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Abstract
For a positive and relatively prime set A, let �(A) denote the set of integers that are
formed by taking nonnegative integer linear combinations of integers in A. Then
there are finitely many positive integers that do not belong to �(A). For A, let
g(A) and n(A) denote the largest integer and the number of integers that do not
belong to �(A), respectively. We determine both g(A) and n(A) for two sets that
arise naturally from the Fibonacci sequence and the Lucas sequence.

1. Introduction

For a finite set A = {a1, . . . , ak} of positive integers with gcd A := gcd(a1, . . . , ak) =
1, let �(A) := {a1x1 + · · ·+akxk : xi � 0}. It is well-known that �c(A) := N \�(A)
is finite. Although it was Sylvester [8] who first asked to determine

g(A) := max�c(A),

and who showed that g(a1, a2) = (a1 � 1)(a2 � 1) � 1, it was Frobenius who was
largely instrumental in giving this problem the early recognition and it is after
him that the problem is also named. The monograph on the Frobenius problem
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[5] gives an extensive survey. Related to the Frobenius problem is the problem of
determining n(A) := |�c(A)|. As in the case of determining g(A), it was Sylvester
who showed that n(a1, a2) = 1

2 (a1 � 1)(a2 � 1).
For each nonzero residue class C modulo a1, let mC denote the least integer in

�(A) \C. The functions g and n are easily determined from the values of mC by
Lemma 1. Brauer and Shockley [1] proved (i) and Selmer [7] proved (ii); a short
proof of both results may be found in [9].

Lemma 1. ([1, 7]) Let a 2 A. For each nonzero residue class C modulo a, let mC

denote the least integer in �(A) \C. Then

(i) g(A) = max
C

mC � a, the maximum taken over all nonzero classes C modulo
a;

(ii) n(A) =
1
a

X
C

mC� 1
2 (a�1), the sum taken over all nonzero classes C modulo

a.

Exact values of g(A) and n(A) are di�cult to determine in general when |A| > 2;
refer to [5] for a list of cases when these have been determined. In the absence of
exact results, research on the Frobenius problem has often been focused on sharp-
ening bounds on g(A) and n(A), and on algorithmic aspects. Although the running
time of these algorithms is superpolynomial, Kannan [3] gave a method that solves
the Frobenius problem in polynomial time for a fixed number of variables using the
concept of covering radius and Ramı́rez Alfonśın [4] showed that the problem is
NP-hard under Turing reduction.

The Fibonacci and the Lucas sequences, {Fn}n�1 and {Ln}n�1, are among the
most well-known and well-studied sequences in mathematics. Maŕın, Ramı́rez Al-
fonśın and Revuelta [6] studied the problem of determining the function g

�
Fi,Fj ,Fk

�
and n

�
Fi,Fj ,Fk

�
, and found exact values in the case when j = i + 2. Matthews

[2] studied the problem of finding g
�
{a, a + b, aFk�1 + bFk}

�
, where a > Fk and

gcd(a, b) = 1, and gave exact values in these cases.
In this article, we consider sets that arise from taking linear combinations from

these sequences. More specifically, for any pair of positive and coprime integers a
and b, we consider the sets

F =
�
a, a+b, 2a+3b, . . . ,F2k�1a+F2kb

 
, L =

�
a, a+3b, 4a+7b, . . . ,L2k�1a+L2kb

 
,

and give exact values to the functions g and n for these sets.

2. The Fibonacci Case

The Fibonacci numbers {Fn}n�0 are given by the second-order recurrence

Fn = Fn�1 + Fn�2 for n � 2, F1 = F2 = 1.
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We extend the sequence to F0 := F2 � F1 = 0 and F�1 := F1 � F0 = 1. Binet’s
formula is

Fn =
↵n � �n

↵� �
(1)

for n � 0, where ↵,� are the roots of the equation x2 � x� 1 = 0, with ↵ > �.
Let a, b be positive integers such that gcd(a, b) = 1. Consider the set

F =
�
F�1a + F0b,F1a + F2b,F3a + F4b, . . . ,F2k�1a + F2kb

 
=
�
a, a + b, 2a + 3b, . . . ,F2k�1a + F2kb

 
.

