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For the last ten years, almost every theoretical result concerning the expected run time 
of a randomized search heuristic used drift theory, making it the arguably most important 
tool in this domain. Its success is due to its ease of use and its powerful result: drift theory 
allows the user to derive bounds on the expected first-hitting time of a random process by 
bounding expected local changes of the process – the drift. This is usually far easier than 
bounding the expected first-hitting time directly.
Due to the widespread use of drift theory, it is of utmost importance to have the best drift 
theorems possible. We improve the fundamental additive, multiplicative, and variable drift 
theorems by stating them in a form as general as possible and providing examples of why 
the restrictions we keep are still necessary. Our additive drift theorem for upper bounds 
only requires the process to be lower-bounded, that is, we remove unnecessary restrictions 
like a finite, discrete, or bounded state space. As corollaries, the same is true for our upper 
bounds in the case of variable and multiplicative drift. By bounding the step size of the 
process, we derive new lower-bounding multiplicative and variable drift theorems. Last, 
we also state theorems that are applicable when the process has a drift of 0, by using a 
drift on the variance of the process.

© 2019 Elsevier B.V. All rights reserved.

1. Drift theory

In the theory of randomized algorithms, the first and most important part of algorithm analysis is to compute the 
expected run time. A finite run time guarantees that the algorithm terminates almost surely, and, due to Markov’s inequality, 
the probability of the run time being far larger than the expected value can be bounded, too. Thus, it is important to have 
strong and easy to handle tools in order to derive expected run times. The de facto standard for this purpose in the theory 
of randomized search heuristics is drift theory.

Drift theory is a general term for a collection of theorems that consider random processes and bound the expected time 
it takes the process to reach a certain value – the first-hitting time. The beauty and appeal of these theorems lie in them 
usually having few restrictions but yielding strong results. Intuitively speaking, in order to use a drift theorem, one only 
needs to estimate the expected change of a random process – the drift – at any given point in time. Hence, a drift theorem 
turns expected local changes of a process into expected first-hitting times. In other words, local information of the process 
is transformed into global information.

Drift theory gained traction in the theory of randomized search heuristics when it was introduced to the community 
by He and Yao [1,2] via the additive drift theorem. However, they were not the first to prove it. The result dates back to 
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Hajek [3], who stated the theorem in a fashion quite different from how it is phrased nowadays. According to Lengler [4], 
the theorem has been proven even prior to that various times. Since then, many different versions of drift theorems have 
been proven, the most common ones being the variable drift theorem [5] and the multiplicative drift theorem [6]. The different 
names refer to how the drift is bounded other than independent of time: additive means that the drift is bounded by the 
same value for all states; in a multiplicative scenario, the drift is bounded by a multiple of the current state of the process; 
and in the setting of variable drift, the drift is bounded by any monotone function with respect to the current state of the 
process.

At first, the theorems were only stated over finite or discrete state spaces. However, these restrictions are seldom used 
in the proofs and thus not necessary, as pointed out, for example, by Lehre and Witt [7], who prove a general drift theorem 
without these restrictions. Nonetheless, up to date, almost all drift theorems require a bounded state space. Semenov and 
Terkel [8] state a theorem very much like an additive drift theorem for unbounded state spaces, but they require the process 
to have a bounded variance, as they also prove concentration for their result. Corus et al. [9] provide a proof of an additive 
drift theorem over an unbounded1 state space in their appendix. However, they require that the expected first-hitting time 
is finite, which is not always easy to prove and thus restricts the applicability of the theorem. Lehre and Witt [10] provide 
drift theorems for unbounded state spaces when interested in an upper bound on the expected first-hitting time. However, 
for a lower bound, the state space must be still bounded. Last, Lengler and Steger [11] prove drift theorems for unbounded 
state spaces but only do so for discrete processes. Our main result (Theorem 7) removes the restriction of a bounded state 
space and even allows the process to overshoot the target value. In return, the theorem is easy to use yet more permissive 
than all prior theorems.

We improve the state-of-the-art of drift theory by proving drift theorems over unbounded state spaces. Each theorem 
comes in two variants: one variant providing an upper bound on the expected first-hitting time, the other variant providing 
a lower bound. All of our results for upper bounds require the random process to be bounded from below, and for most of 
them we assume the process to be nonnegative in order to get conciser bounds. In contrast to that, for our results on lower 
bounds, we allow the process to be completely unbounded, but we have to bound the step size in return; Example 9 shows 
why our theorems fail otherwise.

Our most important results are our upper and lower bound of the classical additive drift theorem (Theorem 7 and 8, 
respectively), which we prove for unbounded state spaces. These theorems are used as a foundation for all of our other 
drift theorems in other settings. In the case of variable and multiplicative drift, we consider two different first-hitting times. 
Overall, our results can be summarized as follows:

Additive drift: We prove an upper bound for any process (Theorem 7) bounded from below, and a lower bound for 
processes with bounded expected step size (Theorem 8).

Multiplicative drift: We prove upper bounds for any nonnegative process (Corollary 16 and 17), and four different lower 
bounds for processes with bounded step size (Corollary 19, Corollary 20, Corollary 21, Theorem 23), where we consider 
different regimes of the starting value of the process.

Variable drift: We prove upper bounds for any nonnegative process (Theorem 10, Theorem 11), and lower bounds for 
processes with bounded step size and a restriction to the growth of the drift (Theorem 12, Corollary 13, Theorem 14, 
Corollary 15).

No drift: We provide a theorem (Theorem 25) that transforms a random process with no drift into one with a positive 
drift. This transformation can be applied to many drift theorems; however, the requirements may be harder to check. We 
give some examples of how this transformation can be applied in Corollary 26, Corollary 27, and Corollary 28.

The intention of this paper is to provide a fully-packed reference for very general yet easy-to-apply drift theorems. That 
is, we try to keep the requirements of the theorems as easy as possible but still state the theorems in the most general 
way, given the restrictions. Further, we discuss the ideas behind the different theorems and some of the proofs in order to 
provide insights into how and why drift works, we provide examples, and we discuss prior work at the beginning of each 
section.

We only consider bounds of the expected first-hitting time, as this is already a vast field to explore. However, we want 
to mention that drift theory has also brought forth other results than expected first-hitting times, namely, concentration 
bounds and negative drift, which are related. Both areas bound the probability of the first-hitting time taking certain values. 
Concentration bounds show how unlikely it is for a process to take much longer than the expected first-hitting time [10,12,
13]. On the other hand, negative drift bounds how likely it is for the process to reach the goal although the drift is going 
the opposite direction [13,14]. These results are also very helpful but out of the scope of this paper.

Our paper is structured as follows: in Section 2, we start by introducing important notation and terms, which we use 
throughout the entire paper. Further, we also discuss Theorem 1, which most of our proofs of the additive drift theorems 
rely on. In Section 3, we discuss additive drift and prove our main results. We then continue with variable drift in Section 4
as a generalization of additive drift. In this section, we introduce two different versions of fist-hitting time that our results 
are based on. In Section 5, we consider the scenario of multiplicative drift, where, in addition to stating our results, we 
discuss the tightness of our different lower bounds. Last, in Section 6, we consider processes with a drift of 0.

1 They still require a lower bound for the state space but not an upper bound. We still refer to such a setting as unbounded.
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This paper extends our previous results [15] by extending Theorem 4 to also work for processes with negative values, 
by proving various lower bounds for more scenarios than additive drift, and by also considering the case when there is no 
drift.

2. Preliminaries

We consider the expected first-hitting time T of a process (Xt)t∈N over R, which we call Xt for short. That is, we are 
interested in the expected time it takes the process to reach a certain value for the first time, which we will refer to as the 
target. Usually, our target is the value 0, that is, we will define the random variable T = inf{t | Xt ≤ 0}.

We provide bounds on E [T | X0 ] with respect to the drift of Xt , which is defined as

Xt − E [Xt+1 | X0, . . . , Xt ] .

Note that E [T | X0 ] as well as E [Xt+1 | X0, . . . , Xt ] are both random variables. Because of the latter, the drift is a random 
variable, too. Further note that, if the drift is positive, Xt decreases its value in expectation over time when considering 
positive starting values. This is why 0 will be our target most of the time.

