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Abstract. We initiate the study of job scheduling on related and unre-
lated machines so as to minimize the maximum flow time or the max-
imum weighted flow time (when each job has an associated weight).
Previous work for these metrics considered only the setting of parallel
machines, while previous work for scheduling on unrelated machines only
considered Lp, p < ∞ norms. Our main results are:
1. We give an O(ε−3)-competitive algorithm to minimize maximum

weighted flow time on related machines where we assume that the
machines of the online algorithm can process 1 + ε units of a job in
1 time-unit (ε speed augmentation).

2. For the objective of minimizing maximum flow time on unrelated ma-
chines we give a simple 2/ε-competitive algorithm when we augment
the speed by ε. Formmachines we show a lower bound ofΩ(m) on the
competitive ratio if speed augmentation is not permitted. Our algo-
rithm does not assign jobs to machines as soon as they arrive. To jus-
tify this “drawback” we show a lower bound of Ω(logm) on the com-
petitive ratio of immediate dispatch algorithms. In both these lower
bound constructions we use jobs whose processing times are in {1,∞},
and hence they apply to the more restrictive subset parallel setting.

3. For the objective of minimizing maximum weighted flow time on
unrelated machines we establish a lower bound of Ω(logm)-on the
competitive ratio of any online algorithm which is permitted to use
s = O(1) speed machines. In our lower bound construction, job j
has a processing time of pj on a subset of machines and infinity on
others and has a weight 1/pj . Hence this lower bound applies to the
subset parallel setting for the special case of minimizing maximum
stretch.

1 Introduction

The problem of scheduling jobs so as to minimize the flow time (or response
time) has received much attention. In the online setting of this problem, jobs
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arrive over time and the flow time of a job is the difference between its release
time (or arrival time) and completion time (or finish time). We assume that the
jobs can be preempted. The task of the scheduler is to decide which machine to
schedule a job on and in what order to schedule the jobs assigned to a machine.

One way of combining the flow times of various jobs is to consider the sum of
the flow times. An obvious drawback of this measure is that it is not fair since
some job might have a very large flow time in the schedule that minimizes sum of
their flow times. A natural way to overcome this is to minimize the Lp norm of the
flow times of the jobs [2,5,10,11] which, for increasing values of p, would ensure
better fairness. Bansal and Pruhs [5], however, showed that even for a single
machine minimizing, the Lp-norm of flow times requires speed augmentation —
the online algorithm must have machines that are, say, ε-fraction faster (can
do 1 + ε unit of work in one time-unit) than those of the offline algorithm.
With a (1 + ε)-speed augmentation Bansal and Pruhs [5] showed that a simple
algorithm which schedules the shortest job first is O(ε−1)-competitive for any
Lp-norm on a single machine; we refer to this as an (1 + ε,O(1/ε))-competitive
algorithm. Golovin et al. [10] used a majorizing technique to obtain a similar
result for parallel machines. While both these results have a competitive ratio
that is independent of p, the results of Im and Moseley [11] and Anand et al. [2]
for unrelated machines have a competitive ratio that is linear in p and which
therefore implies an unbounded competitive ratio for the L∞-norm.

Our main contribution in this paper is to provide a comprehensive treatment
of the problem of minimizing maximum flow time for different machine models.
The two models that we consider are the related machines (each machine has
speed si and the time required to process job j on machine i is pj/si) and the
unrelated machines (job j has processing time pij on machine i). A special case
of the unrelated machine model is the subset-parallel setting where job j has a
processing time pj independent of the machines but can be assigned only to a
subset of the machines.

Besides maximum flow time, another metric of interest is the maximum
weighted flow time where we assume that job j has a weight wj and the ob-
jective is to minimize maxj wjFj where Fj is the flow time of j in the schedule
constructed. Besides the obvious use of job weights to model priority, if we choose
the weight of a job equal to the inverse of its processing time then minimizing
maximum weighted flow time is the same as minimizing maximum stretch where
stretch is defined as the ratio of the flow time to the processing time of a job.
Chekuri and Moseley [9] considered the problem of minimizing the maximum
delay factor where a job j has a deadline dj , a release date rj and the delay
factor of a job is defined as the ratio of its flow time to (dj − rj). This problem
is in fact equivalent to minimizing maximum weighted flow time and this can be
easily seen by defining wj = (dj − rj)

−1.
The problem of minimizing maximum stretch was first considered by Bender

et al. [7] who showed a lower bound of Ω(P 1/3) on the competitive ratio for
a single machine where P is the ratio of the largest to the smallest processing
time. Bender et al. [7] also showed a O(P 1/2)-competitive algorithm for a single
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Table 1. Previous results and the results obtained in this paper for the different
machine models and metrics considered. The uncited results are from this paper.

