

By Corollary 3.5, we get that there is a constant c1 > 0 such that Pr [Uk is clique]\geq 
ck1n

k
2 (1 - \beta ). By Lemma 3.2, where we set w - =w0, we have

Pr [(wmin < \varepsilon w)\cap (Uk is clique)]

\leq (\beta  - 1)kw
 - (1 - \beta )
0

(3 - \beta )k - 2

\Biggl( 
\lambda (\beta  - 1)w

 - (1 - \beta )
0

\beta  - 2

\Biggr) k - 1

n1 - k(\varepsilon w)k(3 - \beta ) - 2

\leq ck2n
1 - k(\varepsilon w)k(3 - \beta ) - 2

for some constant c2 > 0 as (\beta  - 1)k
(3 - \beta )k - 2 is at most a constant for all (potentially super-

constant) k > 2
3 - \beta . Hence,

Pr [wmin < \varepsilon w | Uk is clique ]\leq ck2n
1 - k(\varepsilon w)k(3 - \beta ) - 2

ck1n
k
2 (1 - \beta )

= \varepsilon k(3 - \beta ) - 2

\biggl( 
c2
c1

\biggr) k
n1 - kwk(3 - \beta ) - 2

n
k
2 (1 - \beta )

.

Setting w=
\surd 
n yields

Pr
\bigl[ 
wmin < \varepsilon 

\surd 
n | Uk is clique

\bigr] 
\leq \varepsilon k(3 - \beta ) - 2

\biggl( 
c2
c1

\biggr) k

= \varepsilon  - 2

\biggl( 
c2\varepsilon 

3 - \beta 

c1

\biggr) k

.

If k is a constant, we can see that (since k(3 - \beta ) - 2 > 0 by our assumption on k),
choosing an \varepsilon > 0 small enough, the above probability is at most 1  - p, as desired.

For k = \omega (1), choosing any \varepsilon < (c1/c2)
1

3 - \beta yields that the above probability is o(1)
and thus shows that our statement holds for sufficiently large n.

It remains to show that also Pr [wmin >
\surd 
n/\varepsilon | Uk is clique ]\leq 1 - p for some \varepsilon > 0.

Here, it suffices to observe that for \varepsilon < \lambda a clique is formed if wmin >
\surd 
n/\varepsilon . Thus, if

\varepsilon < \lambda ,

Pr
\bigl[ 
wmin >

\surd 
n/\varepsilon | Uk is clique

\bigr] 
\leq Pr [wmin >

\surd 
n/\varepsilon \cap Uk is clique ]

Pr [Uk is clique]

\leq Pr [wmin \geq 
\surd 
n/\varepsilon ]

Pr [wmin \geq 
\surd 
n/\lambda ]

= (\lambda /\varepsilon )k(1 - \beta ),

which approaches 0 as \varepsilon \rightarrow 0.

The next lemma proves the claimed bounds for wmax based on the previous result.
Note that this also proves what we want for the entire regime d= \omega (log(n)), \beta \in (2,3)
after we establish suitable bounds for wmin in subsection 4.2.

Lemma 3.10. Assume that for every p\in (0,1) there is some \delta > 0 such that

Pr
\bigl[ 
wmin \in M\delta (

\surd 
n) | Uk is clique

\bigr] 
\geq p.

Then, for every p\in (0,1) there is also some \varepsilon > 0 such that

Pr
\Bigl[ 
wmax \in M\varepsilon (

\surd 
nk

1
\beta  - 1 ) | Uk is clique

\Bigr] 
\geq p.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1965

Proof. Bound

Pr
\Bigl[ 
wmax >

\surd 
nk

1
\beta  - 1 /\varepsilon | Uk is clique

\Bigr] 
\leq Pr

\Bigl[ 
wmax >

\surd 
nk

1
\beta  - 1 /\varepsilon | Uk is clique \cap wmin \geq \delta 

\surd 
n
\Bigr] 

+Pr
\bigl[ 
wmin \leq \delta 

\surd 
n | Uk is clique

\bigr] 
.

From the assumption in our statement, we know that the second term is upper
bounded by some function f(\delta ) that approaches 0 as \delta \rightarrow 0. We bound the first
term as follows:

Pr
\Bigl[ 
wmax >

\surd 
nk

1
\beta  - 1 /\varepsilon | Uk is clique \cap wmin \geq \delta 

\surd 
n
\Bigr] 

\leq 
k\sum 

i=2

Pr
\Bigl[ 
wi >

\surd 
nk

1
\beta  - 1 /\varepsilon | Uk is clique \cap wmin \geq \delta 

\surd 
n
\Bigr] 

\leq k \cdot 
Pr
\Bigl[ 
w2 >

\surd 
nk

1
\beta  - 1 /\varepsilon \cap Uk is clique | wmin \geq \delta 

\surd 
n
\Bigr] 

Pr [Uk is clique | wmin \geq \delta 
\surd 
n]

.

Conditional on wmin \geq \delta 
\surd 
n, the Uk is a clique if Uk \setminus \{ v2\} is a clique and if w2 is at

least
\surd 
n/(\lambda \delta ) because then the connection probability of every pair of vertices is 1.

Hence,

Pr
\Bigl[ 
wmax >

\surd 
nk

1
\beta  - 1 /\varepsilon | Uk is clique \cap wmin \geq \delta 

\surd 
n
\Bigr] 

\leq k \cdot 
Pr
\Bigl[ 
Uk \setminus \{ v2\} is clique \cap w2 >

\surd 
nk

1
\beta  - 1 /\varepsilon | wmin \geq \delta 

\surd 
n
\Bigr] 

Pr [Uk \setminus \{ v2\} is clique \cap w2 \geq 
\surd 
n/(\lambda \delta ) | wmin \geq \delta 

\surd 
n]

= k \cdot 
Pr
\Bigl[ 
w2 >

\surd 
nk

1
\beta  - 1 /\varepsilon | wmin \geq \delta 

\surd 
n
\Bigr] 

Pr [w2 \geq 
\surd 
n/(\lambda \delta ) | wmin \geq \delta 

\surd 
n]

,

where the last step is due to independence. By the definition of the Pareto distribu-
tion, this is at most

k \cdot 
\Biggl( \surd 

nk
1

\beta  - 1 /\varepsilon \surd 
n/(\delta \lambda )

\Biggr) 1 - \beta 

= (\lambda \delta /\varepsilon )1 - \beta ,

so in total

Pr
\Bigl[ 
wmax >

\surd 
nk

1
\beta  - 1 /\varepsilon | Uk is clique

\Bigr] 
\leq (\lambda \delta /\varepsilon )1 - \beta + f(\delta )

and setting \delta =
\surd 
\varepsilon yields that this function tends to zero as \varepsilon \rightarrow 0, and the proof of

the first part is finished.
For the second part, bound

Pr
\Bigl[ 
wmax < \varepsilon 

\surd 
nk

1
\beta  - 1 | Uk is clique

\Bigr] 
\leq Pr

\Bigl[ 
wmax < \varepsilon 

\surd 
nk

1
\beta  - 1 | Uk is clique\cap wmin \geq \delta 

\surd 
n
\Bigr] 

+Pr
\bigl[ 
wmin < \delta 

\surd 
n | Uk is clique

\bigr] 
.
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1966 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

Again, by the assumption in our statement, we can make the second term arbitrarily
small by adjusting \delta . For the first term, we bound

Pr
\Bigl[ 
wmax < \varepsilon 

\surd 
nk

1
\beta  - 1 | Uk is clique\cap wmin \geq \delta 

\surd 
n
\Bigr] 

=Pr
\Bigl[ 
wmax < \varepsilon 

\surd 
nk

1
\beta  - 1 | wmin \geq \delta 

\surd 
n
\Bigr] 

\cdot 
Pr
\Bigl[ 
Uk is clique | (wmax < \varepsilon 

\surd 
nk

1
\beta  - 1 )\cap (wmin \geq \delta 

\surd 
n)
\Bigr] 

Pr [Uk is clique | wmin \geq \delta 
\surd 
n]

.

It follows by a coupling argument and the fact that the clique probability is mono-
tonically increasing in the weights of the involved vertices that the fraction above is
at most 1. Furthermore, from the definition of the Pareto definition we have

Pr
\Bigl[ 
wmax < \varepsilon 

\surd 
nk

1
\beta  - 1 | wmin \geq \delta 

\surd 
n
\Bigr] 
\leq 

\left(  1 - \Omega 

\Biggl( 
\varepsilon k

1
\beta  - 1

\delta 

\Biggr) 1 - \beta 
\right)  k - 1

= exp
\bigl( 
 - \Omega (\varepsilon /\delta )1 - \beta 

\bigr) 
.

Hence, in total,

Pr
\Bigl[ 
wmax < \varepsilon 

\surd 
nk

1
\beta  - 1 | Uk is clique

\Bigr] 
\leq exp

\bigl( 
 - \Omega (\varepsilon /\delta )1 - \beta 

\bigr) 
+ f(\delta ),

where f is a function that tends to 0 as \delta \rightarrow 0. Setting \delta =
\surd 
\varepsilon yields that this holds

for the entire right-hand side and finishes the proof.

We turn to the regime d = o(log(n)) and k \leq 2
3 - \beta or \beta > 3. We start with the

following lemma, which tells us that here at least one vertex of small weight, i.e.,
weight on the order of exp(\scrO (1)d) = no(1), is involved in a clique. We afterwards
extend this statement to the other vertices involved in a clique.

Lemma 3.11. Let d = o(log(n)) and Uk be a set of k random vertices. Let wmin

be the minimum weight among Uk. If \beta > 3 or k < 2
3 - \beta , there is a constant c > 0

(independent of k) such that for all p\in (0,1) there is an \varepsilon > 0 such that

Pr
\bigl[ 
wmin \leq ecd/\varepsilon | Uk is clique

\bigr] 
\geq p.

Proof. Similarly as in the proof of Lemma 3.9, we use Lemma 3.2 to obtain

Pr [(w1 \geq w/\varepsilon )\cap (Uk is clique )]

\leq (1 - \beta )kw
 - (1 - \beta )
0

(3 - \beta )k - 2

\Biggl( 
\lambda (\beta  - 1)w

 - (1 - \beta )
0

\beta  - 2

\Biggr) k - 1

n1 - k(w/\varepsilon )k(3 - \beta ) - 2

\leq ck2n
1 - k(w/\varepsilon )k(3 - \beta ) - 2

for some constant c2 > 0. By Corollary 3.5, we get that there is a constant c1 such that
Pr [Uk is clique]\geq (c12

 - d)kn1 - k. Define \alpha = k(3 - \beta ) - 2 and note how this implies

Pr [w1 \geq w/\varepsilon | Uk is clique ]\leq (w/\varepsilon )\alpha 
\biggl( 

c2
c12 - d

\biggr) k

= (w/\varepsilon ) - 2

\biggl( 
c2(w/\varepsilon )

3 - \beta 

c12 - d

\biggr) k

.

Note that due to our assumptions on \beta and k, we have \alpha < 0. If \beta \in (2,3), we
only have to consider the case k < 2

3 - \beta = const. Hence Pr[w1 \geq w/\varepsilon | Uk is clique ] =

c3(w/\varepsilon )
\alpha 2dk for some constant c3 > 0 and setting w \geq 2

dk
 - \alpha yields that the above
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1967

probability is at most c3/\varepsilon 
\alpha as desired (recall that \alpha < 0). Note that c3 depends on

k; however, since we only consider a constant number of different values of k (namely
all integers between 3 and 2

3 - \beta ), we may as well choose it independent of k by taking
the maximum over all these k.

If \beta > 3, let us choose w= 2max\{ 1, 1
\beta  - 3\} d. Then, as w\geq 1, for any \varepsilon < (c2/c1)

1
3 - \beta ,

we have Pr [w1 \geq \varepsilon w | Uk is clique ]\leq \varepsilon  - 2ck4 for some constant c4 < 1, and the proof is
finished.

We now proceed by bounding the maximum weight associated to a clique. To
this end, we relate the probability that Uk is a clique (assuming wmin is small) to the
probability that Uk - 1 is a clique in the following two lemmas.

Lemma 3.12. If d = o(log(n)) and \beta > 3, there are constants a, t0 > 0 such that
for all t\geq t0,w\geq w0 and all k\geq 3,

Pr [Uk is clique\cap wmax \geq t | wmin \leq w]\leq Pr [Uk - 1 is clique | wmin \leq w] \cdot awkt
2 - \beta 

n
.

Proof. Note that if we condition on any wmin, all vertices in Uk \setminus \{ vmin\} are
distributed as independent Pareto random variables with parameters \beta ,wmin. By a
union bound,

Pr [Uk is clique\cap wmax \geq t | wmin]\leq 
\sum 

v\in Uk\setminus \{ v\mathrm{m}\mathrm{i}\mathrm{n}\} 
Pr [Uk is clique\cap wv \geq t | wmin].

Now for any v \in Uk \setminus \{ vmin\} ,

Pr [Uk is clique\cap wv \geq t | wmin]

= Pr [Pr [Uk is clique\cap wv \geq t | Uk \setminus \{ v\} is clique,wmin]]Pr [Uk \setminus \{ v\} is clique | wmin]

= Pr [Uk is clique\cap wv \geq t | Uk \setminus \{ v\} is clique,wmin]Pr [Uk - 1 is clique | wmin].

Hence, it remains to bound the first factor above. To this end, we consider the
necessary event that wv is adjacent to vmin and obtain

Pr [Uk is clique\cap wv \geq t | Uk \setminus \{ v\} is clique,wmin]\leq Pr [v\sim vmin \cap wv \geq t | wmin]

\leq \lambda wmin

n

\int \infty 

t

cw1 - \beta dw

=
awmint

2 - \beta 

n
,

where c, a are constants. Summing over all v yields the desired statement.

Lemma 3.13. Let d = o(log(n)). Then there are constants a, c > 0 such that for
any w\geq w0,

Pr [Uk is clique | wmin \leq w]\geq Pr [Uk - 1 is clique | wmin \leq w] \cdot aw
1 - \beta e - cd

n
.

Proof. Fix any v \in Uk \setminus \{ vmin\} and observe

Pr [Uk is clique | wmin \leq w] = Pr [Uk is clique | Uk \setminus \{ v\} is clique\cap wmin \leq w]

\cdot Pr [Uk \setminus \{ v\} is clique | wmin \leq w],

so it remains to find a lower bound for the first factor. We consider the event that
wk is sufficiently large such that it is sufficiently likely that vk is placed close enough
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1968 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

to vmin to be connected to all the other vertices by the triangle inequality. We note
that, if v is placed within distance

\phi :=
\Bigl( wvwmin

\tau n

\Bigr) 1/d
 - 
\biggl( 
wmin

2

\tau n

\biggr) 1/d

=
\Bigl( wmin

\tau n

\Bigr) 1/d \Bigl( 
w1/d

v  - w
1/d
min

\Bigr) 
of vmin, then it must also be adjacent to all the other vertices. Assuming that wv \geq 
\alpha wmin for some \alpha > 0, this event occurs with probability

\phi d =
\lambda wmin

n

\Bigl( 
w

1/d
k  - w

1/d
min

\Bigr) d
\geq \lambda w2

0

n

\Bigl( 
\alpha 1/d  - 1

\Bigr) d
\geq \lambda w2

0

n

\biggl( 
ln(\alpha )

d

\biggr) d

,

where in the last step we used the inequality ex \geq 1 + x. Choosing \alpha = ed yields
that the above probability is at least \lambda w2

0/n. Furthermore, the probability that wv \geq 
\alpha wmin = edwmin is \biggl( 

\alpha wmin

w0

\biggr) 1 - \beta 

\geq 
\biggl( 
wed

w0

\biggr) 1 - \beta 

.

