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Abstract
Recent empirical evidence suggests that real-world
networks have very low underlying dimensionality.
We provide a theoretical explanation for this phe-
nomenon as well as develop a linear-time algorithm
for detecting the underlying dimensionality of such
networks.
Our theoretical analysis considers geometric inho-
mogeneous random graphs (GIRGs), a geometric
random graph model, which captures a variety of
properties observed in real-world networks. These
properties include a heterogeneous degree distri-
bution and non-vanishing clustering coefficient,
which is the probability that two random neighbors
of a vertex are adjacent. Our first result shows that
the clustering coefficient of GIRGs scales inverse
exponentially with respect to the number of dimen-
sions d, when the latter is at most logarithmic in
n, the number of vertices. Hence, for a GIRG to
behave like many real-world networks and have a
non-vanishing clustering coefficient, it must come
from a geometric space of o(log n) dimensions.
Our analysis on GIRGs allows us to obtain a linear-
time algorithm for determining the dimensionality
of a network. Our algorithm bridges the gap be-
tween theory and practice, as it comes with a rig-
orous proof of correctness and yields results com-
parable to prior empirical approaches, as indicated
by our experiments on real-world instances. The
efficiency of our algorithm makes it applicable to
very large data-sets. We conclude that very low di-
mensionalities (from 1 to 10) are needed to explain
properties of real-world networks.

1 Introduction
A key technique for understanding and analyzing large com-
plex data sets is to embed them into a low-dimensional ge-
ometric space. Hence, the search for embedding and di-
mensionality reduction algorithms has become an impor-
tant direction in data analysis and artificial intelligence re-
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search [Sarveniazi, 2014; Camastra and Staiano, 2016; Nickel
and Kiela, 2017]. Embedding algorithms commonly require
a metric that captures the similarities between data points,
which is often abstracted using a graph whose vertices rep-
resent the data points and two vertices are connected if they
are close with respect to this metric. The algorithm then de-
termines geometric positions for these vertices such that con-
nected vertices are close together. Such approaches often re-
quire an a-priori knowledge of the dimensionality, which is
unknown in most applications. Heuristic approaches try to
determine the dimensionality of a dataset by embedding it
in spaces of different dimensionality and choosing the value
that yields the optimal embedding [Levina and Bickel, 2004;
Yin and Shen, 2018; Gu et al., 2021].

The recent work of [Almagro et al., 2022] gives a new al-
gorithm for learning the dimensionality that does not require
embeddings. Instead, given a graph as input, their method
counts the number of short – i.e. length 3, 4 and 5 – cy-
cles of a graph. It then generates a search space consisting of
random graphs that are generated from a geometric model
of varying parameters, including the dimensionality of the
space. Finally, a data-driven classifier finds the random graph
of the search space that resembles the input graph the most
and returns its dimensionality. A remarkable observation, that
comes from using their algorithm to learn the dimensionality
of real-world networks, is that the vast majority of networks
has very low dimensionality, which is independent of the size
of the network.

A downside of the aforementioned approach is that it re-
lies on machine learning techniques that are computationally
heavy with no asymptotic run-time guarantees and lacks the-
oretical explanation for its solution quality. In order to argue
with mathematical rigour, one requires to work with well-
defined mathematical objects. A common approach to incor-
porate such an object is that of average-case analysis, that is,
assume that the input graph comes from a well-defined ran-
dom graph model. The random graph model that has been
mostly considered so far in the literature is that of spherical
random graphs, where vertices are generated independently
and uniformly at random as points on the surface of a d-
dimensional sphere and two vertices are connected if their
angle is bellow a certain threshold. It can be easily shown
that, as the number of dimensions increases, spherical ran-
dom graphs converge to Erdős–Rényi graphs, the classical
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random graph model where edges are drawn independently.
A series of works considers the statistical testing problem
of detecting whether a given graph is a spherical random
graph or an Erdős–Rényi graph and determines the parameter
regime under which this can be done [Devroye et al., 2011;
Bubeck et al., 2016; Brennan et al., 2020; Liu and Rácz,
2023b; Liu et al., 2022]. Follow-up works consider noisy set-
tings [Liu and Rácz, 2023a] or anisotropic geometric random
graphs [Eldan and Mikulincer, 2020; Brennan et al., 2024],
where each dimension has a different influence on the draw-
ing of edges. The techniques of the aforementioned results
can also be used for determining the dimensionality of the
given graph [Bubeck et al., 2016, Theorem 5].

