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ON THE STRUCTURE OF SEQUENTIALLY COHEN-MACAULAY
BIGRADED MODULES

LEILA PARSAEI MAJD, AHAD RAHIMI

ABSTRACT. Let K be a field and S = Klz1,...,Zm,¥1,---,Yn] be the standard
bigraded polynomial ring over K. In this paper, we explicitly describe the struc-
ture of finitely generated bigraded ”sequentially Cohen—Macaulay” S-modules
with respect to @ = (y1,...,yn). Next, we give a characterization of sequen-
tially Cohen—Macaulay modules with respect to @ in terms of local cohomology
modules. Cohen—Macaulay modules that are sequentially Cohen—Macaulay with
respect to @ are considered.

INTRODUCTION

Let K be a field and S = Klxy,...,Zm,y1,...,Yn] be the standard bigraded
K-algebra with degx; = (1,0) and degy; = (0,1) for all ¢ and j. We set the
bigraded irrelevant ideals P = (z1,...,2,) and Q = (y1,...,¥y,). Let M be a finitely
generated bigraded S-module. The largest integer k for which Hg(M ) # 0, is called
the cohomological dimension of M with respect to @ and denoted by c¢d(Q, M). A
finite filtration D : 0 =Dy & Dy & --- & D, = M of bigraded submodules of M, is
called the dimension filtration of M with respect to ) if D;_; is the largest bigraded
submodule of D; for which cd(Q, D;—1) < cd(Q, D;) for all i = 1,...,7, see [9]. In
Section 1, we explicitly describe the structure of the submodules D; that extends [11]
Proposition 2.2]. In fact, it is shown that D; = mpﬂBi,Q Njfori=1,...,7r—1 where
0= ﬂjzl N; is a reduced primary decomposition of 0 in M with N; is p;-primary
forj=1,...,s and

Big = {p € Ass(M) : cd(Q, S/p) < cd(Q, D))}.

In [I0], we say M is Cohen—Macaulay with respect to @, if grade(Q, M) = c¢d(Q, M).
A finite filtration F: 0 = My, G My & --- & M, = M of M by bigraded submodules
M, is called a Cohen—Macaulay filtration with respect to @ if each quotient M;/M; 4
is Cohen—Macaulay with respect to () and

0< Cd(@, Ml/M()) < Cd(Q, MQ/M1> < < Cd(Q, MT/MT_1>.

If M admits a Cohen—Macaulay filtration with respect to @), then we say M is se-
quentially Cohen-Macaulay with respect to @, see [9]. Note that if M is sequentially
Cohen—Macaulay with respect to (), then the filtration F is uniquely determined
and it is just the dimension filtration of M with respect to @, that is, F = D. In
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Section 2, we give a characterization of sequentially Cohen—Macaulay modules with
respect to @ in terms of local cohomology modules which extends [4, Corollary 4.4]
and [0, Corollary 3.10]. We apply this result and the description of the submod-
ules M; mentioned earlier, showing that S/I is sequentially Cohen—-Macaulay with
respect to P and () where [ is the Stanley-Reisner ideal that corresponds to the
natural triangulation of the projective plane P2. Here S = K[x1, T, 3, Y1, Y2, Y3,
P = (21,29, 3) and Q = (y1, Y2, y3). Note that S/I is Cohen—Macaulay of dimension
3, if char K # 2.

In [10] we have shown that if M is a finitely generated bigraded Cohen-Macaulay
S-module which is Cohen—Macaulay with respect to P, then M is Cohen—Macaulay
with respect to (). Inspired by this fact and the above example we have the following
question: Let I C S be a monomial ideal. Suppose S/I is Cohen-Macaulay. If
S/I is sequentially Cohen—Macauly with respect to P, is S/I sequentially Cohen—
Macaulay with respect to Q7 We do not know the answer of this question yet,
however in the last section, we obtain some properties of a Cohen—Macaulay filtration
with respect to () in general provided that the module itself is Cohen—Macaulay,
see Propositions B3] and B4l Inspired by Proposition B.4] we make the following
question: Let M be a finitely generated bigraded Cohen—Macaulay S-module such
that HE(M) # 0 for all grade(Q, M) < k < cd(Q,M). Is Hp(M) # 0 for all
grade(P, M) < s < cd(P, M)? Of course the question has positive answer in the
case that M has only one(two) non-vanishing local cohomology with respect to Q.
The projective plane P? would also be the case as module with three non-vanishing
local cohomology.

