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Abstract. We consider the k-outconnected directed Steiner tree problem
(k-DST). Given a directed edge-weighted graph G = (V, E, w), where
V = {r} ∪ S ∪ T , and an integer k, the goal is to find a minimum
cost subgraph of G in which there are k edge-disjoint rt-paths for every
terminal t ∈ T . The problem is known to be NP-Hard. Furthermore, the
question on whether a polynomial time, subpolynomial approximation
algorithm exists for k-DST was answered negatively by Grandoni et al.
(2018), by proving an approximation hardness of Ω(|T |/ log |T |) under
NP̸=ZPP.
Inspired by modern day applications, we focus on developing efficient
algorithms for k-DST in graphs where terminals have out-degree 0, and
furthermore constitute the vast majority in the graph. We provide the
first approximation algorithm for k-DST on such graphs, in which the
approximation ratio depends (primarily) on the size of S. We present a ran-
domized algorithm that finds a solution of weight at most O(k|S| log |T |)
times the optimal weight, and with high probability runs in polynomial
time.

1 Introduction

Network design problems deal with finding, inside a large network G, a cheap sub-
network satisfying certain criteria. This class of problems captures a wide variety
of theoretical problems, among which are the minimum spanning tree problem,
minimum Steiner tree (or forest) problem or minimum k-connected subgraph
in both directed and undirected graphs (see, e.g. [18, 21, 14]). In addition to its
theoretical importance, network design research is of great interest for developers
of practical networks such as telecommunication networks.

Our focus in this paper is the minimum k-outconnected directed Steiner tree
problem (k-DST). An instance of k-DST consists of a directed edge-weighted
graph G = (V, E, w), a designated node r ∈ V called the root, a subset T ⊆ V \{r}
of vertices called terminals and an integer k. Nodes in V \ (T ∪ {r}) are referred
to as Steiner nodes, and the set of Steiner nodes will be denoted by S. The goal
is to find a minimum-weight subgraph of G, in which for every t ∈ T there are
at least k edge-disjoint rt-paths. From a theoretical perspective, k-DST is one



2 S. Cohen et al.

of the most fundamental and intensively studied problems in computer science.
The most extensively studied variation of the problem is the minimum directed
Steiner tree (DST), in which k = 1. This is, in part, due to the fact that many
combinatorial problems are known to reduce to DST. Notable such examples
among network design problems are the minimum node-weighted Steiner tree
[20] in both directed and undirected graphs and the group Steiner problem [11].

Moreover, k-DST has many applications in network design, circuit layouts,
and phylogenetic tree reconstruction [15] and specifically in designing multi-
cast schemes [27, 30]. When designing a multicast routing scheme, the goal is
to distribute information from a single source to multiple destinations, while
minimizing the usage of network resources (e.g. cost of links). To ensure that
the network is robust against link failures, we require that the network contains
several source-destinations routes that are, in a sense, mutually independent.
The connection to k-DST is straightforward. Modeling the network as a directed
graph, where edges model point-to-point links, a multicast routing scheme which
can survive k − 1 failures is a k-outconnected Steiner tree.

Networks Consisting of Mostly Terminals. Upon approaching k-DST, one might
be inclined to think of T as a "small" designated subset of V . Indeed, in the
majority of previous work, the approximation factors of approximation algorithms
for k-DST mainly depend on the size of the terminal set T . In general, however,
this need not be the case. In fact, modern day applications present networks in
which the lion’s share of the network consists of terminals. Consider, for example
the problem of efficiently and reliably distributing critical healthcare information,
including patient data and medical resources, ensuring minimal transmission
costs. In particular, the root in this case is a central health database, the Steiner
nodes are regional hospitals and clinics and the terminal set consists of remote
clinics in rural areas, which are the majority of health sites and do not transmit
any information.

From a theoretical point of view, k-DST is still an interesting problem when
restricted to instances in which most of the nodes of G are terminals and have
no outgoing edges. Specifically, known hardness results for the problem hold
even when |V \ T | = O(|V |1/d) for some constant d ∈ N. Moreover, there is no
evidence that the problem is easier (even to approximate) when restricted to
instances where |V \ T | is polylogarithmic in |V |.

Related Work. k-DST is known to be NP-hard, as it models, for example, the
Steiner tree in undirected graphs as a special case [16]. However, many special
cases are widely studied with positive results. For example, the case where
T = V \ {r}, known as minimum k-outconnected spanning subgraph problem is
proven to be polynomially time solvable [6], as was also generalized by Frank
and Tardos [9] (see also [8]). Their algorithm was used as a subroutine to obtain
a 2-approximation algorithm for the undirected variant and its generalization
[19], which is proven to be NP-hard.

When the existence of non-terminal vertices in the graph is also considered,
the complexity of k-DST is increased, and the focus hence swifts to approximation
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algorithms. For the case where k = 1 for example, Charikar et al. [3] presented a
family of greedy approximation algorithms Ad, indexed by an integer d > 1. By
employing a technique introduced by Zelikovsky [31], for every d > 1 they showed
a reduction of the instance G to a new instance G′ consisting of a d-layered graph.
The algorithm Ad returns a feasible solution (in G) of weight at most O(d3|T |1/d)
times the optimal weight, and runs in time |V |O(d). A similar result has been given
by Rothvoß [28], who applied the Lasserre hierarchy in order to obtain a family
of algorithms giving similar approximation guarantees. This result was recently
extended to the case k = 2 by Grandoni and Laekhanukit [13]. For every d > 1,
they develop a polynomial time approximation algorithm of ratio Õ(d3|T |1/d) and
running time O(|V |O(d)). For the undirected case of the problem when restricting
the value of k to be 1, Byrka et al. provided a 1.39-approximation algorithm [1].

Moreover, the directed Steiner tree problem (i.e. k = 1), is solved by a trivial
algorithm in time 2|S| · |V |O(1), thus if S is “small” (i.e. |S| ≤ O(log |V |)) the
problem is solvable in polynomial time. On the other hand, the Dreyfus–Wagner
algorithm [5] solves the problem in time O(3|T | · |V |2), thus showing that it can
also be solved in polynomial time if the number of terminals is “small”. It is
hence natural to consider developing algorithms for k-DST whose running time
or approximation ratio is based on the amount of terminals. Such approximation
algorithms for k-DST are developed only for the special cases where G is an L-
layered graph, by Laekhanukit who gave a O(kLLlog|T |)-approximation algorithm
[23], and for the case where G is a quasi-bipartite graph for which Chan et al.
gave a polynomial time O(log |T | log k)-approximation algorithm [2].