We are only interested in the process Xt until the time point T . That is, all of our requirements only need to hold for 
all t < T (since we also consider t + 1). While this phrasing is intuitive, it is formally inaccurate, as T is a random variable. 
We will continue to use it, however, formally, each of our inequalities in each of our requirements should be multiplied 
with the characteristic function of the event {t < T }. This way, the inequalities trivially hold once t ≥ T and, otherwise, 
are the inequalities we state. This is similar to conditioning on the event {t < T } but has the benefit of being valid even if 
Pr [t < T ] = 0 holds.

We want to mention that all of our results actually hold for a random process (Xt )t∈N adapted to a filtration (Ft)t∈N , 
where T is a stopping time defined with respect to Ft . Since this detail is frequently ignored in drift theory, we phrase 
all of our results with respect to the natural filtration, making them look more familiar to usual drift results. For any time 
point t ≤ T , we call X0, . . . , Xt−1 the history of the process.

Last, we state all of our results conditional on X0, that is, we bound E [T | X0 ]. However, by the law of total expectation, 
one can easily derive a bound for E [T ] = E

[
E [T | X0 ]

]
.

2.1. Martingale theorems

In this section, we state the theorems that we will use in order to prove our results in the next sections. These theorems 
make use of martingales, a fundamental concept in the field of probability theory. A martingale is a random process with 
a drift of 0, that is, in expectation, it does not change over time. Further, a supermartingale has a drift of at least 0, that 
is, it decreases over time in expectation, and a submartingale has a drift of at most 0, that is, it increases over time in 
expectation.

The arguably most important theorem for martingales is the Optional Stopping Theorem (Theorem 1). It is often only 
provided in a form that suits martingales. We use a version given by Grimmett and Stirzaker [16, Chapter 12.5, Thm. 9] but 
extend its use to super- and submartingales, which is possible as mentioned by Bhattacharya and Waymire [17, Remark 3.7].

Theorem 1 (Optional stopping). Let (Xt)t∈N be a sequence of random variables over R, and let T be a stopping time2 for Xt . Suppose 
that

(a) E [T ] < ∞ and that
(b) there is some value c ≥ 0 such that, for all t < T , it holds that E

[|Xt+1 − Xt |
∣∣ X0, . . . , Xt

] ≤ c.

Then:

1. If, for all t < T , we have Xt − E [Xt+1 | X0, . . . , Xt ] ≥ 0, then

E [XT ] ≤ E [X0]

2. If, for all t < T , we have Xt − E [Xt+1 | X0, . . . , Xt ] ≤ 0, then

E [XT ] ≥ E [X0] .

Theorem 1 allows us to bound E [XT ] independently of its history, which is why our drift results are independent of the 
history of XT as well.

2 Intuitively, for the natural filtration, a stopping time T is a random variable over N such that, for all t ∈ N, the event {t ≤ T } is only dependent on 
X0, . . . , Xt .
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Note that case (1) refers to supermartingales, whereas case (2) refers to submartingales. Intuitively, case (1) says that 
a supermartingale will have, in expectation, a lower value than it started with, which makes sense, as a supermartingale 
decreases over time in expectation. Case (2) is analogous for submartingales. For martingales, both cases can be combined 
in order to yield an equality.

Martingales are essential in the proofs of our theorems. We will frequently transform our process such that it results in 
a supermartingale or a submartingale in order to apply Theorem 1.

For the special case of nonnegative supermartingales, condition (a) of Theorem 1 is not necessary, which results in the 
following very useful Optional Stopping Theorem.

Theorem 2 (Optional stopping for nonnegative supermartingales [18, Theorem 4.8.4]). Let (Xt)t∈N be a sequence of random variables 
over R, and let T be a stopping time for Xt . Suppose that,

(a) for all t ≤ T , we have Xt ≥ 0 and that,
(b) for all t ≤ T , we have Xt − E [Xt+1 | X0, . . . , Xt ] ≥ 0.

Then

E [XT ] ≤ E [X0] .

Another useful theorem for martingales is the following Azuma–Hoeffding Inequality [19]. This inequality basically is for 
martingales what a Chernoff bound is for binomial distributions.

Theorem 3 (Azuma–Hoeffding inequality). Let (Xt)t∈N be a sequence of random variables over R. Suppose that

• there is some value c > 0 such that, for all t ∈N, we have |Xt − Xt+1| < c.

If, for all t ∈N, Xt − E [Xt+1 | X0, . . . , Xt ] ≥ 0, then, for all t ∈ N and all r > 0, it holds that

Pr [Xt − X0 ≥ r] ≤ e
− r2

2tc2 .

3. Additive drift

We speak of additive drift when the drift can be bounded by a value independent of the process itself. That is, the bound 
is spatially and time-homogeneous.

When considering the first-hitting time T of a random process (Xt)t∈N whose drift is lower-bounded by a value δ > 0, 
then E [T | X0 ] is upper-bounded by X0/δ. Interestingly, if the drift of Xt is upper-bounded by δ, E [T | X0 ] is lower-bounded 
by X0/δ. Thus, if the drift of Xt is exactly δ, that is, we know how much expected progress Xt makes in each step, our 
expected first-hitting time is equal to X0/δ. This result is remarkable, as it can be understood intuitively as follows: since 
we stop once Xt reaches 0, the distance from our start (X0) to our goal (0) is exactly X0, and we make an expected progress 
of δ each step. Thus, in expectation, we are done after X0/δ steps.

3.1. Upper bounds

We give a proof for the Additive Drift Theorem, originally published (in a more restricted version) by He and Yao [1,2]. 
We start by reproving the original theorem (which requires a bounded state space) but in a simpler, more elegant and 
educational manner. We then greatly extend this result by generalizing it to processes with a bounded step width. Finally, 
we lift also this restriction.

In most of these cases, we assume that our random process is nonnegative and has to hit 0 exactly, as this makes the 
statements of our theorems conciser. The intuitive reason for this is the following: when estimating an upper bound for the 
expected first-hitting time, we need a lower bound of the drift. This means the larger our bound of the drift, the better our 
bound for the first-hitting time. Since our process is nonnegative, the drift for values close to 0 provides a natural bound for 
the drift (which is uniform over the entire state space, since we look at additive drift). If our process could take values less 
than 0, we could artificially increase our lower bound of the drift for values that are now bounded by 0 and, thus, improve 
our first-hitting time. Close to the end of this section, we also give an example (Example 6), which shows how the concise 
statements of our drift theorems fail if the process can take negative values. However, our most general version is capable 
of handling such cases by incorporating an extra term in the result that compensates for jumps below 0.

The proof of the following theorem transforms the process into a supermartingale and then uses Theorem 1. However, 
in order to apply Theorem 1, we have to make sure to fulfill condition (a), which is the hardest part.

Theorem 4 (Upper additive drift, bounded). Let (Xt)t∈N be random variables over R, and let T = inf{t | Xt ≤ 0}. Furthermore, suppose 
that,
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(a) for all t ≤ T , it holds that Xt ≥ 0, that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≥ δ, and that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that Xt ≤ c.

Then

E [T | X0 ] ≤ X0

δ
.

Note that condition (a) means that T can be rewritten as inf{t | Xt = 0}, that is, we have to hit 0 exactly in order to stop. 
We show in Example 6 why this condition is crucial.

Condition (b) bounds the expected progress we make each time step. The larger δ, the lower the expected first-hitting 
time. However, due to condition (a), note that small values of Xt create a natural upper bound for δ, as the progress for 
such values can be at most |Xt − 0| = Xt .

Condition (c) means that we are considering random variables over the interval [0, c]. It is a restriction that all previous 
additive drift theorems have but that is actually not necessary, as we show with Theorem 7. In the following proof, we use 
this condition in order to show that E [T ] < ∞, which is necessary when applying Theorem 1.

Proof of Theorem 4. We want to use case (1) of the Optional Stopping Theorem in the version of Theorem 1. Thus, we 
define, for all t < T , Yt = Xt + δt , which is a supermartingale, since

Yt − E [Yt+1 | Y0, . . . , Yt ] = Xt + δt − E [Xt+1 + δ(t + 1) | X0, . . . , Xt ]

= Xt − E [Xt+1 | X0, . . . , Xt ] − δ ≥ 0 ,

as we assume that Xt −E [Xt+1 | X0, . . . , Xt ] ≥ δ for all t < T . Note that we can change the condition Y0, . . . , Yt to X0, . . . , Xt
because the transformation from Xt to Yt is injective.

