
Filomat 32:17 (2018), 5817–5826
https://doi.org/10.2298/FIL1817817A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we obtain the spectrum of signed complete and complete bipartite graphs whose
negative edges form a matching. Moreover, we construct a family of signed complete graphs having
symmetric spectrum.

1. Introduction

Signed graphs were introduced by Harary in [15] as a model for social networks. Then Zaslavsky in [25]
applied an equivalence on the class of signed graphs. A detailed reference of materials on signed graphs is
the dynamic survey of Zaslavsky [26].

Let G be a graph with the vertex set V and the edge set E. All graphs considered in this paper are
undirected, finite, and simple (without loops or multiple edges). The complement of a graph G is a graph on
the same vertices such that two distinct vertices are adjacent if and only if they are not adjacent in G. We
denote it with Gc.

A signed graph is a graph in which every edge has been declared positive or negative. In fact, a signed
graph Γ is a pair (G, σ), where G = (V,E) is a graph, called the underlying graph, and σ : E→ {−1,+1} is the
sign function or signature. Often, we write Γ = (G, σ) to mean that the underlying graph is G. Note that if
we consider a signed graph with all edges positive, we obtain an unsigned graph. Hence, signed graphs
can be seen as a generalization of unsigned version.

In signed graphs we distinguish two kinds of cycles. A cycle C is called balanced if the number of
negative edges in C is even. Otherwise, C is called unbalanced. A balanced graph is a signed graph which all
cycles are balanced. A signed graph which is not balanced is an unbalanced graph.

Let v be a vertex of a signed graph Γ. The switching at v is changing the signature of each edge incident
with v to the opposite one. Let X ⊆ V. Switching a vertex set X means reversing the signs of all edges
between X and its complement. Switching a set X has the same effect as switching all the vertices in X, one
after another.

Two signed graphs Γ = (G, σ) and Γ′ = (G, σ′) are switching equivalent, if there is a series of switchings
that transforms Γ to Γ′. Switching equivalence is an equivalence relation on signatures of a fixed graph. An
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equivalence class is called a switching class. If Γ′ is isomorphic to a switching of Γ, we say that Γ and Γ′ are
switching isomorphic and we write Γ ' Γ′. Switching isomorphism is an equivalence relation on all signed
graphs. Moreover, two signed graphs are non-isomorphic when they are not switching isomorphic.

By Harary’s Balance Theorem in [15], we have the following corollary. Notice that −Γ is obtained from
the signed graph Γ by reversing the sign of all edges.

Corollary 1.1. The signed graph −Γ is balanced if and only if Γ is bipartite.

We call Γ antibalanced if −Γ is balanced; equivalently, if all even cycles are positive and all odd cycles are
negative.

For a signed graph Γ = (G, σ), the adjacency matrix A = (ai j) is an n × n matrix in which ai j = σ(υiυ j) if υi
and υ j are adjacent, and 0 if they are not. Thus A is a symmetric matrix with entries 0,±1 and zero diagonal,
and conversely, any such matrix is the adjacency matrix of a signed graph.

Next, we recall some relations between two signed graphs which are switching isomorphic. For more
information we refer reader to [21] and [25].

Lemma 1.2 ([25, Corollary 3.3]). A signed graph Γ is balanced if and only if it switches to a signed graph in which
all edges are positive, and it is antibalanced if and only if it switches to a signed graph in which all edges are negative.

Theorem 1.3 ([25, Proposition 3.2]). Two signed graphs with the same underlying graph are switching equivalent
if and only if they have the same set of positive cycles.

The spectrum of Γ is the list of eigenvalues of its adjacency matrix with their multiplicities. We denote
it by Spec(Γ) and say that the spectrum of Γ is symmetric if for each eigenvalue λ ∈ Spec(Γ), −λ ∈ Spec(Γ).

Theorem 1.4. Switching a signed graph does not change its spectrum. Also, the switching isomorphic graphs have
the same spectrum.

Theorem 1.5 (B.D. Acharya [1]). The signed graph Γ = (G, σ) is balanced if and only if Γ and G have the same
eigenvalues.