A characteristic of the random graph models considered in
the aforementioned works, i.e. spherical random graphs and
Erdős–Rényi graphs, is that the degree distributions of the
generated graphs is concentrated around its expected value;
this contrasts the power-law degree distributions observed in
real-world networks [Faloutsos et al., 1999]. While a latent
geometric space appears to be a fundamental requirement for
a random graph model that captures the high clustering coef-
ficient [Krioukov, 2016; Boguna et al., 2021] and small diam-
eter [Friedrich et al., 2013] observed in real-world networks,
one needs to also consider the heterogeneity observed in the
vertex degrees. A popular model in network theory captur-
ing all previous properties is based on generating points on
the hyperbolic plane instead of Euclidean space [Boguna et
al., 2010]. However, it is not clear what the non-geometric
counterpart to test against is in this case.

Our Contribution. In this article we bring theory and prac-
tice closer together and provide a mathematical explanation
for the very low dimensionality of real-world networks that
has been observed in practice [Almagro et al., 2022]. To
this end, we build our analysis on Geoemtric inhomogeneous
random graphs (GIRGs), a model which was recently shown
to capture many quantifiable properties of real-world net-
works [Bläsius and Fischbeck, 2022]. Our rigorous proofs
give new insights about the model with which we are able
to design a linear-time algorithm for learning the dimension-
ality of a network and show that when the input is a GIRG
our algorithm returns the correct answer with high probabil-
ity. We note that the small running time is an important ad-
vantage compared to the previously mentioned methods, as it
enables working with the increasingly large networks that we
encounter in practice.

2 Preliminaries
We use standard Landau notation to describe the asymptotic
behavior of functions for sufficiently large n. That is, for
functions f, g, we write f(n) = O(g(n)) if there is a constant
c > 0 such that for all sufficiently large n, f(n) ≤ cg(n).
Similarly, we write f(n) = Ω(g(n)) if f(n) ≥ cg(n) for
sufficiently large n. If both statements are true, we write
f(n) = Θ(g(n)). Regarding our study of the clustering co-
efficient, some results make a statement about the asymptotic
behavior of a function with respect to a sufficiently large d.
These are marked by Od(·),Ωd(·),Θd(·), respectively.

Geometric Inhomogeneous Random Graphs & Chung–
Lu Graphs. Geometric inhomogeneous random graphs
(GIRGs) as introduced in [Bringmann et al., 2017] are de-
fined as follows. Let G(n, d, β, w0, λ) = (V,E) denote
the n-vertex graph obtained in the following way. For each
v ∈ V , we independently sample a weight wv from the Pareto
distribution P with parameters 1 − β and w0, and we draw
a position xv uniformly on the d-dimensional torus. Then,
edges are formed depending on the weights of the vertices,
the distances between the corresponding positions, and the
constant λ > 0.

More precisely, the distribution of the weights is described
by the distribution function

P[wv ≤ x] = 1−
(

x

w0

)1−β

,

where wmin > 0 and β > 2 are assumed to be constants, the
constraint on the latter ensuring that that a single weight has
finite expectation (and thus the average degree in the graph is
constant), but possibly infinite variance. The density of wv is
ρwv

(x) = (β−1/w1−β
0 )x−β . We denote the sequence of the

drawn weights by {w}n1 .
The position xv in the d-dimensional torus Td is drawn

uniformly at random according to the standard Lebesgue
measure. We denote the i-th component of xv by xvi. Dis-
tances on the torus are then measured using the Lp-norm for
a constant 1 ≤ p ≤ ∞. That is, we define

∥xu − xv∥p :=


(∑d

i=1 |xui − xvi|p
)1/p

if p < ∞
maxi{|xui − xvi|} otherwise.

Note that L∞ is a natural metric on the torus as B∞(r), the
ball of radius r under this norm, is a cube and “fits” entirely
into Td for all 0 ≤ r ≤ 1.

Given the weights and positions, two vertices u and v are
adjacent if and only if their distance ∥xu − xv∥p is at most
the connection threshold tuv , which is defined such that the
marginal connection probability of u, v is

P[u ∼ v] = min

{
1,

λwuwv

n

}
=

κuv

n
, (1)

for κuv = min{n, λwuwv}. Under L∞-norm, and for µ =
2d/λ, this connection threshold is

tuv =
1

2

(
λwuwv

n

)1/d

=

(
wuwv

µn

)1/d

.

The GIRG model has a natural non-geometric counterpart
where the weight distribution of the vertices is the same as
in GIRGs but the edges are now sampled independently, with
probability

P[u ∼ v] = min

{
1,

λwuwv

n

}
.

