
ar
X

iv
:1

90
2.

10
98

3v
1

 [
cs

.D
S]

 2
8

Fe
b

20
19

Graph and String Parameters: Connections Between

Pathwidth, Cutwidth and the Locality Number

Katrin Casel1, Joel D. Day2, Pamela Fleischmann3, Tomasz Kociumaka4,

Florin Manea3, and Markus L. Schmid5

1Hasso Plattner Institute, University of Potsdam, Germany, Katrin.Casel@hpi.de
2Loughborough University, UK, J.Day@lboro.ac.uk

3Kiel University, Germany, {fpa,flm}@informatik.uni-kiel.de
4University of Warsaw, Poland, and Bar-Ilan University, Israel, kociumaka@mimuw.edu.pl

5Trier University, Germany, MLSchmid@MLSchmid.de

Abstract

We investigate the locality number, a recently introduced structural parameter for strings
(with applications in pattern matching with variables), and its connection to two important
graph-parameters, cutwidth and pathwidth. These connections allow us to show that com-
puting the locality number is NP-hard but fixed parameter tractable (when the locality
number or the alphabet size is treated as a parameter), and can be approximated with
ratio O(

√

log opt log n). As a by-product, we also relate cutwidth via the locality number
to pathwidth, which is of independent interest, since it improves the currently best known
approximation algorithm for cutwidth. In addition to these main results, we also consider
the possibility of greedy-based approximation algorithms for the locality number.

1 Introduction

Graphs, on the one hand, and strings, on the other, are two different types of data objects and
they have certain particularities. Graphs seem to be more popular in fields like classical and
parameterised algorithms and complexity (due to the fact that many natural graph problems
are intractable), while fields like formal languages, pattern matching, verification or compression
are more concerned with strings. Moreover, both the field of graph algorithms as well as string
algorithms are well established and provide rich toolboxes of algorithmic techniques, but they
differ in that the former is tailored to computationally hard problems (e. g., the approach of
treewidth and related parameters), while the latter focuses on providing efficient data-structures
for near-linear-time algorithms. Nevertheless, it is sometimes possible to bridge this divide, i. e.,
by “flattening” a graph into a sequential form, or by “inflating” a string into a graph, to make use
of respective algorithmic techniques otherwise not applicable. This paradigm shift may provide
the necessary leverage for new algorithmic approaches.

In this paper, we are concerned with certain structural parameters (and the problems of
computing them) for graphs and strings: the cutwidth cw(G) of a graph G (i. e., the maximum
number of “stacked” edges if the vertices of a graph are drawn on a straight line), the pathwidth
pw(G) of a graph G (i. e., the minimum width of a tree decomposition the tree structure of
which is a path), and the locality number loc(α) of a string α (explained in more detail in the
next paragraph). By Cutwidth, Pathwidth and Loc, we denote the corresponding decision
problems and with the prefix Min, we refer to the minimisation variants. The two former graph-
parameters are very classical. Pathwidth is a simple (yet still hard to compute) subvariant of
treewidth, which measures how much a graph resembles a path. The problems Pathwidth

and MinPathwidth are intensively studied (in terms of exact, parameterised and approxima-
tion algorithms) and have numerous applications (see the surveys and textbook [10, 35, 8]).
Cutwidth is the best known example of a whole class of so-called graph layout problems (see
the survey [17, 40] for detailed information), which are studied since the 1970s and were originally
motivated by questions of circuit layouts.

1

http://arxiv.org/abs/1902.10983v1

The locality number is rather new and we shall discuss it in more detail. A word is k-local
if there exists an order of its symbols such that, if we mark the symbols in the respective order
(which is called a marking sequence), at each stage there are at most k contiguous blocks of
marked symbols in the word. This k is called the marking number of that marking sequence.
The locality number of a word is the smallest k for which that word is k-local, or, in other words,
the minimum marking number over all marking sequences. For example, the marking sequence
σ = (x, y, z) marks α = xyxyzxz as follows (marked blocks are illustrated by overlines): xyxyzxz,
xyxyzxz, xyxyzxz, xyxyzxz; thus, the marking number of σ is 3. In fact, all marking sequences
for α have a marking number of 3, except (y, x, z), for which it is 2: xyxyzxz, xyxyzxz, xyxyzxz.
Thus, the locality number of α, denoted by loc(α), is 2.

The locality number has applications in pattern matching with variables [14]. A pattern
is a word that consists of terminal symbols (e. g., a, b, c), treated as constants, and variables
(e. g., x1, x2, x3, . . .). A pattern is mapped to a word by substituting the variables by strings of
terminals. For example, x1x1babx2x2 can be mapped to acacbabcc by the substitution (x1 →
ac, x2 → c). Deciding whether a given pattern matches (i. e., can be mapped to) a given word is
one of the most important problems that arise in the study of patterns with variables (note that
the concept of patterns with variables arises in several different domains like combinatorics on
words (word equations [31], unavoidable patterns [37]), pattern matching [1], language theory [2],
learning theory [2, 19, 39, 43, 32, 22], database theory [7], as well as in practice, e.g., extended
regular expressions with backreferences [26, 27, 45, 28], used in programming languages like Perl,
Java, Python, etc.). Unfortunately, the matching problem is NP-complete [2] in general (it is also
NP-complete for strongly restricted variants [23, 21] and also intractable in the parameterised
setting [24]).

As demonstrated in [44], for the matching problem a paradigm shift as sketched in the
first paragraph above yields a very promising algorithmic approach. More precisely, any class
of patterns with bounded treewidth (for suitable graph representations) can be matched in
polynomial-time. However, computing (and therefore algorithmically exploiting) the treewidth
of a pattern is difficult (see the discussion in [21, 44]), which motivates more direct string-
parameters that bound the treewidth and are simple to compute (virtually all known structural
parameters that lead to tractability [14, 21, 44, 46] are of this kind (the efficiently matchable
classes investigated in [15] are one of the rare exceptions)). This also establishes an interesting
connection between ad-hoc string parameters and the more general (and much better studied)
graph parameter treewidth. The locality number is a simple parameter directly defined on strings,
it bounds the treewidth and the corresponding marking sequences can be seen as instructions
for a dynamic programming algorithm. However, compared to other “tractability-parameters”,
it seems to cover best the treewidth of a string, but whether it can be efficiently computed is
unclear.

In this paper, we investigate the problem of computing the locality number and, by doing
so, we establish an interesting connection to the graph parameters cutwidth and pathwidth with
algorithmic implications for approximating cutwidth. In the following, we first discuss related
results in more detail and then outline our respective contributions.

Known Results and Open Questions: For Loc, only exact exponential-time algorithms are
known and whether it can be solved in polynomial-time, or whether it is at least fixed-parameter
tractable is mentioned as open problems in [14]. Approximation algorithms have not yet been
considered. Addressing these questions is the main purpose of this paper.

Pathwidth and Cutwidth are NP-complete, but fixed-parameter tractable with respect to
parameter pw(G) or cw(G), respectively (even with “linear” fpt-time g(k)O(n) [9, 11, 48]). With
respect to approximation, their minimisation variants have received a lot of attention, mainly
because they yield (like many other graph parameters) general algorithmic approaches for nu-
merous graph problems, i. e., a good linear arrangement or path-decomposition can often be
used for a dynamic programming (or even divide and conquer) algorithm. More generally speak-
ing, pathwidth and cutwidth are related to the more fundamental concepts of small balanced
vertex or edge separators for graphs (i. e., a small set of vertices (or edges, respectively) that,
if removed, divides the graph into two parts of roughly the same size. More precisely, pw(G)
and cw(G) are upper bounds for the smallest balanced vertex separator of G and the smallest
balanced edge separator of G, respectively (see [20] for further details and explanations of the

2

algorithmic relevance of balanced separators). The best known approximation algorithms for
MinPathwidth and MinCutwidth (with approximations ratios of O(

√
log(opt) log(n)) and

O(log2(n)), respectively) follow from approximations of vertex separators (see [20]) and edge
separators (see [36]), respectively.

Our Contributions: There are two natural approaches to represent a word α over alphabet Σ
as a graph Gα = (Vα, Eα): (1) Vα = {1, 2, . . . , |α|} and the edges are somehow used to represent
the actual symbols, or (2) Vα = Σ and the edges are somehow used to represent the positions
of α. We present a reduction of type (2) such that |Eα| = O(|α|) and cw(Gα) = 2 loc(α), and
a reduction of type (1) such that |Eα| = O(|α|2) and loc(α) ≤ pw(Gα) ≤ 2 loc(α). Since these
reductions are parameterised reductions and also allow to transfer approximation results, we
conclude that Loc is fixed-parameter tractable if parameterised by |Σ| or by the locality num-
ber (answering the respective open problem from [14]), and also that there is a polynomial-time
O(

√
log(opt) log(n))-approximation algorithm for MinLoc.

In addition, we also show a way to represent an arbitrary multi-graph G = (V,E) by a word
αG over alphabet V , of length |E| and with cw(G) = loc(α). This describes a Turing-reduction
from Cutwidth to Loc which also allows to transfer approximation results between the minimi-
sation variants. As a result, we can conclude that Loc is NP-complete (which solves the other
open problem from [14]). Finally, by plugging together the reductions from MinCutwidth to
MinLoc and from MinLoc to MinPathwidth, we obtain a reduction which transfers approx-
imation results from MinPathwidth to MinCutwidth, which yields an O(

√
log(opt) log(n))-

approximation algorithm for MinCutwidth. This improves, to our knowledge for the first time
since 1999, the best approximation for Cutwidth from [36].

To our knowledge, this connection between cutwidth and pathwidth has not yet been reported
in the literature so far. This is rather surprising, since Cutwidth and Pathwidth have been
jointly investigated in the context of exact and approximation algorithms, especially in terms
of balanced vertex and edge separators. More precisely, the approximation of pathwidth and
cutwidth follows from the approximation of vertex and edge separators, respectively, and the
approximation of vertex separators usually relies on edge separators: the edge separator approx-
imation from [36] can be used as a black-box for vertex separator approximation, and the best
vertex separator algorithm from [20] uses a technique for computing edge separators from [4] as
component. Our improvement, on the other hand, is achieved by going in the opposite direc-
tion: we use pathwidth approximation (following from [20]) in order to improve the currently
best cutwidth approximation (from [36]). This might be why the reduction from cutwidth to
pathwidth has been overlooked in the literature. Another reason might be that this relation is
less obvious on the graph level and becomes more apparent if linked via the string parameter of
locality, as in our considerations. Nevertheless, since pathwidth and cutwidth are such crucial
parameters for graph algorithms, we also translate our locality based reduction into one from
graphs to graphs directly.

Appendices A, B and C contain additional information and explanations on some results
mentioned in this paper.

2 Preliminaries

Basic Definitions: The set of strings (or words) over an alphabet X is denoted by X∗, by |α|
we denote the length of a word α, alph(α) is the smallest alphabet X with α ∈ X∗. A string β is
called a factor of α if α = α′βα′′; if α′ = ε or α′′ = ε, where ε is the empty string, β is a prefix
or a suffix, respectively. For a position j, 1 ≤ j ≤ |α|, we refer to the symbol at position j of α
by the expression α[j], and α[j..j′] = α[j]α[j + 1] . . . α[j′], 1 ≤ j ≤ j′ ≤ |α|. For a word α and
x ∈ alph(α), let psx(α) = {i | 1 ≤ i ≤ |α|, α[i] = x} be the set of all positions where x occurs in
α. For a word α, let α0 = ε and αi+1 = ααi for i ≥ 0.

Let α be a word and let X = alph(α) = {x1, x2, . . . , xn}. A marking sequence is an enumer-
ation, or ordering on the letters, and hence may be represented either as an ordered list of the
letters or, equivalently, as a bijection σ : {1, 2, . . . , |X |} → X . Given a word α and a marking
sequence σ, the marking number πσ(α) (of σ with respect to α) is the maximum number of
marked blocks obtained while marking α according to σ. We say that α is k-local if and only
if, for some marking sequence σ, we have πσ(α) ≤ k, and the smallest k such that α is k-local

3

is the locality number of α, denoted by loc(α). A marking sequence σ with πσ(α) = loc(α) is
optimal (for α). For a marking sequence σ = (xσ(1), xσ(2), . . . , xσ(m)) and a word α, by stage

i of σ we denote the word α in which exactly the positions
⋃i

j=1 psxσ(j)
(α) are marked. For a

word α, the condensed form of α, denoted by cond(α), is obtained by replacing every maximal
factor xk with x ∈ alph(α) by x. For example, cond(x1x1x2x2x2x1x2x2) = x1x2x1x2. A word α
is condensed if α = cond(α).

Remark 1. For a word α, we have loc(cond(α)) = loc(α) [14]. Hence, by computing cond(α)
in time O(|α|), algorithms for computing the locality number (and the respective marking se-
quences) for condensed words extend to algorithms for general words.

Examples and Word Combinatorial Considerations: The structure of 1-local and 2-local
words is characterised in [14]. The simplest 1-local words are repetitions xk for some k ≥ 0.
Furthermore, if α is 1-local, then yℓαyr is 1-local, where y /∈ alph(α), ℓ, r ≥ 0. Marking sequences
for 1-local words can be obtained by going from the “inner-most” letters to the “outer-most” ones.
The English words radar, refer, blender, or rotator are all 1-local.

Generally, in order to have a high locality number, a word needs to contain many alternating
occurrences of (at least) two letters. For instance, (x1x2)

n is n-local. In general (see Appendix
A), one can show that if loc(w) = k, then loc(wi) ∈ {ik, ik − i+ 1}.

The well-known Zimin words [37] also have high locality numbers compared to their lengths.
These words are important in the domain of avoidability, as it was shown that a terminal-free
pattern is unavoidable (i.e., it occurs in every infinite word over a large enough finite alphabet)
if and only if it occurs in a Zimin word. The Zimin words Zi, for i ∈ N, are inductively
defined by Z1 = x1 and Zi+1 = Zixi+1Zi. Clearly, |Zi| = 2i − 1 for all i ∈ N. Regarding
the locality of Zi, note that marking x2 leads to 2i−2 marked blocks; further, marking x1 first
and then the remaining symbols in an arbitrary order only extends or joins marked blocks.
Thus, we obtain a sequence with marking number 2i−2. In fact (see Appendix A), we have

loc(Zi) =
|Zi|+1

4 = 2i−2 for i ∈ N≥2. Notice that both Zimin words and 1-local words have an
obvious palindromic structure. However, in the Zimin words the letters occur multiple times,
but not in large blocks, while in 1-local words there are at most 2 blocks of each letter. One can
show (see Appendix A) that if w is a palindrome, with w = uauR or w = uuR, and loc(u) = k,
then loc(w) ∈ {2k − 1, 2k, 2k+ 1} (uR denotes the reversal of u).

The number of occurrences of a letter alone is not always a good indicator of the locality of a
word. The German word Einzelelement (basic component of a construction) has 5 occurrences of
e, but is only 3-local, as witnessed by marking sequence (l,m,e,i,n,z,t). Nevertheless, a repetitive
structure often leads to high locality. The Finnish word tutustuttu (perfect passive of tutustua—
to meet) is nearly a repetition and 4-local, while pneumonoultramicroscopicsilicovolcanoconiosis
is an (English) 8-local word, and lentokonesuihkuturbiinimoottoriapumekaanikkoaliupseerioppilas
is a 10-local (Finnish) word.

Complexity and Approximation: We briefly summarise the fundamentals of parameterised
complexity [25, 18] and approximation [5]. A parameterised problem is a decision problem with
instances (x, k), where x is the actual input and k ∈ N is the parameter. A parameterised
problem P is fixed-parameter tractable if there is an fpt-algorithm for it, i.e., one that solves P
on input (x, k) in time f(k) · p(|x|) for a recursive function f and a polynomial p. We use the
O∗(·) notation which hides multiplicative factors polynomial in |x|.