In this paper, we give some results about the spectrum of signed graphs. In addition, we are going to
determine the eigenvalues of signed complete and complete bipartite graphs when their negative edges
form a matching. Also, we say that a signed graph Γ is uniquely determined by the spectrum if for any signed
graph Γ

′

with the same spectrum, Γ and Γ
′

are switching isomorphic.

2. Signed Complete Graphs with Symmetric Spectrum

In this section, we recall some lemmas and theorems from [19] and [23], and then we present several
results about the spectrum of signed graphs. Also, we consider signed complete graphs having the
symmetric spectrums.

If b and u denote the number of balanced and unbalanced triangles in a signed graph Γ = (G, σ), then

b̂ =
b

b + u
and û =

u
b + u

are the fractions of balanced and unbalanced triangles in Γ, respectively. So,

b̂ + û = 1.

Remark 2.1. If Γ and Γ′ are signed complete graphs, then the set of unbalanced triangles in Γ and Γ′ are the
same if and only if Γ and Γ′ are switching equivalent, see [25, Proposition 7E.1].

Theorem 2.2 ([23, Theorem 2]). Let Γ be a signed graph (not necessarily complete) with the adjacency matrix A, and
suppose that the adjacency matrix of its underlying graph is U. If λ1, . . . , λn are the eigenvalues of A, and µ1, . . . , µn
are the eigenvalues of U, then the fraction of balanced triangles in Γ can be expressed as follows:

b̂ =
1
2

(
1 +

∑n
i=1 λ

3
i∑n

i=1 µ
3
i

)
.
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By [19], there are 7 non-isomorphic signed complete graphs of order 5, three with an odd number of
negative edges and four with an even number of negative edges. Also, there are 16 non-isomorphic signed
complete graphs of order 6. By these facts we obtain the following remark.

Remark 2.3. By computer computation, one can see that the spectrum of these non-isomorphic graphs with
underlying graph K5 (similarly K6) are distinct. That is, if the spectrum of two signed complete graphs
of order 5 (or 6) are equal, then those graphs are switching isomorphic. In other words, we can partition
signed complete graphs of order 5 (or 6) into several classes such that the elements of each class have the
same spectrum.

Corollary 2.4. Let Γ be a signed graph. If the spectrum of Γ is symmetric, then the number of balanced triangles is
equal to the number of unbalanced triangles in Γ.

Proof. Apply Theorem 2.2.

Note that signed complete graph Γ = (Kn, σ) with n = 4t + 3 for some positive integer t, and for any
signature σ cannot have a symmetric spectrum because the number of triangles in Kn for n = 4t + 3 is odd.
See Corollary 2.5.

Corollary 2.5. The spectrum of signed complete graphs having odd number of triangles cannot be symmetric.

Proof. It is easy to see that the assertion holds by Corollary 2.4.

We have a well-known theorem in unsigned case that the spectrum of a graph is symmetric if and only if
it is bipartite [8, Theorem 3.2.3]. In signed case, the spectrum of any signed bipartite graph is symmetric, but
there are some examples with symmetric spectrum which are not bipartite. Consider the signed complete
graph Γ given in Fig. 2, which dashed lines indicate negative edges, indeed Γ is not bipartite, but Spec(Γ)
is symmetric. Now, we propose the following question.

Question 2.6. Which signed complete graphs have the symmetric spectrum?

Notice that if Γ is a signed graph which is switching isomorphic to −Γ. Then the spectrum of Γ is
symmetric.

Spec(Γ) =

 −
√

5 0
√

5

2 1 2

 .
Figure 1:

Now, we are going to construct two types of signed complete graphs with symmetric spectrum. Parti-
tion the vertex set of Kn into to sets A and B of equal cardinality |A| = |B|. If |A| is even we can construct
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two types of signed graphs with symmetric spectrum. Choose a positive (resp. negative) sign for all edges
connecting vertices in A (resp. B). For each fixed vertex v in A, there are n

2 edges connecting v and vertices
in B, we negatively sign half of them. Now, if we switch all vertices in A we obtain a graph isomorphic to
−Γ. A second type of graph with symmetric spectrum is obtaining by assigning a positive sign to all edges
in the cut-set (A,B). Such second type of graph with symmetric spectrum can be obtained when |A| is odd
as well.