This inhomogeneous random graph model is known as the
Chung–Lu random graph model and has been extensively
studied in literature [Aiello et al., 2001; Chung and Lu,
2002a; Chung and Lu, 2002b].



Hence for our analysis, we are now equipped with an
appropriate geometric random graph model and its non-
geometric variant. Note that the two models converge as
the number of dimensions in the GIRG model goes to infin-
ity, i.e., the total variation distance of the two models goes
to zero, as it was shown in [Friedrich et al., 2023a, Theo-
rem 1]. Finally, let us note that the model is very versatile as
one can consider other variants with different degree distribu-
tions or metric spaces. In the paper, we refer to GIRGs with a
given arbitrary weight sequence {w}n1 as G(n, d, {w}n1 , λ).
We note, however, that our choice of the Pareto distribu-
tion for the vertex weights and of the torus for the geometric
space is the one considered most frequently in literature (see
e.g. [Bläsius and Fischbeck, 2022]).
Triangles and Clustering Coefficient. The number of tri-
angles and related properties of a graph are common statistics
used in the analysis of networks [Gupta et al., 2014], espe-
cially for detecting underlying geometry. In fact a related
statistic1 was used in [Bubeck et al., 2016] to efficiently test
for geometry and the number of dimensions of a spherical
random geometric graph.

When dealing with heterogeneous degree distributions,
however, triangles that are attributed to large degree vertices
have a significant influence on the total number of triangles.
In fact as shown in [Friedrich et al., 2023a], the number of tri-
angles in GIRGs and in Chung–Lu graphs are asymptotically
equivalent if β ≤ 7/3, which is not an unrealistic choice for
many real-world networks. In [Michielan et al., 2022], it is
suggested weighting each triangle by the inverse degrees of
the involved vertices, a statistic called weighted triangles. A
normalized version of the number of triangles as well as cord-
less squares and pentagons was also used in [Almagro et al.,
2022] to determine the dimensionality of a given network.

A natural statistic, observed in many real-world networks
that is however strikingly absent in non-geometric random
graphs where edges are drawn independently, is the existence
of a non-vanishing clustering coefficient, i.e. the probability
that two randomly chosen neighbours of a vertex are adja-
cent. The clustering coefficient is the central focus of our
analysis and we use the following common definition, also
used in [Keusch, 2018, Definition 5.1].

Given a graph G = (V,E), its local clustering coefficient
of a vertex v is

CCG(v) :=

{ |{{s,t}⊆Γ(v):s∼t}|
(deg(v)

2 )
if deg(v) ≥ 2

0 otherwise.

The (global) clustering coefficient of G is the average of the
local coefficient of each of G’s vertices, that is,

CC(G) :=

∑
v∈V CCG(v)

|V |
.

For GIRGs it was shown in [Keusch, 2018] that, when the
vertices of the generated graph are drawn on a torus of con-
stant dimensionality, the generated graph has a constant clus-
tering coefficient. On the other hand, on Chung–Lu graphs

1The statistic used, number of signed triangles, essentially mea-
sures by how much the number of triangles in the graph exceeds the
expected value in the Erdős–Rényi graph model.

it was shown that the clustering coefficient goes to 0 as n,
the number of vertices of the graph, grows [van der Hofs-
tad et al., 2017]. Our first result, which we discuss in the
next section, extends the results on the clustering coefficient
of GIRGs by giving an upper bound that explicitly depends on
the dimension of the underlying space. This illustrates how
the dimension limits the maximally achievable clustering and
already explains why the dimension needs to be sufficiently
low to reproduce the high clustering coefficients commonly
found in real networks. We refine our result for the case of
L∞-norm in Section 3.1 and afterwards introduce an efficient
statistical test for learning the dimension of a network based
on the computation of clustering coefficients among nodes of
similar degree (Section 4). Finally, we apply our test on a va-
riety of real world networks and obtain results comparable to
that of [Almagro et al., 2022], while our test is applicable to
much larger datasets. We find that the dimension correspond-
ing to realistic networks is typically very low, ranging from 1
to around 20, supporting the hypothesis of previous work.

3 Upper Bounds on the Clustering Coefficient
of GIRGs

Our first result shows that, when d = o log(n), the clustering
coefficient of a GIRG scales inverse exponentially with re-
spect to the number of dimensions d. Note that, due to space
limitations, we will only discuss the technical difficulties of
proving our result on a high level. For the complete proof
with all details we refer the reader to the full version of the
paper [Friedrich et al., 2023b].

