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ON THE STRUCTURE OF SEQUENTIALLY COHEN–MACAULAY

BIGRADED MODULES

LEILA PARSAEI MAJD, AHAD RAHIMI

Abstract. Let K be a field and S = K[x1, . . . , xm, y1, . . . , yn] be the standard
bigraded polynomial ring over K. In this paper, we explicitly describe the struc-
ture of finitely generated bigraded ”sequentially Cohen–Macaulay” S-modules
with respect to Q = (y1, . . . , yn). Next, we give a characterization of sequen-
tially Cohen–Macaulay modules with respect to Q in terms of local cohomology
modules. Cohen–Macaulay modules that are sequentially Cohen–Macaulay with
respect to Q are considered.

Introduction

Let K be a field and S = K[x1, . . . , xm, y1, . . . , yn] be the standard bigraded
K-algebra with deg xi = (1, 0) and deg yj = (0, 1) for all i and j. We set the
bigraded irrelevant ideals P = (x1, . . . , xm) and Q = (y1, . . . , yn). LetM be a finitely
generated bigraded S-module. The largest integer k for which Hk

Q(M) 6= 0, is called
the cohomological dimension of M with respect to Q and denoted by cd(Q,M). A
finite filtration D : 0 = D0  D1  · · ·  Dr = M of bigraded submodules of M , is
called the dimension filtration of M with respect to Q if Di−1 is the largest bigraded
submodule of Di for which cd(Q,Di−1) < cd(Q,Di) for all i = 1, . . . , r, see [9]. In
Section 1, we explicitly describe the structure of the submodules Di that extends [11,
Proposition 2.2]. In fact, it is shown that Di =

⋂
pj 6∈Bi,Q

Nj for i = 1, . . . , r−1 where

0 =
⋂s

j=1Nj is a reduced primary decomposition of 0 in M with Nj is pj-primary
for j = 1, . . . , s and

Bi,Q = {p ∈ Ass(M) : cd(Q, S/p) ≤ cd(Q,Di)}.

In [10], we sayM is Cohen–Macaulay with respect to Q, if grade(Q,M) = cd(Q,M).
A finite filtration F : 0 = M0  M1  · · ·  Mr = M of M by bigraded submodules
M , is called a Cohen–Macaulay filtration with respect to Q if each quotient Mi/Mi−1

is Cohen–Macaulay with respect to Q and

0 ≤ cd(Q,M1/M0) < cd(Q,M2/M1) < · · · < cd(Q,Mr/Mr−1).

If M admits a Cohen–Macaulay filtration with respect to Q, then we say M is se-
quentially Cohen–Macaulay with respect to Q, see [9]. Note that if M is sequentially
Cohen–Macaulay with respect to Q, then the filtration F is uniquely determined
and it is just the dimension filtration of M with respect to Q, that is, F = D. In
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Section 2, we give a characterization of sequentially Cohen–Macaulay modules with
respect to Q in terms of local cohomology modules which extends [4, Corollary 4.4]
and [5, Corollary 3.10]. We apply this result and the description of the submod-
ules Mi mentioned earlier, showing that S/I is sequentially Cohen–Macaulay with
respect to P and Q where I is the Stanley-Reisner ideal that corresponds to the
natural triangulation of the projective plane P2. Here S = K[x1, x2, x3, y1, y2, y3],
P = (x1, x2, x3) andQ = (y1, y2, y3). Note that S/I is Cohen–Macaulay of dimension
3, if charK 6= 2.