By [8, Corollary 2.3.3], one can obtain the coefficients of the adjacency characteristic polynomial for
unsigned graphs. Note that elementary figures are the graphs K2 and Cn (i.e. the complete graph of order 2
and the cycle of order n); a basic figure is the disjoint union of elementary figures.

Theorem 2.7 ([4, Theorem 2.3]). Let Γ = (G, σ) and PΓ(x) = xn + a1xn−1 + · · · + an−1x + an be a signed graph and
its adjacency characteristic polynomial, respectively. Then

ai =
∑
B∈Bi

(−1)p(B)2|c(B)|σ(B),

where Bi is the set of basic figures on i vertices in G, p(B) is the number of components of B, c(B) the set of cycles in
B, and σ(B) =

∏
C∈c(B) σ(C).

By Theorem 2.7, if we denote the number of balanced and unbalanced `-cycles with C+
` and C−` , respec-

tively, then it is easy to see that a3 = 2(C−3 − C+
3 ).

In the following remark, we present an equivalent condition for signed graphs with symmetric spectrum.

Remark 2.8. Let Γ be a signed graph of order n and A be the adjacency matrix of Γ. Then the following
conditions are equivalent.

(i) The spectrum of Γ is symmetric.

(ii) If PΓ(x) = xn +a1xn−1 + · · ·+an−1x+an is the characteristic polynomial of A, then a2k+1 = 0, for k = 0, 1, . . ..

We recall that the previous theorem also holds for unsigned graphs [8, Theorem 3.2.5].

3. The spectrum of signed complete graphs

By [6], the Seidel adjacency matrix of a graph G with the adjacency matrix A is the matrix S defined by

Suv =


0 if u = v
−1 if u ∼ v

1 if u / v

so that S = J − I − 2A. The Seidel adjacency spectrum of a graph is the spectrum of its Seidel adjacency
matrix.

Remark 3.1. For a k-regular graph of order n with eigenvalue k and other eigenvaluesθ, the Seidel spectrum
consists of n− 1− 2k and the values −1− 2θ, see [6]. For more information about the Seidel matrices refer to
[14, 22, 24]. Now, if G is a graph of order n, then the Seidel matrix of G is the adjacency matrix of a signed
complete graph Γ of order n which the edges of G form all negative edges in Γ.

Let negative edges in signed complete graph Γ = (Kn, σ) form a k-regular graph of order n. In the
following theorem we state some necessary and sufficient conditions so that Γ has symmetric spectrum.
Let λ1, . . . , λn be eigenvalues of Γ. Suppose that a, b and p are real numbers such that a + b = p. The two
numbers a and b are symmetric with respect p/2. When for each i there exists some j such that λi +λ j = −1,
we say that the spectrum is symmetric with respect to x = −1/2.
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Theorem 3.2. Let Γ = (Kn, σ). Assume that negative edges in Γ form a k-regular graph H of order n, where
k, µ1, . . . , µn−1 are all eigenvalues of H, when all edges of H are considered positive. The spectrum of Γ is symmetric
if and only if one of the following conditions hold:

(i) n = 4t + 1, k = 2t for some positive integer t, and µ1, . . . , µn−1 are symmetric with respect to the axis x = −1/2.

(ii) n is even, and there exists some j, 1 6 j 6 n − 1 such that µ j = n−2
2 − k. The remaining µi are symmetric with

respect to the axis x = −1/2.

Proof. We know that for a k-regular graph of order n with eigenvalue k and other eigenvalues θ, the Seidel
spectrum consists of n − 1 − 2k and the values −1 − 2θ. So, if the spectrum of Γ is symmetric, then there are
two cases:

Case 1. If n − 1 − 2k = 0, then k = n−1
2 . Since k is a positive integer, n should be odd. By Corollary

2.5, n = 4t + 1 for some positive integer t. Also, other eigenvalues of Γ, −1 − 2µ1, . . . ,−1 − 2µn−1 should be
symmetric with respect to x = −1/2.