Theorem 3.1. Asymptotically almost surely, if d =
o(log(n)), the clustering coefficient of G sampled from the
GIRG model under some Lp-norm with p ∈ [1,∞] is

CC(G) = exp(−Ωd(d)) + o(1).

For the case of L∞-norm, we later derive a much more
precise bound. Theorem 3.1 implies that if d = ω(1) and
d = o(log(n)) the clustering coefficient vanishes and that al-
ready for constant (sufficiently large) values of d, clustering
decays at least exponentially in d. As most real-world net-
works have a non-vanishing clustering coefficient, our theo-
rem suggests that their dimensionality must be at most con-
stant in the number of vertices. This is the first rigorous the-
oretical explanation for the empirical observations of the low
dimensionality of real-world networks by Almagro, Boguñá
and Serrano [Almagro et al., 2022].

Besides the results in [Keusch, 2018] for a constant num-
ber of dimensions, the clustering coefficient of random ge-
ometric graphs (i.e., our model in the case of homogeneous
weights) under the L2-norm as a function of d was previously
analyzed in [Dall and Christensen, 2002]. However, Theo-
rem 3.1 applies to inhomogeneous weights and arbitrary Lp-
norms, which complicates the analysis. The main difficulty in
proving Theorem 3.1 is that the probability that two random
neighbours of a given vertex are connected is significantly de-
pendent on their weights. Our proof circumvents this issue by
showing that high-weight nodes only have a small influence
on the global clustering coefficient of a power-law graph G.



Via an application of the method of typical bounded differ-
ences (see e.g. [Warnke, 2016]) – a generalisation of McDi-
armid’s inequality [McDiarmid, 1989] and a powerful tool to
showing concentration in high-dimensional spaces – we then
show that the clustering coefficient of a GIRG concentrates
around the expected clustering coefficient of a subgraph in-
duced by vertices of small weight.

The bound on the clustering coefficient in this subgraph
follows from a bound on the probability that two random vec-
tors yu, yv uniformly distributed within the unit ball under
Lp-norm have a distance larger than a certain threshold. Intu-
itively, the fact that this probability decays exponentially with
d is a consequence of the law of large numbers: as d grows,
with large probability, about half of the components of yu
and yv have opposite sign, which already leads to a distance
between u and v that is arbitrarily close to 1 with probability
converging to 1 as d grows. Taking into account that the other
components of yu and yv also contribute at least a constant
increase in distance between u and v with large probability,
we get that there is an exponentially increasing probability
that the distance between u and v is strictly greater than one,
which suffices to show an exponential upper bound on the
clustering coefficient in G. To prove this exponential decay
in terms of d, we use a coupling argument based on the ob-
servation that the “direction” x/∥x∥p and the norm ∥x∥p of
a random vector distributed in the unit ball under Lp-norm
are independent. To analyze x/∥x∥p, we define the follow-
ing distribution and show that if z is a vector sampled from
this distribution, then z/∥z∥p is distributed just as x/∥x∥p.
This has the advantage that the components of z are now in-
dependent, allowing us to apply sharp tail bounds from which
our statements follow. While these arguments are only valid
for random vectors distributed in Rd, we show that they re-
main valid on the torus if we restrict ourselves to vertices of
sufficiently low weight.

The χp-Distribution. Let p ∈ R, p ≥ 1. We say that a
random vector x ∈ Rd is χp(d) distributed if each of its com-
ponents xi is independently distributed according to the den-
sity function ρ(xi) := γe−

1
2 |xi|p , with normalising constant

γ = p(21/p+1Γ(1/p))−1, where Γ(s) =
∫∞
0

xs−1e−xdx is
the gamma function. If x ∼ χp(d), then we denote the distri-

bution of
(
∥x∥p

)p
=
∑d

i=1 |xi|p by χp(d).

This distribution is a generalisation of the χ2 distribu-
tion and a simplification of the one proposed by [Livadio-
tis, 2014]. In the full version of the paper [Friedrich et al.,
2023b], we determine its moment generating function. This
not only gives us its expectation, which is 2d/p, but also al-
lows us to prove the following concentration bound, which
we use in the arguments used for the proof of Theorem 3.1.

Corollary 3.2. Let Xi, . . . Xd be i.i.d. random variables
from χp(1) and define Z =

∑k
i=1 |Xi|p ∼ χp(d). Then,

for every δ > 0 and ε =
√
2δ + δ, it holds that

P[Z ≥ (1 + ε)E[Z]] ≤ exp

(
−2δ

p
· d
)
,

P[Z ≤ (1− ε)E[Z]] ≤ exp

(
−2δ

p
· d
)
.