Thus g(F ) denotes the largest integer N such that the equation
�
F�1a + F0b

�
x0 +

�
F1a + F2b

�
x1 + · · · +

�
F2k�1a + F2kb

�
xk

=

 
kX

i=0

F2i�1xi

!
a +

 
kX

i=0

F2ixi

!
b = N (2)

has no solution in nonnegative integers x0, x1, . . . , xk, and n(F ) the number of such
N .

Proposition 1. Let ↵ = (1+
p

5)/2 denote the positive root of x2�x�1 = 0. The
sequence of Fibonacci numbers {Fn}n�0 satisfies:

(i)
P1

n=1

�
↵ · F2n�1 � F2n

�
= 1.

(ii) F2n < 3F2n�2 for n � 3.

(iii) 2F2n�2 + 2F2n > F2n+2 for n � 1.

(iv) 2F2n + F2n+2 + · · · + F2n+2k�4 + 2F2n+2k�2 � F2n+2k for n � 0, k � 1.

(v) {↵ · F2n�1 � F2n}n�1 is decreasing.

Proof. We use Binet’s formula (1). Recall that ↵ = (1+
p

5)/2 and � = (1�
p

5)/2
are the roots of x2 � x� 1 = 0.

(i)
1X

n=1

�
↵ · F2n�1 � F2n

�
=

1X
n=1

↵(↵2n�1 � �2n�1)� (↵2n � �2n)
↵� �

= �
1X

n=1

�2n�1 = � �

1� �2
= 1.

(ii) For n � 3,

F2n = F2n�1 + F2n�2 = 2F2n�2 + F2n�3 < 3F2n�2.
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(iii) For n � 1,

F2n+2 = F2n+1 + F2n = 2F2n + F2n�1 < 2F2n + 2F2n�2.

(iv)

2F2n + F2n+2 + · · · + F2n+2k�4 + 2F2n+2k�2 > F2n+1 + F2n+2 + F2n+4 + · · ·
+F2n+2k�4 + 2F2n+2k�2

= F2n+3 + F2n+4 + F2n+6+ + · · ·
+F2n+2k�4 + 2F2n+2k�2

=
...

= F2n+2k�3 + 2F2n+2k�2

= F2n+2k.

(v)
�
↵ · F2n�1 � F2n

�
�
�
↵ · F2n+1 � F2n+2

�
= F2n+1 � ↵ · F2n

=
(↵2n+1 � �2n+1)� ↵(↵2n � �2n)

↵� �

= �2n > 0.

Proposition 2. Let a, b be positive integers, with gcd(a, b) = 1. Let

F =
�
F�1a + F0b,F1a + F2b,F3a + F4b, . . . ,F2k�1a + F2kb

 
.

For each nonzero y, the least integer in �(F ) congruent to by modulo a is given by

mby = a

⇠
F2k�1y

F2k

⇡
+ by.

Proof. For 1  y  a� 1, let mby denote the least integer in �(F ) congruent to by
modulo a. Fix y. By (2), any integer N in �(F ) is of the form

 
kX

i=0

F2i�1xi

!
a +

 
kX

i=0

F2ixi

!
b.

If N ⌘ by (mod a), then
Pk

i=0 F2ixi ⌘ y (mod a) since gcd(a, b) = 1. Let
Pk

i=0 F2ixi =
y + ta, t � 0. For a fixed t � 0, we wish to minimize

x =
kX

i=0

F2i�1xi subject to
kX

i=0

F2ixi = y + ta.
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We claim that this minimum is given by

xmin =
⇠

F2k�1(y + ta)
F2k

⇡
. (3)

Since mby = min
�
axmin + b(y + ta) : t � 0

 
, the verification of this claim proves

that mby = a
l

F2k�1y
F2k

m
+ by.

Let y0 = y + ta. We show that

↵ · F2k�1 � F2k

F2k
y0  ↵ · xmin � y0 <

↵ · F2k�1 � F2k

F2k
y0 + ↵. (4)

For any x =
Pk

i=0 F2i�1xi, we have

↵·x�y0 =
kX

i=0

�
↵·F2i�1�F2i

�
xi �

�
↵·F2k�1�F2k

� kX
i=0

xi �
↵ · F2k�1 � F2k

F2k
y0 (5)

since y0 =
Pk

i=0 F2ixi  F2k
Pk

i=0 xi and since {↵ ·F2i�1�F2i}i�1 is decreasing by
Proposition 1, part (v). This proves the first inequality in (4).