We now show that E [T | X0 ] < ∞ holds in order to apply Theorem 1. Let r > 0, and let a be any value such that 
Pr [X0 ≤ a] > 0. We condition on the event {X0 ≤ a}, and we consider a time point t′ = (a + r)/δ and want to bound the 
probability that Xt′ has not reached 0 yet, i.e., the event {Xt′ > 0}. We rewrite this event as {Xt′ − a > −a}, which is 
equivalent to {Yt′ − a > −a + δt′ = r}, by definition of Y and t′ .

Note that, for all t < T , |Yt − Yt+1| < c + δ + 1, as we assume that Xt ≤ c. Thus, the differences of Yt are bounded and 
we can apply Theorem 3 as follows, noting that Y0 = X0 ≤ a, due to our condition on {X0 ≤ a}:

Pr [Yt′ − a > r | X0 ≤ a ] ≤ Pr [Yt′ − Y0 ≥ r | X0 ≤ a ] ≤ e
− r2

2t′(c+δ+1)2 .

If we choose r ≥ a, we get t′ ≤ 2r/δ and, thus,

Pr [Yt′ − Y0 > r | X0 ≤ a ] ≤ e
− rδ

4(c+δ+1)2 .

This means that the probability that Xt′ has not reached 0 goes exponentially fast toward 0 as t′ (and, hence, r) goes toward 
∞. Thus, the expected value of T is finite.

Now we can use case (1) of Theorem 1 in order to get E [Y T | X0 ] ≤ E [Y0 | X0 ]. In particular, noting that XT = 0 by 
definition,

X0 = E [X0 | X0 ] = E [Y0 | X0 ] ≥ E [Y T | X0 ] = E [XT + δT | X0 ]

= E [XT | X0 ] + δE [T | X0 ] = δE [T | X0 ] .

Thus, we get the desired bound by dividing by δ. �
Note that the arguments in this proof only need the property of bounded differences in order to apply Theorem 3. Thus, 

we can relax the condition of a bounded state space into bounded step size, which can be seen in the following corollary.

Corollary 5 (Upper additive drift, bounded step size). Let (Xt)t∈N be random variables over R, and let T = inf{t | Xt ≤ 0}. Further-
more, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ 0, that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≥ δ, and that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c.

Then

E [T | X0 ] ≤ X0

δ
.
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As we already mentioned before, note that the condition of the process not being negative is important in order to get 
correct results. The following example highlights this fact.

Example 6. Let n > 0, and let (Xt)t∈N be a random process with X0 = 1 and, for all t ∈ N, Xt+1 = Xt with probability 
1 − 1/n, and Xt+1 = −n + 1 otherwise. Let T denote the first point in time t such that the event Xt ≤ 0 occurs. We have, for 
all t < T , that Xt − E [Xt+1 | X0, . . . , Xt ] = 1 and, thus, E [T | X0 ] ≤ 1 if we could apply any of the additive drift theorems. 
However, since T follows a geometric distribution with success probability 1/n, we have E [T | X0 ] = n.

The reason that the drift theorems so far fail for processes that also take negative values is that we explicitly used 
E [XT | X0 ] = 0 in the proof. This assumption can, of course, be violated if the process allows negative values. In the following 
theorem, which is the most general additive drift theorem up to date, we only require some lower bound α on the state 
space (which may be negative) and phrase the result such that the value of E [XT | X0 ] is incorporated. Further, we use 
Theorem 2 in order to not have to prove that the process converges almost surely.

It is important to note that we define the first-hitting time T to still be the first point in time when the process reaches 0
or a value below it. The variable α only denotes the lower bound of the state space of the process. This allows for a more 
general application of the theorem, since 0 does not have to be hit exactly but can also be surpassed. However, this results 
in E [XT | X0 ] being part of the upper bound for E [T | X0 ], which may be hard to bound. Thus, we also state a second 
bound, which is more coarse but does not involve any extra calculations.

Theorem 7 (Upper additive drift, unbounded). Let α ≤ 0, let (Xt)t∈N be random variables over R, and let T = inf{t | Xt ≤ 0}. Fur-
thermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ α, and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≥ δ.

Then

E [T | X0 ] ≤ X0 − E [XT | X0 ]

δ
≤ X0 − α

δ
.

Proof. We use the same proof strategy as for Theorem 4 with the difference being that we are going to apply Theorem 2
instead of Theorem 1. Since Theorem 2 still requires a nonnegative process, we define, for all t < T , Yt = Xt + δt −α, which 
is nonnegative for all t ≤ T , since Yt ≥ Xt − α ≥ 0, due to condition (a). Further, Yt is a supermartingale for all t ≤ T , since

Yt − E [Yt+1 | Y0, . . . , Yt ] = Xt + δt − α − E [Xt+1 + δ(t + 1) − α | X0, . . . , Xt ]

= Xt − E [Xt+1 | X0, . . . , Xt ] − δ ≥ 0 ,

due to condition (b). Hence, we can apply Theorem 2 and get E [Y T | X0 ] ≤ E [Y0 | X0 ]. Using the definition of Yt , especially 
that E [X0 − α | X0 ] = E [Y0 | X0 ], we get

X0 − α = E [X0 − α | X0 ] = E [Y0 | X0 ] ≥ E [Y T | X0 ] = E [XT + δT − α | X0 ]

= E [XT | X0 ] + δE [T | X0 ] − α .

Solving this inequality for E [T | X0 ] yields the first of the two bounds of this theorem.
For the second bound, we use the bound we just derived and trivially bound E [XT | X0 ] ≥ α, due to condition (a), which 

concludes the proof. �
Note that Example 6 is not a counterexample to Theorem 7, as XT = −n + 1, which is incorporated into the bound of 

the theorem. Applying Theorem 7 states the correct value of E [T | X0 ], being n.
We would like to state that we do not know of any counterexample for Theorem 7 when assuming that condition (a)

does not hold, that is, when the state space is truly unbounded. We conjecture that the statement of Theorem 7 still holds 
in this case.

3.2. Lower bounds

In this section, we provide a lower bound for the expected first-hitting time under additive drift. In order to do so, we 
need an upper bound for the drift. Since we now lower-bound the first-hitting time, a large upper bound of the drift makes 
the result bad. Thus, we can allow the process to take negative values, as these could only increase the drift’s upper bound. 
However, we need to have some restriction on the step size in order to make sure not to move away from the target. Again, 
we provide an example (Example 9) showing this necessity at the end of this section.
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Theorem 8 (Lower additive drift, expected bounded step size). Let (Xt)t∈N be random variables over R, and let T = inf{t | Xt ≤ 0}. 
Furthermore, suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≤ δ, and that
(b) there is some value c ≥ 0 such that, for all t < T , it holds that E

[|Xt+1 − Xt |
∣∣ X0, . . . , Xt

] ≤ c.

Then

E [T | X0 ] ≥ X0 − E [XT | X0 ]

δ
≥ X0

δ
.

Proof. We make a case distinction with respect to E [T | X0 ] being finite. If E [T | X0 ] is infinite, then the theorem trivially 
holds. Thus, we now assume that E [T | X0 ] < ∞.

Similar to the proof of Theorem 4, we define, for all t < T , Yt = Xt + δt , which is a submartingale, since

Yt − E [Yt+1 | Y0, . . . , Yt ] = Xt − δt − E [Xt+1 − δ(t + 1) | X0, . . . , Xt ]

= Xt − E [Xt+1 | X0, . . . , Xt ] − δ ≤ 0 ,

as we assume that Xt − E [Xt+1 | X0, . . . , Xt ] ≤ δ for all t < T and because, again, the transformation of Xt to Yt is injective.
Since we now assume that E [T | X0 ] < ∞ and, further, that E

[|Xt+1 − Xt |
∣∣ X0, . . . , Xt

] ≤ c for all t < T , we can directly 
apply case (2) of Theorem 1 and get that E [Y T | X0 ] ≥ E [Y0 | X0 ]. This yields, noting that XT ≤ 0,

X0 = E [X0 | X0 ] = E [Y0 | X0 ] ≤ E [Y T | X0 ] = E [XT + δT | X0 ]

= E [XT | X0 ] + δE [T | X0 ] .