When it comes to hardness of k-DST much more results have been obtained.
Cheriyan et al. [4] proved it to be at least as hard to approximate as the label
cover problem. Therefore there is no 2log1−ε |V |-approximation for k-DST for any
fixed ε > 0 unless NP ⊆ DTIME(npolylog(n)). Laekhanukit [22] showed that
unless NP = ZPP , the k-DST problem admits no k1/4−ε-approximation for any
ε > 0. We note that this hardness result holds even when restricted to instances
in which |V \ T | = O(|V |1/d) for some constant d ∈ N via a simple polynomial
reduction. Another polynomial reduction of k-DST that provides us with a lower
bound for approximating it is the one to the set cover problem. Nelson [25]
showed that for every c < 0.5, set cover cannot be approximated in polynomial
time within 2log1−δc(m)(m), unless SAT on m variables can be solved in time
2O(2log1−δc(m)(m)), where δc(m) = 1 − 1

(log log m)c . Through a simple polynomial
time reduction we are able to obtain a lower bound for approximating k-DST (in
fact, even DST) in terms of |S|. In particular we conclude that k-DST cannot
be approximated in polynomial time to within 2log1−δc(|S|)(|S|), unless SAT on m

variables can be solved in time 2O(2log1−δc(m)(m)). One of the most recent results
is the one from Liao et al. [24] where the improved the prreviously known lower
approximation hardness to Ω(|T |/ log |T |)) under NP̸= ZPP, Ω(2k/2/k) under
NP̸= ZPP and Ω(k/L)L/4 on L-layered graphs for L ≤ O(log n).
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1.1 Our Results

Let G = ({r} ∪ S ∪ T, E, w), k ∈ N be an instance of k-DST. Assume in addition
that every edge uv ∈ E satisfies that u /∈ T . The main contribution of this paper
is providing the first approximation algorithm for k-DST on graphs where the
terminals do not transmit any information. Our algorithm is a randomized Las
Vegas algorithm, which runs, with high probability, in polynomial time.

Theorem 1. There is a randomized O(k|S| log |T |)-approximation algorithm for
k-DST when the outdegree of the vertices in T is 0, that runs in polynomial time
with high probability.

This approximation guarantee depends primarily on the size of S, and up to a
logarithmic factor is independent of the size of T . If |S| = O(|T |1/d) for some
constant d > 1, the approximation ratio of our algorithm is comparable with
that of Charikar et al. [3]. Moreover, if |S| is polylogarithmic in |T |, we achieve
a polylogarithmic approximation ratio (in terms of |V |) in polynomial time.

Overview and Techniques. Throughout this paper let G = ({r}∪S∪T, E, w), k
be an instance of k-DST, where V = {r} ∪ S ∪ T , and U := {U ⊆ V \ {r} :
U ∩ T ̸= ∅} . An e = xy ∈ E covers U ∈ U if e enters U , i.e. x /∈ U and y ∈ U .
Given a set F ⊆ E, denote by ϱF (U) := {xy ∈ F : x /∈ U, y ∈ U} the set of edges
in F covering U . By the minimum-cut maximum-flow theorem, a set F ⊆ E is a
feasible solution for k-DST if and only if every U ∈ U is covered by at least k
edges, i.e. |ϱF (U)| ≥ k.

Connectivity Augmentation. An intermediate problem between DST and k-DST
is the one of increasing the rooted outconnectivity of a graph by one (connectivity
augmentation problem). Formally, let ℓ ∈ N. Given a graph G = (V, E, w), a root
r ∈ V , a set of terminals T ⊆ V \ {r}, and a set Eℓ ⊆ E of edges such that in
the subgraph (V, Eℓ) of G there are ℓ edge-disjoint rt-paths for every t ∈ T , we
seek a minimum cost set F ⊆ E \ Eℓ such that in (V, Eℓ ∪ F ) there are ℓ + 1 edge
disjoint rt-paths for every t ∈ T . An additional result presented in this paper is
the following.

Theorem 2. There is a randomized approximation algorithm for the connectivity
augmentation problem when the outdegree of the vertices in T is 0, that constructs
an O(|S| log |T |)-approximate solution. Also, with probability at least 1 − log |T |

2|E|

the algorithm runs in polynomial time.

The connection to k-DST is quite clear. Starting with an empty set of edges, our
approximation algorithm iteratively finds small-weight solutions to the connectiv-
ity augmentation problem k times, and produces edge sets E1, . . . , Ek ⊆ E whose
union is a small-weight feasible solution to k-DST, incurring an additional factor
of k in the approximation ratio. We note that very often when solving connectivity
problems by repeatedly invoking a connectivity augmentation mechanism, it is
possible to reduce the additional factor to the approximation ratio from k to log k,
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using a standard linear-programming scaling technique introduced by Goemans
et al. [12]. The algorithm presented in this paper for the augmentation problem,
however, is invoked on an auxiliary graph, rather than on G. This auxiliary graph,
and thus the induced linear program, change between invocations, and hence it
is not clear whether the scaling technique is applicable.

Given an instance to the connectivity augmentation problem, and applying the
minimum-cut maximum-flow theorem once more, we deduce that a set F ⊆ E \Eℓ

is a feasible solution to the problem if and only if |ϱEℓ∪F (U)| ≥ ℓ + 1 for every
U ∈ U . From our assumptions on Eℓ, we have |ϱEℓ

(U)| ≥ ℓ for every U ∈ U .
In addition F ∩ Eℓ = ∅, and therefore F is a feasible solution if and only if
ϱF (U) ̸= ∅ for all U ∈ Uℓ, where Uℓ := {U ∈ U : |ϱEℓ

(U)| = ℓ} . Hence, the
augmentation problem is formulated as the following integer program.

min
∑

e∈E wexe s.t.
∑

e∈ϱE\Eℓ
(U) xe ≥ 1 ∀U ∈ Uℓ,

xe ∈ {0, 1} ∀e ∈ E
(IP)

Implicit Hitting Set. In the hitting set problem, we are given a ground set E,
with weights {we}e∈E , and a collection S ⊆ 2E of subsets of E. The goal is
to find a minimum weight subset F ⊆ E such that F ∩ U ̸= ∅ for all U ∈ S.
The problem is known to be NP-hard [16], and can be approximated by an
O(log |S|)-factor via a greedy algorithm. Karp et al. [17] observed that many
combinatorial optimization problems possess the following property. Given an
instance Π, we construct in polynomial time an instance E, w, S to the hitting set
problem, where E, w are given explicitly, and S, whose size might be exponential
in the size of Π, is given implicitly by a membership oracle. Karp et al. named
this setting the implicit hitting set problem, and observed that the well-known
greedy algorithm for the hitting-set problem cannot be used to approximate this
type of problems, as it examines all sets in S.

