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Abstract We study non-uniform random k-SAT on n variables with
an arbitrary probability distribution p on the variable occurrences. The
number t = t(n) of randomly drawn clauses at which random formulas go
from asymptotically almost surely (a. a. s.) satisfiable to a. a. s. unsatisfi-
able is called the satisfiability threshold. Such a threshold is called sharp
if it approaches a step function as n increases. We show that a threshold
t(n) for random k-SAT with an ensemble (pn)n∈N of arbitrary probability

distributions on the variable occurrences is sharp if ‖pn‖22 = On

(
t−

2
k

)
and ‖pn‖∞ = on

(
t−

k
2k−1 · log−

k−1
2k−1 t

)
.

This result generalizes Friedgut’s sharpness result from uniform to non-
uniform random k-SAT and implies sharpness for thresholds of a wide
range of random k-SAT models with heterogeneous probability distribu-
tions, for example such models where the variable probabilities follow a
power-law distribution.

1 Introduction

One of the most thoroughly researched topics in theoretical computer science
is Satisfiability of Propositional Formulas (SAT). It was one of the first prob-
lems shown to be NP-complete by Cook [17] and, independently, by Levin [34].
Furthermore, SAT stands at the core of many results of modern complexity
theory, like NP-completeness proofs [33] or lower bounds on runtime assuming
the (Strong) Exponential Time Hypothesis [12,18,30,31].

Additional to its importance for theoretical research, Propositional Satisfiabil-
ity also has practical applications. Many practical problems can be transformed
into SAT formulas, for example hard- and software verification, automated plan-
ning, and circuit design. Such SAT formulas arising from practical and industrial
problems are commonly referred to as industrial SAT instances. Surprisingly,
even large industrial SAT instances with millions of variables can often be solved
efficiently by state-of-the-art SAT solvers. This suggests that these instances have
a structure which makes them easier to solve than the theoretical worst-case.

Uniform Random SAT and the satisfiability threshold conjecture: In
order to study the average-case complexity of Satisfiability, one can generate a



formula Φ at random in conjunctive normal form (CNF) with n variables and
m clauses. To this end, we assume to have a probability distribution over all
formulas with those properties. If the probability distribution is uniform, we will
also refer to the model as uniform random k-SAT.

One of the most prominent questions related to uniform random k-SAT is
trying to prove the satisfiability threshold conjecture. The satisfiability threshold
conjecture states that for a formula Φ drawn uniformly at random from the set of
all k-CNFs with n variables and m clauses, there is a real number rk such that

lim
n→∞

Pr{Φ is satisfiable} =

{
1 m/n < rk;

0 m/n > rk.

For k = 2, Chvatal and Reed [13] and, independently, Goerdt [28] proved that
r2 = 1. For k > 3, explicit upper and lower bounds have been derived, e. g.,
3.52 6 r3 6 4.4898 [19,29,32]. Additionally, the cavity method from statistical
mechanics [35] was used to suggest a numerical estimate of r3 ≈ 4.26. Coja-
Oghlan and Panagiotou [14,15] derived a bound (up to lower order terms) for
k > 3 with rk = 2k log 2− 1

2 (1 + log 2)± ok(1). Recently, Ding, Sly, and Sun [20]
proved the exact position of the threshold for sufficiently large values of k.

One goal of showing the conjecture is to rigorously connect or disconnect
threshold behavior to the average hardness of solving instances. For uniform
random k-SAT for example, the on average hardest instances are concentrated
around the threshold [36]. However, the conjecture and a lot of related work only
consider formulas that are drawn uniformly at random. But what happens if the
formulas are drawn according to a different probability distribution?

Non-Uniform Random SAT: There is a substantial body of work which
analyzes the satisfiability threshold in different SAT models, like regular random
k-SAT [8, 9, 16, 43], random geometric k-SAT [11] and 2 + p-SAT [1, 37–39].
However, these models are not motivated by trying to model or understand the
properties of industrial instances.

One property of industrial instances is community structure [7], i. e. some
variables have a bias towards appearing together in clauses. It is clear by definition
that such a bias does not exists in uniform random k-SAT. The Community
Attachment Model by Giráldez-Cru and Levy [26] creates random formulas with
clear community structure. Yet, the work of Mull et al. [40] shows that instances
generated by this model have exponentially long resolution proofs with high
probability, making them hard for CDCL on average.

Another important property of industrial instances is their degree distribution.
The degree distribution of a formula Φ is a function f : N→ N, where f(x) denotes
the number of different Boolean variables that appear x times in Φ (negated
or unnegated). In uniform random k-SAT this distribution is binomial, but it
has been found out that the degree distribution of many families of industrial
instances follows a power-law [5, 10]. This means that f(x)/n ∼ x−β , where β is
a constant intrinsic to the instance. To help close the gap between the degree



distribution of uniform random and industrial instances, Ansótegui et al. [5]
proposed a power-law random SAT model. Empirical studies [3–6] found that
SAT solvers that are specialized in industrial instances also perform better on
power-law formulas than on uniform random formulas. However, it looks like a
power-law degree distribution alone makes instances a bit easier to solve, but not
actually “easy”: median runtimes around the threshold still look like they scale
exponentially for several state-of-the-art solvers [25].

Recently, Giráldez-Cru and Levy [27] also introduced the popularity-similarity
model, which incorporates both power-law degree distribution and community
structure. Like most other models inspired by industrial instances it lacks theo-
retical work regarding the satisfiability threshold.