Thus, for the first bound, we get the desired bound by solving for E [T | X0 ]. For the second bound, we use the first bound 
and that E [XT | X0 ] ≤ 0. This concludes the proof. �

Note that the step size has to be bounded in some way for a lower bound, as the following example shows.

Example 9. Let δ ∈ (0, 1), and let (Xt)t∈N be a random process with X0 = 2 and, for all t ∈N, Xt+1 = 0 with probability 1/2
and Xt+1 = 2Xt − 2δ otherwise. Further, let T denote the first point in time t such that Xt = 0. Then T follows a geometric 
distribution with success probability 1/2, which yields E [T ] = 2. However, we have that Xt − E [Xt+1 | X0, . . . , Xt ] = δ. If 
Theorem 8 could be applied to this process (by neglecting the condition of the bounded step size), the theorem would yield 
that E [T ] ≥ 2/δ, which is not true.

4. Variable drift

In contrast to additive drift, variable drift means that the drift can depend on the current state of the process (while still 
being bounded independently of the time). Interestingly, these more flexible drift theorems can be derived by using additive 
drift. Intuitively, the reasoning behind this approach is to scale the state space such that the information relevant to the 
current state of the process cancels out.

It is important to note that variable drift theorems are commonly phrased such that the first-hitting time T denotes the 
first point in time such that the random process drops strictly below a certain value (our target) – it is not enough to hit 
that value. However, this restriction is not always necessary. Thus, we also consider the setting from Section 3, where T
denotes the first point in time such that we hit our target or get below it. In this section, our target is no longer 0 but a 
value xmin.

In all of our theorems in this section, we make use of a set D . This set contains (at least) all possible values that 
our process can take while not having reached the target yet. It is a formal necessity in order to calculate the bound of 
the first-hitting time (via an integral). However, when applying the theorem, it is usually sufficient to choose D = R or 
D =R≥0.

4.1. Upper bounds

The first variable drift theorem was proven by Johannsen [5] and, independently in a different version, by Mitavskiy 
et al. [20]. It was later refined by Rowe and Sudholt [21]. In all of these versions, bounded state spaces were used. Due to 
Theorem 7, we can drop this restriction.
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4.1.1. Going strictly below the target
The following version of the theorem assumes that the process has to drop strictly below the target, denoted by xmin. 

We provide the other version afterward.

Theorem 10 (Upper variable drift, unbounded, strictly below target). Let (Xt)t∈N be random variables over R, xmin > 0, and let 
T = inf{t | Xt < xmin}. Additionally, let D denote the smallest real interval that contains at least all values x ≥ xmin that, for all t ≤ T , 
any Xt can take. Furthermore, suppose that

(a) X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0 and that
(b) there is a monotonically increasing function h : D →R+ such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≥ h(Xt).

Then

E [T | X0 ] ≤ xmin

h(xmin)
+

X0∫
xmin

1

h(z)
dz .

Proof. The proof follows the one given by Rowe and Sudholt [21] very closely. We define a function g : D ∪ [0, xmin] →R≥0

as follows:

g(x) =
{

0 if x < xmin,
xmin

h(xmin)
+ ∫ x

xmin

1
h(z) dz else.

Note that g is well-defined, since 1/h is monotonically decreasing and every monotone function is integrable over all 
compact intervals of its domain. Further, g(Xt) = 0 holds if and only if Xt < xmin. Thus, both processes have the same 
first-hitting time.

Assume that x ≥ y ≥ xmin. We get

g(x) − g(y) =
x∫

y

1

h(z)
dz ≥ x − y

h(x)
,

since h is monotonically increasing. Assuming y ≥ x ≥ xmin, we get, similar to before,

g(x) − g(y) = −
y∫

x

1

h(z)
dz ≥ − y − x

h(x)
= x − y

h(x)
.

Thus, we can write, for x ≥ xmin and y ≥ xmin,

g(x) − g(y) ≥ x − y

h(x)
.

Further, for x ≥ xmin > y ≥ 0, we get

g(x) − g(y) = xmin

h(xmin)
+

x∫
xmin

1

h(z)
dz ≥ xmin

h(x)
+ x − xmin

h(x)

= x

h(x)
≥ x − y

h(x)
.

Overall, for x ≥ xmin (including X0 ≥ xmin) and y ∈ R≥0, we can estimate

g(x) − g(y) ≥ x − y

h(x)
.

We use this to determine the drift of the process g(Xt) as follows:

g(Xt) − E [g(Xt+1) | X0, . . . , Xt ] = E [g(Xt) − g(Xt+1) | X0, . . . , Xt ]

≥ E [Xt − Xt+1 | X0, . . . , Xt ]

h(Xt)
≥ 1 ,

where we used the condition on the drift of Xt .
An application of Theorem 7 completes the proof. �
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4.1.2. Going below the target
As mentioned before, it is not always necessary to drop strictly below the target. For the additive drift, for example, we 

are interested in the first time reaching the target. Interestingly, the proof for the following theorem is straightforward, as it 
is almost the same as the proof of Theorem 10. Intuitively, the waiting time for getting below the target, once it is reached, 
is eliminated from the expected first-hitting time. However, it is important to note that it is now not allowed to get below 
the target. Thus, for this bound, we actually bound the expected time until we hit the target for the first time.

Theorem 11 (Upper variable drift, unbounded, below target). Let (Xt)t∈N be random variables over R, xmin ≥ 0, and let T = inf{t |
Xt ≤ xmin}. Additionally, let D denote the smallest real interval that contains at least all values x ≥ xmin that, for all t ≤ T , any Xt can 
take. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ xmin and that
(b) there is a monotonically increasing function h : D → R+ such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≥ h(Xt).

Then

E [T | X0 ] ≤
X0∫

xmin

1

h(z)
dz .

Proof. This proof is almost identical to the proof of Theorem 10. The difference is that we define our potential function 
g : D → R≥0 as follows:

g(x) =
{

0 if x ≤ xmin,∫ x
xmin

1
h(z) dz else.

As for g(x) − g(y), the case x ≥ xmin > y does not exist anymore, since we cannot get below xmin. Thus, the potential 
difference is the same in all cases, and nothing changes in the rest of the proof. �
4.2. Lower bounds

Similar to how the step size of the lower bound of the additive drift needs to be bounded, the step size for variable drift 
is also bounded in order to derive lower bounds. Doerr et al. [22] prove a lower-bound for variable drift (Theorem 7) that 
is very similar to our following theorems but a bit more strict, as it assumes that the process is monotonically decreasing 
over time. Our theorems only assume that the step size of the process is bounded. Further, Gießen and Witt [23] prove a 
variable drift theorem yielding a lower bound that is applicable to any process that does not change too much within a 
single step with a certain high probability (bounded by a function similar to the drift function h). We give results for more 
restricted processes with deterministically bounded step sizes and get easier theorems in return. As an additional constraint, 
we bound how fast the drift function h can grow. This can be done in various ways. We consider two cases: one case where 
the function bounding the drift can increase up to a multiplicative factor over a bounded range, and one case where it can 
only change by an additive term. As in the case of the lower bound of the additive drift theorem (Theorem 8), our process 
can take negative values.

Ideally, we would get the same bounds as in Section 4.1. However, we are off by a factor of 1/s, where s ≥ 1 is a slack 
term heavily depending on the parameters of the process. Thus, the quality of our lower bounds can deviate drastically 
between different processes. To be more precise, the slack term s depends on the maximum step size c of the random 
process as well as the speed of growth a of the drift function h (either relative or absolute) and on the minimal value 
of h. Further, the parameter c is hard to adjust when considering a given process. In addition to that, as we discuss in the 
following section, c may even depend on xmin which, in return, can lead to a bad slack term s. This means that the only 
sensible possibility of improving the slack term s and thus the lower bound of the expected first-hitting time is to come up 
with a good drift function h, which influences the minimal value of h as well as the speed of growth a.