In total,

Pr [Uk is clique | Uk \setminus \{ v\} is clique\cap wmin \leq w]\geq \lambda w2
0

n

\biggl( 
wed

w0

\biggr) 1 - \beta 

=
aw1 - \beta e - cd

n

for some constants a, c > 0.

Using the previous two lemmas, we can bound the maximum weight associated
to a clique as follows.

Lemma 3.14. If d = o(log(n)) and \beta > 3, there is a constant c > 0 such that for
any p\in (0,1), there is an \varepsilon > 0 such that

Pr
\Bigl[ 
wmax \leq ecdk

1
\beta  - 2 /\varepsilon | Uk is clique

\Bigr] 
\geq p.

Proof. Observe that for any \delta ,\alpha ,

Pr
\Bigl[ 
wmax \geq ecdk

1
\beta  - 2 /\varepsilon | Uk is clique

\Bigr] 
\leq Pr

\Bigl[ 
wmax \geq ecdk

1
\beta  - 2 /\varepsilon | Uk is clique\cap wmin \leq e\alpha d/\delta 

\Bigr] 
+Pr

\bigl[ 
wmin \geq e\alpha d/\delta | Uk is clique

\bigr] 
.

Now, by Lemma 3.11, if we choose a suitable constant \alpha , we can make the second
term arbitrarily small by choosing \delta small enough. To bound the first term, observe
further that

Pr
\Bigl[ 
wmax \geq ecdk

1
\beta  - 2 /\varepsilon | Uk is clique\cap wmin \leq e\alpha d/\delta 

\Bigr] 
=

Pr
\Bigl[ 
Uk is clique \cap wmax \geq ecdk

1
\beta  - 2 /\varepsilon | wmin \leq e\alpha d/\delta 

\Bigr] 
Pr [Uk is clique | wmin \leq e\alpha d/\delta ]

.

By Lemma 3.12, there is a constant a1 such that the numerator is bounded from
above by

a1
n

\bigl( 
e\alpha d/\delta 

\bigr) 
k
\Bigl( 
ecdk

1
\beta  - 2 /\varepsilon 

\Bigr) 2 - \beta 

=
a1
n

e\alpha d+(2 - \beta )cd

\delta \varepsilon 2 - \beta 
.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1969

Similarly, by Lemma 3.13, the denominator is bounded from below by

a2
n
e - c

\prime 
d
\bigl( 
e\alpha d/\delta 

\bigr) 1 - \beta 

for some constants a2, c
\prime . Combining these, the fraction is bounded from above by

a1
a2

exp (\alpha d+ c\prime d+ (2 - \beta )cd) \delta  - \beta \varepsilon \beta  - 2.

In total, there are constants s, a3, a4 > 0 such that

Pr
\Bigl[ 
wmax \geq ecdk

1
\beta  - 2 /\varepsilon | Uk is clique

\Bigr] 
\leq a3\delta 

 - \beta \varepsilon \beta  - 2 + a4\delta 
s.

Setting \delta = \varepsilon \gamma for any 0<\gamma < \beta  - 2
\beta then yields that this term tends to 0 as \varepsilon tends to

0 and implies the desired statement.

Finally, we show that the minimum weight associated to a clique is at least of order
k

1
\beta  - 2 . This essentially follows from the fact that this holds for stars centered at vmin;

we show additionally that conditioning on a clique only induces a bias towards even
larger weights. This implies that our bounds are tight up to a factor e\Theta (1)d = no(1).

Lemma 3.15. Let d = o(log(n)). Assume further that k < 2
3 - \beta or that \beta > 3.

Then for every p\in (0,1) there is an \varepsilon > 0 such that

Pr
\Bigl[ 
wmax \in M ( - )

\varepsilon (k
1

\beta  - 2 )
\Bigr] 
\geq p.

Proof. In the following---again---the event ``Uk is star"" denotes the event that Uk

is a star centered at vmin. Bound

Pr
\Bigl[ 
wmax < \varepsilon k

1
\beta  - 2 | Uk is clique

\Bigr] 
=

Pr
\Bigl[ 
wmax < \varepsilon k

1
\beta  - 2 | Uk is star

\Bigr] 
Pr
\Bigl[ 
Uk is clique | Uk is star\cap (wmax < \varepsilon k

1
\beta  - 2 )

\Bigr] 
Pr [Uk is clique | Uk is star]

.

It follows by a coupling argument and the fact that the clique probability is mono-
tonically increasing in w2, . . . ,wk that

Pr
\Bigl[ 
Uk is clique | Uk is star\cap (wmax < \varepsilon k

1
\beta  - 2 )

\Bigr] 
Pr [Uk is clique | Uk is star]

\leq 1.

Moreover, by the Pareto distribution and the fact that the edges in a star are all
independent, we get that there is a constant c > 0 such that

Pr [wmax <w | Uk is star\cap (wmin = x)] =

\Biggl( \int w

x
cxy
n y - \beta dy\int \infty 

x
cxy
n y - \beta dy

\Biggr) k - 1

=
\bigl( 
1 - \Omega (w/x)2 - \beta 

\bigr) k - 1
.

Thus,

Pr
\Bigl[ 
wmax < \varepsilon k

1
\beta  - 2 | Uk is star\cap (wmin = x)

\Bigr] 
\leq 

\left(  1 - \Omega 

\Biggl( 
\varepsilon k

1
\beta  - 2

x

\Biggr) 2 - \beta 
\right)  k - 1

= exp( - \Omega ((x/\varepsilon )\beta  - 2)).
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1970 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

As wmin \geq w0 deterministically, we get

Pr
\Bigl[ 
wmax < \varepsilon k

1
\beta  - 2 | Uk is star

\Bigr] 
\leq exp( - \Omega (1/\varepsilon )\beta  - 2),

which approaches 0 as \varepsilon \rightarrow 0, as desired.

3.3. Bounding the variance of typical cliques. After bounding the expected
number of cliques and characterizing the clique probability by vertex weight, we use
the gained insights for bounding the variance of cliques restricted to the dominant
regimes identified previously. This, together with the results from Table 4, allows us
further to derive concentration bounds on the total number of cliques later in section 5.

In the following, given a set of admissible weights M , we denote by Kk(M) the
number of k-cliques with vertex weights that are in M , and we derive bounds on the
variance of Kk(M\varepsilon (w)) for suitable w (recall the definition of M\varepsilon from Definition 1.2).

Lemma 3.16. For all k\geq 3 and for any set of weights M ,

Var [Kk(M)]\leq \BbbE [Kk(M)]
k\sum 

\ell =1

\biggl( 
k

\ell 

\biggr) 
\BbbE [Kk - \ell (M)] .

Proof. For a set of vertices A, we write that ``A is clique in M"" if A's vertex
weights are in M . Using this notation, we have

\BbbE 
\bigl[ 
Kk(M)2

\bigr] 
=

\Biggl( \sum 
A

Pr [M1 is clique in M ]

\Biggr) 
,

where the sum goes over all k-element subsets of vertices. Accordingly,

\BbbE 
\bigl[ 
Kk(M)2

\bigr] 
\leq 
\Biggl( \sum 

A1

Pr [A1 is clique in M ]

\Biggr) 2

+
\sum 
A1

\sum 
A2

| A1\cap A2| \geq 1

Pr [(A1 is clique in M)\cap (A2 is clique in M)]

\leq \BbbE [Kk(M)]
2

+
\sum 
A1

\sum 
A2

| A1\cap A2| \geq 1

Pr [A1 is clique in M ]Pr [A2 \setminus A1 is clique in M ].

=\BbbE [Kk(M)]
2

+

\biggl( 
n

k

\biggr) 
Pr [Uk is clique in M ]

k\sum 
\ell =1

\biggl( 
k

\ell 

\biggr) \biggl( 
n

k - \ell 

\biggr) 
Pr [U\ell is clique in M ]

=\BbbE [Kk(M)]
2
+\BbbE [Kk(M)]

k\sum 
\ell =1

\biggl( 
k

\ell 

\biggr) 
\BbbE [Kk - \ell (M)] .

By Var [X] =\BbbE 
\bigl[ 
X2
\bigr] 
 - \BbbE [X]

2
, the proof is finished.

We further need the following auxiliary lemma.

Lemma 3.17. For \beta \in (2,3) and all \ell \geq 1, \ell = o(n),

\BbbE 
\Bigl[ 
K\ell (M

( - )
\varepsilon (

\surd 
n))
\Bigr] 
\leq \scrO 

\biggl( 
\ell \varepsilon 1 - \beta 

n(3 - \beta )/2

\biggr) 
\BbbE 
\Bigl[ 
K\ell +1(M

( - )
\varepsilon (

\surd 
n))
\Bigr] 
.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1971

Proof. Observe that

\BbbE 
\Bigl[ 
K\ell +1(M

( - )
\varepsilon (

\surd 
n))
\Bigr] 
=

\biggl( 
n

\ell + 1

\biggr) 
Pr
\Bigl[ 
U\ell +1 is clique in M ( - )

\varepsilon (
\surd 
n)
\Bigr] 

\geq n - \ell 

\ell + 1

\biggl( 
n

\ell 

\biggr) 
Pr
\Bigl[ 
U\ell is clique in M ( - )

\varepsilon (
\surd 
n)
\Bigr] 
\Omega 
\bigl( 
(
\surd 
n/\varepsilon )1 - \beta 

\bigr) 
=\Omega 

\biggl( 
n(3 - \beta )/2

\varepsilon 1 - \beta \ell 

\biggr) 
\BbbE 
\Bigl[ 
K\ell (M

( - )
\varepsilon (

\surd 
n))
\Bigr] 
.

Here, in the penultimate step, we used the fact that U\ell +1 is a clique if U\ell is a clique
and the remaining \ell + 1th vertex has a weight of \Omega ((

\surd 
n/\varepsilon )).

Combining these statements yields that the number of cliques in the dominant
regimes established earlier is self-averaging. That is, restricting the number of cliques
to either vertices of very low or of very large weight yields a random variable that
concentrates well around its expectation.

Lemma 3.18. For all k\geq 3 and for any w> 1,

Var
\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] 
=\scrO (w/\varepsilon )2k\BbbE 

\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] 
.

Moreover,

Var
\Bigl[ 
Kk(M

( - )
\varepsilon (

\surd 
n))
\Bigr] 
\leq 

k\sum 
\ell =1

\scrO 
\biggl( 

\varepsilon 1 - \beta k2

n(3 - \beta )/2

\biggr) \ell 

\BbbE 
\Bigl[ 
Kk(M

( - )
\varepsilon (

\surd 
n))
\Bigr] 2

.

Proof. As the maximum weight in M
(+)
\varepsilon (w) is w/\varepsilon , the probability that k  - \ell 

vertices form a clique is \scrO (w2/(\varepsilon 2n))k - \ell . Thus, the bound from Lemma 3.16 implies

Var
\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] 
\leq \BbbE 

\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] k\sum 
\ell =1

\biggl( 
k

\ell 

\biggr) \biggl( 
n

k - \ell 

\biggr) 
\scrO ((w2/(\varepsilon 2n))k - \ell 

\leq \BbbE 
\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] 
\scrO (w/\varepsilon )2k

k\sum 
\ell =1

\biggl( 
k

\ell 

\biggr) 
\leq \BbbE 

\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] 
\scrO (w/\varepsilon )2k

as
\sum k

\ell =1

\bigl( 
k
\ell 

\bigr) 
\leq 2k.

For the second part of the statement, note that by Lemma 3.17, we have

\BbbE 
\Bigl[ 
Kk - \ell (M

(+)
\varepsilon (w))

\Bigr] 
\leq \scrO 

\biggl( 
\varepsilon 1 - \beta k

n(3 - \beta )/2

\biggr) \ell 

\BbbE 
\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] 
.

Accordingly, by Lemma 3.16,

Var
\Bigl[ 
Kk(M

( - )
\varepsilon (

\surd 
n))
\Bigr] 
\leq \BbbE 

\Bigl[ 
Kk(M

( - )
\varepsilon (

\surd 
n))
\Bigr] 2 k\sum 

\ell =1

\scrO 
\biggl( 

\varepsilon 1 - \beta k2

n(3 - \beta )/2

\biggr) \ell 

.

3.4. Bounds on the expected number of cliques. We proceed by turning
the results from the previous sections into bounds on the expected number of cliques.
Recall that

\BbbE [Kk] =

\biggl( 
n

k

\biggr) 
qk = nk\Theta (k) - kqk.(3.3)

Based on this relation and our bounds on qk, we prove the following.
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1972 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

Theorem 3.19. Let G=GIRG(n,\beta ,w0, d) be a standard GIRG with dimension-
ality d= o(log(n)). Then, we have

\BbbE [Kk] =

\Biggl\{ 
n exp ( - \Theta (1)dk)\Theta (k) - k + o(1) if k < 2

3 - \beta or \beta \geq 3,

n
k
2 (3 - \beta )\Theta (k) - k otherwise,

whereby the statement holds for all (potentially superconstant) k\geq 3 if \beta \not = 3, and for
k= o(log(n)/d) if \beta = 3.

Proof. Observe that Corollaries 3.3 and 3.5 directly imply \BbbE [Kk] = n
k
2 (3 - \beta )\Theta (k) - k

for the case 2<\beta < 3 and k > 2
3 - \beta . For the other case, note that Corollary 3.5 shows

that \BbbE [Kk]\geq 2 - dkn\Theta (k) - k, and so it only remains to derive an upper bound, i.e., to
show that \BbbE [Kk]\leq n exp( - \Omega (1)dk)\Theta (k) - k + o(1).

To this end, we define the set W\ell to be the set of all k-element subsets of vertices
among which the minimum weight is at most \ell , and we denote byKk(W\ell ) andKk(W\ell )
the random variables denoting the number of k-cliques in W\ell and W\ell , respectively.
Clearly, for all \ell and any \varepsilon > 0, we have \BbbE [Kk] = \BbbE [Kk(W\ell )] + \BbbE 

\bigl[ 
Kk(W\ell )

\bigr] 
. We fix

\ell = n1/2 - \varepsilon and start by deriving a bound for \BbbE [Kk(W\ell )].
Recall that we assume v1 to be of minimal weight w1 among Uk and that we

denote by Estar the event that Uk is a star with center v1. We let E\ell 
star be the event

Estar \cap (Uk \in W\ell ) and observe that

\BbbE [Kk(W\ell )]\leq nk\Theta (k) - kPr
\bigl[ 
Uk is clique | E\ell 

star

\bigr] 
Pr
\bigl[ 
E\ell 

star

\bigr] 
.

We note that Pr
\bigl[ 
E\ell 

star

\bigr] 
\leq Pr [Estar] = \Theta (1)

k
n - (k - 1) as established in Corollary 3.3.

It thus remains to show Pr
\bigl[ 
Uk is clique | E\ell 

star

\bigr] 
\leq \scrO (1)k exp ( - \Omega (1)dk).