In this work we want to consider a generalization of the power-law random
SAT model by Ansótegui et al. [5]. Our model allows instances with any given
ensemble of variable distributions, instead of just power laws: The variables of
each clause are drawn with a probability proportional to the n-th distribution in
the ensemble, then they are negated independently with a probability of 1/2 each.
Let D (n, k, (pn)n∈N,m) be such a model with a variable distribution ensemble
(pn)n∈N, where m clauses of length k over n variables are drawn. We call this the
clause-drawing model. If we draw clauses in such a way, the variable probability
distribution also defines a probability distribution over k-clauses. Instead of
drawing exactly m k-clauses over n variables, one can now imagine flipping a
coin for each possible k-clause and taking the clause into the formula with the
clause probability multiplied with a certain scaling factor s. By doing so, the
expected number of clauses in the formula will be exactly s. We will denote this
model by F (n, k, (pn)n∈N, s) and call it the clause-flipping model.

Although F (n, k, (pn)n∈N, s) and D (n, k, (pn)n∈N,m) cannot represent in-
dustrial instances accurately, they might still give us some insights into which
properties of real-world instances make them easy to solve. The one property our
models provide is degree distribution. They allow us to look at the connection
between degree distribution and hardness in an average-case scenario. As one
of the steps in analyzing this connection, we would like to find out for which
ensembles of variable probability distributions an equivalent of the satisfiability
threshold conjecture holds in non-uniform random k-SAT. To see which ingredi-
ents we need to prove the conjecture and which of these ingredients this work
provides, we first have to introduce the concept of threshold functions formally.

Threshold functions: Formally, due to [23] a threshold for a monotone property
P is defined as follows in the classical context of uniform probability distributions:
Let p ∈ [0, 1] and let V = {0, 1}N be endowed with the product measure µp(·):
for x ∈ V define µp(x) = p

∑
xi(1− p)N−

∑
xi , and, for W ⊆ V , µp(W ) =∑

x∈W µp(x). Now let P = P (n) be the family of properties. p∗ = p∗(n) is an
asymptotic threshold function for P (n) if for every p = p(n)

lim
n→∞

µp(P ) =

{
0, if p� p∗

1, if p� p∗.



Here � and � denote ”asymptotically smaller” and ”asymptotically bigger”
respectively.

Intuitively, a sharp threshold means that the change in probability around the
threshold becomes steeper and steeper as the problem size increases, converging
to a step function as n tends to infinity. Formally, we say that P (n) has a sharp
threshold if there exists a function p∗ = p∗(n) such that for every constant ε > 0
and for every p = p(n)

lim
n→∞

µp(P ) =

{
0, if p 6 (1− ε)p∗

1, if p > (1 + ε)p∗.

Otherwise we call a threshold coarse. The region of p where the limit of µp(P ) is
bounded away from zero and one is called the threshold interval.

Note, that this definition only holds for satisfiability in the uniform clause-
flipping model. In the case of the uniform clause-drawing model, the sharpness
of the threshold is defined the same way, but with respect to m (or r = m/n)
instead of p on the appropriate probability space.

Proving the satisfiability threshold conjecture: In terms of threshold
functions, the conjecture states that there is a sharp threshold for satisfiability at
m = rk · n and the constant rk is the same for a fixed k and all sufficiently large
n. For k = 2, Chvatal and Reed [13] and Goerdt [28] proved the conjecture and
showed that r2 = 1. However, random 2-SAT is easier to analyze than random
k-SAT and their techniques do not work for bigger values of k. For uniform
random k-SAT the “recipe” for proving the conjecture is as follows:

1. Show the existence of an asymptotic threshold function, i. e. show constant
lower and upper bounds on rk.

2. Prove that the threshold is sharp. In 1999 Friedgut [22] showed that the
satisfiability threshold for uniform random k-SAT is sharp, although its
location is not known exactly for all values of k. However, his result does not
prove that rk is the same for a fixed k and all sufficiently large values of n.
Friedgut’s proof relies on knowing the asymptotic threshold function.

3. Derive the actual constant rk and that the threshold is sharp around it. Ding
et al. [20] were the first to prove the exact value of rk for values of k bigger
than 2. Their proof relies on the result of Friedgut.

The goal of this paper will be to show the second ingredient for proving
the satisfiability threshold conjecture for non-uniform random k-SAT, sharpness
of the satisfiability threshold. In addition to being a stepping stone to proving
the conjecture, sharpness of the threshold is of some independent interest, since
a coarse threshold implies that there is a local property which approximates
satisfiability or unsatisfiability. For random SAT this means that with constant
probability instances have a constant-sized unsatisfiable subformula, making a lot
of instances very easy to solve even around the threshold. Moreover, some of the
techniques we use could also be used to analyze more sophisticated models, e.g. the
popularity-similarity model [27], which was used in the 2017 SAT Competition.



Our results: We study the sharpness of the satisfiability threshold for non-
uniform random k-SAT and identify sufficient conditions on the variable probabil-
ity distribution which imply a sharp threshold. Therefore, this work provides the
second ingredient for proving a version of the satisfiability threshold conjecture for
the non-uniform models D (n, k, (pn)n∈N,m) and F (n, k, (pn)n∈N, s) introduced
earlier. In the context of these models, the classical result of Friedgut [22] reads
as follows:

Theorem 1.1 (by [22]). For all n ∈ N let pn = (1/n, 1/n, . . . , 1/n) be a
variable probability distribution on n variables. If there is an asymptotic sat-
isfiability threshold mc = t(n) on D (n, k, (pn)n∈N,m), then satisfiability has a
sharp threshold on F (n, k, (pn)n∈N, s) with respect to s, and a sharp threshold
on D (n, k, (pn)n∈N,m) with respect to m.

Our main theorem extends this to non-uniform random k-SAT:

Theorem 3.2. Let k > 2, let (pn)n∈N be an ensemble of variable probabil-
ity distributions on n variables each and let sc = t(n) be an asymptotic
satisfiability threshold for F (n, k, (pn)n∈N, s) with respect to s. If ‖pn‖∞ =

o
(
t−

k
2k−1 · log−

k−1
2k−1 t

)
and ‖pn‖22 = O

(
t−2/k

)
, then satisfiability has a sharp

threshold on F (n, k, (pn)n∈N, s) with respect to s.

