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In this paper, motivated by recent advances in the algorithmic theory of dynamic networks, we study systems of distributed entities

that can actively modify their communication network. �is gives rise to distributed algorithms that apart from communication can

also exploit network reconfiguration in order to carry out a given task. At the same time, the distributed task itself may now require a

global reconfiguration from a given initial networkGs to a target networkGf from a family of networks having some good properties,

like small diameter. With reasonably powerful computational entities, there is a straightforward algorithm that transforms any Gs

into a spanning clique in O (logn) time, where time is measured in synchronous rounds and n is the number of entities. From the

clique, the algorithm can then compute any global function on inputs and reconfigure to any desired target network in one additional

round.

We argue that such a strategy, while time-optimal, is impractical for real applications. In real dynamic networks there is typi-

cally a cost associated with creating and maintaining connections. To formally capture such costs, we define three reasonable edge-

complexity measures: the total edge activations, themaximum activated edges per round, and themaximum activated degree of a node.

�e clique formation strategy highlighted above, maximizes all of them. We aim at improved algorithms that will achieve (poly)log(n)

time while minimizing the edge-complexity for the general task of transforming any Gs into a Gf of diameter (poly)log(n).

�ere is a natural trade-off between time and edge complexity. Our main lower bound shows that Ω(n) total edge activations and

Ω(n/logn) activations per round must be paid by any algorithm (even centralized) that achieves an optimum of Θ(logn) rounds. On

the positive side, we give three distributed algorithms for our general task. �e first runs in O (logn) time, with at most 2n active

edges per round, an optimal total of O (n logn) edge activations, a maximum degree n − 1, and a target network of diameter 2. �e

second achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations, that is,O (log2 n) and

O (n log2 n), respectively. It gives a target network of diameter O (logn) and uses O (n) active edges per round. Our third algorithm

shows that if we slightly increase the maximum degree to polylog(n) then we can achieve a running time of o(log2 n).

�is novel model of distributed computation and reconfiguration in actively dynamic networks and the proposed measures of the

edge complexity of distributed algorithms may open new avenues for research in the algorithmic theory of dynamic networks. At

the same time, they may serve as an abstraction of more constrained active-reconfiguration systems, such as reconfigurable robot-

ics which come with geometric constraints, and draw interesting connections with alternative network reconfiguration models, like

overlay network construction and network constructors. We discuss several open problems and promising future research directions.

Additional KeyWords and Phrases: distributed algorithms, dynamic networks, reconfiguration, transformation, polylogarithmic time,

edge complexity
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1 INTRODUCTION

1.1 Dynamic Networks

�e algorithmic theory of dynamic networks is a relatively new area of research, concerned with studying the algorith-

mic and structural properties of networked systems whose structure changes with time.

One way to classify dynamic networks is based onwho controls the network dynamics. In passively dynamic networks

the changes are external to the algorithm, in the sense that the algorithm has no control over them. Such dynamics

are usually modeled by sequences of events determined by an adversary scheduler. �is is for example the case when

the computing entities must operate in a dynamic environment, such as when being carried by a set of transportation

units. In other applications, the entities can actively control the dynamics of their network, as is the case in mobile or

reconfigurable robotics and peer to peer networks. Hybrid cases or cases of partial control are less studied (cf. [14] for

a relevant study).

Another level of classification comes from who controls the algorithm. �is gives rise to two main families of models.

One is the fully centralized, in which a central controller has global view of the system. In case of active network

dynamics, the centralized algorithm typically designs a dynamic network by exploiting its full knowledge about the

system in a way that aims to optimize some given objective function. If network dynamics are passive then the goal

is typically to achieve some global computation task, like foremost journeys or dissemination, which may either be

possible to compute offline under full information about the evolution of the network or required to compute online

under limited or no knowledge about the future network structure. Similar objectives hold for the fully distributed case,

in which every node in the network is an independent computing entity, like an automaton or Turingmachine, typically

equipped with computation and communication capabilities, and in the case of active dynamics with the additional

capability to locally modify the network structure, like activating a connection to a new neighbor or eliminating an

existing connection. One may also consider partial distributed control, in which only k out of n nodes are occupied by

computing entities, but again not much is known about the la�er family of models.

1.2 An Actively Dynamic Distributed Model

In this paper, we consider an actively dynamic fully distributed system. In particular, there are n computing entities

starting from an initial connected network drawn from a family of initial networks. �e entities are typically equipped

with unique IDs, can compute locally, can communicate with neighboring entities, and can activate connections to

new neighbors locally or eliminate some of their existing connections. All these take place in lock step through a

standard synchronous message passing model, extended to include the additional operations of edge activations and

deactivations within each round.