Case 2. If n − 1 − 2k , 0, then there exists some j, 1 6 j 6 n − 1 such that µ j = n−2
2 − k, and −1 − µ j

is an eigenvalue. Moreover, the remaining µi are symmetric with respect to the axis x = −1/2.

Remark 3.3. One can check that if Γ = (K8, σ) which negative edges are two distinct P4, then the spectrum of
Γ is symmetric. It is easy to see that the spectrum of P4 ∪ P4 is symmetric with respect to the axis x = −1/2,
but P4 ∪ P4 is not regular.

In the following theorem we present a big family of signed complete graphs having symmetric spectrum.

Theorem 3.4. Let n be an even positive integer and V1 and V2 be two disjoint sets of size
n
2

. Let G be an arbitrary
graph with the vertex set V1. Construct the complement of G, that is Gc, with the vertex set V2. Assume that
Γ = (Kn, σ) is a signed complete graph in which E(G) ∪ E(Gc) is the set of negative edges. Then the spectrum of Γ is
symmetric.

Proof. It is sufficient to switch at the elements of V1. One can see that Γ ' −Γ. Hence, the spectrum of Γ is
symmetric.

Let In and Jn for some positive integer n, be the n × n matrices identity and all 1’s, respectively.

We consider a matching of negative edges Mt of size t for some 1 6 t 6 b
n
2
c, in Kn with the vertex set

{v1, . . . , vn}, as follows,
Mt = {v1v2, v3v4, . . . , v2t−1v2t}.

Theorem 3.5. Let Γt be a signed complete graph of order n whose negative edges form a matching of size t.

(i) t < bn/2c, then

Spec(Γt) =

 −3 at −1 1 bt

t − 1 1 n − (2t + 1) t 1

 ,
where at and bt are as follows,

at =
n − 4 −

√

n2 + 4s
2

, bt =
n − 4 +

√

n2 + 4s
2

, s.t. s = n − 4t + 1.

(ii) If n is even and t =
n
2

, then Γ n
2

has the following spectrum:

Spec(Γ n
2
) =


−3 1 n − 3

n
2
− 1

n
2

1

 .
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Proof. (i) We would like to give the independent eigenvectors corresponding to each eigenvalue. The
eigenspaces associated with the eigenvalues at and bt are respectively generated by



−(s + 1) −
√

n2 + 4s
4t
...

−(s + 1) −
√

n2 + 4s
4t
1
...
1


,



−(s + 1) +
√

n2 + 4s
4t
...

−(s + 1) +
√

n2 + 4s
4t
1
...
1


,

where the number of
−(s + 1) −

√

n2 + 4s
4t

and
−(s + 1) +

√

n2 + 4s
4t

,

in the above vectors is 2t. Also, the eigenvalue 1 has t independent eigenvectors as follows:

For 1 6 i 6 t, define Xi = [x1, . . . , xn]T, x2i−1 = −1, x2i = 1, and otherwise x j = 0.

Furthermore, the n − (2t + 1) independent eigenvectors of the eigenvalue −1 are as follows:

For 1 6 i 6 n − (2t + 1), define Yi = [y1, . . . , yn]T, y2t+1 = −1, y2t+i+1 = 1,

and otherwise y j = 0. Note that the first 2t entries of each vector are 0. Finally, we have t − 1 independent
eigenvectors corresponding to the eigenvalue −3 as follows:

For 1 6 i 6 t − 1, define Zi = [z1, . . . , zn]T, z1 = z2 = −1, z2i+1 = z2(i+1) = 1,

and otherwise z j = 0.
(ii) Without loss of generality, one may write the adjacency matrix of Γ n

2
as follows,

A =



0 −1 1 1 1 1 1 . . .
−1 0 1 1 1 1 1 . . .
1 1 0 −1 1 1 1 . . .
1 1 −1 0 1 1 1 . . .
1 1 1 1 0 −1 1 . . .
1 1 1 1 −1 0 1 . . .
...

...
...

...
...

...
...

. . .


.