Furthermore, we show that the same also holds for the clause-drawing model
of non-uniform random k-SAT if the asymptotic threshold is not constant.

Theorem 3.3. Let k > 2, let (pn)n∈N be an ensemble of variable probability
distributions on n variables each and let mc = t(n) = ω(1) be the asymptotic
satisfiability threshold for D (n, k, (pn)n∈N,m) with respect to m. If ‖pn‖∞ =

o
(
t−

k
2k−1 · log−

k−1
2k−1 t

)
and ‖pn‖22 = O

(
t−2/k

)
, then satisfiability has a sharp

threshold on D (n, k, (pn)n∈N,m) with respect to m.

Our results actually state that the threshold is sharp for a certain, fixed
value of n in the sense that the probability function for unsatisfiability is o(1)
if s = (1 − ε) · sc (or m = (1 − ε) · mc) and 1 − o(1) if s = (1 + ε) · sc (or
m = (1 + ε) ·mc). It is still possible that the function behaves differently for
higher n due to the changing number of variables and probabilities. Nevertheless,
Friedgut’s original result also only asserts sharpness for a certain, fixed value of
n. This is also the reason why the sharp threshold result does not automatically
prove the satisfiability threshold conjecture: There could be different sharp
threshold functions (including leading constant factors) for different values of n.
For example, there could be some strange oscillations of the function.

Techniques: The proof of the main theorem uses Bourgain’s Sharp Threshold
Theorem in the version from O’Donnell’s book [42]. In general, it follows the lines
of Friedgut’s proof of sharpness for the threshold of uniform random k-SAT [22].

However, we have to generalize Friedgut’s results, like showing that no short
unsatisfiable subformula can exist with sufficiently high probability. Furthermore,
his lemma to bound the maximum slope of the probability for a monotone



property at the threshold cannot be applied anymore, even in a more general
form. Instead, we use the maximum slope that is implied by assuming a coarse
threshold. Also, we had to adapt Friedgut’s coverability lemma when considering
non-uniform random k-SAT. In his work, a quasi-unsatisfiable subformula can
spawn a constant number of clauses of length k − 1. Now a quasi-unsatisfiable
subformula can spawn clauses of any length l 6 k. Furthermore, there can now
be more than a constant number of spawned clauses.

Please note that due to space limitations, we only provide proof sketches for
our results. The full proofs can be found in the full version of the paper.

2 Preliminaries

We analyze random k-SAT on n variables and m clauses. We denote by X1, . . . , Xn

the Boolean variables. A clause is a disjunction of k literals `1∨. . .∨`k, where each
literal assumes a (possibly negated) variable. For a literal `i let |`i| denote the
variable of the literal. A formula Φ in conjunctive normal form is a conjunction of
clauses c1∧. . .∧cm. We conveniently interpret a clause c both as a Boolean formula
and as a set of literals. We say that Φ is satisfiable if there exists an assignment
of variables X1, . . . , Xn such that the formula evaluates to 1. Now let (pn)n∈N
be an ensemble of probability distributions, where pn = (pn,1, pn,2, . . . , pn,n) is a
probability distribution over n variables with Pr (X = Xi) = pn,i =: pn(Xi).

Definition 2.1 (Clause-Drawing Random k-SAT). Let m,n, k be given,
and consider any ensemble of probability distributions (pn)n∈N, where pn =
(pn,1, pn,2, . . . , pn,n) is a probability distribution over n variables with

∑n
i=1 pn,i =

1. The clause-drawing random k-SAT model D (n, k, (pn)n∈N,m) constructs a
random SAT formula Φ by sampling m clauses independently at random. Each
clause is sampled as follows:

1. Select k variables independently at random from the distribution pn. Repeat
until no variables coincide.

2. Negate each of the k variables independently at random with probability 1/2.

The clause-drawing random k-SAT model is equivalent to drawing each clause
independently at random from the set of all k-clauses which contain no variable
more than once. The probability to draw a clause c over n variables is then

qc :=

∏
`∈c pn(|`|)

2k
∑
J∈Pk({1,2,...,n})

∏
j∈J pn,j

, (2.1)

where Pk(·) denotes the set of cardinality-k elements of the power set. The factor
2k in the denominator comes from the different possibilities to negate variables.
Note that k!

∑
J∈Pk({1,2,...,n})

∏
j∈J pn,j is the probability of choosing a k-clause

that contains no variable more than once. To see that this probability is almost
1 for most distributions, we apply the generalized birthday paradox from [2].
Thereby, the probability that a k-clause sampled on n variables has collisions



is at most 1
2k

2‖pn‖22; so for ‖pn‖22 = o(1) and constant k we obtain that the
probability to draw a specific clause over n variables consisting of variables X ∈ S
is

qc = C
k!

2k

∏
X∈S

pn(X), (2.2)

where we define C := 1/
(∑

J∈Pk({1,2,...,n})
∏
j∈J pn,j

)
=
(
1 +Θ

(
‖pn‖22

))
. This

effectively hides the denominator of equation (2.1) in C and makes clause prob-
abilities easier to handle. We will later see that this is always the case in the
variable probability distributions we consider.

We can now define the coin-flipping equivalent of non-uniform random k-SAT,
which we will label clause-flipping random k-SAT.

Definition 2.2 (Clause-Flipping Random k-SAT). Let s, n, k be given, and
consider any ensemble of probability distributions (pn)n∈N, where pn is a proba-
bility distribution over n variables with

∑n
i=1 pi = 1. The clause-flipping random

k-SAT model F (n, k, (pn)n∈N, s) constructs a random SAT formula Φ over n
variables by independently flipping a coin for each of the

(
n
k

)
2k possible k-clauses.