Max-Flow-time Max-Stretch Max-Weighted-Flow-time

Single Machine polynomial time
(1, Ω(P 2/5)) [9] and

(1 + ε,O(ε−2)) [6]
(1, O(P 1/2)) [7,8]

Parallel Machines (1, 2) [1] (1 + ε,O(ε−1)) [9]

Related Machines (1 + ε,O(ε−3))

Subset Parallel (1, Ω(m)) (O(1), Ω(logm))

Unrelated Machines (1 + ε,O(ε−1))

machine which was improved by [8], while the lower bound was improved to
Ω(P 0.4) by [9].

For minimizing maximum weighted flow time, Bansal and Pruhs [6] showed
that the highest density first algorithm is (1 + ε,O(ε−2))-competitive for sin-
gle machines. For parallel machines, Chekuri and Moseley [9] obtained a
(1 + ε,O(ε−1))-competitive algorithm that is both non-migratory (jobs once
assigned to a machine are scheduled only on that machine) and immediate dis-
patch (a job is assigned to a machine as soon as the job arrives). Both these
qualities are desirable in any scheduling algorithm since they reduce/eliminate
communication overheads amongst the central server/machines.

Our main results and the previous work for these three metrics (Max-Flow-
time,Max-Stretch and Max-Weighted-Flow-time) on the various ma-
chine models (single, parallel, related, subset parallel and unrelated) are ex-
pressed in Table 1. Note that the Max-Flow-time metric is not a special case
of the Max-Stretch metric, and neither is the model of related machines a
special case of the subset-parallel setting. Nevertheless, a lower bound result
(respectively an upper bound result) for a machine-model/metric pair extends
to all model/metric pairs to the right and below (respectively to the left and
above) in the table. Our main results are:

1. We give an O(ε−3)-competitive non-migratory algorithm to minimize max-
imum weighted flow time on related machines with ε speed augmentation.
When compared to a migratory optimum our solution is O(ε−4)-competitive.

2. For the objective of minimizing maximum flow time on unrelated machines
we give a simple 2/ε-competitive algorithm when we augment the speed
by ε. For m machines we show a lower bound of Ω(m) on the competitive
ratio if speed augmentation is not permitted. Our algorithm does not assign
jobs to machines as soon as they arrive. However, [4] show a lower bound
of Ω(logm) on the competitive ratio of any immediate dispatch algorithm.
Both these lower bound constructions use jobs whose processing times are in
{1,∞}, and hence they apply to the more restrictive subset parallel setting.

3. For the objective of minimizing maximum weighted flow time on unrelated
machines, we establish a lower bound of Ω(logm)-on the competitive ratio of
any online algorithm which is permitted to use s = O(1) speed machines. In
our lower bound construction, job j has a processing time of pj on a subset
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of machines and infinity on others and has a weight 1/pj. Hence this lower
bound applies to the subset parallel setting for the special case of minimizing
maximum stretch.

The problem of minimizing maximum (weighted) flow time also has interesting
connections to deadline scheduling. In deadline scheduling besides its processing
time and release time, job j has an associated deadline dj and the objective is
to find a schedule which meets all deadlines. For single machine it is known that
the Earliest Deadline First (EDF) algorithm is optimum, in that it would find
a feasible schedule if one exists. This fact implies a polynomial time algorithm
for minimizing maximum flow time on a single machine. This is because, job j
released at time rj should complete by time rj + opt, where opt is the optimal
value of maximum flow time. Thus rj + opt can be viewed as the deadline of
job j. Hence EDF would schedule jobs in order of their release times and does
not need to know opt.

For parallel machines it is known that no online algorithm can compute a
schedule which meets all deadlines even when such a schedule exists. Phillips
et al. [12] showed that EDF can meet all deadlines if the machines of the on-
line algorithm have twice the speed of the offline algorithms. This bound was
improved to e

e−1 by Anand et al. [3] for a schedule derived from the Yardstick
bound. Our results imply that for related machines a constant speedup suffices
to ensure that all deadlines are met while for the subset parallel setting, no con-
stant (independent of number of machines) speedup can ensure that we meet
deadlines.