In [10] we have shown that if M is a finitely generated bigraded Cohen–Macaulay
S-module which is Cohen–Macaulay with respect to P , then M is Cohen–Macaulay
with respect to Q. Inspired by this fact and the above example we have the following
question: Let I ⊆ S be a monomial ideal. Suppose S/I is Cohen–Macaulay. If
S/I is sequentially Cohen–Macauly with respect to P , is S/I sequentially Cohen–
Macaulay with respect to Q? We do not know the answer of this question yet,
however in the last section, we obtain some properties of a Cohen–Macaulay filtration
with respect to Q in general provided that the module itself is Cohen–Macaulay,
see Propositions 3.3 and 3.4. Inspired by Proposition 3.4, we make the following
question: Let M be a finitely generated bigraded Cohen–Macaulay S-module such
that Hk

Q(M) 6= 0 for all grade(Q,M) ≤ k ≤ cd(Q,M). Is Hs
P (M) 6= 0 for all

grade(P,M) ≤ s ≤ cd(P,M)? Of course the question has positive answer in the
case that M has only one(two) non-vanishing local cohomology with respect to Q.
The projective plane P2 would also be the case as module with three non-vanishing
local cohomology.

1. The dimension filtration with respect to Q

Let K be a field and S = K[x1, . . . , xm, y1, . . . , yn] the standard bigraded poly-
nomial ring over K. In other words, deg xi = (1, 0) and deg yj = (0, 1) for all i
and j. We set the bigraded irrelevant ideals P = (x1, . . . , xm) and Q = (y1, . . . , yn),
and let M be a finitely generated bigraded S-module. We denote by cd(Q,M) the
cohomological dimension of M with respect to Q which is the largest integer i for
which H i

Q(M) 6= 0. Notice that 0 ≤ cd(Q,M) ≤ n.
We recall the following facts which will be used in the sequel.

Fact 1.1.

grade(P,M) ≤ dimM − cd(Q,M),

and the equality holds if M is Cohen–Macaulay, see [10, Formula 5].

Let q ∈ Z. In [10], we say M is relative Cohen–Macaulay with respect to Q if
H i

Q(M) = 0 for all i 6= q. In other words, grade(Q,M) = cd(Q,M) = q. From now
on, we omit the word ”relative” for simplicity and say M is Cohen–Macaulay with
respect to Q.

Fact 1.2. If M is Cohen–Macaulay with respect to Q with |K| = ∞, then

cd(P,M) + cd(Q,M) = dimM,

see [10, Theorem 3.6].
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Fact 1.3. The exact sequence 0 → M ′ → M → M ′′ → 0 of finitely generated
bigraded S-modules yields

cd(Q,M) = max{cd(Q,M ′), cd(Q,M ′′)},

see the general version of [2, Proposition 4.4].

Fact 1.4.

cd(Q,M) = max{cd(Q, S/p) : p ∈ Ass(M)},

see the general version of [2, Corollary 4.6].

For a finitely generated bigraded S-module M , there is a unique largest bigraded
submodule N of M for which cd(Q,N) < cd(Q,M), see [9, Lemma 1.9]. We recall
the following definition from [9].

Definition 1.5. We call a filtration D: 0 = D0  D1  · · ·  Dr = M of bigraded
submodules ofM the dimension filtration ofM with respect toQ ifDi−1 is the largest
bigraded submodule of Di for which cd(Q,Di−1) < cd(Q,Di) for all i = 1, . . . , r.

Remark 1.6. Let D be the dimension filtration of M with respect to Q. For all i,
the exact sequence 0 → Di−1 → Di → Di/Di−1 → 0 by using Fact 1.3 yields

cd(Q,Di) = max{cd(Q,Di−1), cd(Q,Di/Di−1)} = cd(Q,Di/Di−1).

Thus, cd(Q,Di−1/Di−2) < cd(Q,Di/Di−1) for all i.

Let D be the dimension filtration of M with respect to Q. We set

Bi,Q = {p ∈ Ass(M) : cd(Q, S/p) ≤ cd(Q,Di)}, Ii,Q =
∏

p∈Bi,Q

p

and
Ai,Q = {p ∈ Ass(M) : p ∈ V (Ii,Q)} for i = 1, . . . , r.

Lemma 1.7. Let the notation be as above. Then the following statements hold

Ai,Q = Bi,Q = Ass(Di) for i = 1, . . . , r.

Consequently,

Supp(Di) ⊆ V (Ii,Q) for i = 1, . . . , r.