4.2.1. Going strictly below the target
In this scenario, we require our process to not take values in the interval (0, xmin) – the gap. Further, as mentioned 

above, we always require our random process to have a (uniformly) bounded step size c. It is very important to stress that 
the gap impacts c, as the process has to be able to get past the gap; in return, c influences the quality of the lower bound 
drastically, as it impacts the slack term s. Thus, if it is possible to consider the first point in time that the target can be hit, 
we advise using our theorems given in Section 4.2.2, as they do not have this problem.

Theorem 12 (Lower variable drift, bounded step size, relative difference, strictly below target). Let (Xt)t∈N be random variables over R, 
xmin > 0, and let T = inf{t | Xt < xmin}. Additionally, let D denote the smallest real interval that contains at least all values x ≥ xmin
that, for all t ≤ T , any Xt can take. Furthermore, suppose that
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(a) X0 ≥ xmin and, for all t ≤ T , Xt /∈ (0, xmin), that
(b) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c, and that
(c) there is a monotonically increasing function h : D ∪ [xmin − c, xmin] →R+ such that,

• there is some value a ≥ 1 such that h(x + c) ≤ a · h(x − c) and that,
• for all t < T , we have Xt − E [Xt+1 | X0, . . . , Xt ] ≤ h(Xt).

Let s = 1 + (a−1)c
a·h(xmin−c) . Then

E [T | X0 ] ≥ 1

s
·
⎛
⎝ xmin

h(xmin)
+

X0∫
xmin

1

h(z)
dz

⎞
⎠ .

Proof. Similar to the proof of Theorem 10, we define a function g : D ∪ [xmin − c, xmin] →R≥0 as follows:

g(x) =
{

0 if x < xmin,
xmin

h(xmin)
+ ∫ x

xmin

1
h(z) dz else.

Again, g(Xt) = 0 if and only if Xt ≤ 0.
Assume that x ≥ y ≥ xmin with x − y ≤ c. Thus, y ≥ x − c. We get

g(x) − g(y) =
x∫

y

1

h(z)
dz ≤ x − y

h(y)
≤ x − y

h(x − c)
,

since h is monotonically increasing. Assuming y ≥ x ≥ xmin with y − x ≤ c and noting that y ≤ x + c, we obtain,

g(x) − g(y) = −
y∫

x

1

h(z)
dz ≤ − y − x

h(y)
≤ x − y

h(x + c)
,

similar to before. Further, for x ≥ xmin > 0 ≥ y with x − xmin < c, implying that xmin > x − c, we get

g(x) − g(y) = xmin

h(xmin)
+

x∫
xmin

1

h(z)
dz ≤ xmin

h(xmin)
+ x − xmin

h(xmin)

= x

h(xmin)
≤ x − y

h(xmin)
≤ x − y

h(x − c)
.

For a predicate P , let [P ] denote the Iverson bracket, i.e., the characteristic function with respect to P . We determine 
the drift of g(Xt) as follows, making use of the previous inequalities:

g(Xt) − E [g(Xt+1) | X0, . . . , Xt ]

= E
[(

g(Xt) − g(Xt+1)
)[Xt > Xt+1]

∣∣ X0, . . . , Xt
]

+ E
[(

g(Xt) − g(Xt+1)
)[Xt < Xt+1]

∣∣ X0, . . . , Xt
]

≤ 1

h(Xt − c)
E
[
(Xt − Xt+1)[Xt > Xt+1]

∣∣ X0, . . . , Xt
]

+ 1

h(Xt + c)
E
[
(Xt − Xt+1)[Xt < Xt+1]

∣∣ X0, . . . , Xt
]
,

where the term E
[
(Xt − Xt+1)[Xt < Xt+1]

∣∣ X0, . . . , Xt
]

is negative. Using the assumption h(x + c) ≤ a · h(x − c), we can thus 
upper-bound the previous term and obtain

g(Xt) − E [g(Xt+1) | X0, . . . , Xt ]

≤ 1

h(Xt − c)
E
[
(Xt − Xt+1)[Xt > Xt+1]

∣∣ X0, . . . , Xt
]

+ 1

a · h(Xt − c)
E
[
(Xt − Xt+1)[Xt < Xt+1]

∣∣ X0, . . . , Xt
]

= a − 1
E
[
(Xt − Xt+1)[Xt > Xt+1]

∣∣ X0, . . . , Xt
]

a · h(Xt − c)



T. Kötzing, M.S. Krejca / Theoretical Computer Science 796 (2019) 51–69 61
+ 1

a · h(Xt − c)

(
E
[
(Xt − Xt+1)[Xt > Xt+1]

∣∣ X0, . . . , Xt
]

+ E
[
(Xt − Xt+1)[Xt < Xt+1]

∣∣ X0, . . . , Xt
])

≤ (a − 1)c

a · h(Xt − c)
+ 1

a · h(Xt − c)
E [Xt − Xt+1 | X0, . . . , Xt ],

where the last inequality made use of |Xt − Xt+1| ≤ c.
Using our assumption Xt − E [Xt+1 | X0, . . . , Xt ] ≤ h(Xt), we finally get

g(Xt) − E [g(Xt+1) | X0, . . . , Xt ] ≤ (a − 1)c

a · h(Xt − c)
+ h(Xt)

a · h(Xt − c)

≤ (a − 1)c

a · h(xmin − c)
+ h(Xt)

h(Xt + c)

≤ (a − 1)c

a · h(xmin − c)
+ 1 = s .

Applying Theorem 8 completes the proof. �
Note how a constant drift function h (that is, a = 1) yields, in combination with Theorem 10, a tight run time bound. 

Further, if c = O
(
h(xmin − c)

)
, then s becomes constant and the bound is tight up to a constant factor. In general, the higher 

h(xmin − c) or the smaller c, the smaller s and thus the better the bound.
We can state Theorem 12 in a slightly different fashion by restricting by how much h(x + c) and h(x − c) may differ, 

resulting in a more complicated but also more slowly growing slack term s.

Corollary 13 (Lower variable drift, bounded step size, absolute difference, strictly below target). Let (Xt)t∈N be random variables 
over R, xmin > 0, and let T = inf{t | Xt < xmin}. Additionally, let D denote the smallest real interval that contains at least all values 
x ≥ xmin that, for all t ≤ T , any Xt can take. Furthermore, suppose that

(a) X0 ≥ xmin and, for all t ≤ T , Xt /∈ (0, xmin), that
(b) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c, and that
(c) there is a monotonically increasing function h : D ∪ [xmin − c, xmin] →R+ such that

• there is some value a ≥ 0 such that h(x + c) ≤ a + h(x − c) and that,
• for all t < T , we have Xt − E [Xt+1 | X0, . . . , Xt ] ≤ h(Xt).

Let s = 1 + ac(
a+h(xmin−c)

)
h(xmin−c)

. Then

E [T | X0 ] ≥ 1

s
·
⎛
⎝ xmin

h(xmin)
+

X0∫
xmin

1

h(z)
dz

⎞
⎠ .

Proof. We want to apply Theorem 12. We define

a′ = a

h(xmin − c)
+ 1 .

Note that a ≥ 1. Further, for all x ∈ D ,

h(x + c) ≤ a + h(x − c) = (a′ − 1)h(xmin − c) + h(xmin − c)

≤ a′ · h(xmin − c) ≤ a′ · h(x − c) ,

as h is monotone. Thus, we can apply Theorem 12 and get

s = 1 + (a′ − 1)c

a′ · h(xmin − c)
= 1 +

a
h(xmin−c)(

a
h(xmin−c) + 1

)
h(xmin − c)

,

which concludes the proof. �
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4.2.2. Going below the target
The following theorems are versions of the last two theorems. However, now the first-hitting time denotes the first time 

such that the random process at least reaches the target. This removes the necessity of the gap from the previous theorems, 
yielding better lower bounds in return. Further, since the step width c is no longer tied to a gap, the slack term s may be 
better.

