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ABSTRACT

Recently, several continuous-domain optimizers have been em-
ployed to solve mixed-integer black box optimization (MI-BBO)
problems by adjusting them to handle the discrete variables as
well. In this work we want to compare how these adjusted algo-
rithms perform on purely discrete variables when compared with
algorithms designed to handle discrete domains.

We use the algorithm 𝑅𝐿𝑆𝛼,𝛽 from the literature, which was an-
alyzed theoretically on a specific problem class. We experimentally
optimize the parameters 𝛼 and 𝛽 for further analysis.

Second, we make a comprehensive comparison of 𝑅𝐿𝑆𝛼,𝛽 with
algorithms from the continuous domain on a generalization of
OneMax to Z𝑛 . We find that 𝑅𝐿𝑆𝛼,𝛽 shows better performance on
this discrete benchmark functions than the other algorithms.

Overall, these results show that adaptations of continuous al-
gorithms are not suited for MI-BBO problems, and that research
combining the strengths of both approaches is more promising.
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1 INTRODUCTION

In recent works, optimization algorithms meant for the continu-
ous domain were extended to also handle discrete variables. In
particular, the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) were extended to handle integer-valued variables (see
[6] and [9], respectively). The motivation is to design algorithms
which can simultaneously handle continuous and discrete variables
in an optimization problem, thus addressing Mixed-Integer Black
Box Optimization (MI-BBO) problems.

So far, this effort came mostly from the side of continuous op-
timization experts. With this paper we want to add a view from
discrete optimization. Concretely, we compare recent algorithms
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adapted to handle integer-valued variables with an algorithm devel-
oped specifically for discrete search spaces. In our analyses, we drop
the continuous variables from the search space, since we specifi-
cally want to understand the performance on the discrete variables,
and not directly develop a better algorithm for MI-BBO problems.

As the algorithm for discrete problems we consider a variant of
Random Local Search (RLS) from [2].1 This algorithm maintains a
single current search point and adjusts it only in one dimension per
iteration; only the offspring which is not worse than the parent is
accepted. The magnitude of the change in a dimension is controlled
by a step width parameter per dimension, which the algorithm
self-adapts with a success rule. See Section 2 for details.

Also from [2] we get a generalization of OneMax, given as the
ℓ1-distance to the unknown optimum and start our analysis with
this test function. We are particularly interested to see the impact
of the initial distance to the optimum, but equally informative is
the performance in dependence on the dimension of the problem.

The RLS with self-adaptive step size was mathematically shown
to optimize generalized OneMax in Θ(𝑛(log𝑛 + log 𝑟 )) function
evaluations [2]. While this theorem gave some indication about
what parameters are useful, these parameters have not been ex-
perimentally optimized. In Section 2.4 we show that (a) the RLS
algorithm is robust to the exact choice of parameters with similar
performance for similar parameter values; and (b) the parameter
values 𝛼 = 10 and 𝛽 = 0.4 lead to a very good performance on a
specific mid-sized instance, which we fix for further analyses.

In Section 3 we compare the performance of CMA-ESwM and
CMA-ESwR in terms of their median run time on the generalized
OneMax fitness function. We conclude that the 𝑅𝐿𝑆𝛼,𝛽 is signifi-
cantly better suited for the purely discrete search space.

Finally, we give a general discussion of our findings in Section 4
as well as concluding remarks. Before getting to the main part of
the paper, we give details on problems and algorithms in Section 2.

1.1 Related Work

In [1], the authors propose a Generalized Evolutionary Strategy
(GES) for solving a specific industry optimization problem, the
optical filter optimization. This paper is the first one proposing
a generalized heuristic approach for mixed integer optimization,
named Mixed Integer Evolutionary Strategy (MIES).

Authors in [7] continue in the direction of MIES. They begin
with a conceptual introduction of MIES and then present theoretical
result in the optimal self-adaptation of step sizes and mutation
rates on a specific model. The authors also summarize the MIES
application, which prove the MIES on a general class of mixed
integer nonlinear programming problems.