Proof. In order to show the first equality, we note that Bi,Q ⊆ Ai,Q for i = 1, . . . , r.
Now let p ∈ Ai,Q. Then p ∈ Ass(M) with Ii,Q ⊆ p. Hence q ⊆ p for some
q ∈ Ass(M) with cd(Q, S/q) ≤ cd(Q,Di). The canonical epimorphism S/q → S/p
yields cd(Q, S/p) ≤ cd(Q, S/q) by Fact 1.3. It follows that p ∈ Bi,Q and hence
Ai,Q ⊆ Bi,Q.

To show the second equality, let p ∈ Bi,Q. Then there is a submodule N ⊆ M
such that N ∼= S/p and cd(Q, S/p) ≤ cd(Q,Di). Using Fact 1.3 we have

cd(Q,N +Di) = max{cd(Q,Di), cd(Q,N/(N ∩Di))} = cd(Q,Di),

and hence N ⊆ Di. This shows p ∈ Ass(Di) and therefore Bi,Q ⊆ Ass(Di). Now
let p ∈ Ass(Di). Then p ∈ Ass(M) and cd(Q, S/p) ≤ cd(Q,Di) by Fact 1.4. This
shows p ∈ Bi,Q and hence Ass(Di) ⊆ Bi,Q.
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In the following we describe the structure of the submodules Di in the dimension
filtration of D with respect to Q which extends [11, Proposition 2.2].

Proposition 1.8. Let D be the dimension filtration of M with respect to Q. Then

Di = H0
Ii,Q

(M) =
⋂

pj 6∈Bi,Q

Nj

for i = 1, . . . , r − 1 where 0 =
⋂s

j=1Nj is a reduced primary decomposition of 0 in

M with Nj is pj-primary for j = 1, . . . , s.

Proof. In order to prove the first equality, we have V (Ann(Di)) = Supp(Di) ⊆
V (Ii,Q) for i = 1, . . . , r− 1 by Lemma 1.7. Since Ii,Q is finitely generated, it follows

that Ikii,Q ⊆ Ann(Di) for some integer ki and hence Ikii,QDi = 0 for some ki. Thus

Di = H0
Ii,Q

(Di) ⊆ H0
Ii,Q

(M) for i = 1, . . . , r − 1.
Now we prove the equality by decreasing induction on i. For i = r−1, we assume

that Dr−1  H0
Ir−1,Q

(M) ⊆ Dr = M . It follows from the definition dimension

filtration that cd(Q,H0
Ir−1,Q

(M)) = cd(Q,M). Note that

AssH0
Ii,Q

(M) = Ai,Q = Ass(Di) for i = 1, . . . , r − 1

by [7, Proposition 3.13](c) and Lemma 1.7. It follows that cd(Q,H0
Ir−1,Q

(M)) =

cd(Q,Dr−1,Q), and hence cd(Q,Dr−1,Q) = cd(Q,M), a contradiction. ThusDr−1,Q =
H0

Ir−1,Q
(M). Now let 1 < i < r − 1, and assume that Di = H0

Ii,Q
(M). We show

Di−1 = H0
Ii−1,Q

(M). Assume Di−1  H0
Ii−1,Q

(M). As H0
Ii−1,Q

(M) ⊆ H0
Ii,Q

(M) = Di,

we have cd(Q,H0
Ii−1,Q

(M)) ≥ cd(Q,Di). Since AssH0
Ii−1,Q

(M) = Ass(Di−1), it fol-

lows that cd(Q,Di−1) = cd(Q,H0
Ii−1,Q

(M)) ≥ cd(Q,Di), a contradiction. Therefore,

Di−1 = H0
Ii−1,Q

(M). The second equality follows from Lemma 1.7 and [7, Proposition

3.13](a). �

Remark 1.9. Let D be the dimension filtration of M with respect to Q with
cd(Q,M) = q. We call the submodule

Dr−1 =
⋂

pj 6∈Br−1,Q

Nj =
⋂

cd(Q,S/pj)=q

Nj ,

the unmixed component of M with respect to Q and denote it by uQ,M(0). Notice
that um,M(0) = uM(0) introduced by Schenzel in [11]. If M is relatively unmixed
with respect to Q, that is, cd(Q,M) = cd(Q, S/p) for all p ∈ Ass(M), then by
Proposition 1.8 we have

Di =
⋂

pj 6∈Bi,Q

Nj =
s⋂

j=1

Nj = 0 for all i < r.