The coin flip for a clause c is a success with probability

qn,c(s) := min (s · qn,c, 1) = min

(
s ·

∏
`∈c pn(|`|)

2k
∑
J∈Pk({1,2,...,n})

∏
j∈J pn,j

, 1

)
.

If successful, the clause is added to the random formula.

Lemma 2.1 relates the two models to each other and will be used throughout
the paper. Note that in the lemma the clause probabilities do not necessarily
have to be products of variable probabilities! Its proof is a simple exercise.

Lemma 2.1. Given a clause-flipping model F with clause probabilities q =
(qi)i∈[n] and a clause-drawing model D with clause probabilities q′ = (q′i)i∈[n] so

that q′i = qi/(1−qi)∑
j∈[n] qi/(1−qi)

, then for all l ∈ N and all events E it holds that

Pr
F

( E | {l clauses flipped} ) = Pr
D

( E | {l different clauses drawn} ) .

3 Sharpness of the Threshold

In Section 3.1 we establish a notion of asymptotic and sharp thresholds in the
context of non-uniform probability distributions. In Section 3.2 we relate this
notion of sharpness to Bourgain’s Sharp Threshold Theorem. In Section 3.3 we
prove the sharpness of the threshold in F(n, k, (pn)n∈N, s) with the help of the
Sharp Threshold Theorem. Finally, in Section 3.4 we relate D(n, k, (pn)n∈N,m) to
F(n, k, (pn)n∈N, s) in such a way that the sharpness of the satisfiability threshold
carries over.



3.1 Non-Uniform Sharpness

We want to generalize the definitions for uniform probability distributions to
non-uniform probability distributions.

For the clause-drawing random k-SAT model, we can use the same concepts
of asymptotic and sharp thresholds with respect to m as in the uniform case.

For the clause-flipping random k-SAT model, the first thing we notice is
that we cannot define the thresholds with respect to p anymore since the clause
probabilities are now non-uniform. Instead, we want to define the thresholds
with respect to s, the scaling factor of the probability space. This will allow us
to relate the two models in subsection 3.4.

Unless stated otherwise, we will concentrate on F (n, k, (pn)n∈N, s) to establish

the result in this model first. We now encode formulas as vectors x ∈ {0, 1}N ,
where N :=

(
n
k

)
2k is the number of different k-clauses over n variables. If a

clause is chosen to be in the formula, we set its variable to −1, otherwise we
set it to 1. With this encoding of k-CNFs in mind, we can define a function
f : {−1, 1}N → {−1, 1}, which returns −1 if the encoded k-CNF is unsatisfiable
and 1 otherwise. It is easy to see that f is monotone in the sense that f(x) 6 f(y)
whenever x 6 y coordinate-wise. This is the case, since setting a coordinate from
−1 to 1 is equivalent to removing a clause from the encoded formula. By doing
so, a satisfiable formula cannot be made unsatisfiable, i. e. the value of f can
only change from −1 to 1, but not the other way around. This encoding is from
O’Donnell’s book [42] and makes the application of Bourgain’s Sharp Threshold
Theorem later in the paper easier.

We can now formally describe the product probability space of
F (n, k, (pn)n∈N, s) with the notation of O’Donnell. Given a variable proba-
bility distribution pn = (pn,i)i=1,...,n, the derived clause probability distri-
bution qn = (qn,i)i=1,...,N , and the scaling factor s, we define our product

space to be (Ω, π) :=
(
{−1, 1}N , π1 × π2 × . . .× πN

)
with πi(−1) = qn,i(s) and

πi(1) = 1−qn,i(s) for i = 1, 2, . . . , N . We let µpn,s denote the product probability
measure, i.e. for x ∈ Ω

µpn,s(x) =

N∏
i=1

πi(xi) =
∏

i∈[N ] : xi=−1

qn,i(s)
∏

i∈[N ] : xi=1

(1− qn,i(s)).

For S ⊆ Ω we define µpn,s(S) =
∑
x∈S µpn,s(x). We will use the shorthand

notation µ instead of µpn,s if the probability measure is clear from context.
Furthermore, for an N -element vector x = (x1, x2, . . . , xN ) and a subset T ⊆ [N ]
let xT = (xi)i∈T denote the restriction of x to T .

The following statement shows the relation between coarseness of a property’s
threshold and the derivative of its probability function. The uniform equivalent
of the statement holds due to Friedgut [22], but we can show that it also holds
in the non-uniform case. The proof of the statement is a simple application of
the mean value theorem.

Lemma 3.1. If a threshold is coarse, then there is a point s∗ in the threshold

interval, where s∗ · dµpn,s(f)
ds |s=s∗ 6 K for some constant K.



3.2 Influence and Bourgain’s Sharp Threshold Theorem

Bourgain’s Sharp Threshold Theorem will make use of the total influence of a
Boolean function f . Intuitively, the influence Inf i[f ] of a function f describes
the probability that the value of the i-th coordinate influences the function value.
The total influence I [ f ] of a function f is the sum of the influence values for
all coordinates. Both, Inf i[f ] and I [ f ] depend on the probability distribution
π, but we will omit this dependence if it is clear from context. The following
definition from [42] formalizes our intuitive one.

Definition 3.1. [Influence Function] Let f ∈ L2 (Ω, π) be {−1, 1}-valued with

Ω = {−1, 1}N and π = π1 × . . . × πN . The influence of the i-th co-
ordinate is Inf i[f ] = E

x∼π
[ f(x)(Lif)(x) ]1, where Lif = f − Eif and

Eif(y) = E
yi∼πi

[ f(y1, y2, . . . , yi−1,yi, yi+1 . . . , yN−1, yN ) ]. The total influence of

f is I [ f ] =
∑n
i=1 Inf i[f ].

The following corollary relates this notion of influence to the notion of coarse-

ness due to Friedgut, more precisely to
dµpn,s(P )

ds s =
dµpn,s({x∈Ω|f(x)=−1})

ds s. Its
proof is a relatively simple exercise.