We show that under reasonable assumptions we still achieve a randomized
polynomial time O(log |S|)-approximation algorithm. Specifically, we slightly
modify the well-known randomized rounding algorithm for hitting set, and
devise a O(log |S|)-approximation algorithm that, with very high probability, say
≥ 1 − 2−|E|, runs in time polynomial to |E|. Details are deferred to Appendix A.
The connectivity augmentation problem can be viewed as an implicit hitting
set instance, where S := {ϱE\Eℓ

(U) : U ∈ Uℓ}. However, even for ℓ = 0 we get
log |S| = Ω(|V |). Achieving a |T |-approximation for the problem is immediate
(increase the rt-connectivity by one for each t ∈ T separately), hence we seek
to exploit its structure, and specifically the structure of Uℓ to improve our
guarantees.

A set-family G ⊆ 2V is called intersecting, if when X, Y ∈ G and X ∩ Y ̸= ∅,
then X ∩ Y, X ∪ Y ∈ G. Frank [10] observed that if T = V \ {r}, the family Uℓ is
intersecting, and also showed that the problem of covering intersecting set-families
by directed edges can be solved optimally efficiently. In general, however, Uℓ

is not intersecting. In a following paper [7] Frank coined the refined notion of
T -Intersecting Families.
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Definition 1. A set family G ⊆ 2V is called T -intersecting if for every X ∈ G,
X ∩ T ̸= ∅; and for every X, Y ∈ G, if X ∩ Y ∩ T ̸= ∅ then X ∩ Y, X ∪ Y ∈ G.

The proof of Proposition 1 is moved to the Appendix due to lack of space.

Proposition 1. Uℓ is T -intersecting.

Frank considered the problem of covering T -intersecting families, and showed
that if every edge of G enters T , then a T -intersecting family can be covered
efficiently using the primal dual approach. For arbitrary graphs, however, the
problem of optimally covering a T -intersecting family of sets is NP-hard as it
models the directed Steiner tree problem as a special case. By taking advantage
of several structural properties of T -intersecting families, we present a mechanism
for constructing a small-weight cover of Uℓ. The mechanism is presented in detail
in Section 3. Loosely speaking, we iteratively prune Uℓ, covering small sub-families
of Uℓ one at a time. Since the approximation ratio of the hitting set randomized
algorithm depends on the size of the family to be covered, the problem of covering
a small sub-family of Uℓ can be better approximated. We show that by pruning Uℓ

carefully, the process ends after a small number of iterations, thus constructing a
feasible solution with better approximation guarantees.

Strict Cores of T -Intersecting Families. In [26] Nutov studied rooted connectivity
problems and defined the notion of a core of a set family. Given a set family
G ⊆ 2V , a set X ∈ G is a core of G if it contains exactly one inclusion-minimal set
of G. Nutov gave an algorithm for covering so-called bi-uncrossable set families by
iteratively covering the sub-families of cores. Formally, the iterative process is as
follows. Given a set family G, find a small-weight edge set F1 ⊆ E that covers all
cores of G. Denote by GF1 the family of all sets in G not covered by F1. Continue
iteratively by finding F2, . . . , Ft such that for every j ∈ [t], Fj covers all cores
of GF1∪...∪Fj−1 . Nutov additionally bounded the number of iterations needed
to cover bi-uncrossable set families, when iteratively covering the sub-families
of cores. In Section 3 we show that by iteratively covering the sub-family of
cores of the T -intersecting family Uℓ, we can guarantee that no more than log |T |
iterations are needed. However we also show, the sub-family of cores can be as
large as the entire Uℓ, and hence our approximation guarantees are still too large.

Therefore, in this paper we present the new notion of strict cores. A strict
core of Uℓ is a set X ∈ Uℓ that contains exactly one inclusion-minimal set C ∈ Uℓ,
and satisfies X ∩ T = C ∩ T . We show that the sub-family of strict cores of Uℓ is
significantly smaller than the sub-family of cores, and give a polynomial time
approximation algorithm for covering the sub-family of strict cores. As we show
in Section 3.1 we can make no guarantee, however, on the number of iterations
needed to iteratively cover the sub-family of strict cores. The main technical
crux of this paper is therefore the construction of a new auxiliary graph in which
every edge cover to the family of strict cores also covers the family of cores.
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2 Approximating k-Outconnected Steiner Tree

We begin the proof of Theorem 1 by showing that it is implied by Theorem 2. To
this end, let G = ({r} ∪ S ∪ T, E, w) and k be an instance of k-DST. Denote by
opt(G) the value of an optimal solution, and let U = {U ⊆ V \ {r} : U ∩ T ̸= ∅}.
We present an iterative algorithm that finds a feasible solution for k-DST, by
iteratively increasing the connectivity between the root and the terminals. The
algorithm performs k iterations numbered 0, 1, . . . , k − 1. For every 0 ≤ ℓ ≤ k − 1,
in the beginning of the ℓth iteration, the algorithm holds a set Eℓ ⊆ E of edges,
starting with E0 = ∅, such that in (V, Eℓ), there are at least ℓ edge-disjoint
rt-paths for every t ∈ T . During the ℓth iteration, the algorithm invokes the
O(|S| log |T |)-approximation algorithm whose existence is implied by Theorem 2,
to find an approximate solution F ⊆ E \ Eℓ to the connectivity augmentation
instance given by G, Eℓ. The algorithm is described in detail as Algorithm 1.

1: E0 = ∅.
2: for ℓ = 0, 1, . . . , k − 1 do
3: let F ⊆ E \ Eℓ be an O(|S| log |T |)-approximate solution to the connectivity

augmentation problem on G, Eℓ (apply the algorithm in Theorem 2).
4: let Eℓ+1 = Eℓ ∪ F .
5: return Ek.

Algorithm 1: Approximation Algorithm for k-DST

Through a simple induction we are able to see that for every t ∈ T , there are
k edge-disjoint rt-paths in (V, Ek). This also implies that the edge set constructed
by Algorithm 1 is a feasible solution to k-DST. The following lemma shows that
the weight of this set is at most O(k|S| log |T |) times the optimum.

Lemma 1. w(Ek) ≤ O(k|S| log |T |) · opt(G).

Proof. Let 0 ≤ ℓ ≤ k − 1. Consider an optimal solution F ∗ ⊆ E to the k-DST
problem on G. Then for every U ∈ U , |ϱF ∗(U)| ≥ k. Let U ∈ U be such that
|ϱEℓ

(U)| = ℓ < k. Then |ϱF ∗\Eℓ
(U)| ≥ k − ℓ ≥ 1. Therefore F ∗ \ Eℓ is a feasible

solution for the augmentation problem defined by G, Eℓ. We conclude that the
set F constructed in line 3 satisfies w(F ) ≤ O(|S| log |T |) opt(G). The lemma
follows.