1. THE DIMENSION FILTRATION WITH RESPECT TO Q

Let K be a field and S = K[z1,...,Zm, Y1, .., Ys) the standard bigraded poly-
nomial ring over K. In other words, degz; = (1,0) and degy; = (0,1) for all i
and j. We set the bigraded irrelevant ideals P = (x1,...,2,,) and Q = (y1, ..., Yn),
and let M be a finitely generated bigraded S-module. We denote by c¢d(Q, M) the
cohomological dimension of M with respect to ) which is the largest integer ¢ for
which H{,(M) # 0. Notice that 0 < c¢d(Q, M) < n.

We recall the following facts which will be used in the sequel.

Fact 1.1.
grade(P, M) < dim M — cd(Q, M),

and the equality holds if M is Cohen—Macaulay, see [10, Formula 5].

Let ¢ € Z. In [10], we say M is relative Cohen-Macaulay with respect to @ if
Hé?(M) = 0 for all ¢ # ¢. In other words, grade(Q, M) = c¢d(Q, M) = q. From now
on, we omit the word "relative” for simplicity and say M is Cohen—-Macaulay with
respect to Q.

Fact 1.2. If M is Cohen—Macaulay with respect to @ with |K| = oo, then
cd(P, M) 4 c¢d(Q, M) = dim M,
see [10, Theorem 3.6].



Fact 1.3. The exact sequence 0 — M’ — M — M"” — 0 of finitely generated
bigraded S-modules yields

ed(Q, M) = max{cd(Q, M"),cd(Q, M")},
see the general version of [2) Proposition 4.4].

Fact 1.4.
cd(Q, M) = max{cd(Q, S/p) : p € Ass(M)},

see the general version of [2, Corollary 4.6].

For a finitely generated bigraded S-module M, there is a unique largest bigraded
submodule N of M for which cd(Q, N) < c¢d(Q, M), see [9, Lemma 1.9]. We recall
the following definition from [9].

Definition 1.5. We call a filtration D: 0 = Dy & D; & --- & D, = M of bigraded
submodules of M the dimension filtration of M with respect to @) if D;_; is the largest
bigraded submodule of D; for which cd(Q, D;_1) < cd(Q, D;) for alli =1,... 7.

Remark 1.6. Let D be the dimension filtration of M with respect to (). For all i,
the exact sequence 0 — D;_1 — D; — D;/D;_1 — 0 by using Fact [[.3] yields
Cd(Q, Dz) = max{cd(@, Di—1>7 Cd(Q, DZ/D2—1>} = Cd(Q, DZ/DZ—1>

T‘hU.S7 Cd(Q, Di—l/Di—2> < Cd(Q, Dz/Dz—l) for all 4.

Let D be the dimension filtration of M with respect to ). We set

Big = {p € Ass(M) : cd(Q, S/p) < ed(Q. D)}, Lig= [] »
peB;
and
Aig={pecAss(M):peV(lg)} for i=1...,r
Lemma 1.7. Let the notation be as above. Then the following statements hold
Aig=DBig=Ass(D;) for i=1,...,n

Consequently,

Supp(D;) CV(l;q) for i=1,...,m

Proof. In order to show the first equality, we note that B; o C A, fori=1,...,r.
Now let p € A;o. Then p € Ass(M) with I, C p. Hence q C p for some
q € Ass(M) with cd(Q, S/q) < c¢d(Q, D;). The canonical epimorphism S/q — S/p
yields cd(@Q, S/p) < c¢d(Q,S/q) by Fact 3l It follows that p € B;o and hence
Aiq C Big.

To show the second equality, let p € B; . Then there is a submodule N € M
such that N = S/p and cd(Q, S/p) < cd(Q, D;). Using Fact we have

cd(Q, N + D;) = max{cd(Q, D;),cd(Q, N/(N N D;))} = cd(Q, D;),

and hence N C D;. This shows p € Ass(D;) and therefore B; o C Ass(D;). Now
let p € Ass(D;). Then p € Ass(M) and cd(Q, S/p) < cd(Q, D;) by Fact [L4 This
shows p € B, o and hence Ass(D;) C B, .
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In the following we describe the structure of the submodules D; in the dimension
filtration of D with respect to @ which extends [11, Proposition 2.2].