We choose the sequence {xi}i�0 greedily. In other words, we choose the largest i
(say, i0) such that F2i  y0, and then let xi0 = by0/F2i0c. Let xi = 0 for i0 < i  k.
If y00 = y0 � F2i0xi0 > 0, we repeat the above procedure with y00 replacing y0. The
procedure terminates because F2 = 1. Note that the term x0 does not appear in
the expression for y0; so we choose x0 = 0. Because of Proposition 1, part (ii), we
must have xi 2 {0, 1, 2} for each i < k.

If x1 < 2, then by Proposition 1, part (i),

k�1X
i=0

�
↵ · F2i�1 � F2i

�
xi < 2

1X
i=2

�
↵ · F2i�1 � F2i

�
+
�
↵ · F1 � F2

�

= 2
�
1� (↵� 1)

�
+ (↵� 1)

= 2� (↵� 1) < ↵. (6)

Now suppose x1 = 2. We show that

k�1X
i=0

�
↵ · F2i�1 � F2i

�
xi < 2(↵� 1) +

k�1X
i=2

�
↵ · F2i�1 � F2i

�
.

Since

(↵� 1) +
k�1X
i=2

�
↵ · F2i�1 � F2i

�
=

k�1X
i=1

�
↵ · F2i�1 � F2i

�
<

1X
i=1

�
↵ · F2i�1 � F2i

�
= 1,

the inequality in (6) also holds in this case. Observe that by Proposition 1, part (iii),
there does not exist i for which xi = xi+1 = 2. If xi < 2 for 1 < i < k, the claimed
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inequality holds. Otherwise, let i, j be the two largest integers less than k for which
xi = xj = 2. By Proposition 1, part (iv), xm = 0 for some m between i and j.
Define a sequence {x0n}k�1

n=0 by letting x0j = x0m = 1 and x0n = xn for all other n.
Then

Pk�1
n=0

�
↵ ·F2n�1�F2n

�
x0n >

Pk�1
n=0

�
↵ ·F2n�1�F2n

�
xn by Proposition 1, part

(v). Thus the sequence {x0n}k�1
n=0 has no 2’s for n > i and

Pk�1
n=0

�
↵·F2n�1�F2n

�
x0n >Pk�1

n=0

�
↵ · F2n�1 � F2n

�
xn. We now repeat the above argument to the sequence

x0, x1, x2, . . . , xi = 2 since these integers have also been chosen greedily. This
process terminates with a sequence with no 2’s beyond x01. The sum corresponding
to these terms of the sequence is therefore at most 2(↵�1)+

Pk�1
i=2

�
↵ ·F2i�1�F2i

�
.

This shows that the inequality in (6) also holds when x1 = 2.
From (6) we now have

↵ · x� y0 =
kX

i=0

�
↵ · F2i�1 � F2i

�
xi 

k�1X
i=0

�
↵ · F2i�1 � F2i

�
xi +

(↵ · F2k�1 � F2k)y0

F2k

< ↵ +
(↵ · F2k�1 � F2k)y0

F2k
.

Since (5) holds for every x and ↵ ·xmin� y0  ↵ ·x� y0, we also have the second
inequality in (4). It follows from (4) that

F2k�1y0

F2k
 xmin <

F2k�1y0

F2k
+ 1. (7)

This proves the proposition.

Proposition 3. Let a, b be positive integers, with gcd(a, b) = 1. Let

F =
�
F�1a + F0b,F1a + F2b,F3a + F4b, . . . ,F2k�1a + F2kb

 
.

Then

(i)

g
�
F
�

= a

✓⇠
F2k�1(a� 1)

F2k

⇡
� 1
◆

+ (a� 1)b.

(ii)

n
�
F
�

=
a�1X
y=1

⇠
F2k�1y

F2k

⇡
+

1
2
(a� 1)(b� 1).

Proof. This follows directly from Lemma 1 and Proposition 2.
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(i)

g
�
F
�

= max
1ya�1

mby � a

= max
1ya�1

✓
a

⇠
F2k�1y

F2k

⇡
+ by

◆
� a

= a

✓⇠
F2k�1(a� 1)

F2k

⇡
� 1
◆

+ (a� 1)b.