To show this, we apply Theorem 1.6. However, for this, we need to ensure that
the weights w2, . . . ,wk are at most w1c

d for some constant c > 1, and that the maximal

connection threshold c2(
w2

1

\tau n )
1/d is at most 1/4. As w1 \leq \ell = n1/2 - \varepsilon and d= o(log(n)),

the second condition is fulfilled for large enough n and every \varepsilon > 0. Regarding the first
condition, however, we observe that some of the vertices in Uk might have a weight
larger than w1c

d. Yet, it is very unlikely that this occurs for many vertices of Uk. We

split Uk into the two parts U
(1)
k and U

(1)
k , such that U

(1)
k is the set of vertices in Uk

with weight at most w1c
d and U

(1)
k =Uk \setminus U (1)

k . We set s=max\{ 3, \lfloor k/2\rfloor \} and bound

Pr
\bigl[ 
Uk is clique | E\ell 

star

\bigr] 
\leq Pr

\Bigl[ 
U

(1)
k is clique | E\ell 

star \cap (| U (1)
k | \geq s)

\Bigr] 
Pr
\Bigl[ 
| U (1)

k | \geq s | E\ell 
star

\Bigr] 
+Pr

\Bigl[ 
U

(1)
k is clique | E\ell 

star \cap (| U (1)
k | < s)

\Bigr] 
Pr
\Bigl[ 
| U (1)

k | < s | E\ell 
star

\Bigr] 
.

As probabilities are at most one, we may bound

Pr
\bigl[ 
Uk is clique | E\ell 

star

\bigr] 
\leq Pr

\Bigl[ 
U

(1)
k is clique | E\ell 

star \cap | U (1)
k | \geq s

\Bigr] 
+Pr

\Bigl[ 
| U (1)

k | < s | E\ell 
star

\Bigr] 
.

(3.4)

By Theorem 1.6, the former probability is exp( - \Theta (1)ds) as there is a constant
\xi > 0 such that s\geq \xi k for all k \geq 3. We thus proceed by bounding the latter term in
the above expression.

We observe that, conditioned on E\ell 
star, the weights w2, . . . ,wk are i.i.d. random

variables, and so | U (1)
k | is distributed according to the binomial distribution Bin(k - 

1, p), where p=Pr[w2 \geq w1c
d | E\ell 

star].
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1973

Claim 3.20. There is a constant b > 1 such that p\leq b - d+\scrO (1).

We defer the proof of this claim and proceed by showing how it helps in our main

proof. Due to the binomial nature of | U (1)
k | , we get

Pr
\Bigl[ 
| U (1)

k | < s | E\ell 
star

\Bigr] 
=Pr

\Bigl[ 
| U (1)

k | >k - s | E\ell 
star

\Bigr] 
=

k - 1\sum 
i=k - s+1

\biggl( 
k - 1

i

\biggr) 
pi(1 - p)k - 1 - i

\leq 
k - 1\sum 

i=k - s+1

\biggl( 
k - 1

i

\biggr) 
b - di+\scrO (1)i

\leq b - d(k - s+1)+\scrO (1)k
k - 1\sum 

i=k - s+1

\biggl( 
k - 1

i

\biggr) 
\leq b - d(k - s+1)+\scrO (1)k,

where the last step is due to the fact that
\sum k - 1

i=k - s+1

\bigl( 
k - 1
i

\bigr) 
\leq 2k. Now, observe that

there is a constant \xi > 0 such that k  - s + 1 \geq \xi k for all k \geq 3. Thus, the above
expression is exp( - \Omega (1)dk)\scrO (1)k, and so \BbbE [Kk(W\ell )] = n exp( - \Omega (1)dk)\scrO (k) - k. It
remains to prove Claim 3.20.

Proof of Claim 3.20. Fix a vertex u\in Uk \setminus \{ v1\} and observe that

p=Pr
\bigl[ 
wu \geq w1c

d | (u\sim v1)\cap (Uk \in W\ell )
\bigr] 

because the weight of each u \in Uk \setminus \{ v1\} is an i.i.d. random variable conditioned on
E\ell 

star =Estar\cap Uk \in W\ell and is, in particular, independent of whether other vertices in
Uk are adjacent to v1. Now, assume that w1 = x\leq \ell = n1/2 - \varepsilon and observe that

Pr
\bigl[ 
wu \geq w1c

d | (u\sim v1)\cap (w1 = x)
\bigr] 
=

Pr
\bigl[ 
(wu \geq w1c

d)\cap (u\sim v1) | w1 = x
\bigr] 

Pr [u\sim v1 | w1 = x]
.(3.5)

Note that for all x\leq n1/2 - \varepsilon ,

Pr [u\sim v1 | w1 = x]\geq 
\int n

\lambda x

x

\lambda xwu

n
\rho (wu)dwu =

\lambda x

n
\Theta (1)

\biggl( 
x2 - \beta  - 

\Bigl( n

\lambda x

\Bigr) 2 - \beta 
\biggr) 

=
\lambda x3 - \beta 

n
\Theta (1)

\biggl( 
1 - 

\Bigl( n

\lambda x2

\Bigr) 2 - \beta 
\biggr) 

\geq (1 - o(1))
\lambda x3 - \beta 

n
\Theta (1),

where the last step follows from the fact that x\leq n1/2 - \varepsilon . On the other hand, we get

Pr
\bigl[ 
(wu \geq w1c

d)\cap (u\sim v1) | w1 = x
\bigr] 
\leq 
\int \infty 

xcd

\lambda xwu

n
\rho (wu)dwu =

\lambda x

n
\Theta (1)(xcd)2 - \beta 

=
\lambda x3 - \beta 

n
\Theta (1)c(2 - \beta )d.

Thus, we get from (3.5) that

Pr
\bigl[ 
wu \geq w1c

d | (u\sim v1)\cap (w1 = x)
\bigr] 
\leq (1 + o(1))\Theta (1)c(2 - \beta )d = b - d+\scrO (1),

if we choose b= c\beta  - 2, which is greater than 1, since c > 1 and \beta > 2.
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1974 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

It remains to bound \BbbE 
\bigl[ 
Kk(W\ell )

\bigr] 
. We observe that

\BbbE 
\bigl[ 
Kk(W\ell )

\bigr] 
\leq nk\Theta (k) - k

\Bigl( 
Pr
\Bigl[ 
(Uk is clique)\cap (\ell \leq w1 \leq 

\sqrt{} 
n/\lambda )

\Bigr] 
+Pr

\Bigl[ 
w1 \geq 

\sqrt{} 
n/\lambda 

\Bigr] \Bigr) 
.

As in the proof of Corollary 3.3, we have

Pr
\Bigl[ 
w1 \geq 

\sqrt{} 
n/\lambda 

\Bigr] 
\leq \Theta (1)kn

k
2 (3 - \beta ) - k,

and from Lemma 3.2, we get

Pr
\Bigl[ 
(Uk is clique)\cap (\ell \leq w1 \leq 

\sqrt{} 
n/\lambda )

\Bigr] 
\leq \Theta (1)kn - (k - 1)n(1/2 - \varepsilon )(k(3 - \beta ) - 2)

\leq \Theta (1)kn - (k - 1) - \delta 

for some \delta \geq (1/2 - \varepsilon )(3(\beta  - 3) + 2)> 0 since we have k \geq 3 and k(\beta  - 3) + 2> 0 for
k < 2

3 - \beta or \beta \geq 3. This implies

\BbbE 
\bigl[ 
Kk(W\ell )

\bigr] 
\leq n1 - \delta \Theta (k) - k.

Now, we distinguish three cases. In the first case, 2< \beta < 3 and k < 2
3 - \beta . Here, as k

is at most a constant, n - \delta is asymptotically smaller than exp( - \Theta (1)dk) (recall that
d = o(log(n))), which finishes the proof for this case. If \beta = 3, recall that we only
have to show the statement for k = o(log(n)/d) and under this assumption, again,
n - \delta is asymptotically smaller than exp( - \Theta (1)dk). For the case \beta > 3, recall that \delta is
at least a constant since \delta \geq (1/2 - \varepsilon )(3(\beta  - 3)+2). As 3(\beta  - 3)+2 is strictly greater
than 2, we may choose \varepsilon > 0 sufficiently small to get \delta > 1. Then, \BbbE 

\bigl[ 
Kk(W\ell )

\bigr] 
= o(1)

for all k\geq 3, which finishes the proof.

Summarizing our results on \BbbE [Kk], we see that in the case 2 < \beta < 3, there is a
phase transition at k = 2

3 - \beta , which was previously observed (in the case of constant
d) by Michielan and Stegehuis [35] and also by Bl\"asius et al. [7] for HRGs. Regarding
the influence of d, we find that the number of cliques in the regime k < 2

3 - \beta or \beta > 3
decreases exponentially in dk.

3.5. Bounds on the clique number. Now, we turn our bounds on the ex-
pected number of cliques into bounds on the clique number. The results of this
section constitute the first two columns of Table 3.

Upper bounds. We start with the upper bounds stated in the first row of Table 3.

Theorem 3.21. Let G=GIRG(n,\beta ,w0, d) be a standard GIRG with \beta < 3. Then,
\omega (G) =\scrO (n(3 - \beta )/2) a.a.s.

Proof. We may upper bound the clique number with Markov's inequality, which
tells us that

Pr [\omega (G)\geq k] = Pr [Kk \geq 1]\leq \BbbE [Kk] .

The goal now is to choose k such that \BbbE [Kk]\leq n - \epsilon for some \epsilon > 0, as then there is no
clique larger than k a.a.s. For \beta < 3, which is a prerequisite of this theorem, we have
\BbbE [Kk] \leq n

k
2 (3 - \beta )(c1k)

 - k for some constant c1 > 1 and large enough k, according to
Theorem 3.19. If we set k= n

1
2 (3 - \beta ), we get

\BbbE [Kk]\leq n
1
2 (3 - \beta )n

1
2
(3 - \beta )

(c1n
1
2 (3 - \beta )) - n

1
2
(3 - \beta )

= c - n
1
2
(3 - \beta )

1 ,
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1975

which is asymptotically smaller than n - \epsilon because

c - n
1
2
(3 - \beta )

1 \leq n - \epsilon \leftrightarrow exp
\Bigl( 
 - log(c1)n

1
2 (3 - \beta )

\Bigr) 
\leq exp ( - \epsilon log(n)) ,

which holds for \beta < 3.

Regarding our contribution in the second row of Table 3, we obtain the following
theorem.

Theorem 3.22. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with \beta = 3 and
d=\scrO (log log(n)). Then, \omega (G) =\scrO (log(n)/ log log(n)) a.a.s.

Proof. Analogous to the proof of Theorem 3.21, we upper bound the clique num-
ber using Markov's inequality, i.e., Pr [\omega (G)\geq k] \leq \BbbE [Kk], and choose k such that
\BbbE [Kk] \leq n - \epsilon for some \epsilon > 0. Now for \beta = 3, we have \BbbE [Kk] \leq n \cdot (c1k) - k for some
constant c1 > 1 and sufficiently large k, which follows by Corollary 3.3 and Lemma
2.1. It remains to determine the value of k for which our desired upper bound on
\BbbE [Kk] is valid, which can be done by solving the following equation for k:

n \cdot (c1k) - k = n - \epsilon 

\leftrightarrow (c1k)
 - k = n - 1 - \epsilon .

This yields

k=
1

c1
exp

\bigl( 
\scrW (c1 log(n

1+\epsilon ))
\bigr) 
,

where \scrW is the Lambert \scrW function defined by the identity \scrW (z)e\scrW (z) = z. With
this choice of k, indeed

(c1k)
 - k = exp

\biggl( 
 - 1

c1
\scrW (c1 log(n

1+\epsilon ))e\scrW (c1 log(n1+\epsilon ))

\biggr) 
= exp

\bigl( 
 - log(n1+\epsilon )

\bigr) 
= n - 1 - \epsilon .

In order to simplify the expression for k, note that for growing z, we have that
\scrW (z) = log(z) - log log(z) + o(1) and thus

k=
1

c1
exp (log(c1(1 + \epsilon ) log(n)) - log log(c1(1 + \epsilon ) ln(n)) + o(1))

= (1 + o(1))
(1 + \epsilon ) log(n)

log(c1(1 + \epsilon ) log(n))
=\scrO 

\biggl( 
log(n)

log log(n)

\biggr) 
.

Finally, using a similar argumentation, we obtain the following for the upper
bounds we contribute to the last row of Table 3.

Theorem 3.23. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with \beta > 3 and
d= o(log(n)). Then, \omega (G) =\scrO (log(n)/(d+ log log(n))) a.a.s.

Proof. The proof is analogous to the one of Theorem 3.22. However, if \beta > 3, we
may use the stronger upper bound from Theorem 3.19, i.e.,

\BbbE [Kk] = n exp( - \Theta (1)dk)\Theta (k) - k + o(1).

That is, there are constants c1, c2 > 0 such that \BbbE [Kk] = n (c1 exp(c2d)k)
 - k

+ o(1).
Just like before, setting
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1976 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

k=
1

c1 exp(c2d)
exp

\bigl( 
\scrW (c1 exp(c2d) log(n

1+\epsilon ))
\bigr) 

yields \BbbE [Kk]\leq n - \epsilon +o(1). Using the asymptotic expansion of the Lambert\scrW function,
we then obtain

k= (1+ o(1))
(1 + \epsilon ) log(n)

log(c1 exp(c2d)(1 + \epsilon ) log(n))

= (1 + o(1))
(1 + \epsilon ) log(n)

log(c1(1 + \epsilon )) + c2d+ log log(n)

=\scrO 
\biggl( 

log(n)

d+ log log(n)

\biggr) 
.

Lower bounds. To get matching lower bounds, we distinguish once more the cases
\beta < 3 and \beta \geq 3.

Theorem 3.24. Let G=GIRG(n,\beta ,w0, d) be a standard GIRG with \beta < 3. Then,
\omega (G) =\Omega (n(3 - \beta )/2) a.a.s.

Proof. We show that there are \Omega (n
1
2 (3 - \beta )) vertices with weight at least

\sqrt{} 
n/\lambda 

w.h.p. As all these vertices are connected with probability 1, this implies the existence
of an equally sized clique.

Because the weight of each vertex is sampled independently, the number of vertices
with weight above

\sqrt{} 
n/\lambda , denoted byX, is the sum of n independent Bernoulli random

variables with success probability

p=

\biggl( 
n

\lambda w2
0

\biggr) 1
2 (1 - \beta )

=\Theta 
\Bigl( 
n

1
2 (1 - \beta )

\Bigr) 
,

which we can infer from (3.1). Therefore, we get

\BbbE [X] = np=\Theta 
\Bigl( 
n

1
2 (3 - \beta )

\Bigr) 
,

and by a Chernoff--Hoeffding bound (Theorem 2.2), we get X \geq \BbbE [X]/2 w.h.p., which
proves our lower bound.

For the case \beta \geq 3, we use the concentration bounds obtained in the previous
section applied to a subgraph of G of bounded weight.

Theorem 3.25. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with \beta \geq 3 and
d= o(log(n)). Then, \omega (G) =\Omega (log(n)/(d+ log log(n))) a.a.s.

Proof. Let w > w0 be some fixed weight, and let M = [w0,w]. Furthermore, by
Lemma 3.4 there is a constant c1 > 0 such that

\BbbE [Kk(M)]\geq n
\bigl( 
c12

dk
\bigr)  - k

.

Now, setting

k=
1

2dc1
exp

\bigl( 
\scrW (2dc1 log(n

1 - \varepsilon ))
\bigr) 
=\Theta 

\biggl( 
log(n)

d+ log log(n)

\biggr) 
yields \BbbE [Kk(M)]\geq n\varepsilon . By Lemma 3.18 and as w is constant,

Var [Kk(M)]\leq \BbbE [Kk(M)]\scrO (1)2k.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1977

Thus, the inequality of Chebyshev yields

Pr

\biggl[ 
| Kk(M) - \BbbE [Kk(M)] | \geq 1

2
\BbbE [Kk(G\leq wc)]

\biggr] 
\leq Var [Kk(M)]

1
4\BbbE [Kk(M)]

2 =
\scrO (1)2k

\BbbE [Kk(M)]
.