Proposition 1.8. Let D be the dimension filtration of M with respect to (). Then
D; = Hng(M) = ﬂ N;j

p;i€BiQ
fori=1,...,r —1 where 0 = ﬂj.:l N; is a reduced primary decomposition of 0 in
M with N; is pj-primary for j =1,...,s.

Proof. In order to prove the first equality, we have V(Ann(D;)) = Supp(D;) C
V(lig) fori=1,...,7—1 by Lemmal[l7ll Since I, is finitely generated, it follows
that If’Q C Ann(D;) for some integer k; and hence IfiQDZ- = 0 for some k;. Thus
Di = H?@Q(DZ) - H%Q(M> for ¢ = 1,...,7"— 1.

Now we prove the equality by decreasing induction on ¢. For i = r —1, we assume
that D,_; & H?Til’Q(M) C D, = M. 1t follows from the definition dimension
filtration that cd(Q, HY _ _(M)) = cd(Q, M). Note that

-1,Q

ASSH?@_,Q(M) =Aig=Ass(D;) for i=1,...,r—1

by [7, Proposition 3.13](c) and Lemma [[.7 It follows that cd(Q,H?FLQ(M)) =

cd(Q, Dy—-1), and hence ¢cd(Q, D,_1,g) = cd(Q, M), a contradiction. Thus D,_, o =

Hp | J(M). Now let 1 < i <r—1, and assume that D; = H}, (M). We show
D,y = H?FLQ(M). Assume D;_; & H?FLQ(M). As H?FLQ(M) - H?LQ(M) =D,
we have cd(Q, Hy | (M)) > cd(Q, D;). Since Ass H}, (M) = Ass(D;_1), it fol-
lows that ¢d(Q, D;_1) = cd(Q, H?H,Q(M)) > cd(Q, D;), a contradiction. Therefore,
D,y = H?FL o (M). The second equality follows from Lemma[l.7land [7, Proposition

3.13](a). O

Remark 1.9. Let D be the dimension filtration of M with respect to ) with
cd(Q, M) = q. We call the submodule

Dr—l == m Nj - m Nj,
Pi€Br-1,Q cd(Q,5/pj)=4q

the unmized component of M with respect to () and denote it by ug (0). Notice
that wym a(0) = up(0) introduced by Schenzel in [II]. If M is relatively unmixed
with respect to @, that is, cd(Q, M) = cd(Q, S/p) for all p € Ass(M), then by
Proposition [[.§ we have

Di= (| N;j=[)N;=0 forall i<r
p;€Bi.q J=1
Corollary 1.10. Let D be the dimension filtration of M with respect to Q). Then
fori=1,...,r we have
Ass(M/D;) = Ass(M) — Ass(D;).
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Proof. The assertion follows from Proposition [[L8] Lemma [[.7 and the fact that
Ass M/Hp (M) = Ass(M) — Aj o, see [T, Proposition 3.13](c). O

2. SEQUENTIALLY COHEN—MACAULAY WITH RESPECT TO ()

We recall the following definition from [9].

Definition 2.1. Let M be a finitely generated bigraded S-module. We call a finite
filtration F: 0 = My & My & --- & M, = M of M by bigraded submodules M a
Cohen—Macaulay filtration with respect to @ if

(a) Each quotient M;/M;_; is Cohen—-Macaulay with respect to Q;

(b) 0 <ed(Q, My/My) < cd(Q, Ma/M;) < -+ < cd(Q, M, /M, ).
We call M to be sequentially Cohen—Macaulay with respect to @ if M admits a
Cohen—Macaulay filtration with respect to Q.

Note that if M is sequentially Cohen—-Macaulay with respect to @), then the fil-
tration F in the definition above is uniquely determined and it is just the dimension
filtration of M with respect to @) defined in Definition [LH see [9, Proposision 1.12].

We have the following characterization of sequentially Cohen—-Macaulay modules
with respect to @ in terms of local cohomology modules which extends [4], Corollary

4.4] and [5], Corollary 3.10].