A minimisation problem P is a triple (I, S,m) with I being the set of instances, S being
a function that maps instances x ∈ I to the set of feasible solutions for x, and m being the
objective function that maps pairs (x, y) with x ∈ I and y ∈ S(x) to a positive rational number.
For every x ∈ I, we denote m∗(x) = min{m(x, y) : y ∈ S(x)}. For x ∈ I and y ∈ S(x), the

value R(x, y) = m(x,y)
m∗(x) is the performance ratio of y with respect to x. An algorithm A is an

approximation algorithm for P with ratio r : N → Q (or an r-approximation algorithm, for
short) if, for every x ∈ I, A(x) = y ∈ S(x), and R(x, y) ≤ r(|x|). We also let r be of the form
Q × N → Q when the ratio r depends on m∗(x) and |x|; in this case, we write r(opt, |x|). We
further assume that the function r is monotonically non-decreasing. Unless stated otherwise, all
approximation algorithms run in polynomial time with respect to |x|.

Pathwidth, Cutwidth and Problem Definitions: Let G = (V,E) be a (multi)graph with
the vertices V = {v1, . . . , vn}. A cut of G is a partition (V1, V2) of V into two disjoint subsets

4

V1, V2, V1 ∪ V2 = V ; the (multi)set of edges C(V1, V2) = {{x, y} ∈ E | x ∈ V1, y ∈ V2} is
called the cut-set or the (multi)set of edges crossing the cut, while V1 and V2 are called the
sides of the cut. The size of this cut is the number of crossing edges, i.e., | C(V1, V2)|. A
linear arrangement of the (multi)graph G is a sequence (vj1 , vj2 , . . . , vjn), where (j1, j2, . . . , jn)
is a permutation of (1, 2, . . . , n). For a linear arrangement L = (vj1 , vj2 , . . . , vjn), let L(i) =
{vj1 , vj2 , . . . , vji}. For every i, 1 ≤ i < n, we consider the cut (L(i), V \ L(i)) of G, and denote
the cut-set CL(i) = C(L(i), V \ L(i)) (for technical reasons, we also set CL(0) = CL(n) = ∅).
We define the cutwidth of L by cw(L) = max{| CL(i)| | 0 ≤ i ≤ n}. Finally, the cutwidth of
G is the minimum over all cutwidths of linear arrangements of G, i.e., cw(G) = min{cw(L) |
L is a linear arrangement for G}.

A path decomposition (see [11]) of a connected graph G = (V,E) is a tree decomposition
whose underlying tree is a path, i.e., a sequence Q = (B0, B1, . . . , Bm) (of bags) with Bi ⊆ V ,
0 ≤ i ≤ m, satisfying the following two properties:

• Cover property: for every {u, v} ∈ E, there is an index i, 0 ≤ i ≤ m, with {u, v} ⊆ Bi.
• Connectivity property: for every v ∈ V , there exist indices iv and jv, 0 ≤ iv ≤ jv ≤ m,
such that {j | v ∈ Bj} = {i | iv ≤ i ≤ jv}. In other words, the bags that contain v occur
on consecutive positions in (B0, . . . , Bm).

The width of a path decomposition Q is w(Q) = max{|Bi| | 0 ≤ i ≤ m} − 1, and the pathwidth
of a graph G is pw(G) = min{w(Q) | Q is a path decomposition of G}. A path decomposition
is nice if B0 = Bm = ∅ and, for every i, 1 ≤ i ≤ m, either Bi = Bi−1 ∪ {v} or Bi = Bi−1 \ {v},
for some v ∈ V .

It is convenient to treat a path decomposition Q as a scheme marking the vertices of the
graph based on the order in which the bags occur in the bag sequence. More precisely, all vertices
are initially marked as open. Then we process the bags one by one, as they occur in Q. When we
process the first bag that contains a vertex v, then v becomes active. When we process the last
bag that contains v, it becomes closed. The connectivity property enforces that vertices that
are closed cannot be marked as active again, while the cover property enforces that adjacent
vertices must be both active at some point. The width is the maximum number of vertices
which are marked active at the same time minus one. If the path decomposition is nice, then
whenever a bag is processed as described above, we change the marking of exactly one vertex.

We next formally define the computational problems of computing the parameters defined
above. By Loc, Cutwidth and Pathwidth, we denote the problems to check for a given word
α or graph G and integer k ∈ N, whether loc(α) ≤ k, cw(G) ≤ k, and pw(G) ≤ k, respectively.
Note that since we can assume that k ≤ |α| and k ≤ |G|, whether k is given in binary or unary
has no impact on the complexity. With the prefix Min, we refer to the minimisation variants.
More precisely, MinLoc = (I, S,m), where I is the set of words, S(α) is the set of all marking
sequences for α and m(α, σ) = πσ(α) (note that m∗(α) = loc(α)); MinCutwidth = (I, S,m),
where I are all multigraphs, S(G) is the set of linear arrangements of G, and m(G,L) = cw(L)
(note that m∗(G) = cw(G)); finally, MinPathwidth = (I, S,m), where I are all graphs, S(G)
is the set of path decompositions of G, and m(G,Q) = w(Q) (note that m∗(G) = pw(G)).

3 Locality and Cutwidth

In this section, we introduce polynomial-time reductions from Loc to Cutwidth and vice versa.
The established close relationship between these two problems lets us derive several complexity-
theoretic and algorithmic results for Loc. We also discuss approximation-preserving properties
of our reductions.

First, we show a reduction from Loc to Cutwidth. For a word α and an integer k ∈ N, we
build a multigraph Hα,k = (V,E) whose set of nodes V = alph(α) ∪ {$,#} consists of symbols
occurring in α and two additional characters $,# /∈ alph(α). The multiset of edges E contains
an edge between nodes x, y ∈ alph(α) for each occurrence of the factors xy and yx in α, as well
as 2k edges between $ and #, one edge between $ and the first letter of α, and one edge between
$ and the last letter of α. An example is given in Figure 1.

Lemma 2. The graph Hα,k satisfies cw(Hα,k) = 2k if and only if loc(α) ≤ k.

5

a b

c d

$

c b d a $

Figure 1: The graph Hα,k for α = abcbcdbada and k = 2; an optimal linear arrangement of Hα,k

with cutwidth 4 induces the optimal marking sequence (c, b, d, a) for α with marking number 2.

Proof. Suppose firstly that α is k-local, and let σ = (x1, x2, . . . , xn) be an optimal marking
sequence of α. Consider the linear arrangement L = (x1, x2, . . . , xn, $,#). Clearly,

| C({x1, x2, . . . , xn, $}, {#})| = 2k and

s| C({x1, x2, . . . , xn}, {$,#})| = 2 .

Now consider a cut (K1,K2) = ({x1, x2, . . . , xi}, {xi+1, . . . , xn, $,#}) for 1 ≤ i < n. Every edge
e ∈ C(K1,K2) is of the form {xj , xh} with j ≤ i < h, or of the form {α[1], $} or {$, α[|α|]}.
Consequently, every edge e ∈ C(K1,K2) corresponds to a unique factor xjxh or xhxj of α with
j ≤ i < h and, after exactly the symbols x1, x2, . . . , xi are marked, xj is marked and xh is
not, or to a unique factor α[1] or α[|α|] and, after exactly the symbols x1, x2, . . . , xi are marked,
α[1] or α[|α|] is marked. Since there can be at most k marked blocks in α after marking the
symbols x1, . . . , xi, there are at most 2k such factors, which means that | C(K1,K2)| ≤ 2k. Thus
cw(Hα,k) ≤ 2k. Note that any linear arrangement must at some point separate the nodes $ and
#, meaning cw(Hα,k) ≥ 2k, so we get that cw(Hα,k) = 2k.

Now suppose that the cutwidth of Hα,k is 2k and let L be an optimal linear arrangement
witnessing this fact. Firstly, we note that L must either start with # followed by $ (i.e., have the
form (#, $, . . .)) or end with # preceded by $ (i.e., have the form (. . . , $,#). Otherwise, since
Hα,k is connected, every cut separating $ and # would be of size strictly greater than 2k. Because
a linear ordering and its mirror image have the same cutwidth, we may assume that the optimal
linear arrangement has the form L = (xτ(1), xτ(2), . . . , xτ(n), $,#) for some permutation τ of
{1, . . . , n}. Let σ be the marking sequence (xτ(1), xτ(2), . . . , xτ(n)) of α induced by τ . Suppose,
for contradiction, that for some i, with 1 ≤ i < n, after marking xτ(1), . . . , xτ(i), we have k′ > k
marked blocks. Furthermore, let K1 = {xτ(1), . . . , xτ(i)} and K2 = {xτ(i+1), . . . , xτ(n), $,#}.
For every marked block α[s..t] that is not a prefix or a suffix of α, we have α[s], α[t] ∈ K1

and α[s − 1], α[t + 1] ∈ K2 and therefore {α[s − 1], α[s]}, {α[t], α[t + 1]} ∈ C(K1,K2). More-
over, for a marked prefix α[1..s], we have α[1], α[s] ∈ K1 and $, α[s + 1] ∈ K2 and therefore
{α[1], $}, {α[s], α[s + 1]} ∈ C(K1,K2). Analogously, the existence of a marked suffix α[t..|α|]
leads to {α[|α|], $}, {α[t − 1], α[t]} ∈ C(K1,K2). Consequently, for each marked block we have
two unique edges in C(K1,K2), which implies | C(K1,K2)| ≥ 2k′ > 2k. This contradicts the
assumption that L is a witness that Hα,k has cutwidth 2k. Thus, α must be k-local as stipu-
lated.

In the following, we briefly discuss the complexity of this reduction. Suppose we are given
a word α and an integer k ≤ |α|. It is usual in string algorithmics to assume that α is over an
integer alphabet, i.e., alph(α) ⊆ {1, . . . , |α|}. In this framework, the multigraph Hα,k can be
constructed in O(|α|) time (e.g., represented as a list of vertices and a list of edges).

Lemma 3. If there is an r(opt, h)-approximation algorithm for MinCutwidth running in
O(f(h)) time for an input multigraph with h edges, then there is an (r(2 opt, |α|)+ 1

opt
)-approximation

algorithm for MinLoc running in O(f(|α|) + |α|) time on an input word α.

Proof. As already indicated in the proof of Lemma 2, for k = loc(α), every linear arrangement
for Hα,k naturally translates to a marking sequence for α. However, in an approximate linear
arrangement, the vertices # and $ do not have to be at the first (or last) position. Still, the

marking sequence corresponding to the linear arrangement L can have not more than cw(L)
2 + 1

blocks, since only suffix and prefix can be marked blocks which correspond to only one instead
of two edges in a cut in Hα,k. This observation remains valid, if we do not include the extra

6

vertices # and $ in Hα,k in the reduction. Let Hα be the graph obtained from Hα,k (for some
k) by removing the extra vertices # and $ (observe that this also removes the dependence on
k). Removing vertices only decreases the cutwidth, so Lemma 2 implies that cw(Hα) ≤ 2m∗(α).
Let α be an instance of MinLoc and A an r(opt, h)-approximation for MinCutwidth on
multigraphs.

The approximation algorithm A run on Hα returns a linear arrangement L = A(Hα) with
cw(L) ≤ r(opt, h) cw(Hα). Let σ be the marking sequence corresponding to L, then R(α, σ) =
πσ(α)
m∗(α) ≤ 2

cw(Hα) (
cw(L)

2 + 1) = cw(L)
cw(Hα) + 1

m∗(α) = R(Hα, L) +
1

m∗(α) . The performance ratio

R(Hα, L) is at most r(opt, h), where h = |α| is the number of edges in Hα. For the optimum
value k = m∗(α), the cutwidth of Hα,k is at least 2k − 2 and σ has performance ratio at most
r(2 opt, |α|) (measured with respect to the optimum value k for MinLoc).

The overall approximation procedure builds the graph Hα in O(|Σ|), runs A on Hα in
O(f(|α|)) and translates the linear arrangement into a marking sequence σ in O(|Σ|). This gives
an (r(2 opt, |α|) + 1

opt
)-approximation for MinLoc with running time in O(f(|α|) + |α|).

For a reduction from Cutwidth to Loc, let H = (V,E) be a connected multigraph, where
V is the set of nodes and E the multiset of edges (for technical reasons, we assume |V | ≥ 2). Let
H ′ = (V,E′) be the multigraph obtained by duplicating every edge in H . As such, each node in
H ′ has even degree, so there exists an Eulerian cycle C (i.e., a cycle visiting each edge exactly
once) in H ′, and, moreover, cw(H ′) = 2 cw(H). For each edge e ∈ E′, let αe be the word over V
that corresponds to an arbitrary traversal of the Eulerian path P obtained from C by deleting
e; see Figure 2 for an example.

u v

w x

y

z u v

w x

y

z
9

8

2 5 7 16

10 13

1

4

12

15

3

6

11

14

w u x v y z

Figure 2: A graph H and its multigraph H ′ obtained by doubling the edges; the edge labels
describe a Eulerian cycle that starts and ends in x. Deleting the edge (v, x) in this cycle yields
the word α(v,x) = xwuxwuxvuvyzvyzv, which has an optimal marking sequence (w, u, x, v, y, z)
with marking number 3, and, thus, induces an optimal linear arrangement of H with cutwidth
3.

Lemma 4. For any edge e in E′, the word αe satisfies cw(H) ≤ loc(αe) ≤ cw(H)+1. Moreover,
there is a vertex v ∈ V such that loc(αe) = cw(H) for every edge e incident to v.

Proof. Let k = cw(H). Note that there is a natural bijection between the linear arrangements
of H ′ and the marking sequences of the word αe, since they both are essentially permutations of
{1, 2, . . . , n}, i. e., for a permutation τ of {1, 2, . . . , n}, we can interpret (xτ(1), xτ(2), . . . , xτ(n))
both as the linear arrangement for H ′ and the a marking sequence of αe induced by τ . In the fol-
lowing, let τ be a permutation of {1, 2, . . . , n}, let i ∈ {1, 2, . . . , n−1},K1 = {xτ(1), xτ(2), . . . , xτ(i)}
and K2 = {xτ(i+1), . . . , xτ(n)}, and let C(K1,K2) = 2ℓ (note that since every edge has been du-
plicated, we can guarantee that the size of every cut of H ′ is even).

Now consider αe after after marking the letters x1, . . . , xτ(i). For every marked block α[s..t]
that is not a prefix or a suffix of α, we have α[s], α[t] ∈ K1 and α[s − 1], α[t + 1] ∈ K2 and
therefore {α[s− 1], α[s]}, {α[t], α[t+ 1]} ∈ C(K1,K2). Moreover, for a marked prefix α[1..s], we
have α[s] ∈ K1 and α[s + 1] ∈ K2 and therefore {α[s], α[s + 1]} ∈ C(K1,K2). Analogously, the
existence of a marked suffix α[t..|α|] leads to {α[t− 1], α[t]} ∈ C(K1,K2).

Conversely, for every edge in C(K1,K2), with the exception of e (if e is in C(K1,K2) at
all), there is a unique factor αe[p..p+ 1] of αe such that either αe[p] is marked and αe[p+ 1] is

7

unmarked, or vice-versa. Thus, if all marked blocks are internal, i.e., no marked block is a prefix
or a suffix, then there are exactly ℓ marked blocks. Also, if both a prefix and a suffix occurs as
a marked block, then we have ℓ+1 marked blocks. Finally, if a prefix occurs as a marked block,
but no suffix, or vice-versa, then there are only ℓ marked blocks; note that in this case we must
have e ∈ C(K1,K2). Since we consider all permutations, the arguments above are sufficient to
conclude that, in our setting, each αe has locality number either k or k + 1.