As k = \scrO (log(n)/ log log(n)), we have \scrO (1)2k = no(1), and so the above term is at
most no(1) - \varepsilon = o(1). Accordingly, Pr [Kk(M)\geq 1] = 1 - o(1), as desired.

4. Cliques in the high-dimensional regime. Now, we turn to the high-
dimensional regime, where d grows faster than log(n). We shall see that, for con-
stant k and d = \omega (log2(n)), the probability that Uk is a clique only differs from its
counterpart in the IRG model by a factor of (1 \pm o(1)). However, as it turns out,
the asymptotic behavior of cliques in the case 2 < \beta < 3 is already the same as in
the IRG model if d = \omega (log(n)). For \beta \geq 3, we show that the number of triangles
in the geometric case remains significantly larger than in the IRG model as long as
d= log3/2(n).

4.1. Bounding the clique probability for fixed weights. We consider the
conditional probability that a set Uk = \{ v1, . . . , vk\} of k independent random vertices
with given weights w1, . . . ,wk forms a clique. We derive bounds on this probability
under the assumption that L\infty -norm is used, which afterwards allows bounding the
expected number of cliques and the clique number. In fact, instead of only bounding
the probability that Uk forms a clique, we bound the probability of the more general
event that an arbitrary set of edges \scrA is formed among the vertices of Uk. We denote
by E(Uk) the random variable representing the set of edges between the vertices in
Uk and proceed by developing bounds on the probability of the event E(Uk)\supseteq \scrA .

The main difference from our previous bounds is that the connection threshold
proportional to (wuwv/n)

1/d now grows with n instead of shrinking, even for constant
wu,wv. This requires us to pay closer attention to the topology of the torus. That
is, we have to take into account that a single dimension of the torus is in fact a circle
with a circumference of 1.

The bounds are formalized in Theorem 1.5, which we restate for the sake of
readability.

Theorem 1.5. Let G be a standard GIRG and let k \geq 3 be a constant. Further-
more, let Uk = \{ v1, . . . , vk\} be a set of vertices chosen uniformly at random and let
\{ \kappa \} (k) = \{ \kappa ij | 1\leq i, j \leq k\} describe the pairwise product of weights of the vertices in
Uk. Let E(Uk) denote the (random) set of edges formed among the vertices in Uk.
Then, for any set of edges \scrA \subseteq 

\bigl( 
Uk

2

\bigr) 
,

Pr
\Bigl[ 
E(Uk)\supseteq \scrA | \{ \kappa \} (k)

\Bigr] 
=

\Biggl\{ 
(1\pm o(1))

\prod 
\{ i,j\} \in \scrA 

\kappa ij

n if d= \omega (log2(n)),

(1\pm o(1))
\prod 

\{ i,j\} \in \scrA 
\bigl( \kappa ij

n

\bigr) 1\mp \scrO ( \mathrm{l}\mathrm{o}\mathrm{g}(n)
d )

if d= \omega (log(n)).

This illustrates that the probability that Uk is a clique is at most 1+o(1) times its
counterpart in the IRG model if d= \omega 

\bigl( 
log2(n)

\bigr) 
. For d= \omega (log(n)), we get that these

two probabilities only differ by a factor of (1+o(1))no(1), which is not much compared

to the case d = o(log(n)), where this factor is at least on the order of n(
k - 1
2 ) - d(k - 1)

\mathrm{l}\mathrm{o}\mathrm{g}(n)

among nodes of constant weight.
Before giving the proof, we derive some lemmas that make certain arguments

easier to follow. We start with an upper bound on the probability that the set Uk =
\{ v1, . . . , vk\} forms a clique. Before deriving our bound, we need the following auxiliary
lemma.
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1978 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

Lemma 4.1. Let \ell \in \BbbN , \ell \geq 1. There is a constant x0 < 1 such that for all
x0 \leq x\leq 1, we have

x\ell +1 \leq \ell x - \ell + 1.

Proof. We substitute x = 1 - y and instead show that there is some y0 > 0 such
that for all 0\leq y\leq y0,

(1 - y)\ell +1 \leq 1 - \ell y.

We get from a Taylor series that there is a constant c\geq 0 such that for all 0\leq y\leq 1,

(1 - y)\ell +1 \leq 1 - (\ell + 1)y+ cy2 = 1 - \ell y+ cy2  - y.

Now, for all 0\leq y\leq 1/c, the term cy2  - y is negative, and our statement follows.

In the remainder of this section, we frequently analyze events occurring in a
single fixed dimension on the torus and use the following notation. Recall that a
single dimension of the torus is a circle of circumference 1, which we denote by \BbbS 1.
We define the set of points that are within a distance of at most r around a fixed
point x on this circle as A(r,x), and we denote by A(r,x) the complement of A(r,x),
i.e., the set \BbbS 1 \setminus A(r,x). Observe that A(r,x) and A(r,x) are coherent circular arcs.
Assume that the position of vi in our fixed dimension is xvi . For any pair of vertices
vi, vj , we define the sets Aij :=A(tvivj ,xvi) and Aij =A(tvivj ,xvi). We further define
Ai =A(t0,xvi) and Ai =A(t0,xvi

), whereby we note that Aij \subseteq Ai for all i, j because
t0 is the minimal connection threshold.

In the following, we derive upper and lower bounds on the probability that Uk is
a clique.

Theorem 4.2 (upper bound). Let G = GIRG(n,\beta ,w0, d) be a standard GIRG
with d = \omega (log(n)), and let Uk = \{ v1, . . . , vk\} be a set of k random vertices. For any
constant k \in \BbbN \geq 3, any \scrA \subseteq 

\bigl( 
Uk

2

\bigr) 
, and sufficiently large n, we have

Pr
\Bigl[ 
E(Uk)\supseteq \scrA | \{ \kappa \} (k)

\Bigr] 
\leq 

\left(  1 - 
\Bigl( \kappa 0

n

\Bigr) r/d \sum 
\{ i,j\} \in \scrA 

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) \right)  d

,

where r= (3(k - 2) + 1)(k - 1).

Proof. In the following, we denote by t0 the minimal connection threshold of any

two vertices, i.e., t0 = (
w2

0

\tau n )
1/d. Note that 2tuv = (\kappa uv

n )1/d for any pair of vertices u, v.
We again consider only one fixed dimension of the torus as they are all independent
due to our use of L\infty -norm.

To get an upper bound on the desired probability, we derive a lower bound on
1 - p. We define the event Ei as the event that vi falls into Aji for some \{ i, j\} \in \scrA 
with i < j, and the event Edis

i as the event that vi /\in \bigcup i - 1
j=1Aj and the sets Aj are

disjoint for all 1\leq j \leq i. Note that Ei and Edis
i are disjoint as Aji \subseteq Aj . Then

1 - p\geq Pr [E2] + Pr
\bigl[ 
E3 \cap Edis

2

\bigr] 
+Pr

\bigl[ 
E4 \cap Edis

3 \cap Edis
2

\bigr] 
+ . . .

=

k\sum 
i=2

Pr

\left[  Ei

\bigm| \bigm| \bigm| \bigm| i - 1\bigcap 
j=1

Edis
j

\right]  Pr
\left[  i - 1\bigcap 
j=1

Edis
j

\right]  .(4.1)

Note that this is a valid bound because all the events we sum over are disjoint.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1979

Now, let \scrA  - 
i = \{ \{ i, j\} \in \scrA | j \leq i\} be the set of edges from vertex i to a lower-

indexed vertex. If we condition on
\bigcap i - 1

j=1E
dis
j , then the probability of Ei is simply

Pr

\left[  Ei

\bigm| \bigm| \bigm| \bigm| i - 1\bigcap 
j=1

Edis
j

\right]  =
\sum 

\{ i,j\} \in \scrA  - 
i

(1 - 2tij) =
\sum 

\{ i,j\} \in \scrA  - 
i

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) 
because all the sets Aji are disjoint. It remains to bound Pr[

\bigcap i - 1
j=1E

dis
j ]. We obtain

Pr

\left[  i - 1\bigcap 
j=1

Edis
j

\right]  =

i - 1\prod 
j=1

Pr

\Biggl[ 
Edis

j

\bigm| \bigm| \bigm| \bigm| j - 1\bigcap 
\ell =1

Edis
\ell 

\Biggr] 
.

Now, the probability Pr[Edis
j | \bigcap j - 1

\ell =1 E
dis
\ell ] is equal to the probability that vj is placed

outside of A\ell for all 1\leq \ell < j while, at the same time, A\ell \cap Aj = \emptyset . If we consider one
fixed set A\ell , we note that this requires vj to be of distance at least 1 - 2t0 from v\ell as,
otherwise, A\ell and Aj overlap. Hence, we may define a ``forbidden"" region around v\ell 
which includes A\ell and all points within distance 1 - 2t0 of v\ell . This region has volume
3(1 - 2t0) and so the probability that vj falls outside the forbidden region is at least
1 - 3(1 - 2t0). We refer the reader to Figure 1 for an illustration. Now considering
the forbidden region of all v\ell with 1\leq \ell < j, the combined volume of these forbidden
regions is at most 3(j  - 1)(1 - 2t0), and hence

Pr

\left[  i - 1\bigcap 
j=1

Edis
j

\right]  =

i - 1\prod 
j=1

Pr

\Biggl[ 
Edis

j

\bigm| \bigm| \bigm| \bigm| j - 1\bigcap 
\ell =1

Edis
\ell 

\Biggr] 
\geq 

i - 1\prod 
j=1

(1 - 3(j  - 1)(1 - 2t0))

\geq (1 - 3(i - 2)(1 - 2t0))
i - 1.

Fig. 1. Illustration for the proof of Theorem 4.2. The colored circles represent the sets Ai for
v1, v2, v3. The probability that v2 is placed in the region indicated by the black circular arc such that
A1 \cap A2 = \emptyset is at least 1 - 3(1 - 2t0) as indicated by the black arrows. (Color available online.)
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1980 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

We get from (4.1)

1 - p\geq 
k\sum 

i=2

Pr

\left[  Ei

\bigm| \bigm| \bigm| \bigm| i - 1\bigcap 
j=1

Edis
j

\right]  Pr
\left[  i - 1\bigcap 
j=1

Edis
j

\right]  
\geq 

k\sum 
i=2

(1 - 3(i - 2)(1 - 2t0))
i - 1

\sum 
\{ i,j\} \in \scrA  - 

i

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) 

\geq (1 - 3(k - 2)(1 - 2t0))
k - 1

\sum 
\{ i,j\} \in \scrA 

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) 

=

\biggl( 
3(k - 2)

\Bigl( \kappa 0

n

\Bigr) 1/d
 - 3(k - 2) + 1

\biggr) k - 1 \sum 
\{ i,j\} \in \scrA 

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) 
.

It now remains to show

3(k - 2)
\Bigl( \kappa 0

n

\Bigr) 1/d
 - 3(k - 2) + 1\geq 

\Bigl( \kappa 0

n

\Bigr) 3(k - 2)+1
d

for sufficiently large n. Recalling that
\bigl( 
\kappa 0

n

\bigr) 1/d
tends to 1 as n grows, this is equivalent

to showing that there is some x0 < 1 such that for all x0 \leq x\leq 1 and \ell = 3(k - 2), we
have

\ell x - \ell + 1\geq x\ell +1.

This follows by Lemma 4.1, and the proof is finished.

Theorem 4.3 (lower bound). Let G = GIRG(n,\beta ,w0, d) be a standard GIRG
with d= \omega (log(n)), and let Uk = \{ v1, . . . , vk\} be a set of k random vertices. Then, for
every \scrA \subseteq 

\bigl( 
Uk

2

\bigr) 
,

Pr
\Bigl[ 
E(Uk)\supseteq \scrA | \{ \kappa \} (k)

\Bigr] 
\geq 

k\prod 
i=1

\left(  1 - 
\sum 

\{ i,j\} \in \scrA  - 
i

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) \right)  d

,

where \scrA  - 
i = \{ \{ i, j\} \in \scrA | j \leq i\} is the set of edges in \scrA between vertex i and a previous

vertex.

Proof. We sample the position of v2, . . . , vk one after another and again only
consider the probability p that E(Uk)\supset \scrA in one fixed dimension. When the position
of vi is sampled, the probability that vi falls into one of Aji for \{ i, j\} \in \scrA i is at least

1 - 
\sum 

\{ i,j\} \in \scrA  - 
i

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) 
,

where equality holds if the first i - 1 vertices are placed such that all the sets Aji for
1\leq j < i are disjoint. Accordingly, we have

p\geq 
k\prod 

i=1

\left(  1 - 
\sum 

\{ i,j\} \in \scrA  - 
i

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) \right)  .

To have E(Uk) \supset \scrA , it is sufficient that this event occurs in all dimensions, so the
final bound is pd.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1981

To see how these bounds behave as n\rightarrow \infty , we need the following lemma.

Lemma 4.4. Let \Psi , d, \ell be nonnegative functions of n. Assume that  - \ell ln(\Psi )
d = o(1)

and \Psi < 1 for all n. Then,

 - \ell ln(\Psi )

d
 - e

\biggl(  - \ell ln(\Psi )

d

\biggr) 2

\leq 1 - \Psi \ell /d \leq  - \ell ln(\Psi )

d
.

Proof. Observe that

1 - \Psi \ell /d = 1 - exp

\biggl( 
\ell ln(\Psi )

d

\biggr) 
.

For the upper bound, we use the well-known fact that, for all x, we have exp(x)\geq 1+x,
which directly implies our statement. For the lower bound, we use the Taylor series
expansion of exp and bound

1 - \Psi \ell /d = 1 - exp

\biggl( 
\ell ln(\Psi )

d

\biggr) 
= - 

\infty \sum 
i=1

1

i!

\biggl( 
\ell ln(\Psi )

d

\biggr) i

=

\infty \sum 
i=1

( - 1)i - 1

i!

\biggl(  - \ell ln(\Psi )

d

\biggr) i

=
 - \ell ln(\Psi )

d
 - 
\biggl(  - \ell ln(\Psi )

d

\biggr) 2 \infty \sum 
i=2

( - 1)i

i!

\biggl(  - \ell ln(\Psi )

d

\biggr) i - 2

.(4.2)

Because  - \ell ln(\Psi )
d = o(1), we get that ( - \ell ln(\Psi )

d )i - 2 \leq 1 for all i\geq 2 and sufficiently large
n. Assuming that all the terms in the above sum are positive yields

1 - \Psi \ell /d \geq  - \ell ln(\Psi )

d
 - 
\biggl(  - \ell ln(\Psi )

d

\biggr) 2 \infty \sum 
i=0

1

i!

=
 - \ell ln(\Psi )

d
 - e

\biggl(  - \ell ln(\Psi )

d

\biggr) 2

,

as desired.

Lemma 4.5. Let

P :=

\left(  1 - 
\Bigl( \kappa 0

n

\Bigr) r/d \sum 
\{ i,j\} \in \scrA 

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) \right)  d

.

Then there is a constant \delta \geq 0 such that

ln(P )\leq 
\sum 

\{ i,j\} \in \scrA 
ln
\Bigl( \kappa ij

n

\Bigr) \biggl( 
1 - \delta ln(n)

d

\biggr) 
.