�e goal is, generally speaking, to program all the entities with a distributed algorithm that can transform the

initial network Gs into a target network Gf from a family of target networks. �e idea is that starting from a Gs not

necessarily having a good property, like small diameter, the algorithmwill be able to “efficiently” reach aGf satisfying

the property. �is gives rise to twomain objectives, which in some cases it might be possible to satisfy at the same time.

One is to transform a givenGs into a desired targetGf and the other is to exploit some good properties ofGf in order

to more efficiently solve a distributed task, like computation of a global function through information dissemination.

Even when edge activations are extremely local, meaning that an edgeuv can only be activated if there exists a node

w such that both uw and wv are already active, there is a straightforward algorithmic strategy that can successfully

carry out most of the above tasks. In every round, all nodes activate all of their possible new connections, which

2



corresponds to each node u connecting with all nodesvi that were at distance 2 from u in the beginning of the current

round. By a simple induction, it can be shown that in any round r the neighborhood of every node has size at least

2r , which implies that a spanning clique Kn is formed in O(logn) rounds. Such a clique can then be used for global

computations, like electing themaximum id as a leader, or for transforming into any desired target networkGf through

eliminating the edges in E(Kn) \ E(Gf ). All these can be performed within a single additional round.

Even though sublinear global computation and network-to-network transformations are in principle possible through

the clique formation strategy described above, this algorithmic strategy still has a number of properties which would

make it impractical for real distributed systems. As already highlighted in the literature of dynamic networks, acti-

vating and maintaining a connection does not come for free and is associated with a cost that the network designer

has to pay for. Even if we uniformly charge 1 for every such active connection, the clique formation incurs a cost of

Θ(n2) total edge activations in the worst case and always produces instances (e.g., when Kn is formed) with as many

as Θ(n2) active edges in which all nodes have degree Θ(n).

Our goal in this work is to formally define such cost measures associated with the structure of the dynamic network

and to give improved algorithmic strategies that maintain the time-efficiency of clique formation, while substantially

improving the edge complexity as defined by those measures. In particular, we aim at minimizing the edge complexity,

given the constraint of (poly)logarithmic running time. Observe at this point that without any restriction on the run-

ning time, a standard distributed dissemination solely through message passing over the initial network, would solve

global computation without the need to activate any edges. However, linear running times are considered insufficient

for our purposes (even when the goal is to solve traditional distributed tasks). Moreover, strategies that do not modify

the input network cannot be useful for achieving network-to-network transformations.

1.3 Contribution

We define three cost measures associated with the edge complexity of our algorithms. One is the total number of edge

activations that the algorithm performed during its course, the second one is the maximum number of activated edges

in any round by the algorithm, and the third one is the maximum activated degree of a node in any round, where the

maximum activated degree of a node is defined only by the edges that have been activated by the algorithm.

Our ultimate goal in this paper is to give (poly)logarithmic time algorithms which, starting from any connected

network Gs , transform Gs into a Gf of (poly)logarithmic diameter and at the same time elect a unique leader. Such

algorithms can then be composed with any algorithm B that assumes an initial network of (poly)logarithmic diameter

and has access to a unique leader and unique ids. In case of a static network algorithm B, this for example yields

(poly)logarithmic time information dissemination and computation of any global function on inputs. In case of an

actively dynamic network algorithm B, it gives (poly)logarithmic time transformation into any target network from a

given family which depends on restrictions related to the edge complexity.

We restrict our focus on deterministic algorithms, that is, the computational entities do not have access to any

random choices. Moreover, our algorithms never break the connectivity of the network of active edges as this would

result in components that could never be reconnected based on the permissible edge activations. Even though this is

in principle permi�ed, it cannot be useful for the small diameter and spanning target networks that we are aiming for

in this work. Temporary disconnections within a round may be permi�ed but can always be avoided by first activating

all new edges and then deactivating any edges for the current round.
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To appreciate the difficulty in solving the above problemwhile optimizing the edge complexity, assume for amoment,

a network as simple as a spanning line u0u1 · · ·un−1 with a pre-elected unique leader on one of its endpoints, say u0. If

we had global view of the system, then we would proceed in logn phases as follows. In every phase i , we would start

from u0 and activate edges by making hops of length 2 over the edges activated in the previous phase, thus, activating

the edges u0u2i ,u2iu2·2i ,u2·2iu3·2i , . . . in the current phase. �is would give an edge for every 2i consecutive nodes

in phase i and a total of O(n) edge activations. �e diameter of the resulting network and the number of phases are

both logarithmic in n. Observe now that this basic construction essentially requires to determine which half of the

nodes that activated an edge in the previous phase will be the ones to activate in the current phase. But all these

nodes are bound to behave identically given an order-equivalence of received ids in their local history and there is no

obvious way to exploit the pre-elected leader at u0 for symmetry breaking, as its initial distance from many of them is

asymptotically equal to the original diameter of the network, that is, Θ(n). What this example reveals, is an inherent

trade-off between time and edge activations stemming from the inability of the distributed entities to break symmetry

locally and, thus, fast. Intuitively, breaking symmetry takes time and, if le� unbroken, costs many edge activations

every time one of the nodes decides to activate.