Corollary 1.10. Let D be the dimension filtration of M with respect to Q. Then

for i = 1, . . . , r we have

Ass(M/Di) = Ass(M)−Ass(Di).
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Proof. The assertion follows from Proposition 1.8, Lemma 1.7 and the fact that
AssM/H0

Ii,Q
(M) = Ass(M)−Ai,Q, see [7, Proposition 3.13](c). �

2. Sequentially Cohen–Macaulay with respect to Q

We recall the following definition from [9].

Definition 2.1. Let M be a finitely generated bigraded S-module. We call a finite
filtration F : 0 = M0  M1  · · ·  Mr = M of M by bigraded submodules M a
Cohen–Macaulay filtration with respect to Q if

(a) Each quotient Mi/Mi−1 is Cohen–Macaulay with respect to Q;
(b) 0 ≤ cd(Q,M1/M0) < cd(Q,M2/M1) < · · · < cd(Q,Mr/Mr−1).

We call M to be sequentially Cohen–Macaulay with respect to Q if M admits a
Cohen–Macaulay filtration with respect to Q.

Note that if M is sequentially Cohen–Macaulay with respect to Q, then the fil-
tration F in the definition above is uniquely determined and it is just the dimension
filtration of M with respect to Q defined in Definition 1.5, see [9, Proposision 1.12].

We have the following characterization of sequentially Cohen–Macaulay modules
with respect to Q in terms of local cohomology modules which extends [4, Corollary
4.4] and [5, Corollary 3.10].

Proposition 2.2. Let D: 0 = D0  D1  · · ·  Dr = M be the dimension filtration

of M with respect to Q. Then the following statements are equivalent:

(a) M is sequentially Cohen–Macaulay with respect to Q;

(b) Hk
Q(M/Di−1) = 0 for i = 1, . . . , r and k < cd(Q,Di);

(c) grade(Q,M/Di−1) = cd(Q,Di) for i = 1, . . . , r.

Proof. (a) ⇒ (b): We proceed by decreasing induction on i. As Di/Di−1 is Cohen–
Macaulay with respect to Q for all i, thus for i = r we have Hk

Q(M/Dr−1) = 0

for k < cd(Q,M). Now let 1 < i < r, and assume that Hk
Q(M/Di−1) = 0 for

k < cd(Q,Di). The exact sequence

0 → Di−1/Di−2 → M/Di−2 → M/Di−1 → 0,

induces the following long exact sequence

· · · → Hk
Q(Di−1/Di−2) → Hk

Q(M/Di−2) → Hk
Q(M/Di−1) → · · · .(1)

As Di−1/Di−2 is Cohen–Macaulay with respect to Q, we have Hk
Q(Di−1/Di−2) = 0

for k < cd(Q,Di−1). By Remark 1.6, we have cd(Q,Di−1) = cd(Q,Di−1/Di−2) <
cd(Q,Di). Hence by using (1) and the induction hypothesis, we have Hk

Q(M/Di−2) =
0 for k < cd(Q,Di−1), as desired.