So, the following holds:

A = (Jn/2 − In/2) ⊗ J2 + In/2 ⊗ B,

where

B =

[
0 −1
−1 0

]
.

For the definition of the Kronecker product ⊗, see [8, Definition 2.5.2]. Since J2B = BJ2, it is sufficient to
consider the sum of eigenvalues in (Jn/2 − In/2)⊗ J2 and In/2 ⊗B with the same eigenvectors. Hence, it is easy
to see that the assertion holds.
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4. The Spectrum of Signed Complete Bipartite Graphs

In this section, we determine the spectrum of signed complete bipartite graphs Kn,n, whose negative
edges form a matching. Consider Kn,n with two parts U = {u1, . . . ,un} and V = {v1, . . . , vn} as a partition
of its vertex set. Without loss of generality, we choose a matching of negative edges Mt of size t, for some
1 6 t 6 n as follows,

Mt = {u1v1, . . . ,utvt}.

Theorem 4.1. Let Γt be a signed complete bipartite graph Kn,n such that its negative edges form a matching of size t.

(i) If t < n, then the spectrum is

Spec(Γt) =

 −at −2 −bt 0 bt 2 at

1 t − 1 1 2n − (2t + 2) 1 t − 1 1

 ,
where at and bt are as follows:

at =
n − 2 +

√

n2 + 4s
2

, bt =
−(n − 2) +

√

n2 + 4s
2

, s.t. s = n − 2t + 1.

(ii) If t = n, i.e its negative edges form a perfect matching, then Γn has the following spectrum:

Spec(Γn) =

 −(n − 2) −2 2 n − 2

1 n − 1 n − 1 1

 .
Proof. (i) In the following, we determine all independent eigenvectors corresponding to all eigenvalues.
The independent eigenvectors associated with eigenvalue 0 are of two types as follows:

For 2 6 i 6 n − t, define Xi = [x1, . . . , x2n]T, xt+1 = −1, xt+i = 1,

and otherwise x j = 0, and Yi = [y1, . . . , y2n]T, yn+t+1 = −1, yn+t+i = 1,
and otherwise y j = 0. Also, we can determine the independent eigenvectors of 2 as follows:

For 2 6 i 6 t, define Zi = [z1, . . . , z2n]T, z1 = 1, zn+1 = −1, zi = −1, zn+i = 1,

and otherwise z j = 0. The independent eigenvectors corresponding to the eigenvalue −2 are as follows:

For 2 6 i 6 t, define Ui = [u1, . . . ,u2n]T, u1 = 1,un+1 = 1,ui = −1,un+i = −1,

and otherwise u j = 0. Finally, the following vectors are the independent eigenvectors of at, bt,−at and −bt,
respectively. [

−(s + 1) +
√

n2 + 4s
2t

, 1, . . . , 1,
−(s + 1) +

√

n2 + 4s
2t

, 1, . . . , 1
]T

,

[ (s + 1) +
√

n2 + 4s
2t

,−1, . . . ,−1,
−(s + 1) −

√

n2 + 4s
2t

, 1, . . . , 1
]T

,

[ (s + 1) −
√

n2 + 4s
2t

,−1, . . . ,−1,
−(s + 1) +

√

n2 + 4s
2t

, 1, . . . , 1
]T

,

[
−(s + 1) −

√

n2 + 4s
2t

, 1, . . . , 1,
−(s + 1) −

√

n2 + 4s
2t

, 1, . . . , 1
]T

,
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where the (n + 1)-entry is
−(s + 1) +

√

n2 + 4s
2t

or
−(s + 1) −

√

n2 + 4s
2t

.

(ii) Without loss of generality, the adjacency matrix of Γ can be written as follows,

A =

 0 Jn − 2In

Jn − 2In 0

 .
Thus, we have

A2 =

 (Jn − 2In)2 0

0 (Jn − 2In)2

 ,
and (Jn − 2In)2 = (n − 4)Jn + 4In and the spectrum of A2 can be easily computed,

Spec(A2) =

 4 (n − 2)2

2n − 2 2

 .
Now, using Remark 2.8, the proof is complete.