Theorem 14 (Lower variable drift, bounded step size, relative difference, below target). Let (Xt)t∈N be random variables over R, 
xmin ≥ 0, and let T = inf{t | Xt ≤ xmin}. Additionally, let D denote the smallest real interval that contains at least all values x ≥ xmin
that, for all t ≤ T , any Xt can take. Furthermore, suppose that

(a) X0 ≥ xmin , that
(b) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c, and that
(c) there is a monotonically increasing function h : D ∪ [xmin − c, xmin] →R+ such that

• there is some value a ≥ 0 such that h(x + c) ≤ a · h(x − c) and that,
• for all t < T , we have Xt − E [Xt+1 | X0, . . . , Xt ] ≤ h(Xt).

Let s = 1 + (a−1)c
a·h(xmin−c) . Then

E [T | X0 ] ≥ 1

s
·

X0∫
xmin

1

h(z)
dz .

Proof. This proof is almost identical to the proof of Theorem 12. The difference is that we define our potential function 
g : D ∪ [xmin − c, xmin] →R≥0 as follows:

g(x) =
{

0 if x ≤ xmin,∫ x
xmin

1
h(z) dz else.

As for g(x) − g(y), we need to reconsider the case x ≥ xmin > 0 ≥ y, which now translates to x ≥ xmin ≥ y. We get

g(x) − g(y) =
xmin∫
x

1

h(z)
dz ≤ x − xmin

h(xmin)
≤ x − xmin

h(x − c)
≤ x − y

h(x − c)
,

where the last inequality is due to y ≤ xmin.
In all other cases, the previously used term xmin/h(xmin) canceled out. Thus, the potential difference is the same in all 

cases, and nothing changes in the rest of the proof. �
As in Section 4.2.1, we get a better slack term by demanding a stricter restriction on the speed of growth of h.

Corollary 15 (Lower variable drift, bounded step size, absolute difference, below target). Let (Xt)t∈N be random variables over R, 
xmin ≥ 0, and let T = inf{t | Xt ≤ xmin}. Additionally, let D denote the smallest real interval that contains at least all values x ≥ xmin
that, for all t ≤ T , any Xt can take. Furthermore, suppose that

(a) X0 ≥ xmin , that
(b) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c, and that
(c) there is a monotonically increasing function h : D ∪ [xmin − c, xmin] →R+ such that

• there is some value a ≥ 0 such that h(x + c) ≤ a + h(x − c) and that,
• for all t < T , we have Xt − E [Xt+1 | X0, . . . , Xt ] ≤ h(Xt).

Let s = 1 + ac(
a+h(xmin−c)

)
h(xmin−c)

. Then

E [T | X0 ] ≥ 1

s

X0∫
xmin

1

h(z)
dz .

Proof. This proof changes only in the same places as the proof of Theorem 14. This does not change the line of argument 
of the proof of Corollary 13, which concludes this proof. �



T. Kötzing, M.S. Krejca / Theoretical Computer Science 796 (2019) 51–69 63
5. Multiplicative drift

A special case of variable drift is multiplicative drift, where the drift can be bounded by a multiple of the most recent 
value in the history of the process. As before, we provide upper and lower bounds in the two versions of either dropping 
strictly below the target or permitting to hit it. In this setting, it can be intuitively argued why the version of dropping 
strictly below the target is useful: consider a sequence of nonnegative numbers that halves its current value each time step. 
This process will never reach 0 within finite time. However, it drops below any value greater than 0.

5.1. Upper bounds

Both upper bounds we state are simple applications of the corresponding variable drift theorems from Section 4.1.

5.1.1. Going strictly below the target
Corollary 16 has first been stated by Doerr et al. [6] using finite state spaces. Afterward, it has been proven multiple 

times for processes not requiring an upper bound (although this is not always stated) [10–12].

Corollary 16 (Upper multiplicative drift, unbounded, strictly below target). Let (Xt)t∈N be random variables over R, xmin > 0, and let 
T = inf{t | Xt < xmin}. Furthermore, suppose that

(a) X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0, and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E

[
Xt+1

∣∣ X0, . . . , Xt
] ≥ δXt .

Then

E [T | X0 ] ≤
1 + ln

(
X0

xmin

)
δ

.

Proof. We define a function h : [xmin, ∞) → R+ with h(x) = δx. Note that h is monotonically increasing and that, by con-
struction, for all t < T , Xt − E [Xt+1 | X0, . . . , Xt ] ≥ h(Xt). Thus, by applying Theorem 10, we get

E [T | X0 ] ≤ xmin

h(xmin)
+

X0∫
xmin

1

h(z)
dz = xmin

δxmin
+

ln
(

X0
xmin

)
δ

,

which completes the proof. �
5.1.2. Going below the target

By applying Theorem 11 instead of Theorem 10, we get the following theorem. As in the case of Theorem 11, the process 
now has to be lower-bounded by xmin.

Corollary 17 (Upper multiplicative drift, unbounded, below target). Let (Xt)t∈N be random variables over R, xmin > 0, and let T =
inf{t | Xt ≤ xmin}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ xmin , and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E

[
Xt+1

∣∣ X0, . . . , Xt
] ≥ δXt .

Then

E [T | X0 ] ≤
ln

(
X0

xmin

)
δ

.

Proof. We define the same potential as in the proof of Corollary 16 but apply Theorem 11 instead. �
Before we consider lower bounds, we want to provide an example that shows that the upper bounds are as tight as 

possible, up to constant factors, for the range of processes we consider. The example describes a process that decreases 
deterministically, that is, it has a variance of 0. Interestingly, for the lower bounds, we provide an example process (Exam-
ple 24) with maximal variance (that still has a positive drift) which shows that our lower bounds are tight.

Example 18. Let δ ∈ (0, 1) be a value bounded away from 1. Consider the process (Xt)t∈N , with X0 > 1, that decreases each 
step deterministically such that Xt+1 = (1 − δ)Xt holds. Let T denote the first point in time such that the process drops 
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below 1. Thus, we get T = �(− log(1−δ) X0) = �
( − ln(X0)/ ln(1 − δ)

) = �
(

ln(X0)/δ
)
, where the last equation makes use of 

the Taylor expansion of ln(1 − δ) = �(−δ), as 1 − δ does not converge to 1, by assumption.

5.2. Lower bounds

In this section, we first give the multiplicative versions that follow from the respective variable versions from Section 4.2. 
However, as we already discussed in Section 4.2.1, the lower bounds can be bad, depending on the choice of xmin, as this 
influences the slack term s. In order to mitigate this effect, Section 5.2.3 provides two other theorems that give better lower 
bounds with respect to where the random process starts and when we stop.

5.2.1. Going strictly below the target
Similar to the upper bound before, we now use Corollary 13 in order to state a lower bound formulation of the multi-

plicative drift theorem.

Corollary 19 (Lower multiplicative drift, bounded step size, strictly below target). Let (Xt)t∈N be random variables over R, xmin > 0, 
and let T = inf{t | Xt < xmin}. Furthermore, suppose that

(a) X0 ≥ xmin and, for all t ≤ T , Xt /∈ (0, xmin), that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≤ δXt , and that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c.

Let s = 1 + 2c2(
2c+xmin

)
δxmin

. Then

E [T | X0 ] ≥ 1

s
·

1 + ln
(

X0
xmin

)
δ

.

Proof. We define a function h : [xmin − c, ∞) →R+ as follows:

h(x) =
{

δx if x ≥ xmin,

δxmin else.

Note that h is monotonically increasing. Further, it holds that h(x + c) ≤ 2δc + h(x − c) and that, for all t < T , 
Xt − E [Xt+1 | X0, . . . , Xt ] ≤ h(Xt). Thus, we can apply Corollary 13 with a = 2δc. We get

s = 1 + ac(
a + h(xmin − c)

)
h(xmin − c)

= 1 + 2δc2(
2δc + δxmin

)
δxmin

= 1 + 2c2(
2c + xmin

)
δxmin

and, thus,

E [T | X0 ] ≥ 1

s
·
⎛
⎝ xmin

h(xmin)
+

X0∫
xmin

1

h(z)
dz

⎞
⎠ = 1

s
·
⎛
⎝ xmin

δxmin
+

ln
(

X0
xmin

)
δ

⎞
⎠

= 1

s
·

1 + ln
(

X0
xmin

)
δ

,

which is what we claimed. �
Note that a similar corollary can be obtained by using Theorem 12. However, if done so, the result is not as good.
We want to mention that Corollary 19 is very similar to Thm. 3.3 from Doerr et al. [24], which stands by itself, 

whereas our corollary follows from our more general Corollary 13. In comparison, the slack term of Doerr et al. [24] is 
2 + c2/

(
δ(x2

min − c2)
)
.