To conclude the proof of Theorem 1 it remains to show that the algorithm
runs in polynomial time with high probability. Theorem 2 guarantees that line 3
always returns an approximate solution, and it runs in polynomial time with
probability at least 1 − log |T |

2|E| . Since Algorithm 1 performs k iterations, we get
by a union bound that Algorithm 1 runs in polynomial time with probability at
least 1 − k log |T |

2|E| , and since k log |T | ≤ |E|2, this probability is very high. The
remainder of the paper is devoted to the proof of Theorem 2.
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3 Increasing Rooted Connectivity By One

In this section, we prove Theorem 2 by presenting an O(|S| log |T |)-approximation
algorithm for the connectivity augmentation problem. Let G = ({r}∪S ∪T, E, w)
be the instance graph, and Eℓ ⊆ E be a set of edges such that in (V, Eℓ) there
are ℓ edge-disjoint rt-paths for every t ∈ T . Let F := {U ⊆ V \ {r} : U ∩ T ̸=
∅ and |ϱEℓ

(U)| = ℓ}, then Proposition 1 implies F is T -intersecting. By the min-
cut max-flow theorem, a set F ⊆ E \Eℓ is a feasible solution for the augmentation
problem if and only if ϱF (U) ̸= ∅ for every U ∈ F . The linear program below
can be viewed as a fractional relaxation of the augmentation problem.

min
∑

e∈E wexe s.t.
∑

e∈ϱE\Eℓ
(U) xe ≥ 1 ∀U ∈ F ,

xe ≥ 0 ∀e ∈ E
. (LP)

Fix some x ∈ RE
+. For every e ∈ E, we think of xe as the capacity of e in G.

Define x̂ ∈ RE
+ by x̂e = 1 for all e ∈ Eℓ and x̂e = xe otherwise. Then x is a

feasible solution for (LP) if and only if the capacity of a minimum rt-cut in (G, x̂)
is at least ℓ + 1 for every t ∈ T . Therefore, the feasibility of x can be verified in
time polynomial in the size of G. Moreover, if x is not feasible, there is some
t ∈ T such that in (G, x̂) there is an rt-cut of capacity less than ℓ + 1. Such a cut
U ⊆ V is a violated constraint and is found in polynomial time. The program
(LP) can therefore be solved efficiently using a separation oracle. With high
probability we thus efficiently obtain an O(log |F|)-approximate solution for the
connectivity augmentation problem. However, in general log |F| = Ω(|V |), hence
the approximation factor might be too large, since obtaining approximation of
factor |T | times the optimal value is trivial (increase the rt-connectivity for every
t ∈ T separately). Note that we did not use any properties of F , other than
finding an efficient separation oracle for (LP). Specifically, we did not use the
structural properties of T -intersecting families.

In what follows, we present a mechanism for covering the T -intersecting
family F by edges. Loosely speaking, we iteratively prune F by covering small
sub-families. For each such sub-family we efficiently find a small weight cover.
By choosing the sub-families carefully, the process ends after a small number of
iterations. More formally, we look for sub-families F1, . . . , Ft ⊆ F such that (i)
if F ⊆ E \ Eℓ covers F1, . . . , Ft then F covers F ; (ii) for every j ∈ [t − 1], given
a cover F ⊆ E \ Eℓ for F1, . . . , Fj , we can efficiently find a small-weight cover
F ′ ⊆ E \ Eℓ for Fj+1; and (iii) t is small.

We start by exhibiting several fundamental properties of F . Given a set
F ⊆ E \ Eℓ, a set X ∈ F is called F -tight if F does not cover X, i.e. ϱF (X) = ∅.
Denote by FF the family of F -tight elements of F . A crucial property of F is
that the structural property of being T -intersecting is, in a sense, hereditary. In
particular it is easy to prove that FF is T -intersecting as follows. Let X, Y ∈ FF

be such that X∩Y ∩T ̸= ∅. Then X∩Y, X∪Y ∈ F . Furthermore, by submodularity
of the cut function, 0 = |ϱF (X)| + |ϱF (Y )| ≥ |ϱF (X ∪ Y )| + |ϱF (X ∩ Y )| ≥ 0 .
Therefore |ϱF (X ∪Y )| = |ϱF (X ∩Y )| = 0, and thus X ∩Y and X ∪Y are F -tight
elements of F , that is X ∪ Y, X ∩ Y ∈ FF .
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The following definition, and the two lemmas that follow it are inspired by a
similar observation by Nutov [26] for problems regarding undirected graphs. The
proofs of Lemmas 2,3 are moved to the Appendix due to space restrictions.

Definition 2. Let M(FF ) denote the family of inclusion-minimal elements of
FF . A set X ∈ FF is called an FF -core if it contains exactly one inclusion-
minimal element of FF .

Lemma 2. Let X ∈ FF . Then for every C ∈ M(FF ), either C ∩ X ∩ T = ∅ or
C ⊆ X. In particular, for every distinct C, D ∈ M(FF ), C ∩ D ∩ T = ∅.

Lemma 3. If F ′ ⊆ E \Eℓ covers all FF -cores. Then |M(FF ∪F ′)| ≤ 1
2 |M(FF )|.

Lemma 3 implies that by iteratively covering the sub-family of tight cores, we
cover F after at most log |M(F)| iterations. Since |M(F)| ≤ |T |, we conclude
that the process terminates after at most log |T | iterations. The next section
constitutes the technical crux in the proof of Theorem 2.

3.1 Covering Cores Cheaply and Efficiently

In this section we conclude proof of Theorem 2 by giving an O(|S|)-approximation
algorithm for the problem of covering the family of FF -cores. A naïve approach
suggested by the preceding discussion is to simply apply the implicit hitting set
approximation algorithm to cover the family of FF -cores. However, the sub-family
of FF -cores can be almost as large as the entire FF . Hence the approximation
factor might be as large as Ω(|V |). We therefore refine the definition of cores.
This is where we diverge from [26], and from all previous work.

Definition 3. A set X ∈ FF is called a strict FF -core if there exists C ∈
M(FF ) such that X ∩ T = C ∩ T , that is, X and C have the same set of
terminals.

One can easily verify, using Lemma 2 that every strict FF -core contains
exactly one inclusion-minimal set of FF . Thus every strict FF -core is also an
FF -core. As opposed to the family of tight cores, the family of strict cores is
significantly small.

Lemma 4. The number of strict FF -cores is at most 2|S| · |T |.