Proposition 2.2. LetD: 0= Dy & D1 & --- & D, = M be the dimension filtration
of M with respect to Q. Then the following statements are equivalent:

(a) M is sequentially Cohen—Macaulay with respect to Q;
(b) H(M/D;—1) =0 fori=1,...,r and k < cd(Q, D;);
(c) grade(Q,M/D;_y) = cd(Q, D;) fori=1,...,r.

Proof. (a) = (b): We proceed by decreasing induction on i. As D;/D;_; is Cohen—
Macaulay with respect to @ for all 7, thus for i = r we have H(M/D,_1) = 0
for k < ¢d(Q,M). Now let 1 < i < r, and assume that Hp(M/D;_y) = 0 for
k < cd(Q, D;). The exact sequence

0— Di_l/Di_Q — M/Di_g — M/Di_l — O,
induces the following long exact sequence
(1) e+ = HY(Di—1/Di—s) = HG(M/D;i—3) — HE(M/Dj—y) — - - .

As D;_1/D;_5 is Cohen—-Macaulay with respect to ), we have Hg(Di_l/Di_g) =0
for k < ¢d(Q, D;—1). By Remark [[L6, we have cd(Q, D;_1) = c¢d(Q, D;_1/D;_3) <
c¢d(Q, D;). Hence by using () and the induction hypothesis, we have Hg(M/D;_s) =
0 for k < cd(Q, D;_1), as desired.

(b) = (a): By Remark we have cd(Q, D;/D;—1) < ¢d(Q, D;y1/D;) for all i.
Thus it suffices to show that D;/D; 1 is Cohen—-Macaulay with respect to @ for all
i. We prove this statement by decreasing induction on i. In condition (b), we first

assume ¢ = r. It follows that M/D,_; is Cohen-Macaulay with respect to Q). Now
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let 1 < i < r, and assume that D;/D; 1 is Cohen—-Macaulay with respect to Q). The
exact sequence

0— Di/Di—l — M/Di_l — M/DZ —>O,

induces the following long exact sequence
(2) o= HY N (Di/Di—1) = HY N(M/Dji_y) — Hi ' (M/D;) — -+ - .
Suppose k < cd(Q,D;—1). Induction hypothesis and our assumption say that
HE D /Dioy) = HY N(M/D;) = 0. Hence HY ' (M/D;—1) = 0 by (). We have
HE(M/D;—3) = 0 for k < ¢d(Q, D;—1) because of our assumption again. Thus
HE(Di—1/Di—s) = 0 for k < ¢d(Q, D;i—1) by [@). Therefore D;_y/D;_5 is Cohen-
Macaulay with respect to @), as desired.

(b) = (¢): We set cd(Q, D;) = cd(Q,D;/D;—1) = q; for i = 1,...,r. Our as-
sumption says that grade(Q, M/D; 1) > ¢; for i = 1,...,r. We only need to know
HE(M/D; 1) # 0. Consider the long exact sequence

(3) o= HETH(M/D;) = HE(D;/Di1) = HE(M /D) — -+ .
Since ¢; — 1 < ¢; < ¢;11, it follows from our assumption that Hg_l(M/Di) =0. If

HE(M/D;—1) = 0, then by @) we have H(D;/D;_1) = 0, a contradiction. The
implication (¢) = (b) is obvious. O

As an application of Proposition [I.§ and Proposition we have

Example 2.3. Let I be the Stanley-Reisner ideal that corresponds to the natural
triangulation of the projective plane P2. Then

I= (361362I3, T1T2Y1, T1X3Y2, L1Y1Y3, L1Y2Y3, L2aX3Y3, T2Y1Y2, L2Y2Y3, T3Y1Y2, x3y1y3).

We set R = S/I where S = Klz1,x9,23,91,Y2,93], P = (x1,22,23) and @ =
(y1,Y2,y3). Our aim is to show that R is sequentially Cohen—Macaulay with re-
spect to P and (). Note that R is Cohen—-Macaulay of dimension 3 if char K # 2.
The ideal I has the minimal primary decomposition I = ﬂglpi where p; =
(z3,91,¥3), P2 = (21,91, ¥3), 03 = (T2,Y1,Y2), Pa = (¥3,91,42), 5 = (T1, Y2, ¥3), P6 =
(22,92, y3), p7 = (T2, T3,Y3), P8 = (T1,72,1), P9 = (21, 23,Y2), P10 = (71,22, 23). As
P = pyo € Ass(R), we have grade(P, R) = 0. By Fact [L4] we have cd(P,R) = 2
and c¢d(Q,R) = 3. Since R is Cohen—Macaulay, it follows from Fact [T that
grade(Q, R) = 1. We first show that R is sequentially Cohen—Macaulay with re-
spect to P. By Proposition [[L8 R has the dimension filtration