Corollary 3.1. Let f ∈ L2
(
Ω = {−1, 1}N , π = π1 × π2 × . . .× πN

)
be

{−1, 1}-valued, monotone, and non-constant. For s <
(
maxi∈[N ](qn,i)

)−1
it

holds that

I [ f ] 6 4 · dµpn,s({x ∈ Ω | f(x) = −1})
ds

s. (3.1)

To prove our main theorem, we will use the Sharp Threshold Theorem by
Bourgain [22] in O’Donnell’s version [42]. The theorem states that, if a monotone
property P has a coarse threshold, and therefore small influence, then there
are local structures which approximate this property. The following is a formal
definition of these structures.

Definition 3.2. [τ -booster] Let f : Ω → {−1, 1}. For T ⊆ [N ], y ∈ Ω, and τ > 0,
we say that the restriction yT is a τ -booster if E

x∼π
[ f | xT = yT ] > E [ f ] + τ . If

τ < 0, we say that yT is a τ -booster if E
x∼π

[ f | xT = yT ] 6 E [ f ]− |τ |.

The Sharp Threshold Theorem is stated as follows:

Theorem 3.1. [Bourgain’s Sharp Threshold Theorem] Let f ∈ L2 (Ω, π)
be {−1, 1}-valued and non-constant with I [ f ] 6 K for a constant K.
Then there is some τ (either negative or positive) with |τ | > Var [ f ] ·
exp(−O(I [ f ]

2
/Var [ f ]

2
)) such that

Pr
x∼π

(
∃ T ⊆ [n], |T | 6 O

(
I [ f ]

Var [ f ]

)
such that xT is a τ -booster

)
> |τ |.

1 In the paper we let x ∼ π denote that the random variable x is drawn from the
probability distribution with density π.



This Theorem seems to be specific to probability spaces with uniform proba-
bility distributions. However, O’Donnell states that Theorem 3.1 in the version
with arbitrary product probability spaces also holds. We verify this claim in the
full version of the paper. Furthermore, by carefully checking the proof of the
theorem, one can see that the asymptotic values and the bases for the exponential
terms can actually be substituted by appropriately chosen exact expressions. Also,
it has to be noted that Müller [41] already showed that a version of Bourgain’s
original theorem also holds for arbitrary product probability spaces.

3.3 Proof of Sharpness for Non-Uniform Random k-SAT

This subsection will be dedicated to proving our main theorem:

Theorem 3.2. Let k > 2, let (pn)n∈N be an ensemble of variable probabil-
ity distributions on n variables each and let sc = t(n) be an asymptotic
satisfiability threshold for F (n, k, (pn)n∈N, s) with respect to s. If ‖pn‖∞ =

o
(
t−

k
2k−1 · log−

k−1
2k−1 t

)
and ‖pn‖22 = O

(
t−2/k

)
, then satisfiability has a sharp

threshold on F (n, k, (pn)n∈N, s) with respect to s.

The proof closely follows the one by Friedgut for uniform random k-SAT [22].
We assume toward a contradiction that the threshold is coarse. Then the Sharp
Threshold Theorem tells us that there have to be so-called “boosters” of constant
size that appear with constant probability in the random formula. These boosters
have the property that conditioning on their existence boosts the probability of
the random formula to be unsatisfiable by at least an additive constant.

One kind of booster are unsatisfiable subformulas of constant size. Condition-
ing on these would boost the probability to be unsatisfiable to one. We rule these
out by showing that they do not appear with constant probability.

Then, we consider subformulas, which give the second highest boost: maximally
quasi-unsatisfiable subformulas. These are subformulas which have only one
satisfying assignment for the variables appearing in them and adding any new
clause over those variables makes them unsatisfiable. We want to show that these
cannot boost the probability of a formula to be unsatisfiable by a constant.

Again toward a contradiction, we assume, that conditioning on a maximally
quasi-unsatisfiable subformula T is enough to boost the unsatisfiability probability
by a constant. First, we prove that conditioning on T is equivalent to adding a
number of clauses of size shorter than k to the random formula over variables
not appearing in T . Then, we use a version of Friedgut’s coverability lemma
to show that, if adding these clauses of size smaller than k makes the random
formula unsatisfiable with constant probability, then so does adding o(t) clauses
of size k. We prove that this probability is dominated by the probability to make
the original random formula unsatisfiable for a slightly bigger scaling factor.
However, due to the assumption of a coarse threshold, the slope of the probability
function for unsatisfiability has to be small at one point in the threshold interval.
If we consider this point, the probability to make the original random formula
unsatisfiable cannot be increased by a constant with our slightly increased scaling



factor. This contradicts our assumption that the probability is boosted by a
constant in the first place. Therefore, quasi-unsatisfiable subformulas cannot be
boosters.

After showing this, every less restrictive subformula cannot be a booster
either. That means, the only possible boosters are unsatisfiable subformulas,
which we ruled out already. Therefore, the implication of the Sharp Threshold
Theorem does not hold, which contradicts the assumption of a coarse threshold.

Now we are ready to prove our main theorem.

Application of the Sharp Threshold Theorem We know that the asymp-
totic threshold is at a scaling factor s = Θ(t(n)). A threshold due to our definition
always has to be t = Ω(1). Otherwise the expected number of clauses would
be O(t) = o(1), leading to a probability of 1 − o(1) of having an empty, and
thereby satisfiable, formula due to Markov’s inequality. We can thus assume that
C =

(
1 + o

(
t−1/k

))
due to equation (2.2).