1Note that [2] refers to the setting of integer-valued variables as “multi-valued” vari-
ables. This phrase seems to imply a boundedness of the domain of the variables, which
was true in that paper, but not necessarily in the present paper.
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See also [8] for further discussions on evolutionary strategies
for mixed-integer optimization.

2 PROBLEM AND ALGORITHMS

In this section we introduce the problem and algorithms we con-
sider.

Specifically, we analyze the generalized OneMax problem pro-
posed in [2], called integer-valued OneMax. This function extends
the search space from {0, 1}𝑛 to {0, · · · , 𝑟 − 1}𝑛 .

We formally define the integer-valued OneMax as follows, ex-
tending the definition from [2] slightly. For a given 𝑅 ∈ Z𝑛 , we
have the fitness function as

𝑓𝑟 : Z𝑛 → Z≥0, 𝑥 ↦→
𝑛∑︁
𝑖=1
|𝑥𝑖 − 𝑅𝑖 |.

We are interested in minimizing this fitness function.
In the following subsection, we introduce the algorithms for com-

parison. We consider two algorithms based on CMA-ES, followed
by a version of RLS.

2.1 CMA-ES with Deterministic Rounding

Given that CMA-ES incorporates a self-adaptive step size, we ex-
plore whether the algorithm itself possesses the capability to handle
the integer-valued OneMax problem through a straightforward
treatment. The only modification made to CMA-ES involves the in-
troduction of a deterministic rounding function to map the samples
from the R𝑛 space to the discrete Z𝑛 space. No other aspects of
the CMA-ES algorithm are altered. Notice in [5] the authors intro-
duced an alteration of CMA-ES which implements box constraints
to prevent the mean value from deviating from zero. This method
lies in the sampling phase while CMA-ESwR does not modify the
samples. The changes lies in the transformation of the objective
function. Specifically, each candidate CMA-ES sample has its indi-
vidual elements rounded to the nearest integer when calculating
the fitness value.

2.2 CMA-ES with Margin

Based on CMA-ES, in [3] the authors proposed another approach
called CMA-ESwM. This approach aims to address the issue of
stagnation caused by the discretization by deterministic rounding.
The authors acknowledge the existence of a method introduced in
[5], which implements box constraints to prevent the mean value
from deviating from zero. However, this method fails to completely
eliminate stagnation in the negative domain. To overcome this
limitation, the authors introduce a lower bound, referred to as a
margin, for adjusting the controlling parameters of the Multivariate
Gaussian Distribution (MGD) used for sampling the population
pool and the mean value m.

For CMA-ES and CMA-ESwM, we directly take the code up-
loaded by the authors of [3] to GitHub.2

For both variants of CMA-ES, we implemented the restart strat-
egy as proposed in [4]. In order to provide a more informative
comparison, we focus not only on the success rate but also on the
runtime of various algorithms when attempting to find the opti-
mum. To facilitate this, we adopt one of the strategies outlined in
2https://github.com/EvoConJP/CMA-ES_with_Margin

[4] to employ restarts, which involves resetting all sample values
and doubling the population size _.

2.3 Random Local Search with Self-Adaptive

Operator

The authors in [2] propose another perspective of analyzing the
integer problem. They propose an algorithm called 𝑅𝐿𝑆𝛼,𝛽 . The
algorithm has a vector 𝑣 called velocity which is the step size for
the algorithm to make progress in each iteration. The vector v is
controlled by parameters 𝛼 and 𝛽 , where 𝛼 > 1 increases the step
size from v to 𝛼 · v when the algorithm finds a better search point,
while 0 < 𝛽 < 1 decreases the step size by a factor of 𝛽 when the
algorithm overshoots or does not find a better search point.