(ii)

n
�
F
�

=
1
a

a�1X
y=1

mby �
1
2
(a� 1)

=
1
a

a�1X
y=1

✓
a

⇠
F2k�1y

F2k

⇡
+ by

◆
� 1

2
(a� 1)

=
a�1X
y=1

⇠
F2k�1y

F2k

⇡
+

b

a

a�1X
y=1

y � 1
2
(a� 1)

=
a�1X
y=1

⇠
F2k�1y

F2k

⇡
+

1
2
(a� 1)(b� 1).

Remark 1. A simplification of the sum in Proposition 3, part (ii) appears di�cult,
but would be desirable.

3. The Lucas Case

The Lucas numbers {Ln}n�0 are given by the second-order recurrence

Ln = Ln�1 + Ln�2 for n � 2, L1 = 1, L2 = 3.

Binet’s formula is
Ln = ↵n + �n (8)

for n � 0, where ↵,� are the roots of the equation x2 � x� 1 = 0, with ↵ > �.
Let a, b be positive integers such that gcd(a, b) = 1. Consider the set

L =
�
a,L1a + L2b,L3a + L4b, . . . ,L2k�1a + L2kb

 
=
�
a, a + 3b, 4a + 7b, . . . ,L2k�1a + L2kb

 
.
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For the set involving Lucas sequences analogous to the Fibonacci sequence given
in Section 2, the analysis is significantly di↵erent – each element in the set L is
a nonnegative integer linear combination of the first three terms of L. Hence,
for each k � 3, we show that L2k�1a + L2kb belongs to �

�
{a, a + 3b, 4a + 7b}

�
.

Write L2k = 3q + r, with r 2 {0, 1, 2}. Since L2k 2 {18, 47, . . .}, q � 15 if r 6=
0. If r = 0, then L2k�1a + L2kb = q(a + 3b) +

�
L2k�1 � q

�
a. If r = 1, then

L2k�1a + L2kb = (q � 2)(a + 3b) + (4a + 7b) +
�
L2k�1 � q � 2

�
a. If r = 2, then

L2k�1a + L2kb = (q � 4)(a + 3b) + 2(4a + 7b) +
�
L2k�1 � q � 4

�
a. Since 2L2k�1 >

L2k�1 + L2k�2 = L2k = 3q + r, we have L2k�1 > 3
2q > q. Moreover, L2k�1 � q + 4

when r 6= 0 since q � 15 in these cases. Therefore

�
�
L
�

= �
�
{a, a + 3b, 4a + 7b}

�
. (9)

Hence g(L) denotes the largest integer N such that the equation

ax0 + (a + 3b)x1 + (4a + 7b)x2 = N (10)

has no solution in nonnegative integers x0, x1, x2, and n(L) the number of such N .
It is trivial that �c(L) = ; if 1 2 L, and that �c(L) = {1, 3, 5, . . . ,m�2} if 2 2 L

and m (> 1) is the least odd integer in L. Therefore we may henceforth assume
that 1 /2 L and 2 /2 L.

The terms L2 = 3 and L4 = 7 play a significant part in the determination of the
minimum integer in each residue class modulo a. Since 3(x + 7m) + 7(y � 3m) =
3x + 7y for any m 2 Z, we note that �

�
{3, 7}

�
=
�
3x + 7y : x � 0, y 2 {0, 1, 2}

 
;

henceforth we use this representation.

Proposition 4. Let a, b be positive integers, with a � 3 and gcd(a, b) = 1. Let

L =
�
a,L1a + L2b,L3a + L4b, . . . ,L2k�1a + L2kb

 
.

For each y 2 {1, . . . , a � 1}, let t = ty be the least nonnegative integer such that
y + ta = 3ry + 7sy 2 �

�
{3, 7}

�
, with sy 2 {0, 1, 2}. Then the minimum integer in

�(L) \ (by) is given by

mby = a(ry + 4sy) + b(3ry + 7sy),

except when (a, y) 2 {(4, 3), (5, 1), (5, 3)}.