Proof. Let X be a strict FF -core. Then there is a unique C ∈ M(FF ) such that
C ⊆ X and C ∩ T = X ∩ T . Therefore X \ C ⊆ S, and hence the family of strict
FF -cores is contained in {C ∪ X ′ : C ∈ M(FF ), X ′ ∈ 2S}.

By Lemma 4, if we can model the problem of covering all strict FF -cores as an
implicit hitting set problem, the approximation factor of the randomized rounding
algorithm is reduced to O(|S| + log |T |) = O(|S|). However, if F ′ ⊆ E \ Eℓ covers
all strict cores, it does not necessarily cover all cores. Nevertheless, not all is lost.

In a sense, the essence of the inadequacy of covering only strict cores lies in
the following scenario. Consider an edge e leaving a covered core X and entering
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a non-covered strict core C covers the strict core, but does not reduce the number
of non-covered minimal cores. Covering all strict cores with such edges attains
no advancement to the algorithm. We thus turn to construct an auxiliary graph,
in which this scenario cannot occur.

More formally, given G, Eℓ and F , let optaug(G, Eℓ) denote the weight of an
optimal solution for the augmentation problem. We show that we can construct a
new graph GF on the same vertex set V , in which (i) we can find in GF an edge
set A ⊆ E(GF ) covering all FF -cores such that w(A) ≤ O(|S|) optaug(G, Eℓ);
and (ii) given a cover A ⊆ E(GF ) for the family of FF -cores, we can construct a
cover F ′ ⊆ E \ Eℓ of the FF -cores in G such that w(F ′) ≤ w(A). Moreover, the
construction of GF , as well as (i) and (ii), can be done in polynomial time with
high probability. Note that unlike simple reductions commonly used in dealing
with the directed Steiner tree problem (e.g. reducing the instance to an acyclic
graph or a layered graph), the construction we present preserves the vertex set
intact, and specifically does not change |S|.

Following the discussion above, we want the weights to satisfy the triangle
inequality, and therefore we first define a special form of metric completion of G.
In classical literature, for every u, v ∈ V , the weight of the edge uv in the metric
completion of a weighted graph G is defined to be the length of a shortest uv-path
in G. By the minimum-cut maximum-flow theorem, for every u, v ∈ V , a shortest
uv-path in G is a minimum-weight edge-cover of the set {U ⊆ V \ {u} : u ∈ U}.
Therefore an analogous way of viewing the definition of a metric completion
is the following. For every u, v ∈ V , the weight of the edge uv in the metric
completion of G is defined to be the minimum weight of an edge cover for the
set {U ⊆ V \ {u} : u ∈ U}. In our setting not all such subsets U ⊆ V \ {u}
need to be covered. We therefore wish to refine the classical notion of a metric
completion of G. Specifically, if every X ∈ FF such that v ∈ X satisfies u ∈ X,
then in a sense we do not need to cover any uv-cut, since all relevant cuts (i.e.
those belonging to FF ) have been covered. We can therefore set the weight of
the edge uv to zero.

Formally we define a graph G0 = (V, (E \ Eℓ) ∪ E0, w0) as E0 = {uv :
for every X ∈ FF , if v ∈ X then u ∈ X} and constructed through the following
procedure. For every e ∈ (E \ Eℓ) ∪ E0, we define w0

e = 0 if e ∈ F ∪ E0, and
w0

e = we otherwise. Next, let G1 be the standard metric completion of G0. That
is, G1 is the complete directed graph on V , where w1

uv is the length of a shortest
uv-path in G0. The weight assignment w1 satisfies the triangle inequality, and is
therefore an asymmetric metric.

Next, following the discussion above, we construct GF by removing from G1

edges, which we can assert will not belong to any inclusion-minimal solution.
Formally, GF is the subgraph of G1 constructed as follows. For every s ∈⋃

C∈M(FF ) (C ∩ T ) and for every u ∈ V \
(⋃

C∈M(FF ) (C ∩ T )
)

, if every X ∈ FF

that contains s also contains u, remove from G1 all edges outgoing from u. The
proof of the claim that GF can be constructed in polynomial time given G, Eℓ, F
is deferred to Appendix C.
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Lemma 5. For every A ⊆ E(GF ), if A covers all FF -cores, we can construct
in polynomial time an edge set F ′ ⊆ E \ Eℓ that covers all FF -cores such that
w(F ′) ≤ w1(A).

Proof. Let A ⊆ E(GF ) be an FF -cores cover in GF , e = uv ∈ A, and Pe ⊆
(E \ Eℓ) ∪ E0 be a shortest uv-path in G0. Then w1

e = w0(Pe) =
∑

e′∈Pe
w0

e′ =∑
e′∈Pe∩(E\(Eℓ∪F )) we′ . Let X ∈ FF be an FF -core covered by e. Then u /∈ X and

v ∈ X. Hence there is an edge e′ = u′v′ ∈ Pe that covers X. Since X ∈ FF and
v′ ∈ X and u′ /∈ X, it follows that e′ = u′v′ /∈ F ∪E0, and hence e′ ∈ E \(Eℓ ∪F ).
We conclude that F ′ :=

⋃
e∈A (Pe ∩ (E \ (Eℓ ∪ F )) covers all FF -cores, and

w(F ′) =
∑

e∈F ′ we ≤
∑

e∈A

∑
e′∈Pe∩(E\(Eℓ∪F )) we′ =

∑
e∈A w1

e = w1(A).

Due to Lemma 5, in order to find a low-cost cover F ′ ⊆ E \ Eℓ for all FF -cores
it suffices to find a low-cost cover A ⊆ E(GF ). The following two lemmas show
that such a cover exists, and that it is enough for A to cover the strict FF -cores.

Lemma 6. There exists an edge set A ⊆ E(GF ) such that A covers all FF -cores
and w1(A) ≤ optaug(G, Eℓ).