(b) ⇒ (a): By Remark 1.6 we have cd(Q,Di/Di−1) < cd(Q,Di+1/Di) for all i.
Thus it suffices to show that Di/Di−1 is Cohen–Macaulay with respect to Q for all
i. We prove this statement by decreasing induction on i. In condition (b), we first
assume i = r. It follows that M/Dr−1 is Cohen–Macaulay with respect to Q. Now

5



let 1 < i < r, and assume that Di/Di−1 is Cohen–Macaulay with respect to Q. The
exact sequence

0 → Di/Di−1 → M/Di−1 → M/Di → 0,

induces the following long exact sequence

· · · → Hk−1
Q (Di/Di−1) → Hk−1

Q (M/Di−1) → Hk−1
Q (M/Di) → · · · .(2)

Suppose k < cd(Q,Di−1). Induction hypothesis and our assumption say that
Hk−1

Q (Di/Di−1) = Hk−1
Q (M/Di) = 0. Hence Hk−1

Q (M/Di−1) = 0 by (2). We have

Hk
Q(M/Di−2) = 0 for k < cd(Q,Di−1) because of our assumption again. Thus

Hk
Q(Di−1/Di−2) = 0 for k < cd(Q,Di−1) by (1). Therefore Di−1/Di−2 is Cohen–

Macaulay with respect to Q, as desired.
(b) ⇒ (c): We set cd(Q,Di) = cd(Q,Di/Di−1) = qi for i = 1, . . . , r. Our as-

sumption says that grade(Q,M/Di−1) ≥ qi for i = 1, . . . , r. We only need to know
Hqi

Q (M/Di−1) 6= 0. Consider the long exact sequence

· · · → Hqi−1
Q (M/Di) → Hqi

Q (Di/Di−1) → Hqi
Q (M/Di−1) → · · · .(3)

Since qi − 1 < qi < qi+1, it follows from our assumption that Hqi−1
Q (M/Di) = 0. If

Hqi
Q (M/Di−1) = 0, then by (3) we have Hqi

Q (Di/Di−1) = 0, a contradiction. The
implication (c) ⇒ (b) is obvious. �

As an application of Proposition 1.8 and Proposition 2.2 we have

Example 2.3. Let I be the Stanley-Reisner ideal that corresponds to the natural
triangulation of the projective plane P2. Then

I = (x1x2x3, x1x2y1, x1x3y2, x1y1y3, x1y2y3, x2x3y3, x2y1y2, x2y2y3, x3y1y2, x3y1y3).

We set R = S/I where S = K[x1, x2, x3, y1, y2, y3], P = (x1, x2, x3) and Q =
(y1, y2, y3). Our aim is to show that R is sequentially Cohen–Macaulay with re-
spect to P and Q. Note that R is Cohen–Macaulay of dimension 3 if charK 6= 2.
The ideal I has the minimal primary decomposition I =

⋂10
i=1 pi where p1 =

(x3, y1, y3), p2 = (x1, y1, y3), p3 = (x2, y1, y2), p4 = (x3, y1, y2), p5 = (x1, y2, y3), p6 =
(x2, y2, y3), p7 = (x2, x3, y3), p8 = (x1, x2, y1), p9 = (x1, x3, y2), p10 = (x1, x2, x3). As
P = p10 ∈ Ass(R), we have grade(P,R) = 0. By Fact 1.4 we have cd(P,R) = 2
and cd(Q,R) = 3. Since R is Cohen–Macaulay, it follows from Fact 1.1 that
grade(Q,R) = 1. We first show that R is sequentially Cohen–Macaulay with re-
spect to P . By Proposition 1.8, R has the dimension filtration

0 = R0  R1  R2  R3 = R,

with respect to P where

R1 =

9⋂

i=1

pi/I and R2 =

6⋂

i=1

pi/I.

By Corollary 1.10 we have

Ass(R1) = Ass(R)− Ass(R/R1) = {p10}.
6



and
Ass(R2) = Ass(R)− Ass(R/R2) = {p7, p8, p9, p10}.

It follows that cd(P,R1) = 0 and cd(P,R2) = 1. We set I1 =
⋂9

i=1 pi and I2 =⋂6
i=1 pi. In view of Proposition 2.2, we need to show

grade(P,R3/R0) = grade(P,R) = cd(P,R1) = 0,

grade(P,R3/R1) = grade(P, S/I1) = cd(P,R2) = 1

and
grade(P,R3/R2) = grade(P, S/I2) = cd(P,R) = 2.