Proof. We have

ln(P ) = d ln

\left(  1 - 
\Bigl( \kappa 0

n

\Bigr) r/d \sum 
\{ i,j\} \in \scrA 

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) \right)  .
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1982 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

We get from a Taylor series that

ln(x) =

\infty \sum 
i=1

( - 1)i - 1 (x - 1)i

i
= - 

\infty \sum 
i=1

(1 - x)i

i
and thus

ln(P ) = - d

\infty \sum 
i=1

1

i

\left(  \Bigl( \kappa 0

n

\Bigr) r/d \sum 
\{ i,j\} \in \scrA 

\biggl( 
1 - 

\Bigl( \kappa 0

n

\Bigr) 1/d\biggr) \right)  i

\leq  - d
\Bigl( \kappa 0

n

\Bigr) r/d \sum 
\{ i,j\} \in \scrA 

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) 
.

We now apply the lower bound from Lemma 4.4 with \Psi = \kappa ij/n. Note that this fulfills
the condition  - ln(\Psi )/d= o(1) as d= \omega (log(n)) and \kappa ij/n=\Omega (1/n). We obtain

ln(P )\leq d
\Bigl( \kappa 0

n

\Bigr) r/d \sum 
\{ i,j\} \in \scrA 

\Biggl( 
ln
\bigl( \kappa ij

n

\bigr) 
d

+
e ln2

\bigl( \kappa ij

n

\bigr) 
d2

\Biggr) 

=
\Bigl( \kappa 0

n

\Bigr) r/d \sum 
\{ i,j\} \in \scrA 

ln
\Bigl( \kappa ij

n

\Bigr) \biggl( 
1 - e

d
ln

\biggl( 
n

\kappa 0

\biggr) \biggr) 
.

Note that the above term is negative, so we need to lower bound the term
\bigl( 
\kappa 0

n

\bigr) r/d
to

proceed. We get from Lemma 4.4\Bigl( \kappa 0

n

\Bigr) r/d
\geq 1 - r

d
ln

\biggl( 
n

\kappa 0

\biggr) 
 - er2

d2
ln

\biggl( 
n

\kappa 0

\biggr) 2

= 1 - c ln(n)

d

for some constant c > 0 and sufficiently large n. With this,

ln(P )\leq 
\sum 

\{ i,j\} \in \scrA 
ln
\Bigl( \kappa ij

n

\Bigr) \biggl( 
1 - e

d
ln

\biggl( 
n

\kappa 0

\biggr) \biggr) \biggl( 
1 - c ln(n)

d

\biggr) 

\leq 
\sum 

\{ i,j\} \in \scrA 
ln
\Bigl( \kappa ij

n

\Bigr) \biggl( 
1 - \delta ln(n)

d

\biggr) 

for some \delta > 0 and sufficiently large n.

Lemma 4.6. Let

Q :=

k\prod 
i=1

\left(  1 - 
\sum 

\{ i,j\} \in \scrA  - 
i

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) \right)  d

.

Then there is a constant \delta such that

ln(Q)\geq 
\sum 

\{ i,j\} \in \scrA 
ln
\Bigl( \kappa ij

n

\Bigr) \biggl( 
1 +

\delta ln(n)

d

\biggr) 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

5/
24

 to
 1

41
.8

9.
22

1.
17

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



CLIQUES IN HIGH-DIMENSIONAL GIRGs 1983

Proof. By the upper bound from Lemma 4.4 and the Taylor series of ln, we obtain

ln(Q) := d

k\sum 
i=1

ln

\left(  1 - 
\sum 

\{ i,j\} \in \scrA  - 
i

\biggl( 
1 - 

\Bigl( \kappa ij

n

\Bigr) 1/d\biggr) \right)  
\geq d

k\sum 
i=1

ln

\left(  1 - 
\sum 

\{ i,j\} \in \scrA  - 
i

\left(  ln
\Bigl( 

n
\kappa ij

\Bigr) 
d

\right)  \right)  
= - d

k\sum 
i=1

\infty \sum 
\ell =1

1

\ell 

\left(  \sum 
\{ i,j\} \in \scrA  - 

i

\left(  ln
\Bigl( 

n
\kappa ij

\Bigr) 
d

\right)  \right)  \ell 

= - d

k\sum 
i=1

\sum 
\{ i,j\} \in \scrA  - 

i

\left(  ln
\Bigl( 

n
\kappa ij

\Bigr) 
d

\right)  \infty \sum 
\ell =1

1

\ell 

\left(  \sum 
\{ i,j\} \in \scrA  - 

i

\left(  ln
\Bigl( 

n
\kappa ij

\Bigr) 
d

\right)  \right)  \ell  - 1

=
\sum 

\{ i,j\} \in \scrA 
ln
\Bigl( \kappa ij

n

\Bigr) \infty \sum 
\ell =1

1

\ell 

\left(  \sum 
\{ i,j\} \in \scrA  - 

i

\left(  ln
\Bigl( 

n
\kappa ij

\Bigr) 
d

\right)  \right)  \ell  - 1

\geq 
\sum 

\{ i,j\} \in \scrA 
ln
\Bigl( \kappa ij

n

\Bigr) \infty \sum 
\ell =1

1

\ell 

\left(  k ln
\Bigl( 

n
\kappa 0

\Bigr) 
d

\right)  \ell  - 1

.

Now, we have

\infty \sum 
\ell =1

1

\ell 

\left(  k ln
\Bigl( 

n
\kappa 0

\Bigr) 
d

\right)  \ell  - 1

\leq 1 +
k ln

\Bigl( 
n
\kappa 0

\Bigr) 
d

\infty \sum 
\ell =0

\left(  k ln
\Bigl( 

n
\kappa 0

\Bigr) 
d

\right)  \ell 

\leq 1 +
2k ln

\Bigl( 
n
\kappa 0

\Bigr) 
d

because
k ln

\Bigl( 
n
\kappa 0

\Bigr) 
d = o(1) and so the above geometric sum converges to 1 + o(1).

Proof of Theorem 1.5. Combining Theorem 4.2, Theorem 4.3, Lemma 4.5, and
Lemma 4.6, we get that there are constants \delta , \delta \prime > 0 such that

\prod 
\{ i,j\} \in \scrA 

\Bigl( \kappa ij

n

\Bigr) 1+ \delta \mathrm{l}\mathrm{n}(n)
d \leq Pr

\Bigl[ 
E(Uk)\supseteq \scrA | \{ \kappa \} (k)

\Bigr] 
\leq 

\prod 
\{ i,j\} \in \scrA 

\Bigl( \kappa ij

n

\Bigr) 1 - \delta 
\prime 
\mathrm{l}\mathrm{n}(n)
d

.

If d= \omega (log(n)), \delta ln(n)
d = o(1) and the proof of this case is finished. If d= \omega (log2(n)),

observe that

\prod 
\{ i,j\} \in \scrA 

\Bigl( \kappa ij

n

\Bigr) 1+ \delta \mathrm{l}\mathrm{n}(n)
d \geq 

\biggl( 
n

\kappa 0

\biggr)  - (k - 1
2 ) \delta \mathrm{l}\mathrm{n}(n)

d \prod 
\{ i,j\} \in \scrA 

\Bigl( \kappa ij

n

\Bigr) 
.

Similarly,

\prod 
\{ i,j\} \in \scrA 

\Bigl( \kappa ij

n

\Bigr) 1 - \delta 
\prime 
\mathrm{l}\mathrm{n}(n)
d \leq 

\biggl( 
n

\kappa 0

\biggr) (k - 1
2 ) \delta 

\prime 
\mathrm{l}\mathrm{n}(n)
d \prod 

\{ i,j\} \in \scrA 

\Bigl( \kappa ij

n

\Bigr) 
.
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1984 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

Since d= \omega (log2(n)), we get that

\biggl( 
n

\kappa 0

\biggr) (k - 1
2 ) \delta \mathrm{l}\mathrm{n}(n)

d

= (1+ o(1))n1/\omega (log(n)) = (1+ o(1)) exp

\biggl( 
log(n)

\omega (log(n))

\biggr) 
= 1+ o(1)

as we assume k to be constant.

Bounds for triangles. We proceed by deriving a lower bound for the probability
that three vertices form a triangle.

Lemma 4.7. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG and let v1, v2, v3 be
three random vertices. Then,

Pr [v2 \sim v3 | v1 \sim v2, v3]\geq 
\biggl( 
3 - 3

\Bigl( \kappa 0

n

\Bigr)  - 1/d

+
\Bigl( \kappa 0

n

\Bigr)  - 2/d
\biggr) d

.

Proof. We consider one fixed dimension and give an upper bound on the proba-
bility that v2 \not \sim v3 conditioned on v1 \sim v2, v3. In the following, we abbreviate p := \kappa 0

n .
Note that we may assume that all three vertices are of weight w0 as it is easy to verify
that larger weights only increase the probability of forming a triangle. Conditioned
on the event v1 \sim v2, v3, the vertices v2, v3 are uniformly distributed within a circular
arc of length p1/d around v1. In order for v2 \not \sim v3 to occur, v3 needs to be placed
within a circular arc of length 1  - p1/d opposite to v2. Hence, the probability that
v2 \not \sim v3 conditioned on the event that v2 is placed at distance x of v1 is

Pr [v2 \not \sim v3 | | xv1  - xv2 | C = x] =

\Biggl\{ 
x/p1/d if x\leq 1 - p1/d,

(1 - p1/d)/p1/d otherwise,

where | \cdot | C denotes the distance on the circle. Since v2 is distributed uniformly within
distance 1

2p
1/d around v1, we obtain

Pr [v2 \not \sim v3 | v1 \sim v2, v3]\leq 
1

1
2p

1/d

\int 1
2p

1/d

0

Pr [v2 \not \sim v3 | | xv1  - xv2
| C = x]dx

=
1

1
2p

1/d

\Biggl( \int 1 - p1/d

0

x

p1/d
dx+

\int 1
2p

1/d

1 - p1/d

1 - p1/d

p1/d
dx

\Biggr) 
.

Solving the integrals then yields

Pr [v2 \not \sim v3 | v1 \sim v2, v3]\leq 3p - 1/d  - 2 - p - 2/d,

implying the desired bound.

We use this finding to show in the following lemma that, although cliques of size at
least 4 already behave like in the IRG model if d= \omega (log(n)), the number of triangles
in the geometric case is still larger than that in the nongeometric case.

Lemma 4.8. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with d = \omega (log(n))
and let v1, v2, v3 be three random vertices. Then,

Pr [v2 \sim v3 | v1 \sim v2, v3]\geq (1 + o(1))
\Bigl( \kappa 0

n

\Bigr) 1 - \mathrm{l}\mathrm{n}(n)2

d2
\pm \scrO 

\biggl( 
\mathrm{l}\mathrm{n}(n)3

d3

\biggr) 
.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1985

Proof. By Lemma 4.7, we have Pr [v2 \sim v3 | v1 \sim v2, v3] = qd with

q := 3

\biggl( 
1 - 

\Bigl( \kappa 0

n

\Bigr)  - 1/d
\biggr) 
+
\Bigl( \kappa 0

n

\Bigr)  - 2/d

.

In the following, we once again abbreviate p= \kappa 0

n and start by decomposing q into a
sum.

q= 3
\Bigl( 
1 - p - 1/d

\Bigr) 
+ p - 2/d

= 3

\biggl( 
1 - exp

\biggl(  - ln(p)

d

\biggr) \biggr) 
+ exp

\biggl(  - 2 ln(p)

d

\biggr) 
= - 3

\infty \sum 
i=1

1

i!

\biggl(  - ln(p)

d

\biggr) i

+

\infty \sum 
i=0

1

i!

\biggl(  - 2 ln(p)

d

\biggr) i

= 1+

\infty \sum 
i=1

1

i!

\Biggl( \biggl(  - 2 ln(p)

d

\biggr) i

 - 3

\Biggl( \biggl(  - ln(p)

d

\biggr) i
\Biggr) \Biggr) 

= 1+

\infty \sum 
i=1

1

i!

\biggl(  - ln(p)

d

\biggr) i

(2i  - 3).

We now proceed by bounding d ln(q) and apply the Taylor series of ln to get

d ln(q) = - d
\sum 
i=1

(1 - q)i

i
=
\sum 
i=1

( - 1)i+1d
(q - 1)i

i
.(4.3)

By abbreviating x := ln(p)/d and our above sum, we get

q - 1 =

\infty \sum 
i=1

1

i!

\biggl(  - ln(p)

d

\biggr) i

(2i  - 3) = x+
1

2
x2  - 5

6
x3 + . . .

= x

\biggl( 
1 +

1

2
x - 5

6
x2 +R

\biggr) 
\underbrace{}  \underbrace{}  

Z

,(4.4)

where | R| =\scrO (| x| 3) because | x| = o(1). Inserting this into the first terms of the sum
in (4.3) yields

d ln(q) = dxZ  - d
1

2
x2Z2 + d

1

3
x3Z3 + . . .

= dx

\Biggl( 
Z  - 1

2
xZ2 +

1

3
x2Z3 +

\sum 
i=4

( - 1)i+1xi - 1Zi

\Biggr) 
.

Using the definition of Z in (4.4), we may carefully compute the leading terms of the
above sum to obtain

d ln(q) = dx
\bigl( 
1 - x2 +R\prime \bigr) ,

with | R\prime | =\scrO (| x| 3). Recalling that x= ln(p)/d gives

d ln(q) = ln(p)

\Biggl( 
1 - 

\biggl( 
ln(p)

d

\biggr) 2

\pm \scrO 
\Biggl( \bigm| \bigm| \bigm| \bigm| ln(p)d

\bigm| \bigm| \bigm| \bigm| 3
\Biggr) \Biggr) 

.

As p= \kappa 0/n, this shows
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1986 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

qd =
\Bigl( \kappa 0

n

\Bigr) 1 - \mathrm{l}\mathrm{n}(n/\kappa 0)2

d2
\pm \scrO 

\biggl( 
\mathrm{l}\mathrm{n}(n)3

d3

\biggr) 
= (1+ o(1))

\Bigl( \kappa 0

n

\Bigr) 1 - \mathrm{l}\mathrm{n}(n)2

d2
\pm \scrO 

\biggl( 
\mathrm{l}\mathrm{n}(n)3

d3

\biggr) 
.

Here, the factor of 1 + o(1) derives from the fact that

ln(n/\kappa 0)
2

d2
=

ln(n)2  - 2 ln(n) ln(\kappa 0) + ln(\kappa 0)
2

d2
=

ln(n)2

d2
 - 1

\omega (log(n))
.

The above bound implies that the probability that a triangle forms among vertices
of constant weight is still significantly larger than in the nongeometric models as long
as d= o(log3/2(n)). We summarize this behavior in the following theorem.

Theorem 4.9. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with \beta > 3 and
d = \omega (log(n)). Then, there is a constant \delta \geq 0 such that the expected number of
triangles fulfills

\BbbE [K3] =

\left\{   \Omega 
\Bigl( 
exp

\Bigl( 
ln3(n)
d2

\Bigr) \Bigr) 
if 3<\beta <\infty ,

\Theta 
\Bigl( 
exp

\Bigl( 
ln3(n)
d2

\Bigr) \Bigr) 
if \beta =\infty ,

where \beta =\infty refers to the case where every vertex has the same weight.