The paper is organized as follows. In Section 2 and Section 3 we consider the
problem of minimizing maximum weighted flow time on related machines and
unrelated machines, respectively. Section 4 considers the problem of minimizing
maximum flow time on unrelated machines. Section 5 presents a lower bound
for the Lp norm of the stretches.

2 Max-Weighted-Flow-time on Related Machines

In this section we consider the Max-Weighted-Flow-time on related ma-
chines where the on-line algorithm is given (1+ ε)-speed augmentation for some
arbitrary small constant ε > 0. In the related machines setting, each job j
has weight wj , release date rj and processing requirement pj . We are given m
machines with varying speed. Instead of working with speed, it will be more con-
venient to work with slowness of machines: the slowness of a machine i, denoted
by si, is the reciprocal of its speed. Assume that s1 ≤ . . . ≤ sm. For an instance
I, let opt(I) denote the value of the optimal off-line solution for I. We assume
that the on-line algorithm is given (1 + 4ε)-speed augmentation. We say that a
job j is valid for a machine i, if its processing time on i, i.e., pjsi, is at most T

wj
.

Observe that a (non-migratory) off-line optimum algorithm will process a job j
on a valid machine only.

We assume that all weights wj are of the form 2k, where k is a non-negative
integer (this affects the competitive ratio by a factor of 2 only). We say that a
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job is of class k if its weight is 2k. To begin with, we shall assume that the on-line
algorithm knows the value of opt(I) — call it T . In the next section, we describe
an algorithm, which requires a small amount of “look-ahead”. We describe it as
an off-line algorithm. Subsequently, we show that it can be modified to an on-line
algorithm with small loss of competitive ratio.

2.1 An Off-Line Algorithm

We now describe an off-line algorithm A for I. We allow machines speedup of
1 + 2ε. First we develop some notation. For a class k and integer l, let I(l, k)

denote the interval
[

lT
ε2k ,

(l+1)T
ε2k

)
. We say that a job j is of type (k, l) if it is

of class k and rj ∈ I(k, l). Note that the intervals I(k, l) form a nested set of
intervals.

The algorithm A is described below. It schedules jobs in a particular order:
it picks jobs in decreasing order of their class, and within each class, it goes by
the order of release dates. When considering a job j, it tries machines in order of
increasing speed, and schedules j in the first machine on which it can find enough
free slots (i.e., slots which are not occupied by the jobs scheduled before j). We
will show that it will always find some machine. Note that A may not respect
release dates of jobs.

Algorithm A(I, T ):

For k = K downto 1 (K is the highest class of a job)
For l = 1, 2, . . .
For each job j of type (k, l)
For i = mj downto 1 (mj is the slowest machine on which j is valid)
if there are at least pjsi free slots on machine i during I(k, l) then
schedule j on i during the first such free slots (without caring about rj)

Analysis. In this section, we prove that the algorithm A will always find a
suitable machine for every job. We prove this by contradiction: let j� be the first
job for which we are not able to find such a machine. Then we will show that
the opt(I) must be more than T , which will contradict our assumption.

In the discussion below, we only look at jobs which were considered before j�

by A. We build a set S of jobs recursively. Initially S just contains j�. We add
a job j′ of type (k′, l′) to S if there is a job j of type (k, l) in S satisfying the
following conditions:

– The class k of j is at most k′.
– The algorithm A processes j′ on a machine i which is valid for j as well.
– The algorithm A processes j′ during I(k, l), i.e., I(k′, l′) ⊆ I(k, l).

We use this rule to add jobs to S as long as possible. For a machine i and interval
I(k, l), define the machine-interval Ii(k, l) as the time interval I(k, l) on machine
i. We construct a set N of machine-intervals as follows. For every job j ∈ S of
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type (k, l), we add the intervals Ii(k, l) to N for all machines i such that j is
valid for i. We say that an interval Ii(k, l) ∈ N is maximal if there is no other
interval Ii(k

′, l′) ∈ N which contains Ii(k, l) (note that both of the intervals are
on the same machine). Observe that every job in S except j� gets processed in
one of the machine-intervals in N . Let N ′ denote the set of maximal intervals
in N . We now show that the jobs in S satisfy the following crucial property.