0=Ry & R & Ry & Ry =R,
with respect to P where

9 6
Ry =(p:/I and Ry =(pi/I.
=1

i=1
By Corollary we have
Ass(Ry) = Ass(R) — Ass(R/Ry) = {p10}-
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and

Ass(R) = Ass(R) — Ass(R/Ra) = {pr., ps, P9, P10}
It follows that cd(P,R;) = 0 and cd(P,Ry) = 1. We set I; = (\,_, p; and I, =
ﬂ?zl p;. In view of Proposition 2.2] we need to show

grade(P, R3/Ry) = grade(P, R) = cd(P, R;y) = 0,

grade(P, R3/Ry) = grade(P, S/I) = cd(P, Ry) = 1
and

grade(P, R3/Ry) = grade(P, S/I5) = cd(P, R) = 2.
The first equality is obvious. As P & p; fori =1,...,9, we have grade(P, S/1;) > 1.
On the other hand, grade(P, S/I;) < dimS/I; — cd(Q,S/I;) =3 —2 = 1. Thus the
second equality holds. In order to show the third equality, we note that S/I5 has
dimension 3 and by using CoCoA [3] depth 2. Thus Fact [L.Il can not be used to
compute grade(P,S/Iy). We set q1 = p1 Np2 = (x123,Y1,Y3), G2 = P3 NPy =
(x93, y1,y2) and q3 = ps N pe = (122, Y2, y3). Consider the exact sequence

0— S/ql Nqg — S/q1 EBS/CIQ — S/(Ch +C|2) — 0.

Since grade(P,S/q1 @ S/q2) = 2 and grade(P, S/(q:1 + q2)) = 1, it follows that
grade(P,S/(q1Ng2)) > 2. Ascd(P,S/(q1Nqz2)) = 2, we have grade(P, S/(q1Nqz)) =
2. Consider the exact sequence

(4) 0— S/l = S/q1Nq2 @ S/q3 — S/(q1 +a3) N (g2 + q3) — 0.

The exact sequence

0 = S/(c1 + d3) N (d2 + d3) = S/(d1 + d3) ® S/(q2 + q5) = S/(q1 + G2+ q3) — 0

yields that grade(P, S/(q1+4q3)N(g2+93)) > 1. Hence by (l) we have grade(P, S/1,) >
2. As cd(P, S/Iy) = 2, we conclude that grade(P, S/I5) = 2, as desired.

Next, we show that R is sequentially Cohen—Macaulay with respect to (). By
Proposition [[L8 R has the dimension filtration 0 = Ry & Ry & Ry & R3 = R with
respect to Q where Ry = ﬂ;& p;/I and Ry = p1o/l. By Corollary [LI0] we have
cd(Q, Ry) = 1 and ¢d(Q, Ry) = 2. We set J = rﬁ; p;. In view of Proposition 2.2]
we need to show

grade(Q, R3/Ro) = grade(Q, R) = ¢d(Q, Ry) = 1,

grade(Q, R3/Ry) = grade(Q, S/J) = cd(Q, Rs) = 2
and
grade(Q, R3/Ry) = grade(Q, S/p10) = cd(Q, R) = 3.

The first and the third statements are obvious. In order to prove the second equality,
consider the exact sequence

(5) 0= S/J = 5/ M7 pi ® S/pro = S/ N7 (pi + p1o) — 0.
An exact sequence argument shows that
grade(Q, S/ Ni—; pi) = grade(Q, S/ M_; (p; + pro)) = 2.
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Thus it follows from (B) that grade(@, S/J) > 2. On the other hand,
grade(Q, S/J) < dim S/J —cd(P,S/J)=3—-1=2.
Therefore, grade(Q,S/J) = 2, as desired.