Furthermore, consider a linear ordering L = (xj1 , . . . , xjn) of H ′ which is optimal, i.e.,
| CL(i)| ≤ 2k. Note that if either the first or last letter of αe is the last letter xjn to be marked
according to the marking sequence induced by the linear ordering (xj1 , . . . , xjn), the case that
both a suffix and prefix of αe are marked cannot be reached until i = n and the entire word is
marked. Consequently, this would imply that αe has locality number k. For any permutation of
the linear ordering (xj1 , . . . , xjn), this holds for αe where e is an edge adjacent to the node xjn ,
since the path P obtained by removing such an edge e from C must start or end with xjn .

The resulting Turing reduction from Cutwidth to Loc is performed in O(nh) time, where
n = |V | is the number of vertices and h = |E| is the number of edges of the input multigraph:
First, the graph H ′ and its Eulerian cycle are constructed in O(h) time. Then, for each vertex,
we select an arbitrary incident edge e and build the word αe of length O(h).

Lemma 5. If there is an r(opt, |α|)-approximation algorithm for MinLoc running in O(f(|α|))
time on a word α, then there is an r(opt, h)-approximation algorithm for MinCutwidth running
in O(n(f(h) + h)) time on a multigraph with n vertices and h edges.

Proof. Let G = (V,E) be an instance of MinCutwidth and A an r(opt, |α|)-approximation for
MinLoc. By Lemma 4, there exists a vertex v ∈ V such that loc(αe) = cw(G) holds for any
edge e ∈ E adjacent to v. The approximation algorithm A hence returns on input αe a marking
sequence σ with πσ(αe) ≤ r(opt, |α|) cw(G).

In the proof of Lemma 4 it is further shown that any marking sequence σ for αe translates
to a linear arrangement L for G with cw(L) ≤ πσ(αe). The performance ratio of this linear

arrangement is R(G,L) = cw(L)
cw(G) ≤

πσ(αe)
loc(αe)

≤ R(αe, σ).

The procedure which, for each vertex v ∈ V , constructs αe for some e ∈ E adjacent to v
in O(h), runs A in O(f(|αe|)) = O(f(h)) and checks the resulting linear arrangement in O(h)
and returns the best linear arrangement among all v ∈ V , yields an r(opt, h)-approximation for
MinCutwidth on multigraphs in O(n(f(h) + h)).

Consequences: In the following, we overview a series of complexity-theoretic and algorithmic
consequences of the reductions provided above. We first discuss negative results and note that
we can close one of the main problems left open in [14].

Theorem 6. The Loc problem is NP-complete.

Proof. Lemma 4 shows a polynomial time Turing reduction from Cutwidth to Loc. Indeed,
given a (multi)graph H we construct in linear time the multigraph H ′ by duplicating its edges.
H ′ has an Eulerian cycle, so, using Hierholzer’s algorithm, we can compute such a cycle in linear
time [30]. Let C be the computed Eulerian cycle. For each edge e of C construct, in linear

time, the word αe as described before Lemma 4. By Lemma 4 we get that cw(H) = cw(H′)
2 =

min{loc(αe) | e edge of C}. This completes the reduction, and, thus, as Cutwidth is NP-hard
(see, e. g., [17]), we get that loc is also NP-hard. As Loc clearly belongs to NP, the result
follows.

Theorem 6 follows from the Turing reduction from Cutwidth to Loc, but it can also
be proved using a polynomial-time one-to-many reduction from the well known NP-complete
problem Clique. This alternative approach (given in Appendix B) is more technically involved,
but has the merit of emphasising how the combinatorial properties of the locality number can be
used to construct computationally hard instances of Loc. Moreover, by the word-combinatorial
observations about locality made in Section 2, it is clear that Loc is NP-complete also for words
with special structure, e.g., palindromes and repetitions.

With respect to approximation, it is known that, assuming the Small Set Expansion Conjec-
ture (denoted SSE; see [41]), there exists no constant-ratio approximation for MinCutwidth

8

(see [49]). Consequently, approximating MinLoc within any constant factor is also SSE-hard.
In particular, we point out that stronger inapproximability results for MinCutwidth are not
known. Positive approximation results for MinLoc will be discussed in Section 4.

On certain graph classes, the SSE conjecture is equivalent to the Unique Games Conjecture
[33] (see [41, 42]), which, at its turn, was used to show that many approximation algorithms
are tight [34] and is considered a major conjecture in inapproximability. However, some works
seem to provide evidence that could lead to a refutation of SSE; see [3, 6, 29]. In this context,
we show in Section 4 a series of unconditional results which state that multiple natural greedy
strategies do not provide low-ratio approximation of MinLoc.

As formally stated next, Lemma 2 extends algorithmic results for computing cutwidth to
determining the locality number (we formulate this result so that it also covers fpt-algorithms
with respect to the standard parameters cw(G) and loc(α)). Note that the maximum degree in
a multigraph G is bounded from above by 2 cw(G), so the number of nodes n and the number
of edges h satisfy h ≤ n · cw(G). Hence, we state the complexity in terms of n and cw(G) rather
than with respect to h, which is the actual input size.

Lemma 7. If there is an algorithm solving MinCutwidth (resp., Cutwidth) in O(f(cw(G), n))
time for a multigraph G with n vertices, then there is an algorithm solving MinLoc (resp., Loc)
in O(f(2 loc(α), |Σ| + 2) + |α|) time for a word α over an alphabet Σ.

Proof. We only show the claim for MinCutwidth; the case of Cutwidth follows immediately
from 2. Our goal is to compute loc(α) for the word α, i.e., the minimum k such that α is k-local.
By Lemma 2, we get cw(Hα,k) = 2k for k ≥ loc(α) and cw(Hα,k) > 2k for k < loc(α). Consider a
multigraph Hα obtained by removing the vertices # and $ from Hα,i (the result does not depend
on i ∈ N), and observe that 2 loc(α) − 4 ≤ cw(Hα) ≤ 2 loc(α). Indeed, if cw(Hα) < 2 loc(α)− 4,
we add the two missing nodes # and $ (in this order) as a prefix to an optimal linear arrangement
for Hα and get a linear arrangement of Hα,loc(α)−1 of width 2 loc(α) − 2, a contradiction.

Hence, in order to determine loc(α), we proceed as follows: Compute ℓ = cw(Hα) and iterate
over integers k, ℓ

2 ≤ k ≤ ℓ+4
2 , in the increasing order, checking if cw(Hα,k) = 2k. The first value

for which this equality holds equals loc(α), and the marking sequence induced by the respective
linear arrangement of Hα,k is an optimal one for α (as proved in 2).

In particular, we can draw the following corollaries using Lemma 7 and known results from the
literature. Due to the algorithms of [12], which also work for multigraphs1,MinLoc can be solved
in O∗(2|Σ|) time and space, or in O∗(4|Σ|) time and polynomial space. In particular, this also
implies that Loc is fixed-parameter tractable with respect to the alphabet size. Moreover, the
fpt-algorithm from [48] directly implies that MinLoc is fixed-parameter tractable for parameter
loc(α) with linear fpt-running-time g(loc(α))O(n). Since Cutwidth is NP-complete already
for graphs with maximum degree 3 (see [38]), we also derive a stronger statement compared to
Theorem 6: Loc is NP-complete even if every symbol has at most 3 occurrences; if every symbol
has at most 2 occurrences, the complexity of Loc is open, while the case where every symbol
has only one occurrence is trivial. If, on the other hand, the symbols have many occurrences in
comparison to |α|, i.e., |Σ| = O(log(|α|)), then Loc can be solved in polynomial time, e.g., using
the O∗(2|Σ|)-time algorithm mentioned above.

4 Locality and Pathwidth

In this section, we consider the approximability of the minimisation problem MinLoc. Since a
marking sequence is just a linear arrangement of the symbols of the input word, this problem
seems to be well tailored to greedy algorithms: until all symbols are marked, we choose an
unmarked symbol according to some greedy strategy and mark it. There are two aspects that
motivate the investigation of such approaches. Firstly, ruling out simple strategies is a natural
initial step in the search for approximation algorithms for a new problem. Secondly, due to the
results of Section 3, the obvious greedy approaches for computing the locality number may also

1These algorithms actually support weighted graphs without any major modification and in the same com-
plexity. In this setting, parallel edges connecting two vertices are replaced by a single “super-edge” whose weight
is the number of parallel edges.

9

1 2 3 4 5 6 7 8 9

Figure 3: The graph Gα for α = cabacabac; the three cliques are drawn with different edge-
types.

provide a new angle to approximating the cutwidth of a graph, i.e., some greedy strategies may
only become apparent in the locality number point of view and hard to see in the graph formula-
tion of the problem. Given the fact that, as formally stated later as Theorem 14, approximating
the cutwidth via approximation of the locality number does in fact improve the best currently
known cutwidth approximation ratio, this seems to be a rather important aspect.

Unfortunately, we can formally show that many natural candidates for greedy strategies fail
to yield promising approximation algorithms (and are therefore also not helpful for cutwidth
approximation). We just briefly mention these negative results; all details are provided in Ap-
pendix C. The four considered basic strategies are the following: (1) prefer symbols with few
occurrences, (2) symbols with many occurrences, (3) symbols leading to fewer blocks after mark-
ing, (4) symbols with earlier leftmost occurrence. All these strategies fail in a sense that there are
arbitrarily long (condensed) words α with constant locality numbers for which these strategies
yield marking sequences with marking numbers Ω(|α|).

A more promising approach is to choose among symbols that extend at least one already
marked block (except when marking the first symbol). We denote this strategy by BlockExt

and marking sequences that can be obtained by it are called BlockExt-marking sequences. In-
tuitively, marking a symbol that has only isolated occurrences, and therefore will increase the
current number of marked blocks by the number of its occurrences, seems a bad choice. This
raises a general question whether every word has a BlockExt-marking sequence that is also op-
timal for this word. We answer this question negatively: all BlockExt-marking sequences for
words like x1yx2yx3y . . . x2ky achieve a marking number of at least 2k − 1, while first marking
x2, x3, . . . , xk+1 in this order (which all have only isolated occurrences), then y, and then the
rest of the symbols in some order, yields at most k marked blocks. However, this only shows
a lower bound of roughly 2 for the approximation ratio of algorithms based on BlockExt, so
BlockExt might still be a promising candidate. However, in order to devise a BlockExt-based
approximation algorithm, we still face the problem of deciding which of the extending symbols
should be chosen; trying out all of them is obviously too costly. Unfortunately, if we handle this
decision by one of the basic strategies (1)–(4) from above, e.g., choosing among all extending
symbols one that leads to fewer new blocks, we again end up with poor approximation ratios.
More precisely, we can again find arbitrarily long words α with constant locality numbers for
which these algorithms yield marking numbers Ω(|α|). Moreover, this is also true if we choose
among all extending symbols one that has a maximum number of extending occurrences or one
that maximises the ratio #extending occ.

#occ. .
While we obviously have not investigated all reasonable greedy strategies, we consider our

negative results as sufficient evidence that a worthwhile approximation algorithm for computing
the locality number most likely does not follow from such simple greedy strategies.

In the following, we adopt a more sophisticated approach of approximating the locality
number: we devise a reduction to the problem of computing the pathwidth of a graph. To
this end, we first have to describe how a (condensed) word can be represented as a graph:
For a condensed word α, the graph Gα = (Vα, Eα) is defined by Vα = {1, 2, . . . , |α|} and
Eα = {{i, i+ 1} | 1 ≤ i ≤ |α| − 1} ∪ {{i, j} | {i, j} ⊆ psx(α) for some x ∈ alph(α)}. Intuitively,
Gα is obtained by interpreting every position of α as a vertex, connecting neighbouring positions
by edges, and turning every set psx(α), x ∈ alph(α), into a clique (see Figure 3).

We use Gα as a unique graph representation for condensed words and whenever we talk
about a path decomposition for α, we actually refer to a path decomposition of Gα and, since
Gα has the positions of α as its vertices, the marking scheme behind a path decomposition (and
its respective terminology) directly translates to a marking scheme of the positions of α.

10

Lemma 8. Let α be a condensed word. Then pw(Gα) ≤ 2 loc(α).

Proof. Let σ = (x1, x2, . . . , xm) be a marking sequence for α with πσ(α) = k. We describe a
path-decomposition Q for Gα as a marking. First, for every i, 1 ≤ i ≤ m, we define the step pi
of Q as the following situation. Every position that is a border position of a marked block at
step i of σ is active, every other position that is marked at step i of σ is closed, and all other
positions are open. Intuitively speaking, step pi represents the marked factors of step i of σ in a
natural way. The path-decomposition produces these steps in the order p1, p2, . . . , pm. The step
p1 is obtained from the initial one (i. e., where all positions are open) by just setting all positions
of psx1

(α) to active. The final step of Q where all positions are closed is obtained from step
pm by setting the only active positions 1 and |α| to closed. In the following, we describe how
we reach pi+1 from pi for every i with 1 ≤ i ≤ m− 1.

Let s be arbitrary with 1 ≤ s ≤ m− 1. In order to produce step ps+1 of Q from step ps, we
do the following:

1. For all j ∈ psxs+1
(α)

(a) If marking j does not produce a new marked block of size 1

i. Set j to active

ii. If j − 1 is active, j > 2 and j − 2 is not open, then set j − 1 to closed

iii. If j + 1 is active, j < |α| − 1 and j + 2 is not open, then set j + 1 to closed

2. Set all remaining positions from psxs+1
to active

3. Set all positions from pxs+1 having only active or closed neighbours to closed.

Note that if in Step 1a we have j = 2 and j − 1 = 1 is active, it will remain active. Similarly,
if j = |α| − 1 and j + 1 = |α| is active, it will remain active. It can be easily seen, that after
Step 3 is finished, we have reached step ps+1 of Q. Consequently, we have now fully defined Q.
We note that when Step 1 is finished, then all positions of psxs+1

that do not create new marked
blocks are active, and we denote this step of Q as step p′s. Moreover, we denote the situation
reached after Step 2 is finished as step p′′s of Q.

In order to see that Q is a valid path-decomposition, we first observe that for every i, 1 ≤
i ≤ m, we reach a step where all positions of psxi

(α) are active (namely step p1, if i = 1 and
step p′′i−1 otherwise), and for every j, 1 ≤ j ≤ |α| − 1, j is set from active to closed while
j + 1 is active, or j + 1 is set from active to closed while j is active. Thus, Q satisfies the
cover-property (the connectivity-property is trivially satisfied, since we define Q as a marking)
and therefore is a valid path-decomposition. It remains to determine the width of Q.

Let s be arbitrary with 1 ≤ s ≤ m− 1, let ks and ks+1 be the number of marked blocks at
steps s and s+ 1 of σ, respectively. We note that ki ≤ k and ki+1 ≤ k. Now let us assume that
in going from step s to step s+ 1 of σ, exactly q new marked blocks of size 1 are created and r
times we join a marked block with another marked block. This means that in step p′s, we have
the r active positions from psxs+1

(α) that are responsible for joining marked blocks of step s of
σ, and in addition to that, for every marked block of step s+ 1 of σ that is not a new block of
size 1, we have at most 2 active border positions (these might or might not be from psxs+1

(α)).
Thus, there are at most r+2(ks+1− q) active positions in step p′s. Moreover, in step p′′s , we get
an additional number of q active positions from psxs+1

(α) for the new marked blocks of size 1.
In total, this leads to r + 2(ks+1 − q) + q = 2ks+1 + r − q active positions in step p′′s . Finally,
in reaching step ps+1 from p′′s , the number of active positions can only decrease.