Proof. For every set E′ ⊆ E \ Eℓ, from our construction we get that w1(E′) ≤
w(E′), and therefore optaug(G1, Eℓ) ≤ optaug(G, Eℓ). Hence, there is an edge
set A′ ⊆ E(G1) such that in the subgraph (V, Eℓ ∪ A′) there are ℓ + 1 edge-
disjoint rt-paths for all t ∈ T , and such that w1(A′) ≤ optaug(G, Eℓ). We show
that there is a set A ⊆ E(GF ) such that in the subgraph (V, Eℓ ∪ A) there are
ℓ + 1 edge-disjoint rt-paths for all t ∈ T and w1(A) ≤ w1(A′). Clearly, such A
covers all strict FF -cores in GF and w1(A) ≤ optaug(G, Eℓ). We continue by
induction on |A′ \ E(GF )|. If |A′ \ E(GF )| = 0, take A = A′, and the result
follows. Otherwise, let uv ∈ A′ \ E(GF ). Then u ∈ V \

(⋃
C∈M(FF ) (C ∩ T )

)
and there is s ∈

⋃
C∈M(FF ) (C ∩ T ) such that every Z ∈ FF containing u also

contains s. By the definition of A′, every set Z ∈ FF containing s is covered
by A′. Let A′′ = (A′ \ {uv})

⋃
{sv}. By triangle inequality, w1

sv ≤ w1
su + w1

uv.
Since su ∈ E0, w1

su = 0 we get that w1
sv ≤ w1

uv. Hence, w1(A′′) ≤ w1(A′). Since
s ∈

⋃
C∈M(FF ) (C ∩ T ), then sv ∈ E(GF ), we get |A′′\E(GF )| = |A′\E(GF )|−1.

Lemma 7. For every A ⊆ E(GF ), A covers all FF -cores if and only if A covers
all strict FF -cores.

Proof. Let A ⊆ E(GF ). Clearly, if A covers all FF -cores, then it covers all strict
FF -cores. Assume, therefore, that A covers all strict FF -cores. Let X ∈ FF be
an FF -core that is not a strict core. There is a unique C ∈ M(FF ) such that
C ⊆ X. Let X ′ = X \ (T \ C). First note that since for every u ∈ T \ C, no edge
leaves u, then by removing from X all terminals in T \ C, no new edges enter X ′.
Therefore X ′ ∈ F . To see that X ′ ∈ FF , let xy ∈ F be some edge, and assume
y ∈ X ′ ⊆ X. Assume y ∈ C. Since C ∈ FF , then x ∈ C ⊆ X ′. Otherwise, since
x /∈ T , it follows that x /∈ X \ X ′. Since X ∈ FF , it follows that x ∈ X, and thus
x ∈ X ′. Therefore xy does not cover X ′, and thus X ′ ∈ FF . Next we note that
X ′ ∩ T = C ∩ T , and thus X ′ is a strict core.
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By assumption on A, there is an edge uv ∈ A such that v ∈ X ′ ⊆ X and
u /∈ X ′. If u ∈ X, then u ∈ T . Therefore u /∈ X, and thus X is covered by A.

The following lemma shows that in GF we can find with high probability an
approximate cover for the set of FF -cores.

Lemma 8. There is a randomized algorithm that finds a set A ⊆ E(GF ) such
that A covers all FF -cores and w1(A) ≤ O(|S|) optaug(G, Eℓ). Moreover, with
probability at least 1 − 2−|E| the algorithm runs in polynomial time.

The proof of Lemma 8 is technically involved, however the main idea is quite
straightforward. First, note that by Lemma 7, it suffices to show an algorithm
that finds an approximate cover for the set of strict FF -cores. We show that a
linear program relaxation of the latter has a polynomial time separation oracle,
hence the randomized rounding algorithm for the hitting set finds such a cover in
polynomial time with high probability. The proof is given in detail in Appendix C.

We are now ready to prove Theorem 2, by describing an O(|S| log |T |)-
approximation algorithm for the augmentation problem. The algorithm iteratively
prunes F by covering the set of tight cores in every iteration. Starting with F = ∅,
and during every iteration until F covers F , we add to F a set F ′ ⊆ E \ Eℓ

of weight at most O(|S|) optaug(G, Eℓ) that covers the family of FF -cores. The
mechanism is presented in detail as Algorithm 2.

1: j ← 1
2: Fj ← ∅
3: while FF ̸= ∅ do
4: (implicitly) let Fj be the set of FF -cores.
5: let F ′ ⊆ E\Eℓ be an edge set covering Fj such that w(F ′) ≤ O(|S|) optaug(G, Eℓ).

6: F ← F ∪ F ′.
7: j ← j + 1.
8: return F .

Algorithm 2: O(|S| log |T |)-Approximation Algorithm for the Connectivity Aug-
mentation Problem

Proof (of Theorem 2). We first show that each iteration is executed in polynomial
time with probability at least 1 − 2−|E|. Given a set F ⊆ E \ Eℓ, we efficiently
(deterministically) check whether FF = ∅, by verifying that for every t ∈ T , there
are ℓ+1 edge-disjoint rt-paths in (V, Eℓ ∪F ). To see that line 5 runs in polynomial
time with high probability, first note that given G, Eℓ, F , we can construct GF in
polynomial time. By Lemma 8, there is a randomized algorithm that finds a set
A ⊆ E(GF ) such that A covers all FF -cores and w1(A) ≤ O(|S|) optaug(G, Eℓ).
Moreover, with probability at least 1−2−|E| the algorithm runs in polynomial time.
Lemma 5 then guarantees that we can construct from A an edge set F ′ ⊆ E \ Eℓ

that covers all FF cores, and such that w(F ′) ≤ w1(A) ≤ O(|S|) optaug(G, Eℓ).
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Therefore each iteration can be done in polynomial time with probability at
least 1−2−|E|. Lemma 3 ensures that Algorithm 2 terminates after at most log |T |
iterations. Applying a union bound, we get that Algorithm 2 is an O(|S| log |T |)-
approximation algorithm for the connectivity augmentation problem, that runs
in polynomial time with probability at least 1 − (2−|E| log |T |).
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A Implicit Hitting Set Randomized Rounding Algorithm

Let E, w, S be an instance for the implicit hitting set problem. In this setting of
implicit hitting set, the size of the input for the problem is polynomial in |E|,
while S ⊆ 2E can be much larger and is thus given implicitly. The fractional
relaxation of the problem can be formulated as the following linear program.

min
∑

e∈E wexe s.t.
∑

e∈U xe ≥ 1 ∀U ∈ S

xe ≥ 0 ∀e ∈ E
(1)

A classical result shows that if x∗ is an optimal solution to the linear program
(1), there is a polynomial time randomized rounding algorithm that returns with
probability at least 1

2 a feasible solution F for the hitting set problem satisfying
w(F ) ≤ O(log |S|)w(x∗), where w(x∗) =

∑
e∈E wex∗

e. We can further claim that
if there is a polynomial time separation oracle to the linear program (1), then
we can efficiently verify whether F is a feasible solution. This result is well
known, however for sake of completeness we include the algorithm (presented as
Algorithm 3) and formal statement (Lemma 9). For a more detailed analysis see,
e.g. [29, Chapter 14].

1: let x∗ = {x∗
e}e∈E be an optimal solution for (1).

2: F ← ∅
3: repeat O(log |S|) times independently.
4: For every e ∈ E independently, add e to F with probability x∗

e .
5: if F is a feasible solution to the hitting set problem and w(F ) ≤ O(log |S|)w(x∗)

then
6: return F .
7: else
8: go to line 2.