3. COHEN—MACAULAY MODULES THAT ARE SEQUENTIALLY COHEN—MACAULAY
WITH RESPECT TO ()

In [10] we have shown that if M is a finitely generated bigraded Cohen—-Macaulay
S-module which is Cohen—Macaulay with respect to P, then M is Cohen—Macaulay
with respect to . Inspired by this fact and Example 2.3 we have the following
question

Question 3.1. Let I C S be a monomial ideal. Suppose S/I is Cohen—Macaulay.
If S/I is sequentially Cohen—Macauly with respect to P, is S/1 sequentially Cohen—
Macaulay with respect to Q7

We do not know the answer of this question yet, however in this section, we
obtain some properties of a Cohen—Macaulay filtration with respect to ) in general
provided that the module itself is Cohen—Macaulay.

Fact 3.2. For a Cohen—Macaulay filtration F with respect to ) we recall the fol-
lowing fact from [9], Corollary 1.8]

grade(Q, M;) = grade(Q, M) for i=1,...,r

Proposition 3.3. Let M be a finitely generated bigraded Cohen—Macaulay S-module
with | K| = co. Suppose M is sequentially Cohen—Macaulay with respect to QQ with
the Cohen—Macaulay filtration 0 = My & My & --- & M, = M with respect to Q).
Then

(a) cd(P, M;) = cd(P, M) fori=1,...,r.

(b) grade(@, M;) + cd(P, M;) = dim M; fori=1,...,r.

Proof. In order to prove (a), since M; is Cohen—Macaulay with respect to @, it
follows from Fact that cd(P, M) + cd(Q, M;) = dim M,;. By Fact we have
cd(Q, M) = grade(Q, M;) = grade(Q, M). Since M is Cohen—Macaulay, it follows
from [9] Lemma 1.11] that dim M; = dim M and cd(P, M) = dim M — grade(Q, M)
by Fact [LI Thus we conclude that cd(P, M;) = cd(P, M). As by Fact [L.3 we have
cd(P, M;—1) < cd(P, M;) for all 4, the first equality follows.

For the proof (b), by [9, Lemma 1.11] we have dim M; = dim M for i =1,...,r.
Thus the second equalities follow from Fact [l Fact and part (a). O

Proposition 3.4. Let the assumptions and the notation be as in Proposition [3.3.
Then the following statements are equivalent:

(a) cd(P,M) +cd(@Q, M) =dim M +r —1;

(b) H3H(M) # 0 for all grade(Q, M) < s < cd(Q, M).

Proof. We first assume that » = 1. As M is Cohen—Macaulay, by Fact [T and Fact
T2 we have cd(P, M)+cd(Q, M) = dim M if and only if M is Cohen—Macaulay with

respect to Q. Thus the claim holds in this case. Now let r > 2. By Fact [L.I] we have
8



cd(P, M)+cd(Q, M) = dim M +r—1 if and only if cd(Q, M) —grade(Q, M) = r—1.
This is equivalent to saying that ¢d(Q, M;y1) = cd(Q, M;) + 1 fori =1,...,r —1
by Fact B.2L By [J, Proposition 1.7] this is equivalent to saying that Hg (M) # 0 for
all grade(Q, M) < s < cd(Q, M). O

The following example shows that the condition that ” M is Cohen—Macaulay” is
required for Proposition [3.4l

Example 3.5. We set K[z] = K[zy,..., 2] and K[y] = K[y, ...,yn]. Let L be a
non-zero finitely generated graded K'[z]-module of depth 0 and dimension 1, and N a
non-zero finitely generated graded Kly]-module of depth 0 and dimension 1. We set
M = L ® N and consider it as S-module. One has depth M = 0 and dim M = 2.
Hence M is not Cohen—Macaulay. On the other hand, grade(Q, M) = depth N =0
and cd(Q, M) =dim N =1 = dim L = c¢d(P, M). Hence M is sequentially Cohen—
Macaulay with respect to @) which satisfies condition (b) in Proposition B.4], while
the equality (a) does not hold.

The following question is inspired by Proposition [3.4]

Question 3.6. Let M be a finitely generated bigraded Cohen—-Macaulay S-module
such that H(M) # 0 for all grade(Q, M) < k < ¢d(Q, M). Is Hj(M) # 0 for all
grade(P, M) < s < cd(P, M)?

Remark 3.7. Of course the question has positive answer in the following cases,
namely, if M has only one(two) non-vanishing local cohomology with respect to Q.
This immediately follows by Fact [LT. The projective plane P? given in Example
is also the case as module with three non-vanishing local cohomology.
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