Concretely, the 𝑅𝐿𝑆𝛼,𝛽 is given in Algorithm 1. We provide the
code on GitHub.3

Algorithm 1: 𝑅𝐿𝑆𝛼,𝛽 minimizing the integer-valued One-
Max problem
1 Initialization: Choose V ∈ [1, 10]𝑛 u.a.r. 𝑡 = 0;
2 Initialize x as an all 0 integer string;
3 while stopping criterion not met do

4 y← x ;
5 Choose 𝑖 ∈ [𝑛] u.a.r.;
6 With probability 1

2 let y𝑖 ← x𝑖 + ⌊V𝑖 ⌋ otherwise let
y𝑖 ← x𝑖 − ⌊V𝑖 ⌋ ;

7 if 𝑓 (y) < 𝑓 (x) then
8 V𝑖 ← ⌊𝛼V𝑖 ⌋ ;
9 else

10 V𝑖 ←𝑚𝑎𝑥 {1, 𝛽V𝑖 } ;
11 x← y ;

The authors in [2] also provide a theorem and a rigorous proof
that the run time of 𝑅𝐿𝑆𝛼,𝛽 optimizing an integer-valued OneMax
problem based on some constraints on the value of 𝛼 and 𝛽 is
Θ(𝑛(log𝑛 + log 𝑟 )). The theorem is presented as follows.

Theorem 1. For constants 𝑎,𝑏 satisfying 1 < 𝑎 ≤ 2, 1/2 < 𝑏 ≤ 0.9,
2𝑎𝑏 − 𝑏 − 𝑎 > 0, 𝑎 + 𝑏 > 2 and 𝑎2𝑏 > 1 (one can choose, for

example, 𝑎 = 1.7 and 𝑏 = 0.9) the expected run time of 𝑅𝐿𝑆𝛼,𝛽 in any

generalized r-valued OneMax function is Θ(𝑛(log𝑛 + log 𝑟 )).

Furthermore, we notice for 𝑅𝐿𝑆𝛼,𝛽 , there are no specific guide-
lines for parameter selection of 𝛼 and 𝛽 . Consequently, as a prelim-
inary step documented in the next section, we conduct a series of
experiments to determine a suitable pair of parameters for 𝑅𝐿𝑆𝛼,𝛽 .

2.4 Grid Search for Parameter of RLS

To find the optimal combination of𝛼 and 𝛽 in optimizing the integer-
valued OneMax problem, we design a set of trial tests for 𝑛 = 40
and 𝑟 = 1000. We apply a grid search for 𝛼 ∈ [2, 20] with a step size
of 1 and 𝛽 ∈ [0.1, 0.9] with a step size of 0.1. We let the algorithm
run 200 times independently for each combination of 𝛼 and 𝛽 and
3https://github.com/SherryXiaoyueLi/RLS_ab
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take the median value of the fitness evaluation as the run time for
comparison. Results are given in Figure 1.
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Figure 1: Run time for 𝑅𝐿𝑆𝛼,𝛽 under various 𝛼 and 𝛽 optimiz-

ing integer-valued OneMax when 𝑛 = 40, 𝑟 = 1000. Each line

is the median value out of 200 independent runs.

From Figure 1 we notice first that a value of 𝛽 ≥ 0.7 is bad: the
run time keeps increasing as 𝛼 increasing and is significantly higher
than the lower values of 𝛽 . Then we see that 𝛽 ≤ 0.3 (lines in blue,
orange, and green) does not help shorten the run time even with
large 𝛼 . Also when 𝛼 ≥ 10.0 and 𝛽 ≥ 0.4, the run time does not
show much of a difference. Therefore we select 𝛼 = 10 and 𝛽 = 0.4
for all further experiments.

3 COMPARISON OF ALGORITHMS ON

MULTI-VALUED ONEMAX PROBLEM

In this section, we present a comprehensive comparison of 𝑅𝐿𝑆𝛼,𝛽 ,
CMA-ESwM, and CMA-ESwR in their performance in optimizing
the integer-valued OneMax problem.