Proof. We note that by Lemma 4.8

Pr [U3 is clique]\geq (1 + o(1))
\Bigl( \kappa 0

n

\Bigr) 2 \Bigl( \kappa 0

n

\Bigr) 1 - \mathrm{l}\mathrm{n}(n)2

d2
\pm \scrO 

\biggl( 
\mathrm{l}\mathrm{n}(n)3

d3

\biggr) 

and thus

\BbbE [K3] =

\biggl( 
n

3

\biggr) 
Pr [U3 is clique]\geq (1 + o(1))\kappa 3

0n
\Omega 

\biggl( 
\mathrm{l}\mathrm{n}2(n)

d2

\biggr) 
=\Omega 

\biggl( 
exp

\biggl( 
ln3(n)

d2

\biggr) \biggr) 
,

and the first part of the statement is shown. For the second part, we note that in
the case of constant weights, the bound from Lemma 4.7 is the exact (conditional)
probability that a triangle is formed and the transformations from Lemma 4.8 still
apply for obtaining an upper bound.

4.2. Characterizing cliques by vertex weights. In this section, we extend
the bounds on qk obtained above to the entire graph and characterize it by the weights
of the associated vertices assuming d= \omega (log(n)) and \beta \in (2,3) (the other parameter
regimes are discussed in the subsequent section). To this end, we will mainly be
concerned with bounding the following integral.

Lemma 4.10. Let \rho be the density function of the Pareto distribution, let \varepsilon =
\varepsilon (n) = o(1), and define

\Lambda (k) :=

\int \infty 

0

\cdot \cdot \cdot 
\int \infty 

0

\rho (w1) \cdot \cdot \cdot \rho (wk)
\prod 

1\leq i<j\leq k

\Bigl( \kappa ij

n

\Bigr) 1 - \varepsilon 

dwk . . .dw1.

For every constant k, we have

\Lambda (k) =\scrO 
\Bigl( 
n

k
2 (1 - \beta )

\Bigr) 
.

Remark 4.11. Clearly, \Lambda (k) is an upper bound on the clique probability if we used
w0 as the lower integration limit instead of 0. However, we show the more general
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1987

statement where the integration limit is 0 as it will be useful later in the proof of
Lemma 4.12.

Proof of Lemma 4.10. We use a technique similar to that of Daly et al. [14], who
bound

\Lambda (k)\leq 
k\sum 

m=0

\biggl( 
k

m

\biggr) 
\Lambda (k,m),

where

\Lambda (k,m)

:=

\int \surd 
n/\lambda 

0

\cdot \cdot \cdot 
\int \surd 

n/\lambda 

0\underbrace{}  \underbrace{}  
m times

\int \infty 
\surd 

n/\lambda 

\cdot \cdot \cdot 
\int \infty 
\surd 

n/\lambda \underbrace{}  \underbrace{}  
k - m times

\rho (w1) \cdot \cdot \cdot \rho (wk)
\prod 

1\leq i<j\leq k

\Bigl( \kappa ij

n

\Bigr) 1 - \varepsilon 

dwk . . .dw1.

We start with the first extreme case:

\Lambda (k, k)=

\int \surd 
n/\lambda 

0

\cdot \cdot \cdot 
\int \surd 

n/\lambda 

0

\rho (w1) \cdot \cdot \cdot \rho (wk)
\prod 

1\leq i<j\leq k

\Bigl( \kappa ij

n

\Bigr) 1 - \varepsilon 

dw1 . . .dwk.

Since \rho (w) = cw - \beta for some constant c and as k is constant,

\Lambda (k, k)

=\Theta (1)

\int \surd 
n/\lambda 

0

\cdot \cdot \cdot 
\int \surd 

n/\lambda 

0

\prod 
1\leq i<j\leq k

\Bigl( \kappa ij

n

\Bigr) 1 - \varepsilon 

w - \beta 
1 \cdot \cdot \cdot w - \beta 

k dw1 . . .dwk

=\Theta (1)n - (k2)(1 - \varepsilon )

\Biggl( \int \surd 
n/\lambda 

0

w(k - 1)(1 - \varepsilon ) - \beta dw

\Biggr) k

=\Theta (1)n - (k2)(1 - \varepsilon )n
1
2k(k - 1)(1 - \varepsilon )+ k

2 (1 - \beta )

=\Theta (1)n
k
2 (1 - \beta )

as
\bigl( 
k
2

\bigr) 
= 1

2k(k - 1). Note that the second step holds for sufficiently large n since k\geq 3
and \beta < 3 as this leads to an exponent in the integral that is strictly greater than  - 1.
The above bounds only hold for sufficiently large n as \varepsilon = o(1). For the other extreme
case, let wmin =min\{ w1, . . . ,wk\} ; then Corollary 3.3 yields that

\Lambda (k,0) = Pr
\Bigl[ 
wmin \geq 

\sqrt{} 
n/\lambda 

\Bigr] 
=\Theta (1)n

k
2 (1 - \beta )

because \kappa ij = 1 if wi,wj \geq 
\sqrt{} 
n/\lambda .

If m\geq 3, we bound

\Lambda (k,m)\leq \Lambda (m,m) \cdot \Lambda (k - m,0)

=\Theta (1)n
m
2 (1 - \beta )n

k - m
2 (1 - \beta )

=\Theta (1)n
k
2 (1 - \beta ),

as desired. The case m= \{ 1,2\} thus remains. To this end, we use that

\Lambda (k,m)\leq \Lambda (3,m)\Lambda (k - 3,0)

=\Theta (1)\Lambda (3,m)n
k - 3
2 (1 - \beta )

and so it suffices to show that \Lambda (3,m) = \Theta (1)n
3
2 (1 - \beta ) for m \in \{ 1,2\} . For m = 1, we

bound
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1988 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

\Lambda (3,1)

\leq \Theta (1)

\int \surd 
n/\lambda 

0

\int \infty 
\surd 

n/\lambda 

\int \infty 
\surd 

n/\lambda 

\biggl( 
w2

1w2w3

n

\biggr) 2(1 - \varepsilon )

w - \beta 
1 w - \beta 

2 w - \beta 
3 dw1dw2dw3

=\Theta (1)n - 2(1 - \varepsilon )

\int \surd 
n/\lambda 

0

w2(1 - \varepsilon ) - \beta dw

\Biggl( \int \infty 
\surd 

n/\lambda 

w1 - \varepsilon  - \beta dw

\Biggr) 2

=\Theta (1)n - 2(1 - \varepsilon )+(1 - \varepsilon )+ 1
2 (1 - \beta )+(1 - \varepsilon )+(1 - \beta )

=\Theta (1)n
3
2 (1 - \beta )

as desired. Again, this works because for sufficiently large n, the exponent in the
integral starting at 0 is greater than  - 1. For the case m= 2, we use

\Lambda (3,2)\leq \Theta (1)

\int \surd 
n/\lambda 

0

\int w1

0

\int n/w1

\surd 
n/\lambda 

\prod 
1\leq i<j\leq 3

\Bigl( wiwj

n

\Bigr) 1 - \varepsilon 

(w1w2w3)
 - \beta dw3dw2dw1\underbrace{}  \underbrace{}  

I1

+\Theta (1)

\int \surd 
n/\lambda 

0

\int w1

0

\int \infty 

n/w1

\biggl( 
w1w

2
2w3

n2

\biggr) 1 - \varepsilon 

(w3w2w1)
 - \beta dw3dw2dw1\underbrace{}  \underbrace{}  

I2

.

Note that this is a valid bound since the vertices v1, v2 are interchangeable and thus
P2 is at most twice as large as the two integrals above, which is captured by the \Theta (1)
terms. Calculations now show that

I1 = n - 3(1 - \varepsilon )

\int \surd 
n/\lambda 

0

\int w1

0

\int n/w1

\surd 
n/\lambda 

\prod 
1\leq i<j\leq 3

(wiwj)
1 - \varepsilon 

(w1w2w3)
 - \beta dw3dw2dw1

=\Theta (1)n - 3(1 - \varepsilon )

\int \surd 
n/\lambda 

0

w
2(1 - \varepsilon ) - \beta 
1

\int w1

0

w
2(1 - \varepsilon ) - \beta 
2

\int n/w1

\surd 
n/\lambda 

w
2(1 - \varepsilon ) - \beta 
3 dw3dw2dw1

\leq \Theta (1)n - 3(1 - \varepsilon )

\int \surd 
n/\lambda 

0

w
2(1 - \varepsilon ) - \beta 
1

\int w1

0

w
2(1 - \varepsilon ) - \beta 
2

\biggl( 
n

w1

\biggr) 2(1 - \varepsilon ) - \beta +1

dw2dw1

=\Theta (1)n - (1 - \varepsilon ) - \beta +1

\int \surd 
n/\lambda 

0

w - 1
1

\int w1

0

w
2(1 - \varepsilon ) - \beta 
2 dw2dw1

=\Theta (1)n\varepsilon  - \beta 

\int \surd 
n/\lambda 

0

w
2(1 - \varepsilon ) - \beta 
1 dw1 =\Theta (1)n\varepsilon  - \beta +1 - \varepsilon  - 1

2\beta +
1
2 =\Theta (1)n

3
2 (1 - \beta )

and

I2 =

\int \surd 
n/\lambda 

0

\int w1

0

\int \infty 

n/w1

\biggl( 
w1w

2
2w3

n2

\biggr) 1 - \varepsilon 

(w3w2w1)
 - \beta dw3dw2dw1

\leq \Theta (1)n - 2(1 - \varepsilon )

\int \surd 
n/\lambda 

0

w1 - \varepsilon  - \beta 
1

\int w1

0

w
2(1 - \varepsilon ) - \beta 
2

\biggl( 
n

w1

\biggr) 1 - \varepsilon  - \beta +1

dw2dw1

=\Theta (1)n - (1 - \varepsilon ) - \beta +1

\int \surd 
n/\lambda 

0

w - 1
1

\int w1

0

w
2(1 - \varepsilon ) - \beta 
2 dw2dw1

=\Theta (1)n
3
2 (1 - \beta )

as desired.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1989

The above lemma not only implies our claimed bounds on the expected number
of cliques but also allows us to show that cliques of all sizes form dominantly among
vertices of weight on the order of

\surd 
n.

Lemma 4.12. Let d = \omega (log(n)) and \beta \in (2,3). Then for all (potentially super-
constant) k and all p\in (0,1), there is an \varepsilon > 0 such that

Pr
\bigl[ 
wmin \geq \varepsilon 

\surd 
n | Uk is clique

\bigr] 
\geq p.

For k > 2
3 - \beta , we already showed the statement in Lemma 3.9. For k \leq 2

3 - \beta ,
we use an argument inspired by the techniques introduced in [27]. Note that in the
following, we assume k to be constant since we are in the case k\leq 2

3 - \beta . We write

Pr
\bigl[ 
wmin < \varepsilon 

\surd 
n | Uk is clique

\bigr] 
=

Pr [wmin < \varepsilon 
\surd 
n\cap Uk is clique]

Pr [Uk is clique]

and proceed by showing that this probability can be made arbitrarily small by choosing
\varepsilon large enough. By considering the event that wmin \geq 

\sqrt{} 
n/\lambda , we immediately get

Pr[Uk is clique] =\Omega (n
k
2 (1 - \beta )). To show our statement, we proceed by showing that

Pr
\bigl[ 
wmin < \varepsilon 

\surd 
n\cap Uk is clique

\bigr] 
\leq f(\varepsilon )n

k
2 (1 - \beta )

for a function f that tends to 0 as \varepsilon \rightarrow 0. To this end, note that by Theorem 1.5,
there is a function \varepsilon = \varepsilon (n) = o(1) such that

Pr [Uk is clique]\leq \Lambda (k)

=

\int \infty 

0

\cdot \cdot \cdot 
\int \infty 

0

\rho (w1) \cdot \cdot \cdot \rho (wk)
\prod 

1\leq i<j\leq k

\Bigl( \kappa ij

n

\Bigr) 1 - \varepsilon 

dwk . . .dw1.

Substituting wi = yi
\sqrt{} 
n/\lambda and recalling that \rho (w) = cw - \beta for some constant c yields

\Lambda (k)

=

\int \infty 

0

\cdot \cdot \cdot 
\int \infty 

0

ck(y1 \cdot \cdot \cdot yk) - \beta 

\sqrt{} 
n

\lambda 

 - k\beta \prod 
1\leq i<j\leq k

\biggl( 
min\{ n,\lambda nyiyj\} 

n

\biggr) 1 - \varepsilon \sqrt{} 
n

\lambda 

k

dyk . . .dy1

=
\Bigl( n
\lambda 

\Bigr) k
2 (1 - \beta )

\int \infty 

0

\cdot \cdot \cdot 
\int \infty 

0

ck(y1 \cdot \cdot \cdot yk) - \beta 
\prod 

1\leq i<j\leq k

(min\{ 1, \lambda yiyj\} )1 - \varepsilon 
dyk . . .dy1\underbrace{}  \underbrace{}  

:=I

.

By Lemma 4.10, we have \Lambda (k) =\scrO (n
k
2 (1 - \beta )) and thus I <\infty . Now

Pr
\bigl[ 
Uk is clique\cap wmin < \varepsilon 

\surd 
n
\bigr] 

\leq k

\int \varepsilon 
\surd 
n

0

\int \infty 

0

\cdot \cdot \cdot 
\int \infty 

0

\rho (w1) \cdot \cdot \cdot \rho (wk)
\prod 

1\leq i<j\leq k

\Bigl( \kappa ij

n

\Bigr) 1 - \varepsilon 

dwk . . .dw1.

Using the same substitution as above, this yields

Pr
\bigl[ 
Uk is clique\cap wmin < \varepsilon 

\surd 
n
\bigr] 

\leq k
\Bigl( n
\lambda 

\Bigr) k
2 (1 - \beta )

\int \varepsilon 
\surd 
\lambda 

0

\cdot \cdot \cdot 
\int \infty 

0

ck(y1 \cdot \cdot \cdot yk) - \beta 
\prod 

1\leq i<j\leq k

(min\{ 1, \lambda yiyj\} )1 - \varepsilon 
dyk . . .dy1\underbrace{}  \underbrace{}  

:=J(\varepsilon )

.

As lim\varepsilon \rightarrow \infty J(\varepsilon ) = I <\infty , J(\varepsilon ) can be made arbitrarily small by choosing \varepsilon > 0 small
enough, which yields the desired statement.
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1990 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

4.3. Bounds on \BbbE [\bfitK \bfitk ] and \bfitomega (\bfitG ). We use the findings from subsection 4.1
to prove the third column of Table 3 and Table 1, respectively. We treat the cases
2<\beta < 3, \beta = 3, and \beta > 3 separately.

For \beta \in (2,3), we show that if d= \omega (log(n)), then the expected number of cliques
is n

k
2 (3 - \beta )\Theta (k) - k for all k \geq 3 just like in the IRG model. This is despite the fact

that the probability that a clique forms among vertices of constant weight is still
significantly higher than in the IRG model if log(n) \ll d \ll log3/2(n). The reason
for this is that the probability of forming a clique among vertices of weight close to\surd 
n behaves like that of the IRG model if d= \omega (log(n)) and because cliques forming

among these high-weight vertices dominate all the others.

Theorem 4.13. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with \beta < 3 and
d = \omega (log(n)). Then, \BbbE [Kk] = n

k
2 (3 - \beta )\Theta (k) - k for k \geq 3 and \omega (G) = \Theta (n(3 - \beta )/2)

a.a.s.

Proof. Observe that Corollary 3.3 and Corollary 3.5 imply our desired bounds if
k > 2

3 - \beta . Otherwise, just considering the event that wmin \geq 
\sqrt{} 
n/\lambda gives us the desired

lower bound on qk and thus on \BbbE [Kk]. To get an upper bound, note that qk \leq \Lambda (k)
by Theorem 1.5, and that \Lambda (k) =\scrO (n

k
2 (3 - \beta )) by Lemma 4.10, which directly implies

our claimed bounds on \BbbE [Kk]. To bound \omega (G), now the same argumentation as in
Theorem 3.21 applies.