Lemma 1. For any maximal interval Ii(k, l) ∈ N , the algorithm A processes
jobs of S on all but ε

1+2ε -fraction of the slots in it.

Proof. We prove that this property holds whenever we add a new maximal in-
terval to N . Suppose this property holds at some point in time, and we add a
job j′ to S. Let j, k, l, k′, l′, i be as in the description of S. Since k ≤ k′, and j
is valid for i, N already contains the intervals Ii′ (k, l) for all i

′ ≤ i. Hence, the
intervals Ii′ (k

′, l′), i′ ≤ i, cannot be maximal. Suppose an interval Ii′ (k
′, l′) is

maximal, where i′ > i, and j′ is valid for i′ (so this interval gets added to N ).
Now, our algorithm would have considered scheduling j′ on i′ before going to i
— so it must be the case that all but pj′si′ slots in Ii′(k

′, l′) are busy processing
jobs of class at least k′. Further, all the jobs being processed on these slots will
get added to S (by definition of S, and the fact that j′ ∈ S). The lemma now
follows because pj′si′ ≤ T

2k′ ≤ ε|I(k′, l′)|, and A can do (1 + 2ε)|I(k, l)| amount
of processing during I(k, l).

Corollary 1. The total volume of jobs in S is greater than
∑

I(k,l)∈N ′(1 +

ε)|I(k, l)|.
Proof. Lemma 1 shows that given any maximal interval Ii(k, l), A processes jobs
of S for at least 1+ε

1+2ε -fraction of the slots in it. The total volume that it can
process in I(k, l) is (1+2ε)|I(k, l)|. The result follows because maximal intervals
are disjoint (we have strict inequality because A could not complete j∗).

We now show that the total volume of jobs in S cannot be too large, which leads
to a contradiction.

Lemma 2. If opt(I) ≤ T , then the total volume of jobs in S is at most∑
I(k,l)∈N ′(1 + ε)|I(k, l)|.

Proof. Suppose opt(I) ≤ T . For an interval Ii(k, l), let Iεi (k, l) be the interval
of length (1 + ε)|Ii(k, l)| which starts at the same time as I(k, l). It is easy to
check that if I(k′, l′) ⊆ I(k, l), then Iε(k′, l′) ⊆ Iε(k, l).

Let j ∈ S be a job of type (k, l). The off-line optimal solution must schedule
it within T

2k of its release date. Since rj ∈ I(k, l), the optimal solution must
process a job j during Iε(k, l). So, the total volume of jobs in S can be at most

∣∣∣∣∣
⋃

I(k,l)∈N
Iε(k, l)

∣∣∣∣∣ =
∣∣∣∣∣

⋃
I(k,l)∈N ′

Iε(k, l)

∣∣∣∣∣

≤
∑

I(k,l)∈N ′
|Iε(k, l)| =

∑
I(k,l)∈N ′

(1 + ε)|I(k, l)|.
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Clearly, Corollary 1 contradicts Lemma 2. So, algorithm A must be able to
process all the jobs.

2.2 Off-Line to On-Line

Now, we give an on-line algorithm for the instance I. Recall that A is an off-line
algorithm for I and may not even respect release dates. The on-line algorithm
B is a non-migratory algorithm which maintains a queue for each machine i and
time t. For each job j, it uses A to figure out which machine the job j gets
dispatched to.

Note that the algorithm A can be implemented in a manner such that for
any job j of type (k, l), the slots assigned by A to j are known by the end of
interval I(k, l) — jobs which get released after I(k, l) do not affect the schedule
of j. Also note that the release date of j falls in I(k, l). This is described more
formally as follows.

Algorithm A(I, T ):

For t = 0, 1, 2, . . .
For k = 1, 2, . . .
If t is the end-point of an interval I(k, l) for some l, then
For each job j of type (k, l)
For i = mj downto 1 (mj is the slowest machine on which j is valid)
If there are at least pjsi free slots on machine i during I(k, l) then
schedule j on i during the first such free slots (without caring about rj)

We now describe the algorithm B. It maintains a queue of jobs for each ma-
chine. For each job j of class k and releasing during I(k, l), if j gets processed
on machine i by A, then B adds j to the queue of i at end of I(k, l). Observe
that B respects release dates of jobs — a job j of type (k, l) has release date in
I(k, l), but it gets dispatched to a machine at the end of the interval I(k, l). For
each machine i, B prefers jobs of higher class, and within a particular class, it
follows the ordering given by A (or it could just go by release dates). Further,
we give machines in B (1 + 3ε)-speedup.