3.1 Comparison of Algorithms in Bounded

Space

We notice that, for the CMA-ESwM, because of the encoding func-
tion, a discrete space is defined as a bounded set of integers. The
encoding function defined by CMA-ESwM employs the parameter
𝐾𝑗 , which represents the number of candidate integers for the 𝑗-th
real value, and this parameter 𝐾𝑗 is the bound. In the experimental
section of [3], the authors defined the bound as [−10, 11]𝑛 . We
expand the boundary to [−2 · 𝑟, 2 · 𝑟 ]𝑛 , where 𝑟 is the target value
for each component of our integer-valued OneMax objective.

In the initialization of 𝑅𝐿𝑆𝛼,𝛽 , due to the bounded search space,
we can use the prior knowledge about the boundary of the search
space to initialize 𝑣 . Therefore, we change the initialization of the
velocity in Step 1 of Algorithm 1 to choose 𝑣 ∈ [𝑟/4, 𝑟/2]𝑛 uniformly
at random. This implies that the algorithm will initially search the
space in large steps and close in using smaller steps later. Note that,
due to choosing the initial velocity randomly, the algorithm has no
unfair advantage in finding the optimum, which might happen if
the distance to the optimum is exactly the initial step size.

In order to assess performance, we conducted a comparative
analysis using a similar methodology as in the previous section.
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Figure 2: Comparison of run time for both CMA-ES variants

and 𝑅𝐿𝑆𝛼,𝛽 . Each marker is the median run time of 50 inde-
pendent runs. The x-axis stands for log2 (𝑟 ) and the y-axis

stands for fitness evaluation normalized by 𝑛. Different col-

ors stand for different algorithms and different marker style

stands for different 𝑛.

We set 𝑛 ∈ {20, 60, 100} and 𝑟 ∈ {2𝑗 | 𝑗 ∈ {3, . . . , 13}}. As a
result, we take the median value over 50 independent runs because
the restart strategy of CMA-ESwM and CMA-ESwR leads to a
significant spread in the run times, depending on whether the
restart is initiated or not. To improve clarity, we normalize the run
time by 𝑛. The results are presented in Figure 2.

From Figure 2, we see that 𝑅𝐿𝑆𝛼,𝛽 outperforms both variants
of CMA-ES for all values of 𝑛 and 𝑟 . We also observe a linear
relation between run time and log2 (𝑟 ). In particular, for 𝑛 = 20, the
advantage of 𝑅𝐿𝑆𝛼,𝛽 over CMA-ESwR is a multiplicative factor of
at least 2.1 and the multiplicative advantage over CMA-ESwR is
1.5 for small 𝑟 . For larger 𝑟 , starting at 𝑟 = 26, the multiplicative
advantage is already 2.0 and stays above 2 for all larger 𝑟 .

For 𝑛 = 60, the multiplicative advantage is 2.5 over CMA-ESwM
and 5.5 over CMA-ESwR even when 𝑟 = 23. As 𝑟 increases, the
advantage stays at an approximate multiplicative factor of at least
2.0 and 4.5 over CMA-ESwM and CMA-ESwR, respectively.

Finally, for 𝑛 = 100, when 𝑟 = 23, the multiplicative advantage is
3.0 over CMA-ESwM and 9.7 over CMA-ESwR. And as 𝑟 increases,
starting from 𝑟 = 26 the multiplicative advantage stabilizes around
2.0 over CMA-ESwM and 7.0 over CMA-ESwR, respectively.

Furthermore, both CMA-ESwM and 𝑅𝐿𝑆𝛼,𝛽 appear to scale lin-
early with𝑛 (blue and black markers in different shapes do not show
much of a difference), while CMA-ESwR does not. This is because
the restart times for CMA-ESwR depend on the values of 𝑛 and 𝑟 .
This shows that CMA-ESwR is more sensitive to the restart strategy
compared to CMA-ESwM. Moreover, this demonstrates that the
currently selected restart strategy, while aiding in the search for
the optimal solution, may not be well-suited for analysis.