Proof. Let mby denote the least positive integer in the class (by) modulo a. By (9)
and (10), mby is the least positive integer of the form ax+by with x = x0+3x1+4x2

and y = 3x1+7x2. For y 2 {1, . . . , a�1}, we must therefore minimize x0+3x1+4x2

subject to 3x1 + 7x2 ⌘ y (mod a), with each xi � 0. Since x0 is not a part of the
constraint, the objective function is actually 3x1 + 4x2. Since the transformation
(x1, x2) 7! (x1 + 7, x2 � 3) leaves 3x1 + 7x2 fixed but reduces x1 + 4x2 (by 5), we
must choose x2 2 {0, 1, 2} among the solutions to 3x1 + 7x2 = y + at.
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Suppose y + at = 3x1 + 7x2 2 �
�
{3, 7}

�
, with y 2 {1, . . . , a� 1}. We claim that

y +a(t+1) = 3x01 +7x02 2 �
�
{3, 7}

�
, except when (a, y) 2 {(4, 3), (5, 1), (5, 3)}. The

claim obviously holds when a 2 �
�
{3, 7}

�
. Since a � 3, the only cases that remain

are when a 2 {4, 5, 8, 11}. When a 2 {4, 5}, the only exceptions are provided by
(a, y) 2 {(4, 3), (5, 1), (5, 3)}. Since y + a(t + 1) � 1 + 2 · 8 > g(3, 7) for a 2 {8, 11},
the claim holds in this case.

Suppose that both y + at = 3x1 + 7x2 and y + a(t + 1) = 3x01 + 7x02 belong to
�
�
{3, 7}

�
; hence (a, y) /2 {(4, 3), (5, 1), (5, 3)}. Then a = 3(x01 � x1) + 7(x02 � x2).

Now (x01 � x1) + 4(x02 � x2) � 0 if and only if 3(x01 � x1) + 12(x02 � x2) � 0, which
is the same as a + 5(x02 � x2) � 0. Therefore

x01 + 4x02 � x1 + 4x2 if and only if a + 5(x02 � x2) � 0. (11)

We show that x01 + 4x02 � x1 + 4x2 holds in this case. By (11), we need to
consider only the case when x02�x2 2 {�1,�2}. If a ⌘ 0 (mod 3), then x02�x2 ⌘ 0
(mod 3). Hence x2 = x02, and we are done. If a ⌘ 1 (mod 3), then x02 � x2 ⌘ 1
(mod 3). Assume that x02�x2 = �2. Then (11) holds for a � 10. Suppose a = 4 or
7, and fix y 2 {1, . . . , a� 1}. Let ty denote the least nonnegative integer such that
y+tya 2 �

�
{3, 7}

�
. For a = 4 and y 2 {1, 2}, it is easy to check that (t1, t2) = (2, 1);

in each case, y + tya is a multiple of 3. Hence x2 = 0 in both cases. For a = 7,
y + tya = y + 7ty must be a multiple of 3; otherwise there would be a contradiction
to the definition of ty. Hence x2 = 0 in these case too. But then x02�x2 = x2 6= �2.
This completes the argument for a ⌘ 1 (mod 3). If a ⌘ 2 (mod 3), then x02�x2 ⌘ 2
(mod 3). Assume that x02 � x2 = �1. Then (11) holds for a � 5. Since a 6= 2, this
completes the argument for a ⌘ 2 (mod 3).

This completes the proof of the proposition.

Proposition 5. Let a, b be positive integers, with a � 12 and gcd(a, b) = 1. Let

L =
�
a,L1a + L2b,L3a + L4b, . . . ,L2k�1a + L2kb

 
.

Then
(i)

g
�
L
�

=

8>><
>>:

a
�

1
3a + 6

�
+ b(a + 11) if 3 | a;

max
�
a
�

1
3 (a� 1) + 4

�
+b(a + 4), a

�
1
3 (a� 1) + 3

�
+b(a + 11)

 
if 3 | (a� 1);

a
�

1
3 (a� 2) + 5

�
+ b(a + 11) if 3 | (a� 2).

(ii) n
�
L
�

satisfies the equation

a
⇣
n
�
L
�

+ a�1
2

⌘
= (a + 3b)R + (4a + 7b)S,

where

(R,S) =

( �
1
6 (a2 � 3a), a

�
if 3 | a;�

1
6 (a2 � 3a + 98), a� 7

�
if 3 - a.
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Proof. Let

S1 = {1, 2, 4, 5, 8, 11}, S2 = N \ S1, Si(a) = Si \ {1, . . . , a� 1}, i 2 {1, 2}.

(i) By Proposition 4, mb(y+3) > mby whenever y 2 �
�
{3, 7}

�
and y + 3  a� 1.