It can be easily seen that, according to how Q is defined above, in going from ps to p′s, the
number of active positions is always bounded by ℓ+1, where ℓ is the number of active positions
in step ps. Analogously, in going from p′s to p

′′
s , the number of active positions is always bounded

by ℓ′+1, where ℓ′ is the number of active positions in step p′′s . We conclude that the number of
active position in all the steps between ps and ps+1 is bounded by max(2ks, 2ks+1 + r− q) + 1.
Since we obviously have ks+1 = ks + q − r, we get that

max(2ks, 2ks+1 + r − q) + 1 = max(2ks, ks + ks+1) + 1 ≤ 2k + 1 .

Obviously, the number of active positions in step p1 and the steps preceding it is at most k.
Therefore, pw(Q) ≤ 2k, and therefore also pw(Gα) ≤ 2 loc(α).

11

Lemma 9. Let α be a condensed word with |α| ≥ 2. Then loc(α) ≤ pw(Gα).

Proof. Let Q = (B0, B1, B2, . . . , B2|α|) be an arbitrary nice path-decomposition for Gα. For
every i, 1 ≤ i ≤ m, let pi be the first step of Q where all positions of psxi

(α) are active.
Without loss of generality, we assume that p1 < p2 < . . . < pm. Let σ = (x1, x2, . . . , xm) and let
k = πσ(α). We now prove that one of the following cases hold:

• There is a step of Q with at least k + 1 active positions.

• There is a step of Q with at least k active positions and a marking sequence σ′ with
πσ′(α) = k − 1.

This implies that, for every path-decomposition Q of Gα, loc(α) ≤ pw(Q) and therefore also
loc(α) ≤ pw(Gα).

Let s, 1 ≤ s ≤ m, be chosen such that the maximum number of marked blocks in α according
to σ is reached for the first time at step s. In the following, we represent the marked version
of α at step s of σ as a word α̂ over the set of symbols {o, a, c} which indicate the status of
the positions at step ps of Q. More formally, α̂[i] = o if position i is open, α̂[i] = a if position
i is active and α̂[i] = c if position i is closed at step ps of Q. Moreover, we consider the
factorisation

α̂ = β0µ1β1µ2 . . . µkβk ,

where the factors βi, 0 ≤ i ≤ k, correspond to the unmarked regions of α, and µi, 1 ≤ i ≤ k,
correspond to the marked blocks. Next, we establish some simple properties of α̂ that all follow
directly from the definitions.

Obviously, β0, βk ∈ {a, o}∗, while βi ∈ {a, o}+ and µi ∈ {a, c}+ for every i with 1 ≤ i ≤ k.
This follows from the fact that an occurrence of a symbol y is closed at step ps of Q if and
only if it has already been marked before, i. e., y ∈ {x1, x2, . . . , xs−1}. Moreover, for every i,
1 ≤ i ≤ k−1, if µi[|µi|] = c, then βi[1] = a, since otherwise, there is an closed position adjacent
to an open one, which is a contradiction, since these two positions are also adjacent in Gα. For
µk, this only holds if βk 6= ε. An analogous observation can be made with respect to the leftmost
positions of the factors µi, 1 ≤ i ≤ k. Consequently, the first (or last) position of every marked
block (that is not a prefix, or not a suffix, respectively) is at step ps of Q either active or it is
closed and preceded (or followed, respectively) by an active position.

We note further that all occurrences of xs are contained in marked blocks at step s of σ and
active at step ps of Q, i. e., they all correspond to occurrences of a in factors µi. Moreover, there
is at least one occurrence of xs, i. e., a position j with α[j] = xs. In the following, we assume that
this position is in µr for some r with 1 ≤ r ≤ k, i. e., |β0µ1 . . . βr−1|+ 1 ≤ j ≤ |β0µ1 . . . βr−1µr|
and µr = ν1 a ν2 with |β0µ1 . . . βr−1ν1|+ 1 = j.

Next, to every marked block µi, 1 ≤ i ≤ k, we allocate a distinct position ti that is active
at step ps of Q. First, we set tr = j, i. e., the occurrence of xs in the marked block µr. For every
i, 1 ≤ i < r, we let ti be an active position in µi, if one exists and ti = |β0µ1 . . . βi−1µi| + 1
otherwise. Note that if µi does not contain any active position, then its rightmost occurrence
is closed and therefore, as observed above, βi[1] is in fact active. We proceed analogously for
the remaining marked blocks, i. e., for every i, r < i ≤ k, we let ti be some active position in
µi, if one exists and ti = |β0µ1 . . . βi−1| otherwise. Since every ti with 1 ≤ i < r is in µiβi[1],
every ti with r < i ≤ k is in βi−1[|βi|]µi, and tr is in µr, these positions ti are in fact k distinct
positions that are active at step ps of Q.

Now, if there is at least one additional active position, then there are at least k+1 active

positions at step ps of Q, which implies that the first of the two cases from the beginning of the
proof holds. So in the following, we assume that the active positions ti, 1 ≤ i ≤ k, are the only
active positions at step ps of Q.

In the following, we have to consider several cases. To this end, it makes sense to divide α̂
into the part left of µr, the factor µr and the part right of µr; in particular, all our following
observations for the left part shall also hold analogously for the right part. More precisely, we set
α̂1 = β0µ1β1µ2 . . . βr−1 (which we shall call the left side) and α̂2 = βrµr+1βr+1 . . . µkβk (which
we shall call the right side), i. e., α̂ = α̂1µrα̂2.

Now we take a closer look at the left side α̂1. If, for some ℓ, 1 ≤ ℓ < r, tℓ is not in µℓ, then
it corresponds to the leftmost position of βℓ. Moreover, we then have µℓ ∈ {c}+, which implies

12

that the rightmost occurrence of βℓ−1 must be a, which means that this is actually the position
tℓ−1 leading to βℓ−1 = a. This argument can then be repeated, which means that if, for some ℓ,
1 ≤ ℓ < r, tℓ is not in µℓ, then βi = a for every i with 1 ≤ i ≤ ℓ − 1, while for βℓ the leftmost
position if active. In particular, this also means that µi ∈ {c}+ for every i with 1 ≤ i ≤ ℓ, and
that β0 = ε. This can be illustrated as follows:

α̂1 = µ1 a︸︷︷︸
β1

µ2 a︸︷︷︸
β2

. . . µℓ−1 a︸︷︷︸
βℓ−1

µℓ a o
g1

︸︷︷︸
βℓ

µℓ+1βℓ+1µℓ+2 . . . βr−2µr−1βr−1 ,

where µi ∈ {c}+ for every i with 1 ≤ i ≤ ℓ, and g1 ≥ 0. Moreover, if ℓ is chosen maximal with
the properties mentioned above, then we can also conclude that all µi with ℓ + 1 ≤ i ≤ r − 1
contain an active position, which in turn means that βi ∈ {o}+ for every i with ℓ+1 ≤ i ≤ r−1.
However, this directly implies that µi = a with ℓ + 2 ≤ i ≤ r − 1 and µℓ+1 = cg2 a for some
g2 ≥ 0 with the property that at most one g1 and g2 can be positive. Consequently,

α̂1 = µ1 a︸︷︷︸
β1

µ2 a︸︷︷︸
β2

. . . µℓ−1 a︸︷︷︸
βℓ−1

µℓ a o
g1︸︷︷︸

βℓ

cg2 a︸︷︷︸
µℓ+1

βℓ+1 a︸︷︷︸
µℓ+2

. . . βr−2 a︸︷︷︸
µr−1

βr−1 ,

where βi ∈ {o}+ for every i with ℓ + 1 ≤ i ≤ r − 1, µi ∈ {c}+ for every i with 1 ≤ i ≤ ℓ, and
g1, g2 ≥ 0 with 0 ∈ {g1, g2}.

If, on the other hand, no such ℓ, 1 ≤ ℓ < r, exists, then all the active position ti are in
µi for every i with 1 ≤ i ≤ r − 1. In particular, this means that βi ∈ {o}+ for every i with
1 ≤ i ≤ r− 1, which forces all µi, 2 ≤ i ≤ r− 1, to start and end with an active position, while
µ1 must have a rightmost active position and a leftmost active position only if β0 6= ε. Thus,

α̂1 = β0 c
g a︸︷︷︸
µ1

β1 a︸︷︷︸
µ2

. . . βr−2 a︸︷︷︸
µr−1

βr−1 ,

where βi ∈ {o}+ for every i with 1 ≤ i ≤ r − 1, g ≥ 0, and g > 0 implies β0 = ε.
Note that all these observations have also obvious analogues for the right side α̂2. We now

use these observations to prove the following claims regarding the structure of µr = ν1 a ν2:

1. If ν1 6= ε, then we have
α̂1 = µ1 aµ2 a . . . µr−1 a .

Proof : If ν1 6= ε, then ν1[1] = c, which implies that βr−1[|βr−1|] = a and therefore
βr−1 = a. This means that for ℓ = r − 1, we have the case described above, i. e., where tℓ
is the rightmost active position that is not in µℓ and, since βℓ = a, we also have the case
g1 = 0. This directly implies the statement claimed above. �

2. If ν2 6= ε, then we have
α̂2 = aµr+1 aµr+2 . . .aµk .

Proof : Analogous to Claim 1. �

3. If ν1 = ε, then we have one of the following two cases:

(a) For some ℓ with 1 ≤ ℓ ≤ r − 1,

α̂1 = µ1 a︸︷︷︸
β1

µ2 a︸︷︷︸
β2

. . . µℓ−1 a︸︷︷︸
βℓ−1

µℓ a o
g1︸︷︷︸

βℓ

cg2 a︸︷︷︸
µℓ+1

βℓ+1 a︸︷︷︸
µℓ+2

. . . βr−2 a︸︷︷︸
µr−1

βr−1 ,

where βi ∈ {o}+ for every i with ℓ + 1 ≤ i ≤ r − 1, µi ∈ {c}+ for every i with
1 ≤ i ≤ ℓ, and g1, g2 ≥ 0 with 0 ∈ {g1, g2}.

(b) α̂1 = β0 c
g a︸︷︷︸
µ1

β1 a︸︷︷︸
µ2

. . . βr−2 a︸︷︷︸
µr−1

βr−1,

where βi ∈ {o}+ for every i with 1 ≤ i ≤ r − 1, g ≥ 0, and g > 0 implies β0 = ε.

Proof : If there is some ℓ′, 1 ≤ ℓ ≤ r − 1, such that tℓ′ is not in µℓ′ , then we can consider
a maximal ℓ with this property and can conclude the statement of Claim 3a as observed
above. If, on the other hand, no such ℓ′ exists, then, as observed above, the statement of
Claim 3b follows. �

13

4. If ν2 = ε, then we have one of the following two cases:

(a) For some ℓ with r ≤ ℓ ≤ k,

α̂2 = βr a︸︷︷︸
µr+1

βr+1 a︸︷︷︸
µr+2

. . . βℓ−1 a c
g1︸︷︷︸

µℓ

og2 a︸︷︷︸
βℓ

µℓ+1 a︸︷︷︸
βℓ+1

µℓ+2 a︸︷︷︸
βℓ+2

. . . a︸︷︷︸
βk−1

µk ,

where βi ∈ {o}+ for every i with r ≤ i ≤ ℓ−1, µi ∈ {c}+ for every i with ℓ+1 ≤ i ≤ k,
and g1, g2 ≥ 0 with 0 ∈ {g1, g2}.

(b) α̂2 = βr a︸︷︷︸
µr+1

βr+1 a︸︷︷︸
µr+2

. . . a cg︸︷︷︸
µ1

βk,

where βi ∈ {o}+ for every i with r ≤ i ≤ k − 1, g ≥ 0, and g > 0 implies βk = ε.

Proof : Analogous to Claim 3. �

We are now ready to conclude the proof. To this end, we have to consider the four cases
depending on whether the factors ν1 and ν2 are empty or not. In the following cases, we also
use the observation that occurrences of xs must be contained in marked factors.

• ν1 6= ε and ν2 6= ε: Claims 1 and 2 directly imply that α[j] is the only occurrence of xs.
Therefore, marking xs has joined two marked blocks and did not change any other block.
Hence, at step i− 1 there were k + 1 marked blocks, which is a contradiction.

• ν1 = ε and ν2 6= ε: With Claim 2, we know that there are no occurrences of xs in the right
side. Furthermore, Claim 3 means that we have the situation described in Claim 3a or the
one of Claim 3b, which we shall treat as separate cases:

– The statement of Claim 3a applies: If ℓ = r − 1, then there are no occurrences of xs
on the left side, which implies that α[j] is the only occurrence of xs. Hence, since
ν2 6= ε, at step i− 1 of σ there were k marked blocks, which is a contradiction.

If, on the other hand, ℓ < r−1, then every occurrence of xs on the left side has at least
one adjacent position that is open. Moreover, since βr−1 ∈ {o}+, also the occurrence
α[j] has an adjacent position that is open. Consequently, all occurrences of xs have
at least one adjacent position that is open. Since the only active positions that can
be closed in the next step of Q are occurrences of xs, it is not possible to set an
active position to closed in the next step, which means that an open position will
be set to active. Hence, there are k + 1 active positions in step ps + 1 of Q. This
means that the first of the two cases from the beginning of the proof holds.

– The statement of Claim 3b applies: All occurrences of xs (including α[j]) have at least
one adjacent position that is open. It follows that there are k + 1 active positions
in step ps +1 of Q, which means that the first of the two cases from the beginning of
the proof holds.

• ν1 6= ε and ν2 = ε: This is analogous to the previous case.

• ν1 = ν2 = ε: If the statement of Claim 3a applies with ℓ < r−1 or g1 > 0, or the statement
of Claim 3b applies, then all occurrences of xs on the left side have an adjacent position
that is open. Likewise, if the statement of Claim 4a applies with ℓ > r or g2 > 0, or the
statement of Claim 4b applies, then all occurrences of xs on the right side have an adjacent
position that is open. Furthermore, the occurrence α[j] also has an adjacent position that
is open. Hence, there are k+1 active positions in step ps +1 of Q and therefore the first
of the two cases from the beginning of the proof holds.

If the statement of Claim 3a applies with ℓ = r− 1 and g1 = 0, then there is no occurrence
of xs on the left side and the occurrence α[j] has an active position to its left. If now the
statement of Claim 4a applies with ℓ > r or g2 > 0, or the statement of Claim 4b applies,
then the occurrence α[j] has an open position to its right, and also all occurrences of xs on
the right side have an adjacent position that is open. Consequently, there are k+1 active

positions in step ps + 1 of Q and therefore the first of the two cases from the beginning
of the proof holds. For the situation that the statement of Claim 4a applies with ℓ = r

14

and g2 = 0, but also the statement of Claim 3a applies with ℓ < r − 1 or g1 > 0, or the
statement of Claim 3b applies, we can analogously conclude that there are k + 1 active

positions in step ps + 1 of Q.

The only remaining case is that the statement of Claim 3a applies with ℓ = r − 1 and
g1 = 0 and the statement of Claim 4a applies with ℓ = r and g2 = 0. We note that this
implies the following:

α̂ = µ1 a︸︷︷︸
β1

µ2 a︸︷︷︸
β2

. . . µr−1 a︸︷︷︸
βr−1

a︸︷︷︸
µr

a︸︷︷︸
βr

µr+1 a︸︷︷︸
βr+1

. . . µk−1 a︸︷︷︸
βk−1

µk .