In general, even for small instance sizes, the advantage of 𝑅𝐿𝑆𝛼,𝛽
is a multiplicative factor of at least 1.5. For larger 𝑟 , starting at 𝑟 = 26,
the multiplicative advantage is already about 2 and increases to
2.5 for 𝑟 = 213. In some extreme cases, for example when 𝑛 = 100,
the multiplicative factor against CMA-ESwR is more than 9, and
against CMA-ESwM it is more than 3, even when 𝑟 = 23. This
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Figure 3: Comparison of run times forCMA-ESwR and 𝑅𝐿𝑆𝛼,𝛽
with differently initialized 𝑣 . The x-axis stands for log2 (𝑟 ) and
the y-axis stands for fitness evaluation. Each marker is the

median run time of 50 independent runs, which different

styles stands for different 𝑛 and different colors stand for

differently initialized 𝑣 .

highlights the suitability of 𝑅𝐿𝑆𝛼,𝛽 for effectively optimizing the
integer-valued OneMax problem.

3.2 Another Perspective: the Unbounded Search

Space

Another perspective to be considered for comparing algorithms
is that of Z𝑛 as the search space, i.e. the discrete space with no
boundary.

As previously discussed, CMA-ESwM needs a bound for the
encoding function which means it is not applicable for the problem
defined on the unbounded search space. In contrast to this, CMA-
ESwR will have no difference in the bounded and unbounded space
since CMA-ES has no boundary for samples and the deterministic
rounding function mapping the sampled value in R𝑛 to Z𝑛 will
also have no restrictions. Therefore, results will be the same as the
results shown in Figure 2.

As for 𝑅𝐿𝑆𝛼,𝛽 , the main difference is in the initialization of the
velocity 𝑣 . Since it is an unbounded space, the algorithm cannot
know what a suitable initial velocity would be. Therefore, the ini-
tialization of 𝑣 needs to be independent of 𝑟 . We design groups of
experiments accordingly.

We select the same parameter setup as for the bounded space
but differently initialized 𝑣 . For the unbounded search space, we
initialize 𝑣 ∈ [1, 10]𝑛 uniformly at random. The rest is the same as
before. Results are given in Figure 3.

From Figure 3 we see that, when 𝑟 > 27, 𝑅𝐿𝑆𝛼,𝛽 with initialized
𝑣 ∈ [𝑟/4, 𝑟/2]𝑛 has a shorter run time than 𝑅𝐿𝑆𝛼,𝛽 with initialized
𝑣 ∈ [1, 10]𝑛 , as indicated by the non-overlapping black and orange
markers. However the observed discrepancy in performance is
minor. This suggests that for 𝑅𝐿𝑆𝛼,𝛽 , possessing prior knowledge
regarding the optimum within the bounded and unbounded search
spaces has a negligible impact on the performance of 𝑅𝐿𝑆𝛼,𝛽 . This
intuitively comes from the exponential increase in velocity while
the velocity is too low (see [2]), while the main bottleneck of the
optimization lies in the later parts of the optimization process.

4 DISCUSSION AND CONCLUSION

𝑅𝐿𝑆𝛼,𝛽 is specific to the discrete domain and employs a clever step
size adaptation. Thus, it is not surprising that it outperforms other
algorithms which are not meant for this domain. However, we
believe that RLS offers an excellent base line on what performance
can look like for discrete problems.

While discrete problems require smaller and smaller steps to
approximate local optima, the setting in the discrete domain is
different: We want to find the optimum, which might be far away.
Our analyses have shown that a lot of algorithms suffer just from
moving the optimum away from the start point (while an optimum
near the starting point is common for continuous optimization).
We believe that any algorithm targeting a discrete domain needs to
be able to follow these long ascents to the optimum.

Algorithms such as CMA-ESwM and CMA-ESwR add features
which are reminiscent of features in discrete-domain algorithms,
and try to mimic corresponding behavior. We show that using the
original discrete algorithms employ these strategiesmore effectively.
Thus, we believe that, instead of making continuous algorithms
behave like discrete algorithms, one should focus building directly
on the strengths of discrete algorithms.

Clearly, our analysis only on an integer-valued function is not
the same as a truly mixed-integer problem.With this work, we want
to take the first step of seeing how different algorithmic approaches
fare on the discrete part of the search space.
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