We note that the phase transition at k = 2
3 - \beta is no longer present. We continue

with the case where \beta = 3.

Theorem 4.14. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with \beta = 3 and
d= \omega (log(n)). Then, \omega (G) =\scrO (1).

Proof. We show that the number of cliques of size k = 4 is such that for every
\varepsilon > 0 there is a constant c > 0 such that

Pr [K4 \geq c]\leq \varepsilon .

That is, the probability that K4 \geq c can be made arbitrarily small by choosing c large
enough. This fact is sufficient to show that the clique number is \Theta (1).

We start by observing that \beta = 3 implies that the maximum weight wmax is a.a.s.
on the order of

\surd 
n. More precisely, denoting by Xw the number of vertices with

weight at least w, we get by Markov's inequality that for every w,

Pr [wmax \geq w] = Pr [Xw \geq 1]\leq \BbbE [Xw] =\Theta (1)nw1 - \beta =\Theta (1)nw - 2.(4.5)

Thus, for every c\geq 0, we have

Pr
\bigl[ 
wmax \geq c

\surd 
n
\bigr] 
=\scrO (1)c - 2.(4.6)

With this and Markov's inequality, we may bound for every t, c\geq 0

Pr [K4 \geq t]\leq Pr
\bigl[ 
K4 \geq t | wmax \leq c

\surd 
n
\bigr] 
+Pr

\bigl[ 
wmax \geq c

\surd 
n
\bigr] 

\leq \BbbE [K4 | wmax \leq c
\surd 
n]

t
+Pr

\bigl[ 
wmax \geq c

\surd 
n
\bigr] 
.(4.7)

To bound \BbbE [K4 | wmax \leq c
\surd 
n], we note that a random weight wi fulfills
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1991

Pr
\bigl[ 
wi \leq x | wmax \leq c

\surd 
n
\bigr] 
=

Pr
\Bigl[ \bigcap 

j wj \leq c
\surd 
n\cap wi \leq x

\Bigr] 
Pr
\Bigl[ \bigcap 

j wj \leq c
\surd 
n
\Bigr] 

=
Pr [wi \leq x]

Pr [wi \leq c
\surd 
n]

and since Pr [wi \leq c
\surd 
n] = 1 - o(1), we get that the density of wi is \rho wi

(x) = c\prime x - \beta for
some c\prime \geq 0 independent of x. Using that, we use Theorem 1.5 to bound

Pr
\bigl[ 
Uk is clique | wk \leq c

\surd 
n
\bigr] 

\leq \Theta (1)

\int c
\surd 
n

w0

\cdot \cdot \cdot 
\int c

\surd 
n

w0

\prod 
1\leq i<j\leq k

\Bigl( \kappa ij

n

\Bigr) 1 - \varepsilon 

w - \beta 
1 \cdot \cdot \cdot w - \beta 

k dw1 . . .dwk

=\Theta (1)n - (k2)(1 - \varepsilon )

\Biggl( \int c
\surd 
n

w0

w(k - 1)(1 - \varepsilon ) - \beta dw

\Biggr) k

for some function \varepsilon (n) = o(1). Because k\geq 4 and \beta = 3, we observe that the exponent
(k  - 1)(1  - \varepsilon )  - \beta is greater than  - 1 for sufficiently large n, and hence, the above
integral evaluates to

Pr
\bigl[ 
Uk is clique | wk \leq c

\surd 
n
\bigr] 
= ck((k - 1)(1 - \varepsilon )+1 - \beta )\Theta (1)n

k
2 (1 - \beta ).

For k= 4, we obtain

Pr
\bigl[ 
Uk is clique | wk \leq c

\surd 
n
\bigr] 
\leq \Theta (1)c4n - 4

and accordingly

\BbbE 
\bigl[ 
K4 | wmax \leq c

\surd 
n
\bigr] 
=

\biggl( 
n

4

\biggr) 
Pr
\bigl[ 
Uk is clique | wk \leq c

\surd 
n
\bigr] 
\leq \Theta (1)c4.

By (4.7) and (4.6), this implies

Pr [K4 \geq t] =\Theta (1)c4t - 1 +\scrO (1)c - 2.

Setting c= t1/5 yields Pr[K4 \geq t] =\scrO (1)(t - 1/5+t - 2/5) and shows that the probability
thatK4 \geq t can be made arbitrarily small by increasing t. To bound the clique number,
we note that the existence of a clique of size k implies the existence of

\bigl( 
k
4

\bigr) 
cliques of

size 4, and so

Pr [\omega (G)\geq k]\leq Pr

\biggl[ 
K4 \geq 

\biggl( 
k

4

\biggr) \biggr] 
,

which can be made arbitrarily small by choosing k large enough. Hence the probability
that the clique number grows as any superconstant function f(n) = \omega (1) is in o(1),
which shows that the clique number is in \scrO (1) a.a.s.

Finally, we deal with the case where \beta > 3, where we show that, in this case, there
are no cliques of size 4 or larger a.a.s.

Theorem 4.15. Let G = GIRG(n,\beta ,w0, d) be a standard GIRG with \beta > 3 and
d= \omega (log(n)). Then, \BbbE [Kk] = o(1) for k\geq 4 and, thus, \omega (G)\leq 3 a.a.s.
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1992 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

Proof. We use a similar strategy as in the above paragraph. In analogy to (4.5),
we now have

Pr [wmax \geq n\alpha ]\leq \Theta (1)n1 - (1 - \beta )\alpha ,

which is o(1) if \alpha > 1
\beta  - 1 . For some \alpha in the range 1/2>\alpha > 1

\beta  - 1 , we get

Pr [Uk is clique | wk \leq n\alpha ]

\leq \Theta (1)

\int n\alpha 

w0

\cdot \cdot \cdot 
\int n\alpha 

w0

\prod 
1\leq i<j\leq k

\Bigl( \kappa ij

n

\Bigr) 1 - \varepsilon 

w - \beta 
1 \cdot \cdot \cdot w - \beta 

k dw1 . . .dwk

=\Theta (1)n - (k2)(1 - \varepsilon )

\Biggl( \int n\alpha 

w0

w(k - 1)(1 - \varepsilon ) - \beta dw

\Biggr) k

=\Theta (1)n(\alpha  - 
1
2 )k(k - 1)(1 - \varepsilon )+\alpha k(1 - \beta ) = o

\Bigl( 
n\alpha k(1 - \beta )

\Bigr) 
.

Accordingly,

\BbbE 
\bigl[ 
K4 | wmax \leq c

\surd 
n
\bigr] 
=

\biggl( 
n

4

\biggr) 
Pr
\bigl[ 
Uk is clique | wk \leq c

\surd 
n
\bigr] 
=\Theta (1)n4+4\alpha (1 - \beta ) = o(1)

as \alpha (1 - \beta )< - 1. By Markov's inequality this implies

Pr [K4 \geq 1]\leq \BbbE [K4 | wmax \leq n\alpha ] + Pr [wmax \geq n\alpha ] = o(1),

as desired.

5. Concentration bounds. We use the insights gained so far to obtain the
following concentration bounds on the total number of cliques that hold for almost
all parameter regimes and clique sizes we consider.

Theorem 1.4. We have Kk/\BbbE [Kk]\rightarrow p 1; that is, for all \delta > 0,

Pr

\biggl[ \bigm| \bigm| \bigm| \bigm| Kk

\BbbE [Kk]
 - 1

\bigm| \bigm| \bigm| \bigm| \geq \delta 

\biggr] 
= o(1)

if one of the following conditions holds.
(i) d= o(log(n)), \beta \in (2,3), k \not = 2

3 - \beta , and k= o(n(3 - \beta )/4).

(ii) d= \omega (log(n)), \beta \in (2,3), k= o(n(3 - \beta )/4).
(iii) d= o(log(n)), \beta > 3 and k= o (log(n)/(log log(n) + d)).

Proof. We start with the regimes where cliques dominantly form among vertices
of weight

\surd 
n. Recall that this covers case (ii), and case (i) if we additionally assume

k < 2
3 - \beta . We write

Kk =Kk(M
( - )
\varepsilon (

\surd 
n)) +Kk(M

( - )
\varepsilon (

\surd 
n)).

Since we are in the regime where cliques form dominantly in M\varepsilon (
\surd 
n), as shown in

subsection 3.2 and subsection 4.2, there is some function \varepsilon = o(1) such that

\BbbE 
\Bigl[ 
Kk(M

( - )
\varepsilon (

\surd 
n))
\Bigr] 
= (1 - o(1))\BbbE [Kk] and \BbbE 

\Bigl[ 
Kk(M

( - )
\varepsilon (

\surd 
n))
\Bigr] 
= o(1)\BbbE [Kk] .

Furthermore, by Lemma 3.18 and Chebyshev's inequality, we have
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1993

Pr

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| Kk(M
( - )
\varepsilon (

\surd 
n))

\BbbE [Kk]
 - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \geq \delta 

\Biggr] 
\leq (1 + o(1))\delta  - 2

k\sum 
\ell =1

\scrO 
\biggl( 

\varepsilon 1 - \beta k2

n(3 - \beta )/2

\biggr) \ell 

=\scrO 
\biggl( 
\delta  - 2\varepsilon 1 - \beta k2

n(3 - \beta )/2

\biggr) 
.

If we choose an \varepsilon = o(1) that decays sufficiently slowly, this tends to 0 for every \delta > 0
due to our assumption on k. Furthermore,

Kk(M
( - )
\varepsilon (

\surd 
n))/\BbbE [Kk]\rightarrow p 0

by Markov's inequality, and the proof of this case is finished.
On the other hand, if cliques dominantly form among low-weight vertices (this is

the case for case (iii), and case (1) for k > 2
3 - \beta ), write

Kk =Kk(M
(+)
\varepsilon (w)) +Kk(M

(+)
\varepsilon (w))

for some w= e\Theta (1)dk
1

2 - \beta and note that this covers the cases (iii) and (iv). By Lemma
3.16,

Pr

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| Kk(M
(+)
\varepsilon (w))

\BbbE [Kk]
 - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \geq \delta 

\Biggr] 
\leq (1 + o(1))\delta  - 2\scrO (w/\varepsilon )k

\BbbE [Kk]
.

Note that due to k = o( log(n)
log log(n)+d ) = no(1) and w = n\Theta (1)d/ log(n)k

1
2 - \beta , we have

\scrO (w)k = no(1), and further \BbbE [Kk] \geq nc for some constant c > 0 (cf. Theorem 3.25).
Accordingly,

Pr

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| Kk(M
(+)
\varepsilon (w))

\BbbE [Kk]
 - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \geq \delta 

\Biggr] 
\leq (1 + o(1))\delta  - 2\varepsilon  - kn - c+o(1).

If we choose an \varepsilon = o(1) that decays sufficiently slowly, the above term is o(1).
Moreover, as above, for \varepsilon = o(1), we have

\BbbE 
\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] 
= (1 - o(1))\BbbE [Kk] and \BbbE 

\Bigl[ 
Kk(M

(+)
\varepsilon (w))

\Bigr] 
= o(1)\BbbE [Kk] ,

and the rest of the proof is analogous to the previous case.

6. Asymptotic equivalence with IRGs. We continue by studying the infinite-
dimensional limit of our model, i.e., the case where n is fixed and d goes to infinity.
We prove that in this situation, the GIRG model becomes in a strong sense equivalent
to the nongeometric IRG model. That is, we prove that the total variation distance
of the distribution over all possible graphs with n vertices goes to 0 as d \rightarrow \infty . We
prove the following theorem.

Theorem 1.1. Let \scrG (n) be the set of all graphs with n vertices, let \{ w\} n1 be
a weight sequence, and consider GIRG = IRG(\{ w\} n1 ) \in \scrG (n) and a standard GIRG
GGIRG =GIRG(\{ w\} n1 , d)\in \scrG (n) with any Lp-norm. Then,

lim
d\rightarrow \infty 

\| GGIRG,GIRG\| TV = 0.

We split the proof of this theorem into two parts by considering the case of an
Lp-norm for 1 \leq p < \infty and the case of L\infty -norm separately. Our investigations in
subsection 1.4 further show why RGGs on the torus become equivalent to nongeomet-
ric models as d tends to infinity and why this is not the case if we use the hypercube
instead as previously observed in [18, 13].
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1994 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

6.1. Equivalence for \bfitL \bfitp -norms with 1\leq \bfitp <\infty . Our argument builds upon
a multivariate central-limit theorem similar to the one used by Devroye et al., who
establish a similar statement for SRGGs [17] .

Before starting the proof, we introduce some necessary auxiliary statements. Our
argumentation builds upon the following Berry--Esseen theorem introduced in [38].

Theorem 6.1 (Theorem 1.1 in [38]). Let Z1, . . . ,Zd be independent zero-mean
random variables taking values in \BbbR m. Let further Z :=

\sum d
i=1Zi and assume that

the covariance matrix of Z is the identity matrix. Let X \in \BbbR m be a random variable
following the standard m-variate normal distribution \scrN (0, I). Then for any convex
set A\subseteq \BbbR m, we have

| Pr [Z \in A] - Pr [X \in A]| \leq (42d1/4 + 16)

d\sum 
i=1

\BbbE 
\Bigl[ 
\| Zi\| 3

\Bigr] 
,

where \| Zi\| is the L2-norm of Zi.

This illustrates that for d\rightarrow \infty , the (random) distance between two vertices be-
haves like a Gaussian random variable. Throughout this section, we use the following
notation. For any u, v \in V , we define \Delta (u,v) \in \BbbR d as the componentwise distance of
u and v, i.e., \Delta (u,v),i := | xui  - xvi| C = min\{ | xui  - xvi| ,1 - | xui  - xvi| \} . Recall that
tuv is the connection threshold of the vertices u, v, i.e., u, v are adjacent if and only if
their distance is at most tuv. We may express

Pr [u\sim v] = Pr
\Bigl[ \bigm\| \bigm\| \Delta (u,v)

\bigm\| \bigm\| 
p
\leq tuv

\Bigr] 
=Pr

\Biggl[ 
d\sum 

i=1

\Delta p
(u,v),i \leq tpuv

\Biggr] 
and we further note that \Delta (u,v),i and \Delta (u,v),j are i.i.d. random variables. Define

\mu :=\BbbE 
\Bigl[ 
\Delta p

(u,v),i

\Bigr] 
and \sigma 2 := Var

\Bigl[ 
\Delta p

(u,v),i

\Bigr] 
,

and let the random variable Z(u,v),i be defined as

Z(u,v),i :=
\Delta p

(u,v),i  - \mu 
\surd 
d\sigma 

.

Now define Z(u,v) :=
\sum d

i=1Z(u,v),i and observe that this allows us to express

Pr [u\sim v] = Pr

\Biggl[ 
d\sum 

i=1

\Delta p
(u,v),i \leq tpuv

\Biggr] 
=Pr

\biggl[ 
Z(u,v) \leq 

tpuv  - d\mu \surd 
d\sigma 

\biggr] 
.

Working with Z(u,v) instead of \Delta (u,v) has the advantage that we have \BbbE 
\bigl[ 
Z(u,v)

\bigr] 
= 0

and

Var
\bigl[ 
Z(u,v)

\bigr] 
=

d\sum 
i=1

Var
\bigl[ 
Z(u,v),i

\bigr] 
=

1

d\sigma 2

d\sum 
i=1

Var
\Bigl[ 
\Delta p

(u,v),i

\Bigr] 
= 1.