Analysis. We now analyze B. For a class k, let J≥k be the jobs of class at
least k. For a class k, integer l and machine i, let Q(i, k, l) denote the jobs of
J≥k which are in the queue of machine i at the beginning of I(k, l). First we
note some properties of B:
(i) A job j gets scheduled in B only in later slots than those it was scheduled

on by A: A job j of type (k, l) gets scheduled during I(k, l) in A. However,
it gets added to the queue of a machine by B only at the end of I(k, l).

(ii) For a class k, integer l and machine i, the total remaining processing time

(on the machine i) of jobs in Q(i, k, l) is at most (1+2ε)T
ε2k

: Suppose this is
true for some i, k, l. We want to show that this holds for i, k, l + 1 as well.
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The jobs in the queue Q(i, k, l + 1) could consist of either (i) the jobs in
Q(i, k, l), or (ii) the jobs of J≥k which get processed by A during Ii(k, l).
Indeed, jobs of J≥k which get released before the the interval Ii(k, l) finish
before this interval begins (in A). Hence, in B, any such job would either
finish before I(k, l) begins, or will be in the queue Q(i, k, l). The jobs of J≥k

which get released during I(k, l) will complete processing in this interval (in
A) and hence may get added to the queue Q(i, k, l+ 1).
Now, the total processing time of the jobs in (ii) above would be at most
(1 + 2ε)|I(k, l)| (recall that the machines in A have speedup of (1 + 2ε)).
Suppose in the schedule B, the machine i processes a job of class greater
than k during some time in Ii(k, l) — then it must have finished processing
all the jobs in Q(i, k, l), and so Q(i, k, l + 1) can only contain jobs from (ii)
above, and hence, their total processing time is at most (1 + 2ε)|I(k, l)| and
we are done. If the machine i is busy during Ii(k, l) processing jobs from J≥k

(in B), then it does at least (1 + 2ε)|I(k, l)| amount of processing , and so,
the property holds at the end of I(k, l) as well.

We are now ready to prove the main theorem.

Theorem 1. In the schedule B, a job j of class k has flow-time at most T (1+3ε)
ε22k .

Hence, for any instance, B is an
(

2(1+3ε)
ε2

)
-competitive algorithm with (1 + 3ε)-

speedup.

Proof. Consider a job j of class type (k, l). Suppose it gets processed on ma-
chine i. The algorithm B adds j to the queue Q(i, k, l). Property (ii) above
implies that the total remaining processing time of these jobs (on i) is at most
(1+2ε)|I(k, l)|. Consider an interval I which starts at the beginning of I(k, l) and

has length (1+2ε)|I(k,l)|
ε = (1+2ε)T

ε22k
. The jobs of J≥k that B can process on i during

I are either (i) jobs in Q(i, k, l), or (ii) jobs processed by A on machine i during I
(using property (i) above). The total processing time of the jobs in (ii) is at most
(1 + 2ε)|I|, whereas B can process (1 + 3ε)|I| volume during I (on machine i).

This still leaves us with ε|I| = (1+2ε)T
ε2k

— this is enough to process all the jobs in

Q(i, k, l). So the flow-time of j is at most |I|+ |I(k, l)| = T
2k

(
1
ε + 1+2ε

ε2

)
. Finally,

given any instance, we lose an extra factor of 2 in the competitive ratio because
we scale all weights to powers of 2.

Extensions. We mention some easy extensions of the result above.

Comparison with migratory off-line optimum: Here, we allow the off-line opti-
mum to migrate jobs across machines. To deal with this, we modify the defi-
nition of when a job is valid on a machine. We will say that a job j of class
k is valid for a machine i if its processing time on i is at most T

2k
· 1+ε

ε . Note
that even a migratory algorithm will process at most ε

1+ε -fraction of a job on
machines which are not valid for it. Further, we modify the definition of I(l, k)

to be
[
(1+ε)lT
ε22k

, (1+ε)(l+1)T
ε22k

)
. The rest of the analysis can be carried out as above.
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We can show that the on-line algorithm is O
(

(1+ε)2

ε3

)
-competitive with (1 + ε)-

speedup.