Algorithm 3: Hitting Set Randomized Rounding

Lemma 9. Algorithm 3 always returns a feasible solution F of weight at most
O(log |S|) times the optimal weight. Moreover, if there is a polynomial time
separation oracle to the linear program (1), then with probability at least 1 − 2−|E|

Algorithm 3 runs in polynomial time.

B Proof of Proposition 1

Proof. Let X, Y ∈ Uℓ, and assume that X∩Y ∩T ̸= ∅. Therefore X∪Y, X∩Y ∈ U
and furthermore, by submodularity of the cut function,

2ℓ = |ϱEℓ
(X)| + |ϱEℓ

(Y )| ≥ |ϱEℓ
(X ∪ Y )| + |ϱEℓ

(X ∩ Y )| .

By the definition of Eℓ, |ϱEℓ
(X ∪ Y )| = |ϱEℓ

(X ∩ Y )| = ℓ, and therefore X ∩
Y, X ∪ Y ∈ Uℓ.
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C Proofs for Section 3.1

In this section we complete the technical proofs of Section 3.1.

C.1 Proof of Lemma 2

Proof. Assume C ∩ X ∩ T ̸= ∅, then by the previous claim, C ∩ X ∈ FF . Since
C ∈ FF is inclusion-minimal, C ∩ X = C and thus C ⊆ X.

C.2 Proof of Lemma 3

Proof. Let C ∈ M(FF ∪F ′), then C ∈ F is not covered by F ∪F ′, i.e. ϱF ∪F ′(C) =
∅. It follows that ϱF (C) = ∅, and therefore C ∈ FF . In addition, ϱF ′(C) = ∅ and
thus C is not covered by F ′. Since F ′ covers all FF -cores, C is not an FF -core.
Hence, there are X, Y ∈ M(FF ) such that X, Y ⊆ C. Denote XC := {X ∈
M(FF ) : X ⊆ C}. Then XC ⊆ M(FF ), and we have shown that |XC | ≥ 2. Since
FF ∪F ′ is also a T -intersecting family, inclusion-minimal elements of FF ∪F ′ are
terminal-disjoint. Therefore C is the unique element of M(FF ∪F ′) containing
X, Y . It follows that {XC}C∈M(FF ∪F ′ ) is a partition of M(FF ), in which every
set contains at least two elements. Therefore |M(FF ∪F ′)| ≤ 1

2 |M(FF )|.

C.3 GF can be constructed in polynomial time

In order to prove that GF can be constructed efficiently, we need to show that
we can efficiently decide for every x ∈ V whether x ∈

⋃
C∈M(FF ) C.

Claim. Let t ∈ T . If there exists a tight set X ∈ FF such that t ∈ X, then there
exists a unique inclusion-minimal such set.

Proof. Denote Rt = {X ∈ FF : t ∈ X}. Since t ∈ T , and since FF is T -
intersecting, we get that

⋂
X∈Rt

X ∈ FF . Clearly it is an inclusion-minimal such

set, and we similarly show it is unique.

For every t ∈ T , denote by Ct the unique inclusion-minimal tight set containing
t. The following claim is straightforward, and it characterizes these minimal sets
in a manner that allows to recover them efficiently given G, Eℓ, F .

Claim. For every t ∈ T , there exists a tight set X ∈ FF containing t if and only
if the minimum rt-cut in (V, Eℓ ∪F ) contains ℓ edges. Moreover, Ct is an inclusion
minimal rt-cut of capacity ℓ and can therefore be computed in polynomial time.

Intuitively, one may think that for every t ∈ T , Ct is an inclusion-minimal element
of FF . However, it turns out that this needs not be the case. Therefore in general
we cannot argue that {Ct}t∈T ⊆ M(FF ). The following claim shows that the
converse containment does hold.
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Proposition 2. M(FF ) ⊆ {Ct}t∈T . Furthermore, for every t ∈ T , Ct ∈ M(F)
if and only if there exists a strict core containing t.

Proof. Let C ∈ M(FF ), and let t ∈ C ∩ T . Then C is an inclusion-minimal F -
tight set containing t. Therefore C = Ct ∈ {Cs}s∈T . Next, fix some t ∈ T . Clearly,
if Ct ∈ M(F), then Ct is a strict core containing t. Assume that there exists a
strict core X containing t. Then there exists C ∈ M(FF ) such that C ⊆ X and
X ∩ T = C ∩ T . Since t ∈ Ct ∩ X ∩ T = Ct ∩ C ∩ T , and by minimality of both
C and Ct, and since Ct ∩ C is tight, it follows that Ct ∩ C = Ct = C ∈ M(FF ).

We are now ready to prove the main claim of this section.

Proof. We first show that E0 (and thus w0) can be constructed in polynomial
time given G, Eℓ, F . Following the characterization of {Ct}t∈T and M(FF ) in
Claim C.3 and Proposition 2, we can construct the family M(FF ) in polynomial
time. Let u, v ∈ V , and consider the following algorithm for constructing E0.

1: for all C ∈M(FF ) do
2: find in (V, Eℓ ∪ F ) a minimum cut UC that separates C ∪ {v} and {r, u}.
3: if minC∈M(FF ) |ϱEℓ∪F (UC)| ≥ ℓ + 1 then
4: add uv to E0.

Note first that the algorithm runs in polynomial time. We will show that
the algorithm adds uv to E0 if and only if for every X ∈ FF , if v ∈ X then
u ∈ X. Assume first that there exists X ∈ FF such that v ∈ X and u /∈ X. Then
there exists some C ∈ M(FF ) such that {v} ∪ C ⊆ X ⊆ V \ {r, u}. Therefore
X is a cut separating C ∪ {v}, and since X ∈ FF , then the capacity of X is
ℓ. Therefore ϱEℓ∪F (UC) ≤ ℓ and uv is not added to E0. Otherwise, for every
X ∈ FF , if v ∈ X then u ∈ X. Let C ∈ M(FF ), and let UC be a minimum
cut that separates C ∪ {v} and {r, u} in (V, Eℓ ∪ F ). Then C ⊆ UC ⊆ V \ {r},
and therefore UC ∈ U . Since v ∈ UC and u /∈ UC , then UC /∈ FF . Therefore
ϱEℓ∪F (UC) ≥ ℓ + 1. Hence uv is added to E0 by the algorithm.