To prove Theorem 3.2 we assume that the threshold is coarse. Due to

Lemma 3.1 this implies that
dµpn,s(f)

ds s 6 K for some constant K and some
s in the threshold interval. Let us call this scaling factor sc. Note that sc = Θ(t),
since sc is in the threshold interval and t is an asymptotic threshold function.
Due to Corollary 3.1 this means I [ f ] 6 4 ·K. For the corollary to hold, we have

to assure sc <
(
maxi∈[N ](qn,i)

)−1
. This follows due to our assumption

pn,max := ‖pn‖∞ = o
(
t−

k
2k−1 · log−

k−1
2k−1 t

)
= o

(
t−1/k

)
,

which implies

qn,max(sc) := max
i∈[N ]

(qn,i(sc)) = sc · O
(
pkn,max

)
= o(1). (3.2)

Since f is {−1, 1}-valued it holds that E [ f ] = 1− 2 · µpn,sc(f) and Var [ f ] =
4 · µpn,sc(f) (1− µpn,sc(f)). Since we are in the threshold interval, it holds that
µpn,sc(f) is constant and so are E [ f ] and Var [ f ].

Now we can use Theorem 3.1 to see that, at least with constant probability τ ,
our formulas have a subformula (or lack thereof) consisting of at most O (K) =
O(1) clauses, so that conditioning on the existence (or non-existence) of these
clauses increases (or decreases) the probability that our random k-CNFs are
unsatisfiable by at least τ/2. The subformulas with these properties are the
boosters. The theorem actually allows us to choose appropriate specific constants
for τ and the upper bound on |T |.

Since the property of being unsatisfiable is monotone, it is not beneficial to
forbid some clauses and demand others. We can therefore concentrate on the cases
of either only forbidding or only enforcing clauses in our boosters. The following
lemma shows that it suffices to concentrate on enforcing boosters. The idea is
that every constant-sized subset of clauses a. a. s. does not exist in the formula,
since clause probabilities are o(1). Therefore, conditioning on the non-existence
of such a subformula does not change the overall probability by too much.



Lemma 3.2. Every booster which assumes the non-existence of clauses only
boosts the probability to be satisfiable or unsatisfiable by o(1).

We can now concentrate on conditioning on the existence of clauses. Our goal
is to show that no constant-sized boosters exist with constant probability.

Unsatisfiable subformulas are too improbable A sure way to boost the
probability of being unsatisfiable to one is to condition on the existence of an
unsatisfiable subformula. To rule this case out, the next lemma shows that the
probability that our formulas have an unsatisfiable subformula of constant size
is smaller than any constant τ for sufficiently large n. The proof essentially
shows that any minimally unsatisfiable subformula of constant size cannot exist
with constant probability. This can be seen from the fact that such subformulas
contain each variable in them at least twice and the probability for this can be
bounded using ‖pn‖22 and ‖pn‖∞.

Lemma 3.3. Let a, k ∈ N be constants and let (pn)n∈N be an ensemble of
variable probability distributions. If ‖pn‖∞ = o

(
s−1/k

)
and ‖pn‖22 = O

(
s−2/k

)
,

then a random formula from F (n, k, (pn)n∈N, s) has an unsatisfiable subformula
of length at most a with probability o(1).

Maximally quasi-unsatisfiable subformulas provide the second-highest
boost Since we ruled out unsatisfiable subformulas as the boosters we are
looking for, we now turn our attention to satisfiable subformulas. Let ΦT be
the formula encoded by xT = (−1)|T | and let V (T ) ⊆ {X1, . . . , Xn} be the
variables in ΦT . Note that |V (T )| is constant since |T | is constant and each clause
contains k many variables. We call ΦT maximally quasi-unsatisfiable (mqu) if it
is satisfiable by only one of the 2|V (T )| assignments over its variable set (quasi-
unsatisfiable) and if adding any new clause with variables only from V (T ) makes it
unsatisfiable (maximally satisfiable). The following lemma formalizes a statement
by Friedgut [22] that the biggest possible boost any satisfiable subformula can
give is achieved by mqu subformulas. The proof of the statement uses the fact
that every satisfiable subformula can be extended to a mqu subformula over the
same variables. It also uses positive correlation of increasing events [21] and the
fact that we have a product probability space.

Lemma 3.4. For every T ⊆ [N ] so that ΦT is satisfiable, there is a T ′ ⊇ T so
that ΦT ′ is maximally quasi-unsatisfiable and

Pr
x∼π

(
f(x) = −1 | xT ′ = (−1)|T

′|
)
> Pr
x∼π

(
f(x) = −1 | xT = (−1)|T |

)
.

The part of the formula containing only variables from the booster
is still satisfiable We now turn to analyzing the boost maximally quasi-
unsatisfiable subformulas can give. In the end will will show that they cannot
boost the unsatisfiability probability by a constant. Lemma 3.4 implies that the
same holds for all satisfiable subformulas, thus giving us the desired contradiction.



Let T ⊆ [N ] with ΦT mqu. In order to see how big the boost by such a T
can be, we split x into two parts, the part xS , so that each clause in ΦS only
contains variables from V (T ), and the part xS , in which each encoded clause

contains at least one variable from V (T ) = {X1, . . . , Xn} \ V (T ). Let f(xS) be
−1 if ΦS is unsatisfiable and 1 otherwise. The following lemma asserts that ΦS
can only be unsatisfiable with sub-constant probability. This is the case, because
it is very unlikely to flip one of the constant number of clauses that can make
the maximally satisfiable booster unsatisfiable.

Lemma 3.5. It holds that Pr
x∼π

(
f(xS) = −1 | xT = (−1)|T |

)
= o(1).

The booster adds shorter clauses to the other part of the formula We
can now concentrate on the case that ΦS is satisfiable. Since ΦT is maximally
unsatisfiable, it holds that ΦS = ΦT , and since ΦT is quasi-unsatisfiable, ΦS also
only has one satisfying assignment.