Deadline scheduling on related machines: In this setting, the input instance also
comes with deadline dj for each job j. The assumption is that there is a schedule
(off-line) which can schedule all jobs (with migration) such that each job finishes
before its deadline. The question is: is there a constant s and an on-line algorithm
S such that with speedup s, it can meet all the deadlines? Using the above result,
it is easy to show that our online algorithm has this property provided we give
it constant speedup. We give the proof in the full version of the paper.

Corollary 2. There is a constant s, and a non-migratory scheduling algorithm
which, given any instance of the deadline scheduling problem, completes all the
jobs within their deadline if we give speed-up of c to all the machines.

So far our on-line algorithm has assumed that we know the optimal value of
an instance. In the full version of this paper, we show how to get rid of this
assumption.

3 Max-Flow-time on Unrelated Machines

We consider the (unweighted) Max-Flow-time on unrelated machines. We first
show that a constant competitive algorithm cannot have the property of im-
mediate dispatch and it requires speed augmentation. Since our instances use
unit-sized jobs, the lower bound also holds for Max-Stretch. Recall that a
scheduling algorithm is called immediate dispatch if it decides, at the time of a
job’s arrival, which machine to schedule the job on.

The lower bound for an immediate dispatch algorithm follows from the lower
bound of Azar et al. [4] for minimizing total load in the subset parallel settings.
Here, we are given a set of machines, and jobs arrive in a sequence. Each job
specifies a subset of machines it can go to, and the on-line algorithm needs to
dispatch a job on its arrival to one such machine. The goal is to minimize the
maximum number of jobs which get dispatched to a machine. Azar et al. [4] prove
that any randomized on-line algorithm for this problem is Ω(logm)-competitive.
From this result, we can easily deduce the following lower bound forMax-Flow-
time in the subset parallel setting with unit size jobs (given an instance of the
load balancing problem, give each job size of 1 unit, and make them arrive at
time 0 in the same sequence as in this given instance).

Theorem 2. Any immediate dispatch randomized on-line algorithm for Max-
Flow-time in the subset parallel setting with unit job sizes must have competi-
tive ratio of Ω(logm).

Any randomized on-line algorithm with bounded competitive ratio needs speed
augmentation. We give the proof in the full version of the paper.
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Theorem 3. Any online algorithm for minimizing Max-Flow-time on subset-
parallel machines which allows non-immediate dispatch but does not allow speed
augmentation has a competitive ratio of Ω(m). This holds even for unit-sized
jobs.

3.1 A (1 + ε,O(1/ε))-Competitive Algorithm

We now describe an
(
2
ε

)
-competitive algorithm forMax-Flow-time on multiple

unrelated machines with (1+ ε)-speed augmentation. The algorithm proceeds in
several phases: denote these by Π1, Π2, . . ., where phase Πi begins at time ti−1

and ends at time ti. In phase Πi, we will schedule all jobs released during the
phase Πi−1.

In the initial phase, Π1, we consider the jobs released at time t0 = 0, and find
an optimal schedule which minimizes the makespan of jobs released at time t0.
This phase ends at the time we finish processing all these jobs. Now, suppose we
have defined Π1, . . . , Πl, and have scheduled jobs released during Π1, . . . , Πl−1.
We consider the jobs released during Πl, and starting from time tl, we find a
schedule which minimized their makespan (assuming all of these jobs are released
at time tl). Again, this phase ends at the time we finish processing all these jobs.
Note that this algorithm is a non-immediate dispatch algorithm and does not
require migration. We now prove that this algorithm has the desired properties.

Theorem 4. Assuming ε ≤ 1, The algorithm described above has competitive
ratio 2

ε with (1 + ε)-speed augmentation.

Proof. Consider an instance I and assume that the optimal off-line schedule has
maximum flow time of T . We will be done if we show that each of the phases Πi

has length at most T
ε . For Π1, this is true because all the jobs released at time

0 can be scheduled within T units of time. Suppose this is true for phase Πi.
Now, we know that the jobs released during Πi can be scheduled in an interval
of length Πi+T. Using (1+ε)-speed augmentation, the length of the next phase
is at most |Πi|+ T

1 + ε
≤ T/ε+ T

1 + ε
=

T

ε
.