We believe our analysis of the χp(d) and χp(d) distribu-
tions to be of independent interest, as many random spaces
can be related to vectors drawn uniformly at random within
the d-dimensional unit ball of some Lp-norm.

3.1 Improved Bounds for the L∞-Norm.
When using L∞-norm as a distance measure for GIRGs we
obtain more precise results and are able to further determine
the base of the exponent.
Theorem 3.3. Asymptotically almost surely, if d =
o(log(n)), then the clustering coefficient of G sampled from
the GIRG model with L∞-norm fulfils

CC(G) ≤ 3

(
3

4

)d(1− 1
β )
+ o(1).

Recall that the L∞ norm is not only a natural distance mea-
sure on the torus from a mathematical point of view, but also
one that yields graphs that closely resemble real-world net-
works [Bläsius and Fischbeck, 2022]. The stronger result for
L∞-norm is based on an application of the following theorem
of Friedrich et al. [Friedrich et al., 2023a, Theorem 3] that
estimates the probability that three random vertices that have
similar weights are a triangle if the vertex of minimal weight
is adjacent to the other two and the weights are sufficiently
small compared to n. The complete proof of Theorem 3.3
can be found in [Friedrich et al., 2023b].
Theorem 3.4. Let G be a GIRG generated under L∞-
norm. Let U = {v, s, t} be a set of 3 vertices with weights
wv, ws, wt such that wv ≤ ws ≤ wt and wv ≤ cwt for some
constant c > 0. If

(
w2

t /(µn)
)1/d ≤ 1/4, we have(

3

4

)d

≤ P[U is a triangle | v ∼ s, t] ≤ c

(
3

4

)d

.

4 Learning the Dimensionality
While the previous results show that the dimension needs to
be sufficiently low to allow for large clustering coefficients, it
does not explicitly allow us to recover the dimension of a net-
work as the hidden constants in our statements may depend
on other parameters such as β,w0, λ. In the following, we ad-
dress this issue by presenting a statistical test for recovering
the dimension of a GIRG with high probability.

[Michielan et al., 2022] study the problem of detecting the
underlying geometry in GIRGs of constant dimension under
L∞-norm. As previously mentioned, they observe that the
number of triangles of a GIRG is close to that of a Chung–Lu
graph when β is close to 2 as then, the number of triangles is
dominated by those forming among high-degree vertices. The
authors therefore suggest to count the number of weighted
triangles instead, where each triangle contributes a weight
that is inversely proportional to the product of the degrees
of its vertices. Weighted triangles thus counteract the effect
of high-degree vertices as the influence of triangles forming
among such vertices is diminished. However, this approach



only allows to decide whether the network has an underlying
metric structure, but not its dimensionality.

We take a similar (yet more direct) approach for exclud-
ing the effect of high-degree vertices and introduce a test
that is able to infer the dimension of the underlying met-
ric space. Namely, using Theorem 3.4 together with the
method of typical bounded differences [Keusch, 2018, Theo-
rem 2.5] we can show that the average local clustering coef-
ficient in the induced subgraph of all vertices with at least
two neighbors and weight in the interval [wc, cwc] (where
wc ≥ w0, 0 < c < 2/

√
3) concentrates tightly around a value

that only depends on d and not on β,w0 or λ.
We use the following lemma.

Lemma 4.1. Let G = (V,E) be a GIRG and let V≤log(n)

be the set of all vertices with weight at most log(n). With
probability at least 1 − n−Ω(log2(n)), we have for all v ∈
V≤log(n) that deg(v) ≤ log3(n).

The proof is in the full version of our paper [Friedrich et
al., 2023b]. Our main result follows.
Theorem 4.2. Let G be a GIRG generated under L∞-norm.
Let further 1 < c,wc ≥ w0 be constants, and let G′ be
the subgraph of G consisting of all vertices with weight in
[wc, cwc]. Assume that d is an integer with d = o(log(n)).
Define the set S as the set of nodes in G′ that have at least
two neighbors in G′ and the random variable CC(+)(G′) as

CC(+)(G′) =
1

|S|
∑
v∈S

| {{s, t} ⊆ Γ(v) | s ∼ t} |(
deg(v)

2

)
=

1

|S|
∑
v∈S

CCG′(v).

Then,

CC(+)(G′) ∈

(
1

c

(
3

4

)d

, c

(
3

4

)d
)

± n−1/5

with probability at least 1− o(1/n).