Note that the lower bound of Corollary 19 differs from the upper bound of Corollary 16 only by the factor 1/s. However, 
if c = �(xmin) and δ = O (1), then sδ = �(1), which results in the gap between the upper and the lower bound being in the 
order of δ.

As we already discussed in Section 4.2, it is basically impossible to adjust c, as this is an inherent property of the random 
process X . However, the choice of xmin usually is flexible, allowing to adjust s. Interestingly, the smaller xmin, the worse the 
lower bound becomes. Thus, choosing xmin reasonably large can yield satisfactory results. Unfortunately, increasing xmin may 
also entail increasing c when a gap is present. Thus, the following corollary is better suited for this kind of analysis.
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5.2.2. Going below the target

Corollary 20 (Lower multiplicative drift, bounded step size, below target). Let (Xt)t∈N be random variables over R, xmin > 0, and let 
T = inf{t | Xt ≤ xmin}. Furthermore, suppose that

(a) X0 ≥ xmin , that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≤ δXt , and that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c.

Let s = 1 + 2c2(
2c+xmin

)
δxmin

. Then

E [T | X0 ] ≥ 1

s
·

ln
(

X0
xmin

)
δ

.

Proof. We follow the proof of Theorem 19 but apply Corollary 15 instead of Corollary 13. �
5.2.3. Different regimes

As discussed before, we now make a case distinction with respect to xmin (and, thus, implicitly X0). If it is rather large, 
Corollary 20 already yields a reasonable bound, which we phrase as Corollary 21. However, this bound may become very 
bad for smaller values. This is why we further provide Theorem 23, which copes with that case.

Corollary 21 (Lower multiplicative drift, bounded step size, below target, large regime). Let (Xt)t∈N be random variables over R, 
d > 0, and let T = inf{t | Xt ≤ d/

√
δ}. Furthermore, suppose that

(a) X0 ≥ d/
√

δ, that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≤ δXt , and that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c.

Let s = 1 + 2c2

2cd
√

δ+d2 . Then

E [T | X0 ] ≥ 1

s
·

ln
(

X0
√

δ
d

)
δ

.

Proof. We apply Corollary 20 with xmin = d/
√

δ and see that

s = 1 + 2c2

(2c + xmin)δxmin
= 1 + 2c2(

2c + d√
δ

)
δ d√

δ

= 1 + 2c2

2cd
√

δ + d2
,

which finishes the proof. �
Note that, if c and d are in �(1) and δ = O (1), then Corollary 21 yields a bound of �

(
ln(X0

√
δ)/δ

)
, which is tight when 

compared to Corollary 17 with xmin = d/
√

δ.

Example 22. Applied to the well-known Coupon Collector problem, which is commonly used as an example for an appli-
cation of the multiplicative drift theorem, we see that only missing

√
n coupons when starting with n missing coupons 

takes, in expectation, at least (1/6)n ln n tries. This is complemented by the corresponding upper bound (1/2)n log n from 
Corollary 17. Thus, the bound is tight up to constant factors. More generally speaking, if X0 is large, a sufficiently large xmin
suffices to get a lower bound that matches the upper up to constant factors.

We now consider the case that we start at lower values. Still in the regime of multiplicative drift of δ, we are interested 
in the behavior of such a process when X0 < d/

√
δ, that is, the setting we did not analyze earlier. As it turns out, the 

process may behave a bit different then.
Intuitively, for such small values, the first-hitting time of the process may be mainly determined by its random-walk 

behavior, as the multiplicative impact of the drift is not too large anymore. We make this explicit in the proof by only 
analyzing the first-hitting time of a submartingale of the original process, which can be seen as the process’s random-walk 
behavior. In order to get a bound on this behavior, we need an extra restriction (condition (e)).
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Theorem 23 (Lower multiplicative drift, bounded step size, below target, small regime). Let (Xt)t∈N be random variables over R, 
xmin > 0, and let T = inf{t | Xt < xmin}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt /∈ (0, xmin), that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt − E [Xt+1 | X0, . . . , Xt ] ≤ δXt , that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 − Xt | ≤ c, that
(d) there is some value d > 0 such that it holds that X0 ≤ d/

√
δ, and that

(e) there is some value a ∈R such that, for all t < T , it holds that E
[

X2
t+1

∣∣ X0, . . . , Xt
] − Xt

2 ≤ a.

Then

E [T | X0 ] ≥ d + c
√

δ

4d2 + 4cd
√

δ + c2δ + a
· X0√

δ
.

Proof. In the regime of this theorem, the multiplicative drift is not very large, since the values Xt themselves are rather 
small. Thus, the variance of the process introduced by its random walk nature can be factored in in order to achieve a better 
lower run time bound.

We only consider the time T ′ it takes Xt until it drops below xmin or reaches values of at least 2d/
√

δ + c. Note that T
dominates T ′ , as the latter has one extra target.

We define, for all t ≤ T ′:

Yt = Xt

(
2

d√
δ

+ c − Xt

)
,

which is positive as long as Xt ∈ [xmin, 2d/
√

δ + c).
When calculating the drift of Yt with respect to Xt , we get

Yt − E [Yt+1 | X0, . . . , Xt ]

= Xt

(
2

d√
δ

+ c − Xt

)
− E

[
Xt+1

(
2

d√
δ

+ c − Xt+1

) ∣∣∣∣ X0, . . . , Xt

]

= Xt

(
2

d√
δ

+ c

)
− Xt

2 −
(

2
d√
δ

+ c

)
E [Xt+1 | X0, . . . , Xt ]

+ E
[

X2
t+1

∣∣∣ X0, . . . , Xt

]
.

By using assumptions (b) and (e), we get

Yt − E [Yt+1 | X0, . . . , Xt ] ≤ δXt

(
2

d√
δ

+ c

)
+ E

[
X2

t+1

∣∣∣ X0, . . . , Xt

]
− Xt

2

≤ δXt

(
2

d√
δ

+ c

)
+ a ≤ δ

(
2

d√
δ

+ c

)2

+ a

= 4d2 + 4cd
√

δ + c2δ + a .

Thus, by applying Theorem 8, we get,

E
[
T ′ ∣∣ X0

] ≥ Y0

4d2 + 4cd
√

δ + c2δ + a
=

X0

(
2 d√

δ
+ c − X0

)
4d2 + 4cd

√
δ + c2δ + a

≥
X0

(
d√
δ

+ c
)

4d2 + 4cd
√

δ + c2δ + a
,

as X0 ≤ d/
√

δ. Since E [T | X0 ] ≥ E
[
T ′ ∣∣ X0

]
, this concludes the proof. �

Note that, if a, c, and d are in �(1), a ≥ 0, and if δ = O (1), then Theorem 23 yields a bound of �
(

X0/
√

δ
)
. Further note 

that the bound given in Theorem 23 may be asymptotically lower than the upper bounds given in Section 5.1. We want to 
show with the following example that there are processes where the bound given in Theorem 23 is tight up to constant 
factors.
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Example 24. Let δ ∈ (0, 1) be a value such that 1/
√

δ is an integer. We define the following process (Xt)t∈N over N, which 
is upper-bounded by 1/

√
δ. If 0 < Xt < 1/

√
δ, then Xt+1 = Xt − 1 with probability (1 + δXt)/2 and Xt+1 = Xt + 1 with 

probability (1 − δXt)/2. If Xt = 1/
√

δ, then Xt+1 = Xt with probability 1 − δXt and Xt+1 = Xt − 1 with probability δXt . Last, 
if Xt = 0, then Xt+1 = 0. Further, let T denote the first point in time such that the process hits 0.

This process is dominated by the following process (Yt)t∈N with Y0 = X0: if 0 < Yt < 1/
√

δ, then Yt+1 = Yt ± 1 both 
with probability 1/2. If Yt = 1/

√
δ, then Yt+1 = Yt with probability 1 − √

δ, and Yt+1 = Yt − 1 with probability 
√

δ. Last, if 
Yt = 0, then Yt+1 = 0. Note that T is upper-bounded by the first time t such that Yt = 0.