4 Max-Weighted-Flow-time on Unrelated Machines

In this section, given any constant speedup, any on-line algorithm for Max-
Weighted-Flow-time on unrelated machines is Ω(logm)-competitive. This
bound holds for the special case of subset parallel model, and even extends to
the Max-Stretch metric. We give the proof of the following theorem in the
full version of the paper.

Theorem 5. Given any large enough parameter c, integer s ≥ 1, and an on-line
algorithm A which is allowed speedup of (s+1)/2, there exists an instance I(s, c)
of Max-Weighted-Flow-time on subset parallel machines such that A is not
c-competitive on I(s, c). The instance I(s, c) has jobs with s different weights

only, and uses (O(s))O(cs2) machines.
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5 Lower Bound for Lp Norm of Stretch

We show a lower bound for the competitive ratio for the Lp-norm of the stretches,
with speed augmentation by a factor of 1+ ε. We assume that there is an online
algorithm with competitive ratio c = o( p

ε1−3/p ) and derive a contradiction.
The construction uses m = 2p machines. We start with the typical construc-

tion to get a large load on one machine. For this we consider 2 machines. At
time 0 we release two jobs of size 1 (and weight 1) - each can go on exactly one
machine. Then until time 1 we release tiny jobs, i.e., at each δ time step a job
of size δ (and weight 1/δ) is released that can go on any of the two machines.
Note that at time 1 at least one of the machines has load (of size 1 jobs) at least
1/2 − ε − cδ. This is because, the total volume of jobs is 3, the two machines
can process at most 2(1 + ε) units, and all tiny jobs except the last c have to be
processed. It makes sense to set δ = ε/c and hence cδ ≤ ε.

Now, we can use this as a gadget, starting with m/2 pairs of machines we
then take the m/2 machines with large load and pair them up arbitrarily and
recursively do the same construction. We end up with one machine with load
Ω(logm) (if ε is sufficiently smaller than 1/2). This concludes the first of two
phases.

Now that we have a machine with large load, we release tiny jobs for a time
interval of length log(m)/ε. Since the tiny jobs have to be processed first, the
initial load of Ω(logm) needs time Ω(log(m)/ε) to be fully processed, as it can be
processed only in the time that we have additional due to resource augmentation.
Hence, at least one size 1 job has stretch at least Ω(log(m)/ε). This concludes
the second phase.

Let us bound the number of jobs k that we release in these 2 phases. In the
first phase of the construction we release m+m/2 +m/4 + . . . = O(m) jobs of
size 1 and O(m/δ) tiny jobs. In the second phase we release O(log(m)/(εδ)) tiny
jobs. Thus, k = O(m/δ+ log(m)/(εδ)). Note that we can bound 1/δ ≤ p/ε2−3/p

and hence k = O(mp/ε3−3/p).
We want to repeat these two phases n/k times. After the first 2 phases have

been completed (by the optimal offline algorithm) we release again the 2 phases,
and we repeat this n/k times. Thus, for the optimal offline algorithm all repe-
titions will be independent. Then in total we released any desired number n of
jobs, where n ≥ k.

Note that the optimal offline algorithm would have a max-stretch of 2 and,

thus, also an Lp norm of the stretches of
(
1
n

∑
i v

p
i

)1/p ≤ 2.
We now lower bound the Lp norm of the stretches of the online algorithm.

We already have a lower bound on the maximal stretch of any job, Ω(log(m)/ε),
and we know that there are at least n/k jobs with such a large stretch, one for
each repetition of the 2 phases. Now, let vi be the stretch of the i-th job. Then
the Lp norm of the stretches is

c ≥ Ω

(
1

n

∑
i

vpi

)1/p
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Since we know that there are n/k jobs with vi = Ω(log(m)/ε) this is at least

c ≥ Ω

(
log(m)

ε

(
n/k

n

)1/p
)

= Ω

(
log(m)

εk1/p

)
.

Plugging in our bound on k = O(mp/ε3−3/p) this yields a bound of

c ≥ Ω

(
log(m)

ε(mp)1/p/ε3/p

)
.

Since m = 2p and noting that p1/p = O(1) this yields the desired contradiction
to c begin too small, c ≥ Ω

(
p

ε1−3/p

)
. The only condition for this was n ≥ k =

2Θ(p)

εΘ(1) , which implies that n just has to be sufficiently large.

References
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