This means that there is exactly one occurrence of xs. In step s−1 of the marking sequence
σ there are exactly k−1 marked blocks and, by our assumption that step s is the first step
with k marked blocks, we also know that in steps 1, 2, . . . , s− 1 the maximum number of
marked blocks is k − 1. Moreover, at step s− 1, every unmarked position is adjacent to a
marked block except the single occurrence of xs that is marked in step s. Consequently,
we can change σ into a marking sequence σ′ as follows. The marking sequence σ′ simulates
σ up to step s− 1. So far, the maximum number of marked blocks is k− 1. Then, instead
of marking xs, σ

′ marks all other unmarked symbols in some order. Each of these marking
steps leaves the number of marked blocks unchanged, or decreases it (this can be easily
seen by consulting the factorisation illustrated above). Finally, symbol xs is marked as the
last symbol. Thus, σ′ is a marking sequence for α with πσ′ (α) = k − 1. This implies that
the second of the two cases from the beginning of the proof holds.

Corollary 10. Let α be a condensed word with |α| ≥ 2. Then loc(α) ≤ pw(Gα) ≤ 2 loc(α).

Note that Corollary 10 is not true for condensed words α of size 1, since then loc(α) = 1
and pw(Gα) = 0. The reason why pw(Gα) can range between loc(α) and 2 loc(α) (rather than
pw(Gα) = 2 loc(α)) is that in a marking sequence, every marked block accounts for one unit of
the quantity loc(α), while in the path decomposition, a marked block is represented either by
two active vertices or by only one (if the block has size one). There are (condensed) examples
that reach the extremes loc(α) and 2 loc(α), i.e., the bounds of Corollary 10 are tight.

Proposition 11. Let α = (x1x2 . . . xnxn−1 . . . x2)
kx1 with n ≥ 3, and let β = (x1x2)

k. Then
we have loc(α) = k and pw(Gα) = 2k, and loc(β) = pw(Gβ) = k.

Proof. We start with proving the first statement and first observe that loc(α) ≤ k due to the
marking order xn, xn−1, . . . , x1. In order to show pw(Gα) ≥ 2k, we first observe that, for
every i ∈ {2, . . . , n − 1}, psxi

(α) is a clique of size 2k in Gα, which implies that every path-
decomposition for Gα reaches the state where all 2k vertices of psxi

(α) are active. Now let
Q be a path-decomposition for Gα, let i ∈ {2, . . . , n − 1} be such that all psxi

(α) are first set
to active, i. e., when all vertices psxi

(α) are active for the first time, then in every psxj
(α),

j ∈ {2, . . . , n− 1} \ {i}, there is at least one open vertex (in particular, no vertex from any psxj
,

2 ≤ j ≤ n− 1, is closed). Moreover, in the following we consider the earliest point of Q, where
all psxi

(α) are active.
If, at this point, there is some additional active vertex, then there are 2k + 1 active

vertices; thus, in the following we assume that there are no other active vertices. If there is also
no closed vertex, then all other vertices are open, which means that every vertex from psxi

(α)
has at least one adjacent open vertex and therefore we have to set an open vertex to active,
before we can set a vertex from psxi

(α) to closed; this leads to at least 2k + 1 active vertices.
It remains to consider the case where there is some closed vertex j. This means that all vertices
of psα[j](α) are closed, which implies that j ∈ psx1

(α) ∪ psxn
(α). We first consider the case

j ∈ psx1
(α). Since every vertex from psx2

(α) is adjacent to some vertex from psx1
(α), we can

conclude that all vertices from psx2
(α) are active, i. e., i = 2. The assumption j ∈ psxn

(α)
analogously leads to the situation that i = n − 1. Consequently, all 2k vertices from psxi

(α)
are active, either psx1

(α) are all closed or psxn
(α) are all closed, and all other vertices are

open. In both of these cases, every vertex from psxi
(α) has at least one adjacent open vertex,

which, as before, means that we have to set an open vertex to active, before we can set a vertex

15

from psxi
(α) to closed; this, as well, leads to at least 2k + 1 active vertices. Consequently,

w(Q) ≥ 2k, and, with Corollary 10, we can conclude pw(Gα) = 2k.
With respect to the second statement, we first note that any marking sequence for β leads to

k marked blocks, which implies loc(β) = k. Moreover, a path-decomposition Q with w(Q) = k
can be easily constructed as follows. First, we set all positions of psx1

(β) to active. Then we
set position 2 to active, position 1 to closed, position 4 to active, position 3 to closed and
so on, until all positions of psx2

(β) are active and all positions of psx1
(β) are closed. Finally,

the positions of psx2
(β) are set to closed. There are at most k + 1 positions active at the

same time; thus, w(Q) = k and therefore pw(Gβ) ≤ k. Together with Corollary 10, this implies
loc(β) = pw(Gβ) = k.

Note that the construction of a graph Gα from a word α does not technically provide a
reduction from the decision problem Loc to Pathwidth (due to the fact that pw(Gα) lies
between loc(α) and 2 loc(α)) and therefore cannot be used to solve MinLoc exactly. Its main
purpose is to carry over approximation results from MinPathwidth to MinLoc, which is
formally stated by the next lemma (in this regard, note that exact algorithms for MinLoc are
obtained in Section 3 via a reduction to MinCutwidth instead).

Lemma 12. If there is an r(opt, n)-approximation algorithm for MinPathwidth running in
O(f(n)) time, then there is an 2r(2 opt, |α|)-approximation algorithm for MinLoc with running
time O(f(|α|) + |α|2).

Proof. Let α be an instance of MinLoc and A an r(opt, n)-approximation for MinPathwidth.
By Corollary 10, it follows that pw(Gα) ≤ 2m∗(α).

In the proof of Corollary 10 it is shown that any path decomposition Q for Gα can be
translated in time O(|α|) into a marking sequence σ with πσ(α) ≤ pw(Q). With the inequal-

ity m∗(α) ≥ 1
2 pw(Gα), the performance ratio of σ can be bounded by R(α, σ) = πσ(α)

m∗(α) ≤
2

pw(Gα) pw(Q) ≤ 2R(Gα, Q). With R(Gα, Q) ≤ r(cw(Gα), n) from the approximation ratio of

α, n = |α| from the construction of Gα, and cw(Gα) ≤ 2m∗(α) from Corollary 10, the claimed
bound of 2r(2 opt, |α|) on the approximation ratio follows. The approximation procedure to
compute σ, creates Gα in O(|α|2), runs A in O(f(|α|)) and translates the path-decomposition
Q into σ in O(|α|), which takes an overall running time in O(f(|α|) + |α|2).

Consequently, approximation algorithms for MinPathwidth carry over to MinLoc. To the
knowledge of the authors, the currently best approximation algorithm for MinPathwidth is
due to [20], with approximation ratio of O(

√
log(opt) log(n)). This implies the following.

Theorem 13. There is an O(
√
log(opt) log(n))-approximation algorithm for MinLoc.

Another consequence that is worth mentioning is due to the fact that an optimal path de-
composition can be computed faster than O∗(2n). More precisely, it is shown in [47] that for
computing path decompositions, there is an exact algorithm with running time O∗((1.9657)n),
and even an additive approximation algorithm with running time O∗((1.89)n). Consequently,
there is a 2-approximation algorithm for MinLoc with running time O∗((1.9657)n) and an
asymptotic 2-approximation algorithm with running time O∗((1.89)n) for MinLoc.

By combining the reduction from MinCutwidth to MinLoc from Section 3 with the reduc-
tion fromMinLoc toMinPathwidth defined above, we obtain a reduction fromMinCutwidth

to MinPathwidth that carries over the pathwidth-approximation from [20] to MinCutwidth

as follows (in particular, this improves the state-of-the-art approximation for MinCutwidth

from [36]).

Theorem 14. There is an O(
√
log(opt) log(n))-approximation algorithm for MinCutwidth.

Note that Theorem 14 only applies to MinCutwidth for simple graphs; the case of multi-
graphs shall be briefly discussed in Section 5.

Many existing algorithms constructing path decompositions are of theoretical interest only,
and this disadvantage carries over to the possible algorithms computing the locality number or
cutwidth based on them. However, the reduction of Corollary 10 is also applicable in a purely
practical scenario, since any kind of practical algorithm constructing path decompositions can be

16

u

vw

x

y

z

uw

ux

uv

wu

wx

xw

xu

xv

vu

vx

vy

vz

yv

yz

zv

zy

Figure 4: A graph G and the corresponding graph G′ obtained by the reduction.

used in order to compute marking sequences (the additional tasks of building Gα and the trans-
lation of a path decomposition for it back to a marking sequence are computationally simple).
This observation is particularly interesting since developing practical algorithms constructing
tree and path decompositions of small width is a vibrant research area.2

5 Pathwidth and Cutwidth

Since pathwidth and cutwidth are classical graph parameters that play an important role for
graph algorithms, independent from our application for computing the locality number, we also
present a direct reduction from MinCutwidth to MinPathwidth.

For an arbitrary graph G = (V,E), we construct the graph G′ = (V ′, E′) with V ′ = {vu |
{u, v} ∈ E} and E′ = {{uv, vu} | {u, v} ∈ E} ∪ {{vu, vw} | {u, v}, {w, v} ∈ E, u 6= w}. See
Figure 4 for an example of the reduction.

For the next result, we first need the following definition. The second order cutwidth of a linear
arrangement L is defined by cw2(L) = max{| CL(i−1)∪CL(i)| | 1 ≤ i ≤ n+1}; the second order
cutwidth of a graph is then defined by cw2(G) = min{cw2(L) | L is a linear arrangement for G}.

Lemma 15. Let G be a graph with at least one edge. Then cw(G) ≤ pw(G′) ≤ 2 cw(G).

Proof. Consider a graph G = (V,E). For the inequality pw(G′) ≤ 2cw(G) let L = (v1, . . . , vn)
be an optimal linear arrangement for V . We show that the pathwidth of G′ is at most cw2(G)
which, by the definition of the second order cutwidth immediately yields pw(G′) ≤ 2 cw(G).

To proof the claimed bound on the pathwidth of G′, we construct a path decomposition
for G′ of width at most cw2(G) as follows. The decomposition contains a bag for each edge
{u,w} ∈ E, indexed by the ordered pair (i, j) if u = vi and w = vj with i < j in L, and one
bag for each vertex u ∈ V , indexed by (i, 0) where u = vi in L. Formally, we construct the set
of bags:

B = {B(i, j) | {vi, vj} ∈ E, i < j} ∪ {B(i, 0) | 1 ≤ i ≤ n} .

We define the path decomposition P to be the bags in B listed in lexicographical order of the
index-pairs.

Each bag B(i, j) contains the union of the three vertex sets:

V ′
≥(i, j) = {uw ∈ V ′ | u = vi, w = vℓ, ℓ ≥ j}

V ′
≤(i, j) = {uw ∈ V ′ | w = vi, u = vℓ, i < ℓ ≤ j}

V ′
≶(i, j) = {uw ∈ V ′ | u = vx, w = vy, y < i < x}

Each bag B(i, j) has cardinality at most:

|V ′
≥(i, j)|+ |V ′

≤(i, j)|+ |V ′
≶(i, j)|

≤|{vk | {vi, vk} ∈ E, k ≥ j}|+ |{vk | {vi, vk} ∈ E, i < k ≤ j}|+ |{{vk, vℓ} | k < i < ℓ}|

≤|{{vk, vℓ} ∈ E | k ≤ i ≤ ℓ}|+ 1 .

This yields the claimed bound of cw2(G) on the pathwidth of G′.
It remains to prove that P is a feasible path decomposition for G′.

2See, e.g., the work [13] and the references therein for practical algorithms constructing path decompositions;
also note that designing exact and heuristic algorithms for constructing tree decompositions was part of the
“PACE 2017 Parameterized Algorithms and Computational Experiments Challenge” [16].

17

1. P satisfies the cover property:
For each edge {uw, wu} ∈ E′ let u = vi and w = vj in L with i < j, the bag B(i, j) contains

both uw and wu, as uw ∈ V ′
≥(i, j) and wu ∈ V ′

≤(i, j).
For each edge {vu, vw} ∈ E′ with {u, v}, {w, v} ∈ E, u 6= w, let v = vi, then the bag

B(i, 0) contains both vu and vw, since which ever index u and w have, it is larger than 0, so
vu, vw ∈ V ′

≥(i, 0).
These are the only two types of edges in G′, so P satisfies the cover property.
2. P satisfies the connectivity property:

We consider a vertex uw ∈ V ′ and show that the bags containing uw are a consecutive set in P .
To this end we distinguish for u = vx and w = vy in L, the two cases x < y and x > y.

If x < y, we claim that the set of bags in P which contain uw is exactly the consecutive set
S = {B(x, r) | 0 ≤ r ≤ y, {vx, vr} ∈ E or r = 0}.
For each 0 ≤ r ≤ y, uw lies in V ′

≥(x, r) ⊆ B(x, r).
For each bag B(i, j) in B \ S, case analysis shows that uw /∈ B(i, j):

• (i, j) smaller than (x, 0) in the order on P , so i < x < y:

– u = vx 6= vi, so uw /∈ V ′
≥(i, j).

– w = vy 6= vi, so uw /∈ V ′
≤(i, j).

– u = vx with i < x, so uw /∈ V ′
≶(i, j).

• (i, j) larger than (x, y) in the order on P with i = x, so y < j:

– u = vi but w = vy with y < j, so uw /∈ V ′
≥(i, j).

– w = vy 6= vi, so uw /∈ V ′
≤(i, j).

– u = vx with x = i, so uw /∈ V ′
≶(i, j).

• (i, j) larger than (x, y) in the order on P with i > x:

– u 6= vi, so uw /∈ V ′
≥(i, j).

– u = vx with x < i, so uw /∈ V ′
≤(i, j).

– u = vx with x < i, so uw /∈ V ′
≶(i, j).

If x > y, we claim that the set of bags in P which contain uw is exactly the consecutive set:
S = {B(y, x), . . . , B(x, 0)} = {B(i, j) | (y, x) ≤ (i, j) ≤ (x, 0), {vi, vj} ∈ E or j = 0}.
Each bag in S contains uw:

• For each y < i < x, and j with {vi, vj} ∈ E or j = 0, uw lies in V ′
≶(i, j) ⊆ B(i, j).

• For each j with x ≤ j, uw lies in V ′
≤(y, j) ⊆ B(y, j).

• Since y ≥ 0, uw ∈ V ′
≥(x, 0) ⊆ B(x, 0).

For each bag B(i, j) in B \ S, case analysis shows that uw /∈ B(i, j):

• (i, j) smaller than (y, x) in the order on P with i = y, so j < x:

– u 6= vi, so uw /∈ V ′
≥(i, j)

– w = vi, but u = vx with x > j, so uw /∈ V ′
≤(i, j).

– w = vy with i = y, so uw /∈ V ′
≶(i, j).

• (i, j) smaller than (y, x) in the order on P with i < y, so i < y < x:

– u 6= vi so uw /∈ V ′
≥(i, j).

– w 6= vi so uw /∈ V ′
≤(i, j).

– w = vy with i < y, so uw /∈ V ′
≶(i, j).

• (i, j) larger than (x, 0) in the order on P with i = x, so j > i (observe that we only define
bags B(i, j) with i < j or j = 0):

18

– u = vi but w = vy with y < x = i ≤ j , so uw /∈ V ′
≥(i, j).

– w = vy 6= vi, so uw /∈ V ′
≤(i, j).

– u = vx with x = i, so uw /∈ V ′
≶(i, j).

• (i, j) larger than (x, 0) in the order on P with i > x, so y < x < i:

– u 6= vi, so uw /∈ V ′
≥(i, j).

– v 6= vi, so uw /∈ V ′
≤(i, j).

– x < i, so uw /∈ V ′
≶(i, j).

This concludes the proof for the inequality pw(G′) ≤ 2cw(G).
To show the other inequality cw(G) ≤ pw(G′), we will actually show the even stronger result:

Given a path decomposition of width k for G′, it is possible to construct a linear arrangement
with cutwidth at most k for G in polynomial time.