The first equality is obvious. As P 6⊆ pi for i = 1, . . . , 9, we have grade(P, S/I1) ≥ 1.
On the other hand, grade(P, S/I1) ≤ dimS/I1 − cd(Q, S/I1) = 3− 2 = 1. Thus the
second equality holds. In order to show the third equality, we note that S/I2 has
dimension 3 and by using CoCoA [3] depth 2. Thus Fact 1.1 can not be used to
compute grade(P, S/I2). We set q1 = p1 ∩ p2 = (x1x3, y1, y3), q2 = p3 ∩ p4 =
(x2x3, y1, y2) and q3 = p5 ∩ p6 = (x1x2, y2, y3). Consider the exact sequence

0 → S/q1 ∩ q2 → S/q1 ⊕ S/q2 → S/(q1 + q2) → 0.

Since grade(P, S/q1 ⊕ S/q2) = 2 and grade(P, S/(q1 + q2)) = 1, it follows that
grade(P, S/(q1∩q2)) ≥ 2. As cd(P, S/(q1∩q2)) = 2, we have grade(P, S/(q1∩q2)) =
2. Consider the exact sequence

0 → S/I2 → S/q1 ∩ q2 ⊕ S/q3 → S/(q1 + q3) ∩ (q2 + q3) → 0.(4)

The exact sequence

0 → S/(q1 + q3) ∩ (q2 + q3) → S/(q1 + q3)⊕ S/(q2 + q3) → S/(q1 + q2 + q3) → 0

yields that grade(P, S/(q1+q3)∩(q2+q3)) ≥ 1.Hence by (4) we have grade(P, S/I2) ≥
2. As cd(P, S/I2) = 2, we conclude that grade(P, S/I2) = 2, as desired.

Next, we show that R is sequentially Cohen–Macaulay with respect to Q. By
Proposition 1.8, R has the dimension filtration 0 = R0  R1  R2  R3 = R with
respect to Q where R1 =

⋂10
i=7 pi/I and R2 = p10/I. By Corollary 1.10 we have

cd(Q,R1) = 1 and cd(Q,R2) = 2. We set J =
⋂10

i=7 pi. In view of Proposition 2.2,
we need to show

grade(Q,R3/R0) = grade(Q,R) = cd(Q,R1) = 1,

grade(Q,R3/R1) = grade(Q, S/J) = cd(Q,R2) = 2

and
grade(Q,R3/R2) = grade(Q, S/p10) = cd(Q,R) = 3.

The first and the third statements are obvious. In order to prove the second equality,
consider the exact sequence

0 → S/J → S/ ∩9
i=7 pi ⊕ S/p10 → S/ ∩9

i=7 (pi + p10) → 0.(5)

An exact sequence argument shows that

grade(Q, S/ ∩9
i=7 pi) = grade(Q, S/ ∩9

i=7 (pi + p10)) = 2.
7



Thus it follows from (5) that grade(Q, S/J) ≥ 2. On the other hand,

grade(Q, S/J) ≤ dimS/J − cd(P, S/J) = 3− 1 = 2.

Therefore, grade(Q, S/J) = 2, as desired.

3. Cohen–Macaulay modules that are sequentially Cohen–Macaulay
with respect to Q

In [10] we have shown that if M is a finitely generated bigraded Cohen–Macaulay
S-module which is Cohen–Macaulay with respect to P , then M is Cohen–Macaulay
with respect to Q. Inspired by this fact and Example 2.3 we have the following
question

Question 3.1. Let I ⊆ S be a monomial ideal. Suppose S/I is Cohen–Macaulay.

If S/I is sequentially Cohen–Macauly with respect to P , is S/I sequentially Cohen–

Macaulay with respect to Q?

We do not know the answer of this question yet, however in this section, we
obtain some properties of a Cohen–Macaulay filtration with respect to Q in general
provided that the module itself is Cohen–Macaulay.