These properties are useful when applying Theorem 6.1. Now recall that tuv is defined
so that the marginal connection probability Pr[u\sim v] is equal to min\{ 1, \lambda wuwv

n \} , which
is required in order to ensure that \BbbE [deg(v)] \propto wv for all v. We use this to establish
the following lemma describing the asymptotic behavior of the threshold tuv.
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1995

Lemma 6.2. Let G = GIRG(n,\beta ,w0, d) = (V,E) be a standard GIRG with Lp-
norm for p \in [1,\infty ). Denote by \Phi the cumulative density function of the standard
Gaussian distribution, i.e., \Phi (x) =

\surd 
2\pi 
\int x

 - \infty e - t2/2dt. Then for any u, v \in V with

u \not = v and \lambda wuwv

n < 1, we have

lim
d\rightarrow \infty 

tpuv  - d\mu \surd 
d\sigma 

=\Phi  - 1

\biggl( 
\lambda wuwv

n

\biggr) 
.

Proof. Let u, v be fixed. In the remainder of this proof, we abbreviate Z(u,v) with
Z, and Z(u,v),i with Zi. For every c \in \BbbR , define the set Ac = \{ x\in \BbbR | x\leq c\} . Let
further X \sim \scrN (0,1) be a standard Gaussian random variable. We get from Theorem
6.1 that

| Pr [Z \leq c] - Pr [X \leq c]| \leq (42d1/4 + 16)

d\sum 
i=1

\BbbE 
\Bigl[ 
| Zi| 3

\Bigr] 
=

42d1/4 + 16

d3/2\sigma 3

d\sum 
i=1

\BbbE 
\biggl[ \bigm| \bigm| \bigm| \Delta p

(u,v),i  - \mu 
\bigm| \bigm| \bigm| 3\biggr] 

\leq 42d1/4 + 16

d1/2\sigma 3
(6.1)

= od(1)(6.2)

because \Delta p
(u,v),i  - \mu \in [ - 1,1], which shows that Z converges to a standard Gaussian

random variable as d\rightarrow \infty . In particular, this statement is true for c=\Phi  - 1(\lambda wuwv

n ).
At the same time,

Pr

\biggl[ 
X \leq \Phi  - 1

\biggl( 
\lambda wuwv

n

\biggr) \biggr] 
=

\lambda wuwv

n
=Pr

\biggl[ 
Z \leq tpuv  - d\mu \surd 

d\sigma 

\biggr] 
,

where the second step follows by the definition of tuv and Z. Hence, by (6.1),

lim
d\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| Pr\biggl[ Z \leq \Phi  - 1

\biggl( 
\lambda wuwv

n

\biggr) \biggr] 
 - Pr

\biggl[ 
Z \leq tpuv  - d\mu \surd 

d\sigma 

\biggr] \bigm| \bigm| \bigm| \bigm| = 0.

Since the function f(c) = Pr [Z \leq c] converges to the cumulative density function \Phi of
the standard Gaussian distribution and since this function is continuous and strictly
monotonically increasing, we infer that

lim
d\rightarrow \infty 

tpuv  - d\mu \surd 
d\sigma 

=\Phi  - 1

\biggl( 
\lambda wuwv

n

\biggr) 
.

With this, we prove the main theorem of this section.

Proof of Theorem 1.1 for p\in [1,\infty ). As n is fixed, the set \scrG (n) is finite and so it
suffices to show that for all H \in \scrG (n), we have

lim
d\rightarrow \infty 

Pr [GGIRG =H] = Pr [GIRG =H].(6.3)

First, we note that for any u, v \in V with \lambda wuwv

n \geq 1, u and v are guaranteed to be
connected in both GGIRG and GIRG. Hence, for every H \in \scrG (n) in which u and v
are not connected, we get Pr [GGIRG =H] = Pr [GIRG =H] = 0. For this reason, it
suffices to show (6.3) for all H \in \scrG (n) in which all u, v \in V with u \not = v and \lambda wuwv

n \geq 1
are connected.
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1996 FRIEDRICH, G\"OBEL, KATZMANN, AND SCHILLER

Let H be an arbitrary but fixed such graph. We define the set \scrQ = \{ (u, v) | 1 \leq 
u< v\leq n, \lambda wuwv

n < 1\} , which contains all pairs of vertices that are not connected with
probability 1. For any event E, we denote by 1(E) the random variable that is 1 if E
occurs and 0 otherwise. Similarly, we denote by H(u,v) an indicator variable that is 1
if the edge \{ u, v\} is present in H and 0 otherwise. Furthermore, for every (u, v) \in \scrQ ,
we define \scrN (u,v) to be an independent standard Gaussian random variable. Then,

Pr [GIRG =H] = Pr

\left[  \bigcap 
(u,v)\in \scrQ 

\biggl( 
1

\biggl( 
\scrN (u,v) \leq \Phi  - 1

\biggl( 
\lambda wuwv

n

\biggr) \biggr) 
=H(u,v)

\biggr) \right]  .
Furthermore, recall the definition of Z(u,v) and observe

Pr [GGIRG =H] = Pr

\left[  \bigcap 
(u,v)\in \scrQ 

\biggl( 
1

\biggl( 
Z(u,v) \leq 

tpuv  - d\mu \surd 
d\sigma 

\biggr) 
=H(u,v)

\biggr) \right]  .
In addition, we define the random graph \~G in which all u \not = v \in V with \lambda wuwv

n \geq 1
are guaranteed to be connected, and in which for every (u, v) \in \scrQ , the edge \{ u, v\} is
present if and only if Z(u,v) \leq \Phi  - 1(\lambda wuwv

n ). Accordingly,

Pr
\Bigl[ 
\~G=H

\Bigr] 
=Pr

\left[  \bigcap 
(u,v)\in \scrQ 

\biggl( 
1

\biggl( 
Z(u,v) \leq \Phi  - 1

\biggl( 
\lambda wuwv

n

\biggr) \biggr) 
=H(u,v)

\biggr) \right]  .
From Lemma 6.2, we get that

lim
d\rightarrow \infty 

tpuv  - d\mu \surd 
d\sigma 

=\Phi  - 1

\biggl( 
\lambda wuwv

N

\biggr) 
,

and so,

lim
d\rightarrow \infty 

\bigm| \bigm| \bigm| Pr [GGIRG =H] - Pr
\Bigl[ 
\~G=H

\Bigr] \bigm| \bigm| \bigm| = 0.

It therefore only remains to show limd\rightarrow \infty Pr[ \~G=H] = Pr[GIRG =H].
For this, we let m = | \scrQ | and we define the random vector Zi \in \BbbR m that has

the random variables Z(u,v),i as its components for all (u, v) \in \scrQ . We further define

Z :=
\sum d

i=1Zi. We use Theorem 6.1 and define the set A\subseteq \BbbR m such that

x\in A\leftrightarrow \forall (u, v)\in \scrQ :

\Biggl\{ 
x(u,v) \leq \Phi  - 1

\bigl( 
\lambda wuwv

n

\bigr) 
if H(u,v) = 1,

x(u,v) >\Phi  - 1
\bigl( 
\lambda wuwv

n

\bigr) 
otherwise.

It is easy to observe that A is convex. We get Pr[ \~G=H] = Pr[Z \in A] and Pr[GIRG =
H] = Pr[X \in A], where X is a random variable from the standard m-variate normal
distribution.

We further note that for all (u, v)\in \scrQ , the random variables \Delta (u,v),1, . . . ,\Delta (u,v),d

are independent, which implies that Z1, . . . ,Zd are independent as well. Furthermore,
they have expectation 0 and for all 1\leq i, j \leq d, (u, v), (s, t)\in \scrQ with (u, v) \not = (s, t), the
random variables \Delta (u,v),i and \Delta st,j are independent, even if i= j and \{ u, v\} \cap \{ s, t\} \not = \emptyset 
(because the torus is a homogeneous space). This implies that also Z(u,v),i and Z(s,t),j

as well as Z(u,v) and Z(s,t) are independent. Hence, Cov
\bigl[ 
Z(u,v),Z(s,t)

\bigr] 
= 0. Accord-

ingly, the covariance matrix of Z is the identity matrix. Thus, Theorem 6.1 implies
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CLIQUES IN HIGH-DIMENSIONAL GIRGs 1997

| Pr [Z \in A] - Pr [X \in A]| \leq (42d1/4 + 16)

d\sum 
i=1

\BbbE 
\Bigl[ 
\| Zi\| 3

\Bigr] 

= (42d1/4 + 16)

d\sum 
i=1

\BbbE 

\left[   
\left(  \sum 

(u,v)\in \scrQ 
Z2
(u,v),i

\right)  3/2
\right]   

= (42d1/4 + 16)

d\sum 
i=1

1

d3/2\sigma 3
\BbbE 

\left[   
\left(  \sum 

(u,v)\in \scrQ 

\Bigl( 
\Delta p

(u,v),i  - \mu 
\Bigr) 2\right)  3/2

\right]   
\leq (42d1/4 + 16)

d\sum 
i=1

m3/2

d3/2\sigma 3

= (42d1/4 + 16)
dm3/2

d3/2\sigma 3

=
m3/2

\sigma 3

\biggl( 
42

d1/4
+

16

d1/2

\biggr) 
= od(1),

as \Delta p
(u,v),i  - \mu \in [ - 1,1] and m\leq 

\bigl( 
n
2

\bigr) 
. This shows

lim
d\rightarrow \infty 

Pr
\Bigl[ 
\~G=H

\Bigr] 
=Pr [GIRG =H],

as desired.

As mentioned before, the above result helps in getting an intuition for how the
choice of the underlying ground space of geometric random graphs affects the impact
of an increasing dimensionality. Recall that RGGs on the hypercube do not converge
to Erd\H os--R\'enyi graphs as n is fixed and d\rightarrow \infty [13, 18]. However, our results imply
that they do when choosing the torus as ground space. These apparent disagreements
are despite the fact that we apply the central limit theorem similarly.

As discussed before, the above proof relies on the fact that, for independent zero-
mean variables Z1, . . . ,Zd, the covariance matrix of the random vector Z =

\sum d
i=1Zi is

the identity matrix. This is due to the fact that the torus is a homogeneous space, im-
plying that the probability measure of a ball of radius r is the same, regardless of where
this ball is centered. This makes the random variables Z(u,v) and Z(u,s) independent.
As a result their covariance is 0 although both ``depend"" on the position of u.

For the hypercube, this is not the case. Although the distance of two vertices can
analogously be defined as a sum of independent, zero-mean random vectors over all
dimensions just like we do above (the only difference being that \Delta (u,v),i is now the
distance between u, v in dimension i in the hypercube, leading to different values of
\mu and \sigma 2), the random variables Z(u,v) and Z(u,s) do not have a covariance of 0.

In fact, one can verify that for every 1\leq i\leq d, there is a slightly positive covariance
between \Delta (u,v),i and \Delta (u,s),i (equal to 1/180). This transfers to a covariance between
Z(u,v) and Z(u,s), which stays constant as d grows, since

Cov[Z(u,v),Z(u,s)] =\BbbE 
\bigl[ 
Z(u,v) \cdot Z(u,s)

\bigr] 
=

d\sum 
i=1

d\sum 
j=1

\BbbE 
\bigl[ 
Z(u,v),i \cdot Z(u,s),j

\bigr] 
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=
1

d\sigma 2

d\sum 
i=1

Cov[\Delta p
(u,v),i\Delta 

p
(u,s),i]

=
Cov[\Delta p

(u,v),1\Delta 
p
(u,s),1]

\sigma 2
,

where we used that \BbbE 
\bigl[ 
Z(u,v),i \cdot Z(u,s),j

\bigr] 
= 0 if i \not = j. Accordingly, the covariance matrix

\Sigma of Z is not the identity matrix. Nevertheless, our proof from the previous section
still applies if we replace Z by Y =

\sum d
i=1\Sigma 

 - 1Zi. Now Y is the sum of independent
random vectors and has the identity matrix as its covariance matrix, so Theorem
6.1 remains applicable. Furthermore, \BbbE 

\bigl[ 
| | \Sigma  - 1Zi| | 3

\bigr] 
is still proportional to d - 3/2 and

thus remains bounded such that Y converges to a standard m-dimensional normal
vector. This implies that Z converges to a random vector from \scrN (0,\Sigma ), showing that
RGGs on the hypercube converge to a nongeometric model where the probability
that any fixed graph is sampled can be described, like above, as the probability that
Z \sim \scrN (0,\Sigma ) falls into the convex set A. In this model, however, the edges are not
drawn independently, as \Sigma is not the identity matrix. In fact, for any three vertices
s,u, v, the components Z(u,v) and Z(u,s) are slightly positively correlated, so there is a
slightly higher probability that s,u, v form a triangle than in a corresponding Erd\H os--
R\'enyi graph. This leads to a higher tendency to form cliques, which is in accordance
with the observations from Erba et al. [18].

6.2. Asymptotic equivalence for \bfitL \infty -norm. In this section, we prove that
our model also loses its geometry if L\infty -norm is used. We use a different technique
to prove this theorem, as the L\infty -distance between two vertices is no longer a sum
of independent random variables and central limit theorems no longer apply. Instead
our argument builds upon the bounds we establish in subsection 4.1.

Proof of Theorem 1.1 for L\infty -norm. We show that for all H \in \scrG (n),
lim
d\rightarrow \infty 

Pr [GGIRG =H] = Pr [GIRG =H].(6.4)

We start by establishing a way to compute Pr [G=H] for any random variable G
representing a distribution over all graphs in \scrG (n). For this, we denote by E(H) the
set of edges of a graph H = (V,E)\in \scrG (n). We further let

\bigl( 
V
2

\bigr) 
be the set of all possible

edges on the vertex set V . Now, for any H \in \scrG , we have

Pr [G=H] = Pr [E(G)\supseteq E(H)] - 
\sum 

E(H)\subset \scrA \subseteq (V2)

Pr [E(G) =\scrA ].

That is, we may express the probability that G is sampled as the probability that
a supergraph of G is sampled minus the probability that any proper supergraph of
G is sampled. Now, for any E(H) \subset \scrA \subseteq 

\bigl( 
V
2

\bigr) 
, the probability Pr [E(G) =\scrA ] is the

probability that G is a specific graph with at least | E(H)| + 1 edges. Now, we may
repeatedly substitute terms of the form Pr [E(G) =\scrA ] in the same way until we have
an (alternating) sum consisting only of terms that have the form Pr [E(G)\supseteq \scrA ] for
some E(H)\subset \scrA \subseteq 

\bigl( 
V
2

\bigr) 
. That is, we may calculate the probability Pr [G=H] even if

we only know Pr [E(G)\supseteq \scrA ] for any \scrA \subseteq 
\bigl( 
V
2

\bigr) 
.

As n is fixed, in order to prove our statement in (6.4), it suffices to prove that,
for each \scrA \subseteq 

\bigl( 
V
2

\bigr) 
, we have

lim
d\rightarrow \infty 

Pr [E(GGIRG)\supseteq \scrA ] = Pr [E(GIRG)\supseteq \scrA ] =
\prod 

\{ i,j\} \in \scrA 

\kappa ij

n
.
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Using Theorem 1.5, we get that

Pr [E(GGIRG)\supseteq \scrA ] =
\prod 

\{ i,j\} \in \scrA 

\Bigl( \kappa ij

n

\Bigr) 1\mp \scrO d( \mathrm{l}\mathrm{n}(n)
d )

.

For d\rightarrow \infty , this clearly converges to Pr [E(GIRG)\supseteq \scrA ], and the proof is finished.
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