Let P = {B1, . . . , Br} be a path decomposition of width k for G′. Since the vertices in
Nv := {vu | {u, v} ∈ E} form a clique in G′, there has to be at least one bag in P which contains
Nv, for each v ∈ V . Pick for each v ∈ V an index φ(v) with Nv ⊂ Bφ(v). Define the linear order
L = (v1, . . . , vn) on V according to the order on the indices φ(v). Let t ∈ {1, . . . , n} be such
that | CL(t)| = cw(L). Recall the definition CL(t) = {{vi, vj} | i ≤ t < j}. We will show that
{uw, wu} ∩Bφ(vt) 6= ∅ for each edge {u,w} ∈ CL(t).

For every pair of indices (i, j) with i ≤ t < j and {vi, vj} ∈ E, denote u = vi and w = vj . By
definition of G′, {uw, wu} ∈ E′, so by cover property there has to be at least one bag Bx ∈ P
which contains both uw and wu. The bag Bφ(u) contains uw and the bag Bφ(w) contains wu. By
connectivity property, wu has to be included in all bags between Bx and Bφ(w), and uw has to
be included in all bags between Bx with Bφ(u). Since φ(u) ≤ φ(vt) < φ(w), this implies that if
x ≤ φ(t), it follows that wu ∈ Bφ(vt) and otherwise if φ(t) ≥ x it follows that uw ∈ Bφ(vt).

In fact, the above consideration also holds for (i, j) with i ≤ t ≤ j and {vi, vj} ∈ E, so it
follows that |Bφ(vt)| ≥ | CL(t− 1) ∪ CL(t)|.

So if there is an index t′ with | CL(t
′)| = cw(L) and | CL(t

′)| < | CL(t
′ − 1) ∪ CL(t

′)|, then it
follows that:

k ≥ |Bφ(vt′)
| − 1 ≥ | CL(t

′ − 1) ∪ CL(t
′)| − 1 ≥ | CL(t

′)| = cw(L) .

More generally, if there exists an index j ∈ {1, . . . , n} such that |Bφ(j)| ≥ cw(L)+1, the claimed
bound of k on the value of L follows. We claim that if no such index j exists, we can construct
a better linear arrangement in polynomial time, by rearranging all vt with index t ∈ Imax = {t |
| CL(t)| = cw(L)}. For each such index t ∈ Imax, we know that CL(t) = CL(t−1)∪CL(t) hence vt
has no neighbour in {v1, . . . , vt−1}. Move vt to the right of its neighbour vℓ of smallest index in
L. This way, the size of the cut for vt is equal to the previous cut for vℓ which has to be smaller
than cw(L), since vℓ had vt as a neighbour to the left which means that CL(ℓ) = CL(ℓ−1)∪CL(ℓ)
did not hold and ℓ could hence not have been in Imax. The rearrangement of vt can only increase
the cut for vℓ. This can only happen, if vt has degree 1, as otherwise the cut for vℓ does no longer
count at least one edge adjacent to vt which makes up for the edge {vt, vℓ} which is added by
the rearrangement. Assuming a connected input graph with at least three vertices, this implies
that vℓ has at least one neighbour other than vt. If the cut of vℓ increases to cw(L) by moving
vt to the right of vℓ, then the cut value of vℓ was cw(L)− 1 in the unaltered arrangement while
|Bφ(ℓ)| ≤ cw(L), so vt was the only neighbour of vℓ with index smaller than ℓ. In this case, move
vt directly to the left of vℓ, then the cut of vℓ remains cw(L)− 1 and the cut of vt is computed
from the edges crossing both vℓ and vt plus 1 for the edge {vℓ, vt} minus at least 1 for the edges
from vℓ to a neighbour in {vℓ+1, . . . , vn}, hence also at most cw(L)−1. Repeating this procedure
for each t ∈ Imax yields a linear arrangement with cut at most cw(L)− 1 ≤ |Bφ(vt)| − 1 ≤ k.

Lemma 15 does not only prove that cw(G) ≤ pw(G′) ≤ 2 cw(G), but also yields a constructive
way to compute a linear arrangement for G of cut at most k from a path decomposition of width
k for G′. Further, Lemma 15 remains true if G is a multigraph; observe that the reduction still
constructs a simple graph G′. This gives the following result.

19

Lemma 16. If there is an r(opt, |V |)-approximation algorithm for MinPathwidth with running-
time O(f(|V |)), then there is an 2r(2 opt, h)-approximation algorithm for MinCutwidth on
multigraphs with running time O(f(h) + h2 + n), where n is the number of vertices and h is the
number of edges.

Proof. LetG = (V,E) be an instance ofMinCutwidth with andA an r(pw(G′), |V |)-approxima-
tion for MinPathwidth. By Lemma 15, it follows that cw(G) ≥ 1

2 pw(G
′)).

Further, the proof of Lemma 15 shows that a path-decomposition P of width k for G′ can
be translated into a linear arrangement L for G with cw(L) ≤ k in O(h2+n). The relative error

of L can hence be bounded by R(G,L) = cw(L)
cw(G) ≤ 2 pw(P)

pw(G′) = 2R(G′, P). The algorithm which

builds G′ from G in O(n + h), runs A on G′ in O(f(h)) and creates a linear arrangement L in
O(h2 +n) has a performance ratio 2r(pw(G′), |V |) ≤ 2r(2 cw(G), h) and an overall running time
in O(f(h) + h2 + n).

With the O(
√

log(opt) log(n))-approximation for MinPathwidth from [20], Lemma 16 gives
the following approximation for MinCutwidth on multigraphs.

Theorem 17. There is an O(
√

log(opt) log(h))-approximation algorithm for MinCutwidth

on multigraphs with h edges.

In accordance with Thm. 13, Thm. 17 yields for simple graphs an O(
√
log(opt) log(n))-

approximation algorithm. Analogously, Thm. 13 could be formulated for multigraphs, which
would also change the approximation-ratio to O(

√
log(opt) log(h)).

References

[1] Amihood Amir and Igor Nor. Generalized function matching. Journal of Discrete Algo-
rithms, 5(3):514–523, 2007. doi:10.1016/j.jda.2006.10.001.

[2] Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21(1):46–62, 1980. doi:10.1016/0022-0000(80)90041-0.

[3] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games
and related problems. Journal of the ACM, 62(5):42:1–42:25, 2015. doi:10.1145/2775105.

[4] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geomet-
ric embeddings and graph partitioning. Journal of the ACM, 56(2):5:1–5:37, 2009.
doi:10.1145/1502793.1502794.

[5] Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi, Giorgio Gam-
bosi, Marco Protasi, and Viggo Kann. Complexity and approximation: combi-
natorial optimization problems and their approximability properties. Springer, 1999.
doi:10.1007/978-3-642-58412-1.

[6] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite program-
ming hierarchies via global correlation. In Rafail Ostrovsky, editor, 52nd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2011, pages 472–481. IEEE, 2011.
doi:10.1109/focs.2011.95.

[7] Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Transactions on Database Systems,
37(4):1–46, 2012. doi:10.1145/2389241.2389250.

[8] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1–2):1–21,
1993. URL: http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/pdf/Bodlaender_1993_ActaCybernetica.pdf.

[9] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25(5):1305–1317, 1996.
doi:10.1137/s0097539793251219.

20

http://dx.doi.org/10.1016/j.jda.2006.10.001
http://dx.doi.org/10.1016/0022-0000(80)90041-0
http://dx.doi.org/10.1145/2775105
http://dx.doi.org/10.1145/1502793.1502794
http://dx.doi.org/10.1007/978-3-642-58412-1
http://dx.doi.org/10.1109/focs.2011.95
http://dx.doi.org/10.1145/2389241.2389250
http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/pdf/Bodlaender_1993_ActaCybernetica.pdf
http://dx.doi.org/10.1137/s0097539793251219

[10] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1–2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

[11] Hans L. Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivari-
ate Algorithmic Revolution and Beyond, volume 7370 of LNCS, pages 196–227, 2012.
doi:10.1007/978-3-642-30891-8_12.

[12] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dim-
itrios M. Thilikos. A note on exact algorithms for vertex ordering problems on graphs.
Theory of Computing Systems, 50(3):420–432, 2012. doi:10.1007/s00224-011-9312-0.

[13] David Coudert, Dorian Mazauric, and Nicolas Nisse. Experimental evaluation of a branch-
and-bound algorithm for computing pathwidth and directed pathwidth. ACM Journal of
Experimental Algorithmics, 21(1):1.3:1–1.3:23, 2016. doi:10.1145/2851494.

[14] Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka. Local patterns. In
Satya V. Lokam and R. Ramanujam, editors, Foundations of Software Technology and The-
oretical Computer Science, FSTTCS 2017, volume 93 of LIPIcs, pages 24:1–24:14. Schloss
Dagstuhl – Leibniz-Zentrum fr Informatik, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.24.

[15] Joel D. Day, Pamela Fleischmann, Florin Manea, Dirk Nowotka, and Markus L. Schmid.
On matching generalised repetitive patterns. In Mizuho Hoshi and Shinnosuke Seki, edi-
tors, Developments in Language Theory, DLT 2018, volume 11088 of LNCS, pages 269–281.
Springer, 2018. doi:10.1007/978-3-319-98654-8_22.

[16] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
parameterized algorithms and computational experiments challenge: The second iteration.
In Daniel Lokshtanov and Naomi Nishimura, editors, Parameterized and Exact Compu-
tation, IPEC 2017, volume 89 of LIPIcs, pages 30:1–30:12. Schloss Dagstuhl – Leibniz-
Zentrum fr Informatik, 2017. doi:10.4230/LIPIcs.IPEC.2017.30.

[17] Josep Dı́az, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM
Computing Surveys, 34(3):313–356, 2002. doi:10.1145/568522.568523.

[18] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

[19] Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, and Thomas
Zeugmann. Learning one-variable pattern languages very efficiently on average, in
parallel, and by asking queries. Theoretical Computer Science, 261(1):119–156, 2001.
doi:10.1016/s0304-3975(00)00136-5.

[20] Uriel Feige, MohammadTaghi HajiAghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629–
657, 2008. doi:10.1137/05064299x.

[21] Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern matching
with variables: Fast algorithms and new hardness results. In Ernst W. Mayr and Nicolas
Ollinger, editors, Symposium on Theoretical Aspects of Computer Science, STACS 2015,
volume 30 of LIPIcs, pages 302–315. Schloss Dagstuhl – Leibniz-Zentrum fr Informatik,
2015. doi:10.4230/LIPIcs.STACS.2015.302.

[22] Henning Fernau, Florin Manea, Robert Mercaş, and Markus L. Schmid. Revisiting Shino-
hara’s algorithm for computing descriptive patterns. Theoretical Computer Science, 733:44–
54, 2018. doi:10.1016/j.tcs.2018.04.035.

[23] Henning Fernau and Markus L. Schmid. Pattern matching with variables: A
multivariate complexity analysis. Information and Computation, 242:287–305, 2015.
doi:10.1016/j.ic.2015.03.006.

21

http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1007/978-3-642-30891-8_12
http://dx.doi.org/10.1007/s00224-011-9312-0
http://dx.doi.org/10.1145/2851494
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.24
http://dx.doi.org/10.1007/978-3-319-98654-8_22
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30
http://dx.doi.org/10.1145/568522.568523
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1016/s0304-3975(00)00136-5
http://dx.doi.org/10.1137/05064299x
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.302
http://dx.doi.org/10.1016/j.tcs.2018.04.035
http://dx.doi.org/10.1016/j.ic.2015.03.006

[24] Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the parameterised com-
plexity of string morphism problems. Theory of Computing Systems, 59(1):24–51, 2016.
doi:10.1007/s00224-015-9635-3.

[25] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
doi:10.1007/3-540-29953-X.

[26] Dominik D. Freydenberger. Extended regular expressions: Succinctness and decidability.
Theory of Computing Systems, 53(2):159–193, 2013. doi:10.1007/s00224-012-9389-0.

[27] Dominik D. Freydenberger and Markus L. Schmid. Deterministic regular expressions with
back-references. In Heribert Vollmer and Brigitte Vallée, editors, Symposium on Theoretical
Aspects of Computer Science, STACS 2017, volume 66 of LIPIcs, pages 33:1–33:14. Schloss
Dagstuhl – Leibniz-Zentrum fr Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.33.

[28] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, 3rd edition,
2006.

[29] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and
approximation schemes for graph partitioning and quadratic integer programming with PSD
objectives. In Rafail Ostrovsky, editor, 52nd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2011, pages 482–491. IEEE, 2011. doi:10.1109/FOCS.2011.36.

[30] Carl Hierholzer and Christian Wiener. ber die Möglichkeit, einen Linienzug ohne Wieder-
holung und ohne Unterbrechung zu umfahren. Mathematische Annalen, 6(1):30–32, 1873.
doi:10.1007/bf01442866.

[31] Juhani Karhumki, Filippo Mignosi, and Wojciech Plandowski. The expressibility of lan-
guages and relations by word equations. Journal of the ACM, 47(3):483–505, 2000.
doi:10.1145/337244.337255.

[32] Michael Kearns and Leonard Pitt. A polynomial-time algorithm for learning k-variable
pattern languages from examples. In Ronald L. Rivest, David Haussler, and Manfred K.
Warmuth, editors, Computational Learning Theory, COLT 1989, pages 57–71. Morgan Kauf-
mann, 1989. doi:10.1016/b978-0-08-094829-4.50007-6.

[33] Subhash Khot. On the power of unique 2-prover 1-round games. In John H. Reif, editor,
34th Annual ACM Symposium on Theory of Computing, STOC 2002, pages 767–775. ACM,
2002. doi:10.1145/509907.510017.

[34] Subhash Khot. On the unique games conjecture (invited survey). In Computational Com-
plexity, CCC 2010, pages 99–121. IEEE, 2010. doi:10.1109/CCC.2010.19.

[35] Ton Kloks, editor. Treewidth, Computations and Approximations, volume 842 of LNCS.
Springer, 1994. doi:10.1007/BFb0045375.

[36] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999.
doi:10.1145/331524.331526.

[37] M. Lothaire, editor. Algebraic Combinatorics on Words. Cambridge University Press, 2002.
doi:10.1017/cbo9781107326019.

[38] Fillia Makedon, Christos H. Papadimitriou, and Ivan Hal Sudborough. Topological
bandwidth. SIAM Journal on Algebraic and Discrete Methods, 6(3):418–444, 1985.
doi:10.1137/0606044.

[39] Yen Kaow Ng and Takeshi Shinohara. Developments from enquiries into the learnability of
the pattern languages from positive data. Theoretical Computer Science, 397(1–3):150–165,
2008. doi:10.1016/j.tcs.2008.02.028.

[40] Jordi Petit. Addenda to the survey of layout problems. Bulletin of the EATCS, 105:177–201,
2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/98.

22

http://dx.doi.org/10.1007/s00224-015-9635-3
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/s00224-012-9389-0
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.33
http://dx.doi.org/10.1109/FOCS.2011.36
http://dx.doi.org/10.1007/bf01442866
http://dx.doi.org/10.1145/337244.337255
http://dx.doi.org/10.1016/b978-0-08-094829-4.50007-6
http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.1109/CCC.2010.19
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1145/331524.331526
http://dx.doi.org/10.1017/cbo9781107326019
http://dx.doi.org/10.1137/0606044
http://dx.doi.org/10.1016/j.tcs.2008.02.028
http://eatcs.org/beatcs/index.php/beatcs/article/view/98

[41] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Leonard J. Schulman, editor, 42nd ACM Symposium on Theory of Computing, STOC
2010, pages 755–764. ACM, 2010. doi:10.1145/1806689.1806792.