Proof. We start by estimating the expectation of CC(+)(G′).
It is not hard to see that by linearity of expectation

E
[
|S| CC(+)(G′)

]
=
∑
v∈G′

E[1(v ∈ S) CCG′(v)]

= E[|S|]P[∆ | v ∼ s, t]

where v, s, t are three random vertices in G′, and ∆ is the
event that v, s, t are a triangle. Our proof proceeds in two
steps: (1) we show that P[∆ | v ∼ s, t] is in the interval
(c−1(3/4)d, c(3/4)d), and (2) we show that CC(+)(G′) con-
centrates around its expectation using the method of typical
bounded differences.

For part (1), we apply Theorem 3.4 and note that – since
v, s, t are in G′ – the weights of v, s, t differ by at most a
factor of c. However, Theorem 3.4 only yields a bound on the
probability of ∆ if v is the vertex of minimal weight among
v, s, t. However, we can express P[∆ | v ∼ s, t] as

P[∆]

P[v ∼ s, t]
= P

[
∆ | v̂ ∼ ŝ, t̂

] P[v̂ ∼ ŝ, t̂
]

P[v ∼ s, t]

where v̂, ŝ, t̂ are the vertices v, s, t reordered such that v̂ is
of minimal weight. Since P[v ∼ s, t] = λ2w2

vwswt/n
2 (we

can ignore the minimum in eq. (1) here because the weights
are constant), we can conclude that the fraction in the above
equation is at least 1/c and at most 1. For the remaining term,
Theorem 3.4 is applicable so that we can conclude that

P[∆ | v ∼ s, t] ∈

(
1

c

(
3

4

)d

, c

(
3

4

)d
)

For the second part of the proof, we first show that |S| is
linear and concentrates well around its expectation. This will
ensure that we can apply the method of typical bounded dif-
ferences to |S| ·CC(+)(G′). We start by showing that there is
a constant α > 0 such that |S| is at least αn with probability
1− n−ω(1). Consider a fixed vertex v from G and denote the
number of its neighbors in G′ by Xv . We note that every ver-
tex in G has a constant probability of being in G′ and a proba-
bility of at least λw2

0/n to connect to v. Xv is therefore lower
bounded by the sum of n independent Bernoulli distributed
random variables with success probability in Θ(1/n). Denote
this sum by X ′

v and note that E[X ′
v] = Θ(1). By [Cam, 1960,

Proposition 1], X ′
v converges to a Poisson distributed random

variable with constant expectation. Accordingly, P[X ′
v ≥ 2]

is constant as well. This shows that every vertex in G has at
least a constant probability of having two neighbors in G′. As
the probability that v is in G′ is constant as well, this implies
that E[|S|] = Ω(n). We continue with showing concentration
of this random variable using [Keusch, 2018, Theorem 2.5].
We note that the random variables x1, x2, . . . , xn (the po-
sitions of all vertices), and w1, w2, . . . , wn (the weights of
all vertices) are independent and define a product probability
space Ω as in [Keusch, 2018, Theorem 2.5]. Each ω ∈ Ω
defines a graph G(ω), and f(ω) is defined as the value of |S|
in this graph. We consider the “bad” event

B = {ω ∈ Ω | the max degree in G′ is > log3(n)}.

By Lemma 4.1, B happens with probability n−ω(1). Now,
let ω, ω′ ∈ B be such that they differ in at most two co-
ordinates. Changing the weight or coordinate of one vertex
can only decrease the number of vertices in G′ with at least
two neighbors by at most 2 log3(n) as the weight or coordi-
nate change only influences vertices that are neighbours of the
changed vertex before or after the change. Accordingly, two
coordinate or weight changes can only change |S| by at most
c′ := 4 log3(n). Using t = n3/4 further fulfills the condition
t ≥ 2MP[B] as M ≤ n and P[B] = n−ω(1). As m = 2n, we
get,

P
[
|S| − E[|S|] | ≥ n3/4

]
≤

2 exp

(
− n1/2

32 · 2 · 16 log6(n)

)
+

(
n2

log3(n)
+ 1

)
n−ω(1)

= n−ω(1).

Similarly, we can show concentration of f(S) = |S| ·
CC(+)(G′) =

∑
v∈S | {{s, t} ⊆ Γ(v) | s ∼ t} |/

(
deg(v)

2

)
.

Again, changing the coordinate or weight of any two vertices



can only increase or decrease the local clustering coefficient
of at most 4 log3(n) vertices by a value of at most one. Hence,
we can again choose c′ := 4 log3(n) and t = n3/4 to obtain

P
[
|f(S)− E[f(S)]| ≥ n3/4

]
≤ n−ω(1).