5. Weighted Directed Graphs versus Signed Graphs

One can see signed graphs as a special type of weighted directed graphs. The notion of weighted directed
graph was introduced by Bapat et al., see [2]. A weighted directed graph is a directed graph with a simple
underlying undirected graph and edges having complex weights of unit modulus.

Let G be a graph on the vertex set {v1, . . . , vn}. We denote a directed edge from vi to v j by (vi, v j).

Definition 5.1. Let G be a weighted directed graph. Let us denote the weight of the edge (vi, v j) by wi j, and
w ji be the complex conjugate of wi j. The adjacency matrix A = [ai j] of G is defined as follows,

ai j =


wi j if (vi, v j) ∈ E(G),
w ji if (v j, vi) ∈ E(G),

0 otherwise.

A mixed graph is a graph with some directed and some undirected edges, (see [10–13]). Let G be a mixed
graph. We write viv j ∈ E(G) if there exists an undirected edge between the vertices vi and v j. The adjacency
matrix A = [ai j] of G is the matrix with

ai j =


1 if viv j ∈ E(G),
−1 if (vi, v j) ∈ E(G) or (v j, vi) ∈ E(G),

0 otherwise.

Now, let G be a directed graph with edges having colours red, blue or green. We assign weight 1 to each red
edge, weight −1 to each blue edge, and weight i to each green edge. We call this graph a 3-colored digraph.
This is a very small subclass of weighted directed graphs, and mixed graphs are properly contained in it.
The notion of a 3-colored digraph, introduced by Bapat et al. in [2], generalizes the one of mixed graph.
Signed graphs might be seen as weighted graphs with edge weights equal to ±1, however the theory of
signed graphs is different from that of weighted graphs in view of the cycle sign. One can see that a signed
graph Γ = (G, σ) might be considered as a weighted directed graph (or a mixed digraph) if we replace the
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negative edges of Γ with an arbitrary directed edge of weight −1, and assign weight +1 to the positive edges
of Γ.

Note that some study on the Laplacian spectrum of a mixed graph has been done by Zhang and Li in
[27], Zhang and Luo in [28] and Fan in [9–12]. Also one can find a lot of nice results about the Laplacian
spectrum of signed graphs, (see for example [3–5]). However, about the spectrum of the adjacency matrix
of signed graphs there are a few papers. Bapat, Kalita and Pati in [2, 16–18] proved interesting results about
weighted directed graphs, the spectrum and characteristic polynomial of the adjacency matrix of 3-colored
digraphs. Hence, this motivates us to study more about the spectrum of adjacency matrix of signed graphs.

Let G be a 3-colored digraph with underlying graph Kn for even n > 4. Consider a perfect matching M
of green edges in G with the vertex set {v1, . . . , vn}, as follows,

M = {(v1, v2), (v3, v4), . . . , (vn−1, vn)}.

Theorem 5.2. Let G be a 3-colored digraph with underlying graph Kn for even n > 4. If G has only red and green
edges whose green edges form a perfect matching, then G has the following spectrum,

Spec(G) =


−
√

2 − 1 a
√

2 − 1 b

n
2
− 1 1

n
2
− 1 1

 ,

where a =
n − 2 −

√

n2 − 4n + 8
2

and b =
n − 2 +

√

n2 − 4n + 8
2

.

Proof. One may consider the adjacency matrix of G as follows,

A =



0 i 1 1 1 1 1 . . .
−i 0 1 1 1 1 1 . . .
1 1 0 i 1 1 1 . . .
1 1 −i 0 1 1 1 . . .
1 1 1 1 0 i 1 . . .
1 1 1 1 −i 0 1 . . .
...

...
...

...
...

...
...

. . .


.

So, the following holds:

A = (Jn/2 − In/2) ⊗ J2 + In/2 ⊗D,

where

D =

[
0 i
−i 0

]
.

Since two matrices (Jn/2 − In/2) ⊗ J2 and In/2 ⊗D commute, it is not hard to see that every eigenvalue of A is
the sum of one eigenvalue of (Jn/2 − In/2) ⊗ J2 and one eigenvalue of In/2 ⊗D in a suitable order. Hence, the
assertion is proved.
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