[42] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expan-
sion problems. In Computational Complexity, CCC 2012, pages 64–73. IEEE, 2012.
doi:10.1109/CCC.2012.43.

[43] Daniel Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397(1–3):166–193, 2008. doi:10.1016/j.tcs.2008.02.029.

[44] Daniel Reidenbach and Markus L. Schmid. Patterns with bounded treewidth. Information
and Computation, 239:87–99, 2014. doi:10.1016/j.ic.2014.08.010.

[45] Markus L. Schmid. Characterising REGEX languages by regular languages
equipped with factor-referencing. Information and Computation, 249:1–17, 2016.
doi:10.1016/j.ic.2016.02.003.

[46] Takeshi Shinohara. Polynomial time inference of pattern languages and its application. In
7th IBM Symposium on Mathematical Foundations of Computer Science, pages 191–209,
1982.

[47] Karol Suchan and Yngve Villanger. Computing pathwidth faster than 2n. In Jianer Chen
and Fedor V. Fomin, editors, Parameterized and Exact Computation, IWPEC 2009, volume
5917 of LNCS, pages 324–335. Springer, 2009. doi:10.1007/978-3-642-11269-0_27.

[48] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A
linear time fixed parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005.
doi:10.1016/j.jalgor.2004.12.001.

[49] Yu (Ledell) Wu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of
treewidth and related problems. Journal of Artificial Intelligence Research, 49(1):569–600,
2014. doi:10.1613/jair.4030.

23

http://dx.doi.org/10.1145/1806689.1806792
http://dx.doi.org/10.1109/CCC.2012.43
http://dx.doi.org/10.1016/j.tcs.2008.02.029
http://dx.doi.org/10.1016/j.ic.2014.08.010
http://dx.doi.org/10.1016/j.ic.2016.02.003
http://dx.doi.org/10.1007/978-3-642-11269-0_27
http://dx.doi.org/10.1016/j.jalgor.2004.12.001
http://dx.doi.org/10.1613/jair.4030

A Additional Word-Combinatorial Considerations

The Locality of the Zimin words

Proposition 18. loc(Zi) =
|Zi|+1

4 = 2i−2 for i ∈ N≥2.

Proof. Clearly, x1 and x1x2x1 are 1-local. Consider a fixed i ∈ N and the marking sequence
(x2, x1, y1, y2, . . . , yi−2) for i ≥ 3 and {y1, . . . , yi−2} = {x3, . . . , xi}. Notice that for all j ∈ N, xj
occurs 2i−j times in Zi. Thus by marking x2, there are 2

i−2 marked blocks. Since all occurrences
of x1 are adjacent to occurrences of x2, marking x1 does not change the number of marked blocks.
As marking the remaining variables only leads to the merging of some pairs of consecutive blocks
into one, we never have more than 2i−2 marked blocks.

In the following we will show the converse. More precisely, we show that if a sequence is
optimal for Zi then it starts with x2, x1. Let us note first that, for 2 ≤ p < r, between two
consecutive occurrences of xr in Zi there is one occurrence of xp. More precisely, each occurrence
of a variable xp, with p ≥ 2, is directly between two occurrences of x1. Also, notice that xj has
2i−j occurrences in Zi. Now, if x1 is marked before x2, because Zi starts with x1x2 and ends
with x2x1, it is immediate that after the marking of x1 we will have at least 2i−2 + 1 marked
blocks in the word (separated by the 2i−2 unmarked occurrences of x2). This is, thus, a marking
sequence that is not optimal. So x2 is marked before x1 in an optimal sequence. Assume that
there exists xj , with j > 2, which is also marked before x1 in an optimal sequence. Let w be
a word such that Zi = x1wx1. There are 2i−1 − 2 occurrences of x1 in w, and w starts with
x2x1 and ends with x1x2. As each two consecutive (marked) occurrences of the letters x2 and
xj are separated by unmarked occurrences of x1 we have that, just before marking x1, there are
at least min{2i−1− 1, 2i−2+2i−j} marked blocks in w (and the same number in Zi). This again
shows that this is not an optimal marking sequence. So, before x1 is marked, only x2 should be
marked. This concludes the proof of our claim, and of the proposition.

The Locality of (Condensed) Palindromes and Repetitions. We use the following
notation. Given a marking sequence σ, let σR be the marking sequence obtained by reversing σ
(i.e. σR(i) = σ(|X | − i+ 1) for 1 ≤ i ≤ |X |).

By loc(cond(w)) = loc(w), it is enough to show our results for condensed words. Since there
are no condensed palindromes of even length, only palindromes of odd length are of interest
when determining the locality number. A word w is called strictly k-local if for every optimal
marking sequence of w there is a stage when exactly k factors are marked. For a letter a ∈
alph(w), we denote by |w|a the number of occurrences of a in w. For simplicity of notations, let
[n] := {1, 2, . . . , n}.

Let wi ∈ (X ∪X)∗ be the marked version of w at stage i ∈ [| alph(w)|] for a given marking
sequence σ.

Lemma 19. Define the morphism f : X ∪X → {0, 1} by

f(x) =

{
0 if x ∈ X,

1 if x ∈ X.

If w is a palindrome and σ a marking sequence for w then f(wi) is a palindrome for all i ∈
[| alph(w)|].

Proof. Let w = uxuR be a palindrome with u ∈ X∗ and x ∈ X ∪X and |w| = n ∈ N. Moreover
let σ be a marking sequence for w and i ∈ [| alph(w)|]. Since w is a palindrome, w[j] = w[n− j].
This implies wi[j], wi[n− j] are both either in X or in X. Thus either are both mapped to 0 or
to 1. Consequently f(wi) is a palindrome.

Recall the definition of border priority markable from [14]. A strictly k-local word w = avb ∈
XX∗X is called border priority markable if there exists a marking sequence σ of w such that in
every stage i ∈ [|α(w)|] of σ where k blocks are marked, a and b are marked as well. Analogously
right-border priority markable and left-border priority markable are defined: A strictly k-local
word w = avb ∈ XX∗X is called right-border priority markable (rbpm) if if there exists a

24

marking sequence σ of w such that in every stage i ∈ [|α(w)|] of σ where k blocks are marked, b
is marked as well - respectively, for left-border priority markable, a is marked as well.

Remark 20. If w ∈ X∗ is right-border priority markable, then uR is left-border priority markable.

Lemma 21. Let w = uauR be an odd-length condensed palindrome with u ∈ X∗ and a ∈ X. Let
u be strictly k-local witnessed by the marking sequence σ.

• If u is rbpm then loc(w) = 2k − 1,

• if u is not rbpm and a 6∈ alph(u) then loc(w) = 2k,

• if u is not rbpm and a ∈ alph(u) and for all optimal marking sequences for u there exists
a stage i ∈ [| alph(u)|] such that a is marked, k blocks are marked, and u[|u|] is unmarked
then loc(w) = 2k + 1, and

• else loc(w) = 2k.

Proof. Let σ be an optimal marking sequence of u. If a ∈ alph(u) then σ is a marking sequence
for w. Marking w w.r.t. σ leads to πσ(w) ≤ 2k + 1 since there are at most maximal k blocks
marked each in u and uR, and additionally the single a in the middle. If a 6∈ alph(u) then
σ′ = σ ∪ {(|u|+ 1, a} is a marking sequence for w with πσ′ (w) ≤ 2k, since by marking w.r.t. σ
maximal k blocks are marked by σ each in u and uR and afterwards on marking a two blocks
are joined. Thus in any case loc(w) ≤ 2k + 1.
case 1. Consider u to be rbpm. Thus in every stage i ∈ [| alph(u)|] where k blocks are marked,
u[|u|] is marked. This implies that πσ(w) ≤ 2k− 1 or πσ′(w) ≤ 2k− 1 with σ′ defined as above.
Supposition: loc(w) =: ℓ < 2k − 1
Let µ be an optimal marking sequence for w. Then µ is also a marking sequence for u and
thus πµ(u) ≥ k. By loc(u) = k there exists a stage i ∈ [| alph(w)|] of µ such that k blocks
are marked in u, or more precisely | cond(f(ui))|1 = k. On the other hand | cond(f(wi))|1 ≤ ℓ.
Since u is rbpm u[|u|] is marked. If x is not marked, | cond(f(ui))|1 ≤ ℓ

2 < 2k−1
2 = k − 1

2 . If

x is marked, | cond(f(ui))|1 ≤ ℓ−1
2 < 2k−2

2 = k − 1. This is in both cases a contradiction to
| cond(f(ui))|1 = k.
case 2. Consider now that u is not rbpm. Thus there exists a stage i ∈ [| alph(u)|] in which k
blocks are marked but u[|u|] is unmarked. If a is not in alph(u) marking a before stage i leads to
2k+1 blocks for the largest such i. Considering σ′ then at the beginning u and uR are completely
marked and in the end two blocks are joined by marking a. This leads to loc(w) ≤ 2k.
Supposition: loc(w) < 2k
As described, a needs to be marked after the last stage where in u k blocks are marked without
u[|u|] being marked. But this sums up to k blocks marked in u and k blocks marked in uR, hence
overall 2k blocks. This concludes the case a 6∈ alph(u).
Consider a ∈ alph(u) and assume that a is marked by σ when k blocks are marked in u and
u[|u|] is unmarked. Thus πσ(w) = 2k + 1.
Supposition: loc(w) =: ℓ < 2k + 1
Let µ be an optimal marking sequence for w.
Additional supposition: µ not optimal for u
Then there exists a stage i ∈ [alph(w)] such that | cond(f(ui))|1 = k + 1. If a is unmarked in
this stage, | cond(f(wi))|1 = 2k+2 > ℓ which contradicts the first supposition. If a is marked in
this stage | cond(f(wi))|1 = 2k + 1 which contradicts the first supposition.
Thus, µ is optimal for u. By assumption there exists a stage i ∈ [| alph(u)|] such that a is marked,
k blocks are marked, and u[|u|] is unmarked. This implies since cond(f(wi)) is a palindrome
that at most ℓ−1

2 blocks are marked in u. Thus, k ≤ ℓ−1
2 < 2k+1−1

2 = k.
case 3. In the remaining case u is not rbpm, a ∈ alph(u), and there exists an optimal marking
sequence for u such that in every stage a is unmarked or less than k blocks are marked or u[|u|]
is marked. Let σ be such a marking sequence. Then πσ(w) = 2k.
Supposition: loc(w) =: ℓ < 2k
Let µ be an optimal marking sequence for w. Since u is not rbpm there exists a stage i ∈
[| alph(u)|] such that | cond(f(ui))|1 = k and u[|u|] is unmarked. If a were unmarked in stage i,
k = | cond(f(ui))|1 ≤ ℓ

2 < k and if a were marked in stage i, k = | cond(f(ui))|1 ≤ ℓ−1
2 < 2k−1

2 =
k − 1

2 . Thus 2k + 1 ≤ ℓ < 2k would hold.

25

Lemma 22. Let w = ui be the i-times repetition for u ∈ X∗ and i ∈ N. If u is strictly k-local
then

loc(w) =

{
ik − 1 + 1, if u is bpm,

ik, otherwise.

Proof. Let σ be a marking sequence with πσ = loc(u) = k. Since alph(u) = alph(ui) for all
i ∈ N, σ is also a marking sequence for w. If u is not bpm, there exists a stage during the
marking in which k blocks are marked by σ and at least one of u[1] or u[|u|] is unmarked. Thus
marking w according to the sequence σ leads to πσ(w) = ik. If u is bpm, in any stage in which
k blocks are marked, u[1] and u[|u|] are marked and thus in w, while being marked according to
σ, the last marked block of an occurrence of u and the first marked block of the next occurrence
of u coincide, as soon as the prefix of length |u| of w contains k marked blocks. So, we get
πσ(w) = ik − i+ 1.

For proving loc(w) = ik or loc(w) = ik − i + 1 respectively, consider firstly i = 2. Assume
first that w is bpm. Suppose loc(w) = ℓ < 2k − 1. Let σ′ be the marking sequence witnessing
loc(w) = ℓ. Since u is strictly k-local, there exists a stage in marking w by σ′ in which u has k
marked blocks. The second u has exactly as many marked blocks as the first one, so also k. In
the best case, in w the last marked block of the first u and the first marked block of the second
u are connected. Anyway, the number of marked blocks of w is, in that case, exactly 2k − 1. A
contradiction to the assumption loc(w) = ℓ < 2k − 1. If u is not bpm, then, once again, there
exists a stage in marking w by σ′ in which u has k marked blocks. The second u has also exactly
k marked block. But, in this case, in w the last marked block of the first u and the first marked
block of the second u do not touch (as either the last letter of u or its first letter are not marked).
So w has 2k marked blocks, a contradiction.

This reasoning can be trivially extended for i > 2.

B A Many-One Reduction to Prove NP-Hardness of Loc

We use the following notations. Given a marking sequence σ, let σR be the marking sequence
obtained by reversing σ (i.e. σR(i) = σ(|X | − i + 1) for 1 ≤ i ≤ |X |). We say that a marking
sequence σ with πσ(α) = loc(α) is near-optimal (for α) if πσ(α) ∈ {loc(α), loc(α) + 1}.

The next lemma shows that, given two letters xi, xj of a word α, it is guaranteed that there
exists a near-optimal marking sequence which marks xi before xj .

Lemma 23. Let α be a word over the alphabet X = {x1, x2, . . . , xn}. Let σ : {1, 2, . . . , |X |} → X
be a marking sequence. Then |πσ(α)− πσR(α)| ≤ 1.

Proof. Let 1 ≤ i ≤ |X | and consider the marking of the first i letters in α according to σR. Note
that these letters are exactly the last i letters to be marked according to σ. In particular, the
number of marked blocks after stage i of marking α according to σR corresponds exactly to the
number of unmarked blocks – or gaps – after stage |X | − i of marking α according to σ. Since
the number of unmarked blocks/gaps can be at most one higher, and at most one lower than
the number of marked blocks, the lemma follows immediately.

In this part of the appendix, we show, via a many-one reduction, that Loc is NP-hard. To
this end, we devise a reduction from the well-known NP-complete Clique problem, i. e., the
problem to decide, for a given graph G = (V,E) and ℓ ∈ N, whether G contains a clique (i. e., a
complete subgraph) of size ℓ.

Let G = (V,E) be an undirected graph with V = {v1, v2, . . . , vn} and let ℓ ∈ N with ℓ ≤ n.

Note that the number of edges in a clique of size ℓ is exactly µℓ =
ℓ(ℓ−1)

2 . We define the alphabet
X = {x1, x2, . . . , xn, z1, z2, z3} containing a unique letter for each vertex of the graph, along with
three extra ‘control’ letters. Let d(i) denote the degree of each vertex vi, and let ∆ = max

1≤i≤n
{d(i)}.

Next, we define the word α = α1α2α3, where α1 = (z1z2z3z2)
γ1 ,

α2 = (z1z2)
γ2(n−ℓ)(x1z2)

γ2(x2z2)
γ2 . . . (xnz2)

γ2(z3z2)
ℓγ2z3,

α3 =
(∏

{vi,vj}∈E∧i<j(xixj)
γ3z3

)(∏
1≤i≤n(xiz3)

γ3(∆−d(i))
)
,

26

and γ1, γ2 and γ3 are chosen such that γ1 > |α2α3|, γ2 > |α3| + 1, and γ3 > 2. Finally, let
ρ = γ1 + nγ2 + (ℓ∆− 2µℓ)γ3 + µℓ + 1.

Lemma 24. The word α is ρ-local if and only if G contains a clique of size ℓ.

Proof. We first consider some general observations on the k-locality of α. For clarity, and to
avoid counting marked blocks more than once, we use the convention that a marked block which
starts in α1 and ends in α2 (or α3) belongs to α2 (or α3, respectively), and not to α1.