Combining these two concentration results, we get that
f(S) = E[|S|]P[∆ | v ∼ s, t]± n3/4 and

|S| = E[|S|]± n3/4

both hold with probability 1 − o(1/n). Dividing by |S| and
using E[|S|] = Θ(n) then yields

CC(+)(G′)

=
E[|S|]

E[|S|]∓ n3/4
P[∆ | v ∼ s, t]± n3/4

E[|S|]∓ n3/4

= P[∆ | v ∼ s, t]± n−1/5.

Using our initial estimate for P[∆ | v ∼ s, t] concludes the
proof.

Theorem 4.2 can be viewed as a linear-time algorithm for
the following statistical testing problem (assuming that wc is
constant). We are given a graph G on n vertices, its weight
sequence, and an integer d = o(log(n)). Under the null hy-
pothesis, G is a GIRG with dimension d, whereas under the
alternative hypothesis, G was generated in dimension d1 ̸= d
or it is a Chung–Lu graph. Here, we allow d1 to be any
integer (potentially larger than log(n)). Consider the fol-
lowing testing procedure for this problem. Fix a constant
1 < c < 2/

√
3 and a weight wc ≥ w0. Now, consider

the induced subgraph G′ of G consisting of all nodes with
weight in [wc, c · wc]. For every node v ∈ G′ that has at
least two neighbours in G′, compute its local clustering co-
efficient CCG′(v) and denote by CC(+)(G′) the mean over
all these values. We accept the null hypothesis if and only if
−n−1/5 + 1

c

(
3
4

)d ≤ CC(+)(G′) ≤ c
(
3
4

)d
+ n−1/5.

Due to Theorem 4.2 the probability that our test makes
a mistake assuming that the null hypothesis is true is only
n−ω(1). Under the alternative hypothesis, assume that d1 is
the ground truth dimension G came from, and assume further
without loss of generality that d1 ≥ d + 1. We have to show
that asymptotically,

1

c

(
3

4

)d

− n−1/5 > c

(
3

4

)d+1

+ n−1/5

⇔ 1 >
3c2

4
+ 2

(
4

3

)d

n−1/5.

Accordingly, if d = o(log(n)) and if we choose c < 2/
√
3 ≈

1.155, this inequality is true for sufficiently large n.
Finally, we observe that the running time of this test is lin-

ear, as we have to compute the local clustering coefficient of
vertices of constant weight and as the degree of a vertex with
weight cwc is constant in expectation. Iterating this statisti-
cal test over the range of d we can recover the dimensionality
of the input graph with high probability. Let us note that our
result is not restricted to constant number of dimensions but
applies to the whole regime with d = o(log(n)), which as
Theorem 3.3 implies, is the only relevant one.

5 Application to Real-World Networks.
In addition to our theoretical results, we implemented our
algorithm and evaluated it on both real-world networks and
GIRGs2. For estimating the vertex weights, we used the max-
imum likelihood estimator derived in [Boguna et al., 2010,
Appendix B.2]. The outcome of our experiments is sum-
marised in Figure 1, where we plot our test statistic for real
and synthetic networks over different choices of wc. We also
include a histogram showing the frequencies of the inferred
dimensions over our whole dataset of about 3k real-world net-
works. The dimension was inferred by taking a weighted me-
dian (weighted by the size of the induced subgraph of vertices
with weight in [wc, cwc]) over different choices of wc ranging
in {2, . . . , 300}. Our dataset of real-world networks for the
plots in Figure 1 outside the histogram is a collection of 65
networks from the SNAP-dataset [Leskovec and Krevl, 2014]
and Network Repository [Rossi and Ahmed, 2015] with sizes
between 10k and 4M vertices. We mainly use social, cita-
tion, collaboration and biological networks. The histogram
in Figure 1 additionally uses a dataset of 2976 real-world
networks from [Bläsius and Fischbeck, 2022]. The results
we obtain are indeed similar to the results in [Almagro et
al., 2022, Fig. 5] while our algorithm has stronger theoret-
ical foundations and is much more efficient. In fact, we are
able to handle datasets of orders of magnitude larger than that
of [Almagro et al., 2022]. We observe in Figure 1 that some
real-world networks show an overall similar behaviour as the
GIRGs (e.g. soc-academia, fb-pages-artist,
ca-AstroPh,bio-WormNet, cf. Figure 1) and that very
low dimensions (ranging from 1 to around 10) are required to
explain the properties of the networks in our dataset. Our re-
sults in Figure 1 confirm the hypothesis that the vast majority
of realistic networks corresponds to very low dimensionalities
although there are outliers. It is not a surprise that real-world
data can be noisy and, therefore, often exhibit a behaviour
that differs from synthetic networks. Roughly speaking the
variance of the clustering coefficients over different weight
ranges [wc, cwc] is higher in those real-world networks than
it is on GIRGs. However, our results on these networks still
yield an estimate of their dimensionality, or at least a range
of realistic dimensionalities. Such difficulties were also en-
countered in [Almagro et al., 2022] (see their supplementary
material). A similar noisy behaviour can also be observed
in small generated GIRGs, where the number of vertices is
not high enough for the concentration results to be strong.
Our algorithm performs exceptionally well at recovering the
ground truth for the number of dimensions when the number
of vertices is sufficiently high and the test is performed among
vertices of sufficiently low weight, as predicted by our theo-
retical results. We further remark that the GIRG model in the
literature is often introduced with an additional temperature
parameter T ∈ [0, 1] (e.g. in [Bläsius et al., 2022]) that con-
trols the influence of the underlying geometry and influences
our test, with higher temperatures leading to lower clustering.
While our theoretical results technically only apply if the tem-
perature is 0, experiments show that the test remains robust if
T ≤ 1/2 with inferred dimensions on synthetic networks that