Note that n 2 S1 if and only if n /2 �
�
{3, 7}

�
. Hence ty > 0 if and only if

y 2 S1(a). By Lemma 1 and Proposition 4, with sy = (y + tya) mod 3 and
ry = 1

3 (y + tya� 7sy), we have

g
�
L
�

= max
y2S1(a)

mby � a

= max
y2S1(a)

�
a (ry + 4sy) + b (3ry + 7sy)

�
� a.

For a � 12, ty = 1 for y 2 S1(a), so that sy = (y + a) mod 3 and ry = 1
3 (y +

a� 7sy). Since s1 = s4, r1 < r4, and s2 = s5 = s8 = s11, r2 < r5 < r8 < r11,
we have

g
�
L
�

= max
n

a
�
r4 + 4s4

�
+ b

�
3r4 + 7s4

�
, a
�
r11 + 4s11

�
+ b

�
3r11 + 7s11

�o
� a

=

8>><
>>:

a
�

1
3a + 6

�
+ b(a + 11) if 3 | a;

max
�
a
�

1
3 (a� 1) + 4

�
+b(a + 4), a

�
1
3 (a� 1) + 3

�
+b(a + 11)

 
if 3 | (a� 1);

a
�

1
3 (a� 2) + 5

�
+ b(a + 11) if 3 | (a� 2).

(ii) From Lemma 1 and Proposition 4,

a
⇣
n
�
L
�

+ a�1
2

⌘
=

a�1X
y=1

mby = (a + 3b)
a�1X
y=1

ry + (4a + 7b)
a�1X
y=1

sy. (12)

Recall from part (i) that

sy = (y + tya) mod 3, ry =
1
3
(y + tya� 7sy),

where ty equals 1 when y 2 S1(a), and 0 when y 2 S2(a).
We observe that

a�1X
y=1

y mod 3 =

8><
>:

a
3 (1 + 2) = a if 3 | a;
a�1
3 (1 + 2) = a� 1 if 3 | (a� 1);

a�2
3 (1 + 2) + 1 = a� 1 if 3 | (a� 2).

It is also easy to verify that
P

y2S1(a)(y + a) mod 3 =
P

y2S1(a)(y mod 3)� 6
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when 3 - a. Therefore

S =
a�1X
y=1

sy =
X

y2S1(a)

(y + a) mod 3 +
X

y2S2(a)

y mod 3

=

8>>>><
>>>>:

a�1X
y=1

y mod 3 = a if 3 | a;

a�1X
y=1

y mod 3� 6 = a� 7 if 3 - a.

Hence

3R = 3
a�1X
y=1

ry =
X

y2S1(a)

(y + a� 7sy) +
X

y2S2(a)

(y � 7sy)

=
a�1X
y=1

y + a
X

y2S1(a)

1� 7
a�1X
y=1

sy

=
1
2
a(a� 1) + 6a� 7S

=

(
1
2 (a2 � 3a) if 3 | a;
1
2 (a2 � 3a + 98) if 3 - a.

Remark 2. Theorem 5 applies to a � 12. We list the values of g(L) and n(L) for
a 2 {3, . . . , 11}.

a g(L) n(L)

3 14b + 21 7b + 11

4 9b + 8 1
2 (9b + 9)

5 max{7b + 15, 9b + 10} 5b + 8

6 17b + 48 1
2 (17b + 49)

7 18b + 35 9b + 18

8 13b + 40 1
2 (15b + 43)

9 20b + 81 10b + 41

10 21b + 60 1
2 (21b + 71)

11 19b + 77 10b + 40
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4. Concluding Remarks

The Fibonacci and Lucas sequences satisfy the second-order recurrence equation
un = un�1 + un�2 for n � 2, and therefore are given by the formula un = A↵n +
B�n. The constants A and B are determined by the initial terms u0 and u1 of
the sequence. The problem of finding exact values of the functions g and n for sets
related to any such sequence is possible by methods similar to those adopted in
this article. In fact, it would be interesting to consider sets that arise from linear
recurrences of any order in some natural way. We close by formulating one of these
general problems.

Problem 1. Let {Un}n�0 be a second-order recurrence equation given by Un =
c1Un�1 + c2Un�2 for n � 2. For positive and coprime integers a, b, let

S =
�
a,U1a + U2b,U3a + U4b, . . . ,U2k�1a + U2kb

 
.

Give exact values for g(S) and n(S).

Acknowledgement. The authors are grateful to the referee for carefully reading
their manuscript and suggesting several changes that has made this more readable.
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