�e difficulties that we just highlighted are formally captured by our lower bounds presented in Section 6. In

particular, we first prove that Ω(logn) is a lower bound on time following from an upper bound of 2 on the distance of

new connections and the Θ(n) worst-case diameter of the initial network. �en we give an Ω(n) lower bound on total

edge activations and Ω(n/logn) activations per round for any centralized algorithm that achieves an optimal Θ(logn)

time. Our main lower bound is a total of Ω(n logn) edge activations that any logarithmic time distributed algorithm

must pay. �is is in contrast to the Θ(n) total edges that would be sufficient for a centralized algorithm and is due to

the distributed nature of the systems under consideration.

We begin our algorithmic constructions with some basic algorithms for special types of initial and target networks,

which will then be used as core components in our general algorithms. �ese are discussed in Section 2.3. One of these

algorithms transforms any rooted tree into a star and the other an oriented spanning line into a complete binary tree.

Both operate in O(logn) time, have a linear number of active edges per round and an optimal total of O(n logn) edge

activations. �e la�er algorithm additionally maintains a maximum degree of at most 3 throughout its course, while

the degree of the former is necessarily linear, due to ending up in a spanning star.

We then proceed to our main positive results. In particular, we give three algorithms for transforming any initial

connected networkGs into a networkGf of (poly)logarithmic diameter and at the same time electing a unique leader.

Each of these algorithms makes a different contribution to the time vs edge complexity trade-off. All of our main

algorithms are built upon the following general strategy. For each of them, we define a different gadget network and

the algorithms are developed in such a way that they always satisfy the following invariants. In any round of an

execution, the network is the union of commi�ees being such gadget networks of varying sizes and some additional

edges including the initial edges and other edges used to join the commi�ees. Initially, every node forms its own

commi�ee and the algorithms progressively merge pairs or larger groups of commi�ees based on the rule that the

commi�ee with the greater id dominates. If properly performed, this ensures that eventually only one commi�ee

remains, namely, the commi�ee of the nodeumax with maximum id in the network. �e diameter of all our gadgets is

(poly)logarithmic in their size, which facilitates quick merging and ensures that the final commi�ee of umax satisfies

the (poly)log(n) diameter requirement for Gf . �e algorithms also ensure that, by the time the commi�ee of umax is

the unique remaining commi�ee, umax is the unique leader elected.
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Our algorithms must achieve (poly)logarithmic time and they do so by satisfying the invariant that winning com-

mi�ees always grow exponentially fast. �is growth is asynchronous in our algorithms for the following reason. In a

typical configuration (of a phase) the graph of mergings forms a spanning forest F of commi�ees such that any treeT

in F is rooted at the commi�ee that will eventually consume all commi�ees in V (T ). Given that those trees may have

different sizes (even up to V (T ) = Θ(n)), the winning times of different commi�ees may be different, but we can still

show that their amortized growth is exponential.

Our first algorithm, called GraphToStar and presented in Section 3, uses a star network as a gadget. Its running

time is O(logn) and it uses at most 2n active edges per round and an optimal total of O(n logn) edge activations. �e

target networkGf that it outputs is a spanning star, thus, the algorithm achieves a final diameter of 2.

Our second algorithm, called GraphToWreath and presented in Section 4, uses as a gadget a type of graph, which we

call a wreath and is the union of a ring and a complete binary tree spanning the ring. �e main improvement compared

to GraphToStar is that it maintains a bounded maximum degree throughout its course (given a bounded-degreeGs ). It

does this at the cost of increasing the running time toO(log2 n) and the number of total edge activations toO(n log2 n).

�e active edges per round remain O(n). �e target network Gf that it outputs is a spanning complete binary tree

(a�er deleting the original edges and the spanning ring), thus, the algorithm achieves a final diameter of O(logn).

Our third algorithm, called GraphTo�inWreath and presented in Section 5, shows that if we slightly increase the

maximum degree to polylog(n) then we can achieve a running time of o(log2 n) (more precisely, O(log2 n/log logk n),

for some constant k ≥ 1).

If our model can be compared to models from the area of overlay networks construction (see Section 1.4 for a

discussion on thisma�er), then GraphToWreath is, to the best of our knowledge, the first deterministic bounded-degree

O(log2 n)-time algorithm and GraphTo�inWreath the first deterministic polylog(n)-degree o(log2 n)-time algorithm

for the problem of transforming any connected Gs into a polylog(n) diameter Gf .