We now want to create xS under these conditions. To this end, we assume
that the variables V (t) take the one assignment that makes ΦS satisfiable. For a
clause containing both variables from V (T ) and variables from V (T ) this means
the clause is either satisfied or the variables from V (T ) can be eliminated as
their literals are all set to false. Effectively, this means that we can have clauses
over V (T ) of length 0 < l < k. The following lemma makes this statement more
precise. Its proof is a simple application of the Markov bound.

Lemma 3.6. If pn,max = o
(
t−

k
2k−1 · log−

k−1
2k−1 t

)
, then a mqu subformula of con-

stant length spawns at most Dl = o

((
t

log t

) l
k+l

)
clauses of length l = 1, . . . , k−1

with probability 1− o(1).

We now want to create the resulting formula over variables from V (T ) in two
parts. First we create k-clauses over V (T ) with the usual clause-flipping model,
where the clause-probabilities are the same as in F (n, k, (pn)n∈N, sc). Then, for
each l ∈ [k − 1] we add Dl l-clauses over V (T ) with the clause-drawing model.
The probability qc to add a clause c = (`1 ∨ `2 ∨ . . . ∨ `l) of size l is equal to the
probability of flipping any clause which contains c and k − l literals negated by
the assignment of V (T ):

qc = C
k! · sc

2k

l∏
i=1

pn(|`i|) ·
∑

J∈Pk−l(V (T ))

∏
X∈J

pn(X). (3.3)

We can now choose q′c = qc/(1−qc)∑
j∈[n] qc/(1−qc)

as the probability to draw clause c. This

helps us apply Lemma 2.1 to relate the resulting random formula Φ̂ to our original
probability space. Furthermore, the following lemma also uses Lemma 3.6 and
the fact that no clauses are drawn twice with probability 1− o(1).

Lemma 3.7. It holds that

Pr
x∼π

(
f(x) = −1 ∧ f(xS) = 1 | xT = (−1)|T |

)
6 Pr

(
Φ̂ unsat

)
+ o(1).



Shorter clauses can be substituted with k-clauses We now want to bound
Pr(Φ̂ unsat). To this end, let Φ̃ be the part of Φ̂ only consisting of k-clauses.
Let us assume Pr(Φ̂ unsat) > µpn,sc(f) + δ for some constant δ > 0. We know

that Φ̃ is unsatisfiable with probability at most µpn,sc(f), since it is drawn from

F (n, k, (pn)n∈N, sc) with the difference that only clauses over V (T ) are flipped.

This implies Pr(Φ̂ unsat ∧ Φ̃ sat) > δ. We now define a more general concept of
coverability, analogously to Friedgut [22]. This will allow us to substitute l-clauses

with k-clauses while maintaining the probability to make Φ̃ unsatisfiable.

Definition 3.3. Let D1, . . . , Da ∈ N and l1, . . . , la ∈ N and let q1, . . . , qa
be probability distributions. For A ⊆ {0, 1}n, we define A to be
((d1, l1, q1), (d2, l2, q2), . . . , (da, la, qa), ε)-coverable, if the union of di subcubes
of co-dimension li chosen according to probability distribution qi for 1 6 i 6 a
has a probability of at least ε to cover A.

In contrast to Friedgut’s definition, we allow subcubes of arbitrary co-
dimension and with arbitrary probability distributions instead of only subcubes of
co-dimension 1 with a uniform distribution. In the context of satisfiability we say
that a specific formula (not a random formula) Φ is ((d1, l1, q1), . . . , (da, la, qa), ε)-
coverable if the probability to make it unsatisfiable by adding di random clauses
of size li chosen according to distribution qi for i = 1, 2, . . . a is at least ε in total.

Now let ql = (q′c)c for all clauses c of size l over V (T ), where q′c is the clause
drawing probability we defined for Φ̂. It holds that with a sufficiently large
constant probability Φ̃ is ((D1, 1, q1), . . . , (Dk−1, k − 1, qk−1), δ)-coverable. The
following lemma shows that formulas with this property are also ((g(n), k, qk), δ′)-
coverable for some function g(n) = o (t) and any constant δ′ < δ. Its proof is a
more precise and general version of Friedgut’s original proof.

Lemma 3.8. Let qk be our original clause probability distribution and let all
other probability distributions be as described in equation (3.3) and let D1 . . . Dk−1
be as defined. If a concrete formula Φ is ((D1, 1, q1), . . . , (Dk−1, k − 1, qk−1), δ)-
coverable for some constant δ > 0, it is also ((g(t), k, qk), δ′)-coverable for some
function g(t) = o(t) for any constant 0 < δ′ < δ.

By substituting shorter clauses with k-clauses we lose at most an arbitrarily
small additive constant from the probability µpn,sc(f) + δ that Φ̂ is unsatisfiable.
Thus, we still have a constant probability bigger than µpn,sc(f).

Bounding the boost by bounding the slope of the probability function
We can now show that instead of adding g(t) k-clauses, we can increase the scaling
factor sc of our original clause-flipping model to achieve the same probability. The
proof of the following lemma uses Lemma 2.1 together with a Chernoff-Bound
on the number of clauses added in the clause-flipping model.

Lemma 3.9. For g′(t) = g(t) + c ·
√
t · ln t = o(t) with c > 0 an appropriately

chosen constant it holds that

Pr
(
Φ̂ unsat

)
6 µpn,sc+g′(t)(f) + o(1).



Under the assumption that Pr(Φ̂ unsat) > µpn,sc(f) + δ, it follows that
µpn,sc+g′(t)(f) > µpn,sc(f) + ε for some constant ε > 0. We show that this
cannot be the case under the assumption of a coarse threshold. The proof of
this lemma is a simple application of Taylor’s theorem and uses the fact that we

evaluate the probability function at the point sc, where
dµp,ns (f)

ds s
∣∣∣
s=sc

6 K due

to Lemma 3.1.

Lemma 3.10. It holds that µpn,sc+g′(t)(f) 6 µpn,sc(f) + o(1).