Fact 3.2. For a Cohen–Macaulay filtration F with respect to Q we recall the fol-
lowing fact from [9, Corollary 1.8]

grade(Q,Mi) = grade(Q,M) for i = 1, . . . , r.

Proposition 3.3. Let M be a finitely generated bigraded Cohen–Macaulay S-module

with |K| = ∞. Suppose M is sequentially Cohen–Macaulay with respect to Q with

the Cohen–Macaulay filtration 0 = M0  M1  · · ·  Mr = M with respect to Q.

Then

(a) cd(P,Mi) = cd(P,M) for i = 1, . . . , r.
(b) grade(Q,Mi) + cd(P,Mi) = dimMi for i = 1, . . . , r.

Proof. In order to prove (a), since M1 is Cohen–Macaulay with respect to Q, it
follows from Fact 1.2 that cd(P,M1) + cd(Q,M1) = dimM1. By Fact 3.2 we have
cd(Q,M1) = grade(Q,M1) = grade(Q,M). Since M is Cohen–Macaulay, it follows
from [9, Lemma 1.11] that dimM1 = dimM and cd(P,M) = dimM − grade(Q,M)
by Fact 1.1. Thus we conclude that cd(P,M1) = cd(P,M). As by Fact 1.3 we have
cd(P,Mi−1) ≤ cd(P,Mi) for all i, the first equality follows.

For the proof (b), by [9, Lemma 1.11] we have dimMi = dimM for i = 1, . . . , r.
Thus the second equalities follow from Fact 1.1, Fact 3.2 and part (a). �

Proposition 3.4. Let the assumptions and the notation be as in Proposition 3.3.

Then the following statements are equivalent:

(a) cd(P,M) + cd(Q,M) = dimM + r − 1;
(b) Hs

Q(M) 6= 0 for all grade(Q,M) ≤ s ≤ cd(Q,M).

Proof. We first assume that r = 1. As M is Cohen–Macaulay, by Fact 1.1 and Fact
1.2 we have cd(P,M)+cd(Q,M) = dimM if and only if M is Cohen–Macaulay with
respect to Q. Thus the claim holds in this case. Now let r ≥ 2. By Fact 1.1 we have

8



cd(P,M)+cd(Q,M) = dimM+r−1 if and only if cd(Q,M)−grade(Q,M) = r−1.
This is equivalent to saying that cd(Q,Mi+1) = cd(Q,Mi) + 1 for i = 1, . . . , r − 1
by Fact 3.2. By [9, Proposition 1.7] this is equivalent to saying that Hs

Q(M) 6= 0 for
all grade(Q,M) ≤ s ≤ cd(Q,M). �

The following example shows that the condition that ”M is Cohen–Macaulay” is
required for Proposition 3.4.

Example 3.5. We set K[x] = K[x1, . . . , xm] and K[y] = K[y1, . . . , yn]. Let L be a
non-zero finitely generated gradedK[x]-module of depth 0 and dimension 1, and N a
non-zero finitely generated graded K[y]-module of depth 0 and dimension 1. We set
M = L⊗K N and consider it as S-module. One has depthM = 0 and dimM = 2.
Hence M is not Cohen–Macaulay. On the other hand, grade(Q,M) = depthN = 0
and cd(Q,M) = dimN = 1 = dimL = cd(P,M). Hence M is sequentially Cohen–
Macaulay with respect to Q which satisfies condition (b) in Proposition 3.4, while
the equality (a) does not hold.

The following question is inspired by Proposition 3.4.

Question 3.6. Let M be a finitely generated bigraded Cohen–Macaulay S-module
such that Hk

Q(M) 6= 0 for all grade(Q,M) ≤ k ≤ cd(Q,M). Is Hs
P (M) 6= 0 for all

grade(P,M) ≤ s ≤ cd(P,M)?

Remark 3.7. Of course the question has positive answer in the following cases,
namely, if M has only one(two) non-vanishing local cohomology with respect to Q.
This immediately follows by Fact 1.1. The projective plane P2 given in Example 2.3
is also the case as module with three non-vanishing local cohomology.
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