By standard arguments over unbiased random walks, we get an upper bound of O
(
Y0/

√
δ
) = O

(
X0/

√
δ
)

for the time 
until the process terminates.

6. Drift without drift

In order for a drift theorem to be applicable, the process needs to have a positive drift. However, sometimes one is 
interested in the first-hitting time of unbiased processes, that is, processes with a drift 0. The classical example for that is 
the Gambler’s Ruin process, which describes a fair random walk.

In this section, we focus on such unbiased processes, that is, martingales. We show that in these cases the variance 
(which is nonnegative by definition) can be used in order to apply a drift theorem. Since the variance of a process is 0 if 
and only if the process is deterministic, we get a framework applicable to any unbiased random process.

We start by providing a transformation of a martingale into another random process that has positive drift. The under-
lying method of this transformation is known as predictable quadratic variation, although it is not always referred to under 
this name. For more information, see, for example, the books of Durrett [18, Chapter 4.5] or Williams [25, Chapter 12.11].

Theorem 25 (Martingale drift transformation). Let (Xt)t∈N be random variables over R, let [α, β] ⊂ R be an interval, and let T =
inf{t ∈ N | Xt /∈ (α, β)}. Furthermore, suppose that,

(a) for all t < T , it holds that E [Xt+1 | X0, . . . , Xt ] = Xt and that,
(b) for all t < T , it holds that Var [Xt+1 | X0, . . . , Xt ] > 0.

Then the process (Yt)t∈N with

Yt = (Xt − α)(β − Xt)

is, for all t < T , a random process with positive drift Var [Xt+1 | X0, . . . , Xt ] toward 0.

Proof. For all t < T , we determine the drift of Yt with respect to Xt
3:

E [Yt − Yt+1 | X0, . . . , Xt ] = Yt − E [Yt+1 | X0, . . . , Xt ]

= (Xt − α)(β − Xt) − E [(Xt+1 − α)(β − Xt+1) | X0, . . . , Xt ]

= −X2
t + (α + β)Xt − αβ − E

[
−X2

t+1 + (α + β)Xt+1 − αβ

∣∣∣ X0, . . . , Xt

]
= −X2

t + E
[

X2
t+1

∣∣∣ X0, . . . , Xt

]
+ (α + β)Xt

− (α + β)

=Xt︷ ︸︸ ︷
E [Xt+1 | X0, . . . , Xt ]−αβ + αβ

= E
[

X2
t+1

∣∣∣ X0, . . . , Xt

]
−

= E [Xt+1 | X0, . . . , Xt ]︷︸︸︷
Xt

2

= E
[

X2
t+1

∣∣∣ X0, . . . , Xt

]
− E [Xt+1 | X0, . . . , Xt ]2

= Var [Xt+1 | X0, . . . , Xt ] ,

which is positive by assumption. �
Note that the transformed process Yt described in Theorem 25 is positive as long as Xt ∈ (α, β), and nonpositive oth-

erwise. This means that T also denotes the first-hitting time of Yt ≤ 0. Hence, Yt can be used in order to apply any drift 
theorem where the target should be hit.

3 We use here that our drift theorems can be used for any filtration that the process is adapted to. Note that Yt is adapted to the natural filtration of Xt

because knowing Xt fully determines Yt .
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Corollary 26 (Martingale upper additive drift). Let (Xt)t∈N be random variables over [α, β] ⊂ R, and let T = inf
{

t ∈ N 
∣∣ Xt ∈

{α, β}}. Furthermore, suppose that,

(a) for all t < T , it holds that E [Xt+1 | X0, . . . , Xt ] = Xt and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Var [Xt+1 | X0, . . . , Xt ] ≥ δ.

Then

E [T | X0 ] ≤ (X0 − α)(β − X0)

δ
.

Proof. We use Theorem 25 to transform Xt into the process Yt , which has a drift of at least δ, by assumption. Note that, 
for all t ≤ T , it holds that Yt ≥ 0. Applying Theorem 7 completes the proof. �

For the lower bound, the martingale itself does not have to be bounded but only the state space. Due to the boundedness 
of the state space, we do not require a restriction on the expected step size.

Corollary 27 (Martingale lower additive drift). Let (Xt)t∈N be random variables over R, let [α, β] ⊂ R be an interval, and let T =
inf{t ∈ N | Xt /∈ (α, β)}. Furthermore, suppose that,

(a) for all t < T , it holds that E [Xt+1 | X0, . . . , Xt ] = Xt and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Var [Xt+1 | X0, . . . , Xt ] ≤ δ.

Then

E [T | X0 ] ≥ (X0 − α)(β − X0)

δ
.

Proof. We use Theorem 25 and want to apply Theorem 8. For this, we can argue analogously as in the proof of Theorem 26. 
However, we still need to check the expected bounded step size of Yt .

Note that, for all t < T , we have α ≤ Xt ≤ β . Hence, the convex function Yt is maximal for Xt = (α + β)/2, resulting in 
|Yt | ≤

(
(α + β)/2

)2
. Thus, in order to bound

E [|Yt+1 − Yt | | X0, . . . , Xt ] ≤ E [|Yt+1| | X0, . . . , Xt ] + |Yt |
we are left with bounding

E [|Yt+1| | X0, . . . , Xt ] = E
[|(Xt+1 − α)(β − Xt+1)|

∣∣ X0, . . . , Xt
]

≤ |α + β|E[|Xt+1|
∣∣ X0, . . . , Xt

] + E
[

X2
t+1

∣∣∣ X0, . . . , Xt

]
+ |αβ| .

Since we can bound

Var [Xt+1 | X0, . . . , Xt ] = E
[

X2
t+1

∣∣∣ X0, . . . , Xt

]
− E [Xt+1 | X0, . . . , Xt ]2

by assumption, we can bound the two expected values E
[

X2
t+1

∣∣ X0, . . . , Xt
]

and E [|Xt+1| | X0, . . . , Xt ] and therefore 
E [|Yt+1 − Yt | | X0, . . . , Xt ]. Applying Theorem 8 finishes the proof. �

The other drift theorems follow analogously, using Theorem 25, albeit getting more complicated. As an example, we state 
the variable drift theorem for martingales that follows from applying Theorem 11.

Corollary 28 (Martingale upper variable drift, hitting target). Let (Xt)t∈N be random variables over [α, β] ⊂ R, and let T = inf{t ∈
N : Xt ∈ {α, β}}. Furthermore, suppose that,

(a) for all t < T , it holds that E [Xt+1 | X0, . . . , Xt ] = Xt and that
(b) there is a monotonically increasing function h : [0, (α +β)2/4] →R+ such that, for all t < T , we have Var [Xt+1 | X0, . . . , Xt ] ≥

h
(
(Xt − α)(β − Xt)

)
.

Then

E [T | X0 ] ≤
(X0−α)(β−X0)∫

0

1

h(z)
dz .
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As we mentioned at the beginning of this section, Theorem 25 allows to generalize from processes like the Gambler’s 
Ruin. In the following, we want to use some of the above theorems in order to get the exact first-hitting time of said 
process.

Example 29 (Gambler’s ruin). Let n ∈N, and let (Xt)t∈N be a random process over {0, . . . , 2n} such that, for all t ∈ N it holds 
that,

(a) if Xt = x /∈ {0, 2n}, then Pr [Xt+1 = x − 1] = Pr [Xt+1 = x + 1] = 1
2 , and,

(b) if Xt = x ∈ {0, 2n}, then Pr [Xt+1 = x] = 1.

Further, let T := inf
{

t ∈ N 
∣∣ Xt ∈ {0, 2n}}.

Note that, for all t ∈N, it holds that E [Xt+1 | Xt ] = Xt . Hence, we use Theorem 25 and bound, for all t < T ,

Var [Xt+1 | Xt ] = 1

2
· (Xt − 1 − Xt)

2 + 1

2
· (Xt + 1 − Xt)

2 = 1 .

Applying both Corollaries 26 and 27 yields the well-known result of

E [T | X0 ] = X0(2n − X0) .

Especially, for X0 = n, we get E [T ] = n2.
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