This contradicts our conclusion of µpn,sc+g′(t)(f) > µpn,sc(f) + ε for some

constant ε > 0. Therefore, our assumption Pr(Φ̂ unsat) > µpn,sc(f) + δ for some

constant δ > 0 has to be wrong, i.e. Pr(Φ̂ unsat) 6 µpn,sc(f) + o(1). Now we can
put all error probabilities together to see

Pr
x∼π

(f(x) = −1 | xT = (−1)|T |) 6 µpn,sc(f) + o(1).

This is smaller than µpn,sc(f) + τ for sufficiently large values of n. This means,
the maximally quasi-unsatisfiable subformula ΦT cannot be a τ -booster for any
constant τ > 0. Due to Lemma 3.4 the boost by every satisfiable subformula is
at most as big as the one by a mqu subformula. Thus, no T which encodes a
satisfiable subformula can be a τ -booster. Since we already ruled out unsatisfiable
subformulas, this means there are no τ -boosters which appear with probability at
least τ/2. This contradicts the implication of the Sharp Threshold Theorem and
therefore the assumption of a coarse threshold, thus proving Theorem 3.3. ut

3.4 Relation to the clause-drawing model

After proving the sharpness of the threshold for F (n, k, (pn)n∈N, s) in Theo-
rem 3.2, it now remains to relate F (n, k, (pn)n∈N, s) to D (n, k, (pn)n∈N,m).

Usually, the satisfiability threshold is only determined for the clause-drawing
model and not for the clause-flipping model. Nevertheless, the following lemma
shows that for certain probability distribution ensembles (pn)n∈N the asymptotic
thresholds of both models are the same. This allows us to determine the asymptotic
threshold function of the clause-flipping model and to apply Theorem 3.2. The
proofs of Lemma 3.11 and Lemma 3.12 use Lemma 2.1 and Chernoff Bounds.

Lemma 3.11. Let (pn)n∈N be an ensemble of variable probability distributions
on n variables each and let t = ω(1) be an asymptotic threshold with respect to
m for a monotone property P on D(n, k, (pn)n∈N,m). If ‖pn‖22 = o

(
t−1/k

)
, then

sc = Θ(t) is an asymptotic threshold with respect to s for P on F(n, k, (pn)n∈N, s).

With the help of the former lemma, we can now prove Lemma 3.12.

Lemma 3.12. Let (pn)n∈N be an ensemble of variable probability distributions
on n variables each and let t = ω(1) be an asymptotic threshold with respect to s
for any monotone property P on F(n, k, (pn)n∈N, s). If ‖pn‖22 = o

(
t−1/k

)
and if

the threshold for P with respect to s on F(n, k, (pn)n∈N, s) is sharp, then P has
a sharp threshold on D(n, k,p,m) at mc = Θ (t).



Theorem 3.3, now follows from the two lemmas above and from Theorem 3.2.

Theorem 3.3. Let k > 2, let (pn)n∈N be an ensemble of variable probability
distributions on n variables each and let mc = t(n) = ω(1) be the asymptotic
satisfiability threshold for D (n, k, (pn)n∈N,m) with respect to m. If ‖pn‖∞ =

o
(
t−

k
2k−1 · log−

k−1
2k−1 t

)
and ‖pn‖22 = O

(
t−2/k

)
, then satisfiability has a sharp

threshold on D (n, k, (pn)n∈N,m) with respect to m.

3.5 Example Application of the Theorem

We can now use Theorem 3.3 as a tool to show sharpness of the threshold for non-
uniform random k-SAT with different probability distributions on the variables.
As an example, we apply the theorem for an ensemble of power-law distributions.

Corollary 3.2. Let (pn)n∈N be an ensemble of general power-law distributions
with the same power-law exponent β > 2k−1

k−1 + 1 + ε, where ε > 0 is a constant
and pn is defined over n variables. For k > 2 both F (n, k, (pn)n∈N, s) and
D (n, k, (pn)n∈N,m) have a sharp threshold with respect to s and m, respectively.

Proof. From [24] we know that the asymptotic threshold for D (n, k, (pn)n∈N,m)
is at m = Θ(n) for β > 2k−1

k−1 + ε. It is now an easy exercise to see that

‖pn‖22 =

n∑
i=1

p2n,i =


O
(
n−2(β−2)/(β−1)

)
, β < 3

O
(
lnn
n

)
, β = 3

O
(
n−1

)
, β > 3

and that ‖pn‖∞ = maxi=1,2,...,n(pn,i) = O(n−(β−2)/(β−1)). One can now verify

‖pn‖22 = O(n−2/k) and ‖pn‖∞ = o(n−
k

2k−1 · log−
k−1
2k−1 (n)) for β > 2k−1

k−1 + 1 + ε
and k > 2. Lemma 3.11 now states that the asymptotic satisfiability threshold
for F (n, k, (pn)n∈N, s) is at s = Θ(n). Theorem 3.2 and Theorem 3.3 now imply
a sharp threshold for F (n, k, (pn)n∈N, s) and D (n, k, (pn)n∈N,m).

4 Discussion of the Results

In this work we have shown sufficient conditions on the variable probability
distribution of non-uniform random k-SAT for the satisfiability threshold to be
sharp. The main theorems can readily be used to prove sharpness for a wide
range of random k-SAT models with heterogeneous distributions on the variable
occurrences: If the threshold function is known asymptotically, one only has to
verify the two conditions on the variable distribution.

We suspect that it is possible to generalize the result to demanding only
‖p‖∞ = o

(
t−1/k

)
, since the additional factor is only needed in Lemma 3.8. In any

case it would be interesting to complement the result with matching conditions
on coarseness of the threshold.

We hope that our results make it possible to derive a proof in the style of
Ding et al. [20] for certain variable probability ensembles with a sharp threshold,
effectively proving the satisfiability threshold conjecture for these ensembles.
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