Given G0, the metric completion G1 can be constructed in polynomial time.
Finally, for every u ∈ V and s ∈ T , by Proposition 2 we can decide in polynomial
time whether u /∈

⋃
C∈M(FF ) C and whether s ∈

⋃
C∈M(FF ) C. In a similar

manner to constructing E0, we can decide efficiently whether to remove all edges
leaving u. Therefore the set E(GF ) can be constructed in polynomial time.

C.4 Proof of Lemma 8

Consider the instance E(GF ), w, SF for the implicit hitting set problem, where

SF = {ϱE(GF )(X) : X is a strict FF -core} ,
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and the corresponding fractional relaxation.

min
∑

e∈E(GF ) w1
exe s.t.

∑
e∈ϱE(GF )(X) xe ≥ 1 for all strict FF -cores X

xe ≥ 0 ∀e ∈ E(GF )
(2)

We present a polynomial time separation oracle for the linear program (2).
That is, we show an algorithm which, given a vector x ∈ RE(GF )

+ either reports
that x is feasible for (2) or returns a constraint violated by x. For every t ∈ T , the
algorithm verifies that x satisfies the constraints regarding strict cores containing
t. Given some t ∈ T , we first check whether there is a strict core containing t. If
there is no such strict core, we are done. Otherwise, we find the (unique) element
C ∈ M(FF ) containing t, and construct an edge-capacitated auxiliary graph
Ht = (V, E′, {xt

e}e∈E′), where E′ = E(GF ) ∪ Eℓ ∪ F (note that E′ may contain
parallel edges), and xt is defined as follows. For every s ∈ T \ C we set xt

rs to 1,
as demonstrated in Figure 1. In addition, we define xt

e = 1 for all e ∈ Eℓ ∪ F . For
all other edges e, we set xt

e = xe. We now find a minimum rt-cut in Ht. The key
observation is that if the capacity of the cut is strictly less than ℓ + 1, then V \ U
is a strict FF -core that is violated by x (see Figure 1c). The detailed algorithm
is given as Algorithm 4.

r

C
(a) Given t ∈ T , the
highlighted area repre-
sents the unique C ∈
M(FF ) such that t ∈
C. The white circles
represent M(FF ) \
{C}, while their inter-
section with T is dark.

r

1 11

C

(b) We add 1-capacity
edges from r to s for
all s ∈ T \ C.

r

1 11

C

U

(c) An rt-cut U of
capacity strictly less
than 1 must then con-
tain T \ C. Therefore
the set V \U is a strict
FF -core.

Fig. 1: Constructing an Auxiliary Graph Ht

We first show that the Algorithm 4 runs in time polynomial in the size of
G. Fix some t ∈ T . We can efficiently find Ct, and by the characterization in
Proposition 2, we can efficiently check if Ct ∈ M(FF ). Since adjusting the graph
and finding a minimum cut can be done efficiently, we get that Algorithm 4
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Input: x = {xe}e∈E(GF )
Output: either report “x is feasible” or find a violated constraint of (2).
1: let E′ = E(GF ) ∪ Eℓ ∪ F be a multiset of edges.
2: for all t ∈ T do
3: if Ct ∈M(FF ) then
4: for all e ∈ E′ do
5: if e ∈ F ∪ Eℓ or there exists s ∈ T \ Ct such that e = rs then
6: let xt

e ← 1.
7: else
8: let xt

e ← xe.
9: find a minimum rt-cut U in Ht = (V, E′) with capacities {x′

e}e∈E′ .
10: if the capacity of the cut is less than ℓ + 1 then
11: return V \ U .
12: return x is feasible.

Algorithm 4: Separation Oracle for (2)

runs in polynomial time. The following two claims prove the correctness of the
algorithm.

Claim. If x is feasible for (2), then Algorithm 4 verifies it.

Proof. Assume x is feasible for (2), and let t ∈ T be such that Ct ∈ M(FF ).
Let U be an rt-cut in Ht, and denote X = V \ U . Then t ∈ X and r /∈ X, and
therefore X ∈ F . If there is an edge e ∈ F that covers X, then e ∈ ϱE′(X), and
the capacity of the cut is

∑
e′∈ϱE′ (X) xt

e′ ≥ xt
e +

∑
e′∈ϱEℓ

(X) xt
e′ = ℓ + 1. If there

is s ∈ T \ Ct such that s ∈ X, then similarly
∑

e′∈ϱE′ (X) xt
e′ ≥ ℓ + 1. Otherwise,

X ∈ FF , and moreover, X ∩ T = Ct ∩ T . Therefore X is a strict FF -core, and
since x is feasible for (2),∑

e′∈ϱE′ (X)

xt
e′ ≥ ℓ +

∑
e′∈ϱE(GF )(X)

xt
e′ = ℓ +

∑
e′∈ϱE(GF )(X)

xe′ ≥ ℓ + 1 .

Claim. If x is infeasible for (2), then Algorithm 4 returns a violated strict FF -
core.

Proof. Assume that x is infeasible. Then there exists X ∈ FF such that X is a
strict FF -core and such that ∑

e∈ϱE(GF )(X)

xe < ℓ + 1 .

Let t ∈ X∩T , then (V \X, X) is an rt-cut of capacity < 1 in (V, E(GF ), {xe}e∈E(GF )).
Note that since X is a strict core, no edge in F enters X. Therefore (V \ X, X)
is an rt-cut of capacity < ℓ + 1 in Ht. We conclude that the capacity of the
minimum rt-cut U found by the algorithm is strictly less than ℓ + 1. It remains
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to show that Y = V \ U is a strict FF -core. Clearly t ∈ Y ∩ T and r /∈ Y . Let
e ∈ F , then xt

e = 1. Since

0 ≤ |ϱF (Y )| =
∑

e∈ϱF (Y )

xt
e ≤

∑
e∈ϱE′ (Y )

xt
e − ℓ < 1 ,

then Y ∈ FF . Consider s ∈ Y ∩ T . If s /∈ C, then rs ∈ ϱE′(Y ) and thus∑
e∈ϱE′ (Y ) xt

e ≥ ℓ + xt
rs = ℓ + 1. Therefore C is the unique element of M(FF )

contained in Y , and Y ∩ T = C ∩ T .

Corollary 1. Algorithm 4 is a polynomial time separation oracle for the linear
program (2)

Proof (Proof of Lemma 8). From Corollary 1 and Lemma 9 we deduce that
the randomized rounding algorithm for the hitting set problem (Algorithm 3)
outputs a set A ⊆ E(GF ) such that w1(A) ≤ O(log |SF |) optaug(G, Eℓ). Following
Lemma 4, |SF | ≤ 2|S||T |, and therefore w1(A) ≤ O(|S|) optaug(G, Eℓ). Moreover,
Lemma 9 guarantees that with probability at least 1 − 2−|E| the algorithm runs
in polynomial time.