Claim 1. α is (γ1 + nγ2 + |α3|)-local.

Proof. (Claim 1) Consider the marking sequence z1, x1, x2, . . . , xℓ, z2, z3, xℓ+1, . . . , xn. After
marking the first letter, z1, we have γ1 + γ2(n − ℓ) blocks. Marking the letters xi, 1 ≤ i ≤ ℓ,
introduces exactly ℓγ2 additional blocks in α2 (each single xi accounting for γ2 blocks), and
altogether, they introduce fewer than |α3| additional blocks in α3, resulting always in a total of
less than γ1+nγ2+ |α3| blocks. Marking z2 introduces no new blocks in α1 (the last occurrence
is adjacent to the first z1 in α2), and joins together nγ2 blocks in α2 while simultaneously
introducing nγ2 more, giving a net increase of one. Since z2 does not occur in α3, no new blocks
are introduced there. Thus we have at most γ1 + nγ2 + |α3| blocks. Marking z3 joins all the γ1
blocks in α1, and α1 is completely marked. Since no more than |α2α3| blocks can exist elsewhere,
and since γ1 > |α2α3|, all further steps will have less than γ1+1 marked blocks, so the maximum
used is less than γ1 + nγ2 + |α3|+ 1 as claimed.

Claim 2. In any optimal marking sequence, z2 is marked between z1 and z3. Consequently
there exists a near-optimal marking sequence in which z1 is marked before z2, which in turn is
marked before z3.

Proof. (Claim 2) If z2 were the first (resp. last) out of the three to be marked, then α1 would
contain 2γ1 > γ1 + nγ2 + |α3| marked blocks and thus by Claim 1 the marking sequence is not
optimal. The second statement follows from Lemma 1.

For the rest of the proof, consider a near-optimal marking sequence in which z1 is marked before
z2, and z2 is marked before z3. Such a sequence exists, by Claim 2. Let ℓ′ be the number of
xis which are marked before z2. If ℓ′ < ℓ, then exactly after z2 is marked, we have γ1 marked
blocks in α1. The number of marked blocks in the suffix (z3z2)

ℓγ2z3 of α2 is ℓγ2. To count
the marked blocks in the rest of α2 (i.e. the prefix (z1z2)

γ2(n−ℓ)(x1z2)
γ2(x2z2)

γ2 . . . (xnz2)
γ2),

note that since both ends of this factor are marked, the number of marked blocks is exactly one
more than the number of gaps. Moreover, since z1 and z2 are marked, the only gaps come from
occurrences of the unmarked xis. Since no two occurrences of these are adjacent, this means that
each occurrence is a unique gap so there are (n− ℓ′)γ2 gaps in total. Consequently, α2 contains
exactly (n − ℓ′ + ℓ)γ2 + 1 marked blocks. Since γ2(n − ℓ′ + ℓ) ≥ γ2(n + 1), and γ2 > |α3| + 1,
this means we have more than γ1 + nγ2 + |α3|+ 1 blocks in total. By Claim 1, this contradicts
our assumption that the sequence is near optimal. Similarly, if ℓ′ > ℓ, then exactly before z2
is marked, we have γ1 marked blocks in α1 and γ2(n − ℓ + ℓ′) ≥ γ2(n + 1) marked blocks in
α2. Again this implies that we have more than γ1 + nγ2 + |α3| + 1 marked blocks altogether,
contradicting the assumption that our sequence is near-optimal. Consequently, ℓ′ = ℓ, and there
exist i1, i2, . . . , iℓ such that the set of letters marked before z2 is {xi1 , xi2 , . . . , xiℓ , z1}.

Now, we observe that after z2 is marked, the number of marked blocks is never increased.
To see why, suppose z1, z2, xi1 , xi2 , . . . , xiℓ are marked (note that we do not exclude the case
that more letters may also be marked). Suppose we mark z3. Then γ1 marked blocks will be
joined together in α1, and hence decrease the number of marked blocks in α1 by γ1 − 1 (and α1

is completely marked). Since γ1 > |α2α3|, the total number of blocks cannot increase overall.
Similarly, suppose we mark some xj , 1 ≤ j ≤ n. Then γ2 marked blocks are joined together in
α2, thus reducing the number of marked blocks by γ2 − 1. The number of blocks in α1 remains
the same, and since γ2 > |α3|, the total number of marked blocks cannot increase overall.

It is reasonably straightforward to observe that until z2 is marked, the total number of marked
blocks is never decreased (in order to be fully precise, one can make an argument symmetric
to the above). Thus, the maximum number of marked blocks in our sequence is obtained (not
necessarily for the first time) when z2 is marked. In other words, if exactly z1, z2, xi1 , xi2 , . . . , xiℓ
are marked, we have the maximal number of blocks. Clearly, this implies that there are γ1 blocks
in α1 and nγ2 + 1 blocks in α2.

27

We now consider the number of marked blocks in α3, which is given by γ3 (∆ℓ− 2t)+t, where
t = |{(j, j′) | 1 ≤ j < j′ ≤ ℓ ∧ {vij , vij′ } ∈ E}|. To see this, first suppose there are gaps (or a
new unmarked letter #) between all adjacent letters. This hypothetical situation would give a
total of ∆γ3ℓ blocks. Then consider how many blocks are lost or joined by removing the gaps
(or #s). In particular, precisely 2γ3 blocks are joined together for each pair xij , xij′ such that
{vij , vij′ } ∈ E. No further blocks are joined together - so for each such pair we must subtract
2γ3 − 1 from the total.

Note that t can be at most µℓ and is exactly µℓ if and only if the vertices vi1 , vi2 , . . . , viℓ form
a clique. Consequently, if G contains a size-ℓ clique, a (near-optimal) marking sequence can be
chosen such that the maximum number of blocks used is γ1 + nγ2 + γ3(∆ℓ− 2µℓ) + µℓ + 1 = ρ.
Hence, in this case, α is ρ-local. On the other hand, if G does not contain a size-ℓ clique, then
regardless of the choice of xi1 , xi2 , . . . , xiℓ , we have t ≤ µℓ − 1, and any near optimal marking
sequence requires at least

γ1 + nγ2 + γ3 (∆ℓ− 2µℓ + 2) + µℓ = γ1 + nγ2 + (∆ℓ− 2µℓ) γ3 + 2γ3 + µℓ > ρ

marked blocks, meaning α is not ρ-local. Thus α is ρ-local if and only if G contains a size-ℓ
clique. Since α and ρ can be constructed in polynomial time, the theorem follows.

Since Loc is obviously in NP, Lemma 24 leads to an alternative proof that Theorem 6 holds.

C Investigation of Simple Greedy Strategies for Locality

Number

We shall formulate the greedy strategies in a bit more detail:

FewOcc Among all unmarked symbols, choose one with a smallest number of occurrences.
ManyOcc Among all unmarked symbols, choose one with a largest number of occurrences.
FewBlocks Among all unmarked symbols, choose one that, after marking it, results in the

smallest total number of marked blocks.
LeftRight Among all unmarked symbols, choose the one with the leftmost occurrence.
BlockExt Among all unmarked symbols, choose one that has at least one occurrence that

is adjacent to a marked block.

These strategies are – except for LeftRight – nondeterministic, since there are in general sev-
eral valid choices of the next symbol to mark. However, showing poor performances independent
of the nondeterministic choices are stronger negative results. We make the convention that all
strategies – except, of course, LeftRight – can choose any symbol as the initially marked symbol,
which is justified by the fact that, in terms of running-time, we could afford to try out every
possible choice of the first symbol. In the following, for every greedy strategy S and for every
word α, let GREEDYS(α) be the optimal marking number over all marking sequences that can be

obtained by strategy S, let ψS(α) =
GREEDYS(α)

loc(α) and ψS = maxα {ψS(α)}.

Proposition 25. Let ℓ ≥ 2. Then ψBlockExt(x1yx2yx3y . . . xℓy) ≥ 2− 2
ℓ
.

Proof. For the sake of convenience, let ℓ = 2k for some k ≥ 1. Assume that α is marked by greedy
strategy BlockExt. If y is marked first, we have 2k marked blocks and if some xi, 1 ≤ i ≤ 2k, is
marked first, then y is marked next, which leads to 2k−1 marked blocks. From now on, marking
the rest of the symbols decreases the number of marked blocks; thus, GREEDYBlockExt(α) = 2k− 1.
On the other hand, if we do not stick to strategy BlockExt, then we can first mark the k symbols
x2, x3, . . . , xk+1, which leads to k marked blocks. Then marking y joins all the previously marked
blocks into one marked block and turns k−1 occurrences of y into new individual marked blocks
(i. e., the k−2 occurrences of y between the symbols xk+2, xk+3, . . . , x2k and the single occurrence
of y after x2k). Thus, there are k marked blocks. Since from now on marking the rest of the
symbols only decreases the number of marked blocks, we conclude that loc(α) ≤ k. Consequently,
ψBlockExt(α) ≥

ℓ−1
ℓ
2

= 2− 2
ℓ
.

28

For every S ∈ {FewOcc,ManyOcc,FewBlocks, LeftRight}, by BlockExt−S, we denote the strat-
egy BlockExt with the addition that strategy S is applied in order to decide between symbols
that are valid candidates with respect to BlockExt, i. e., symbols that extend at least one marked
block (for BlockExt− LeftRight this means that among all valid candidates we choose the one
that occurs as the leftmost).

Let ℓ ≥ 2 and let

α = (x1x2 . . . xℓ)
2x1β1x2β2x3β3 . . . βℓ−1xℓ ,

where, for every i, 1 ≤ i ≤ ℓ− 1, βi = (y2i−1y2i)
4, 1 ≤ i ≤ ℓ− 1 ,

γ = x1x2 . . . xℓx1y1x2y2x3y3 . . . yℓ−1xℓ .

Proposition 26. For every S ∈ {FewOcc,FewBlocks}, ψBlockExt−S(α) ≥ ℓ−1
6 , ψS(α) ≥ ℓ−1

6 ,

ψBlockExt−ManyOcc(γ) ≥
ℓ−1
6 and ψManyOcc(γ) ≥

ℓ−1
2 .

Proof. We first consider α and observe that (x1, y1, y2, x2, y3, y4, x3, y5, y6, . . .) is an optimal
marking sequence which shows that loc(α) = 6. Next, we consider how the strategies BlockExt−S,
S ∈ {FewOcc,FewBlocks}, can mark α. If the first marked symbol is some xi, then both
BlockExt− FewOcc and BlockExt− FewBlocks would next mark all remaining xj , j 6= i, in such
an order that there are always at most 2 marked blocks in the prefix (x1x2 . . . xℓ)

2. This leads
to at least ℓ marked blocks. If, on the other hand, some y2i−1 or y2i is marked first, then
BlockExt− FewOcc marks xi or xi+1 next (depending on whether y2i−1 or y2i is marked first)
and then all remaining xj as before, while BlockExt− FewBlocks would mark the remaining
symbol of y2i−1 or y2i and then all xj . This results in at least ℓ − 1 marked blocks. Thus,
ψBlockExt−S(α) ≥ ℓ−1

6 , S ∈ {FewOcc,FewBlocks}. Moreover, strategies FewOcc and FewBlocks

will behave on α just like BlockExt− FewOcc and BlockExt− FewBlocks, respectively, with the
only difference that they have more freedom with respect to the order of how the xi are marked.
In particular, ψS(α) ≥

ℓ−1
6 , S ∈ {FewOcc,FewBlocks}.

Next, we consider the word γ and observe that (x1, y1, x2, y2, x3, y3, . . .) is an optimal marking
sequence which shows that loc(γ) = 2. If BlockExt−ManyOcc marks some xi first, then it will
mark all remaining xj next, which results in ℓ marked blocks. If, on the other hand, the
first symbol is some yi, then either xi or xi+1 is marked next and after that all remaining xj ,
leading to ℓ − 1 marked blocks. The strategy ManyOcc behaves in the same way, with the only
difference that there are more possibilities in which order the symbols xi are marked. Thus,
ψS(γ) ≥

ℓ−1
2 .

Let ℓ ≥ 2 be an even number and let

δ = x1x2 . . . xℓx1xℓx2xℓ−1x3xℓ−2 . . . x ℓ
2
x ℓ

2+1 .

Proposition 27. Then ψBlockExt− LeftRight(δ) ≥
ℓ
4 and ψLeftRight(δ) ≥

ℓ
4 .

Proof. We first observe that loc(δ) = 2, which is witnessed by the marking sequence

(x1, xℓ, x2, xℓ−1, x3, xℓ−2, . . . , x ℓ
2
, x ℓ

2+1)

(note that this marking sequence maintains a marked prefix and one additional marked internal
factor starting with xℓx1xℓ, which is alternately extended to both sides).

Assume that xi is the first symbol marked by BlockExt− LeftRight. If i ≤ ℓ
2 , then we

mark next xi−1, then xi−2 and so on, until all x1, x2, . . . , xi are marked. Then the symbols
xi+1, xi+2, . . . , x ℓ

2
are marked, which leads to ℓ

2 + 1 marked blocks. If, on the other hand,

i = ℓ
2 + j with j ≥ 1, then the next marked symbol will be x ℓ

2−(j−1). Then, as before,

we will mark x ℓ
2−(j−1)−1, x ℓ

2−(j−1)−2, . . . until all x1, x2, . . . , x ℓ
2−(j−1) are marked, and then

x ℓ
2−(j−1)+1, . . . , x ℓ

2
are marked. This results in ℓ

2 marked blocks. Thus, ψBlockExt− LeftRight(δ) ≥
ℓ
4 .

If the strategy LeftRight marks some symbol xi with i ≤
ℓ
2 first, then it marks next all the sym-

bol x1, . . . , xi−1, xi+1, . . . , x ℓ
2
, which results in ℓ

2 + 1 marked blocks. If, on the other hand,

i > ℓ
2 , then symbols x1, . . . , x ℓ

2
are marked next, which leads to at least ℓ

2 marked blocks. Thus

ψLeftRight(δ) ≥
ℓ
4 .

29

We define the following extensions of BlockExt:

BlockExt-1 Among all extending symbols, choose one that has the most extending occ.

BlockExt-2 Among all extending symbols, choose one for which #extending occ.
#occ. is maximal.

Proposition 28. For every S ∈ {BlockExt-1,BlockExt-2}, ψS(α) ≥
ℓ−1
6 .

Proof. If we first mark a symbol xi, then, among all symbols extending a marked block, i. e.,
symbols xi−1, xi+1, y2i−1 and y2i+1, the symbols xi−1 and xi+1 each have 3 occurrences in total,
two of which are extending a marked block, whereas the symbols y2i−1 and y2i+1 each have
4 occurrences, only one of which is extending. Consequently, both BlockExt-1 and BlockExt-2

chose either xi−1 and xi+1 next. This situation does not change until all xi are marked, which
leads to ℓ marked blocks. If, on the other hand, some y2i−1 or y2i is marked first, then we mark
next the remaining symbol y2i−1 or y2i such that βi is completely marked. Next, xi and xi+1

are marked, in some order, which brings us back to the situation described above which leads
to the marking of all remaining xj , leading to ℓ − 1 marked blocks. Consequently, for every
S ∈ {BlockExt-1,BlockExt-2}, ψS(α) ≥ ℓ−1

6 (note that loc(α) ≤ 6 is discussed in the proof of
Proposition 26).

30

	1 Introduction
	2 Preliminaries
	3 Locality and Cutwidth
	4 Locality and Pathwidth
	5 Pathwidth and Cutwidth
	A Additional Word-Combinatorial Considerations
	B A Many-One Reduction to Prove NP-Hardness of Loc
	C Investigation of Simple Greedy Strategies for Locality Number