2Code: https://github.com/leon-schi/dimensionality-estimation.

https://github.com/leon-schi/dimensionality-estimation
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Figure 1: First row: our test statistic for different choices of wc in real-world networks. The size of the circles indicates the number of vertices
in the induced subgraph of vertices with weight in [wc, cwc] for c = 1.15. Dashed lines show a lower bound on the expected value of our test
statistic for a GIRG generated in dimension d, i.e (3/4)d. Second row, left: the same procedure for synthetic networks, generated with the
algorithm of [Bläsius et al., 2022] using β = 2.5, α = 10 and average degree 10. Second row, right: distribution of the inferred dimension
of 2976 real-world networks from the dataset of [Bläsius and Fischbeck, 2022].

only exceed the ground truth by at most 2. Furthermore, as
T increases, so does the inferred dimension, hence our ex-
periments are still an indicator of the maximally admissable
dimension of a network, even for arbitrarily large tempera-
tures. Our results on real-world networks further indicate that
the GIRG model does not fully capture the properties of real
networks, motivating further research.

6 Future Work
A large body of work has been devoted to understanding
for which asymptotic behavior of d geometry is detectable
in spherical random geometric graphs (SRGGs) for homo-
geneous weights. While the parameter regime where these
graphs lose geometry in the dense case, i.e. the case where
the edge probability is constant and does not depend on n, is
well understood [Devroye et al., 2011; Bubeck et al., 2016;
Liu and Rácz, 2023b], it is unclear what happens in the sparse
case (where the marginal connection probability is propor-
tional to 1/n) and progress has been made only recently
[Brennan et al., 2020; Liu et al., 2022].

On the other hand, research devoted to studying the influ-
ence of the dimension on random geometric graphs in the
case of inhomogeneous weights is sparse. We gave first re-
sults in this regard by studying how the clustering coefficient
depends on d and showed that the dimension can be detected
by means of statistical testing assuming that d = o(log(n)),
which is a valid assumption for realistic data. It is interest-
ing to study under which conditions the geometry remains

detectable if d = Ω(log(n)) and under which circumstances
the model converges to its non-geometric counterpart with re-
spect to the total variation distance of the distributions over
the produced graphs as previously studied for spherical ran-
dom graphs. Also, to determine what differences arise when
using the torus instead of the sphere as the underlying metric
space and which influence different norms have in this regard.

Noisy settings have also been considered in the context of
testing for geometry in random graphs [Liu and Rácz, 2023a].
The GIRG model comes with a natural way of modelling
noise in the form of an (inverse) temperature parameter α > 1
[Keusch, 2018]. As higher temperatures diminish clustering
in addition to the effects induced by the dimension, it would
be relevant to generalize our results to the case of non-zero
temperatures and to investigate how the effects of high tem-
perature can be distinguished from that of high dimension.

Finally, our experiments indicate that some real-world net-
works behave differently than GIRGs when being subjected
to our test. One possible explanation is the non-zero assor-
tativity of many real networks. Therefore, we would like to
understand how this parameter influences our test and how
the GIRG model can be extended by further parameters that
allow adjusting assortativity and related properties.
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