1.4 Related Work

Temporal Graphs. �e algorithmic study of temporal graphs was initiated by Berman [9] and Kempe et al. [16], who

studied a special case of temporal graphs in which every edge can be available at most once. �e problem of designing

a cost-efficient temporal graph satisfying some given connectivity properties was introduced in [19]. �e design task

was carried out by an offline centralized algorithm starting from an empty edge set. Subsequent work [12], motivated

by epidemiology applications, considered the centralized algorithmic problem of re-designing a given temporal graph

through edge deletions in order to end up with a temporal graph with bounded temporal reachability, thus keeping

the spread of a disease to a minimum. Our work is related to the temporal network (re-)design problem but our model

is fully distributed, allows for both edge activations and deletions, and our families of target networks are different

than those considered in the above papers.

Distributed Computation in Passively Dynamic Networks. Probably the first authors to consider distributed

computation in passively dynamic networks were Angluin et al. [4–6]. �eir population protocol model, considered

originally the computational power of a population of n finite automata which interact in pairs passively either under

an eventual fairness condition or under a uniform random scheduling assumption. A variant of population protocols

in which the automata can additionally create or destroy connections between them was introduced in [20, 23]. It was

shown that in that model, called network constructors, complex spanning networks can be created efficiently despite

the computational weakness of individual entities. �e closest to our approach from this area is [24], in which the
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authors showed how to transform any connected initial network into a spanning line which can then be exploited to

achieve global computation on input values and termination. �e main difference though is that in all these models

pairwise interactions are chosen asynchronously by a scheduler, and connections can be created between any pair of

nodes during their interaction independently of the current network structure and the distance between them.

Other papers [17, 21, 25] have studied distributed computation in worst-case dynamic networks using a traditional

message-passing model and typically operating through local broadcast in the current neighborhood. Our communi-

cation model is closer to those models but network dynamics there are always passive and their main goal has been to

revisit the complexity of classical distributed tasks under a worst-case adversarial network.

Construction of Overlay Networks. �ere is a rich literature on the distributed construction of overlay networks.

A typical assumption is that there is an overlay (active) edge from a node u to a node v in a given round iff u has

obtained v’s id through a message. Without further restrictions, the overlay in round r would always correspond to

the union of r consecutive transitive extensions starting from the original edge set. �e main restriction imposed in

the relevant literature is a polylogarithmic (in bits) communication capacity per node per round, which also implies

that in every round O(logn) new overlay connections per node are permi�ed.

Our model and results, even though different in motivation, in the complexity measures considered, and in the

restrictions we impose, appear to have similarities with some of the developments in this area. Unlike our work,

where our complexity measures are motivated by the cost of creating and maintaining physical or virtual connections,

the algorithmic challenges in overlay networks are mainly due to restricting the communication capacity of each node

per round to a polylogarithmic total number of bits.

Research in this area startedwith seminal papers such as Chord of Stoica et al. [27] and the Skip graphs of Aspnes and

Shah [7]. Probably the first authors to have considered the problem of constructing an overlay network of logarithmic

diameter were Angluin et al. [3]. �eir algorithm is randomized and has a running time of O((d +W ) logn) w.h.p.,

whereW is the maximum size of a unique id. �en Aspnes and Wu [8] gave a randomizedO(logn) time algorithm for

the special case in which the initial network has outdegree at most 1.

To the best of our knowledge, the only previous deterministic algorithm for the problem is the one by Gmyr et al.

[14]. Our algorithmic strategies appear to have some similarities to their “Overlay Construction Algorithm”, which

in their work is used as a subroutine for monitoring properties of a passively dynamic network. Unlike our model,

their model is hybrid in the sense that algorithms have partial control over the connections of an otherwise passively

dynamic network. Due to using different complexity measures and restrictions it is not totally clear to us yet whether

a direct comparison between them would be fair. Still, we give some first observations. �eir algorithm has the

same time complexity, i.e., O(log2 n), with our GraphToWreath algorithm, while our GraphToStar algorithm achieves

O(logn) and our GraphTo�inWreath o(log2 n). �eir overlays appear to maintain Θ(n logn) active connections per

round, while our algorithms maintain O(n). �eir maximum active degree is polylogarithmic, the same as GraphTo�-

inWreath, while GraphToStar uses linear and GraphToWreath always bounded by a constant. �eir model restricts

the communication capacity of every node to a polylogarithmic number of bits per round, whereas we do not restrict

communication.

A very recent work by Gö�e et al. [15] has improved the upper bound of [3] toO(log3/2 n), w.h.p. It is a randomized

algorithmwhich uses a core deterministic procedure that has some similarities to our algorithmic strategy of maintain-

ing and merging commi�ees (called “supernodes” there) whose size increases exponentially fast. �eir model keeps

the polylogarithmic restriction on communication and the polylogarithmic maximum degree.
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Scheideler and Setzer [26] recently studied the (centralized) computational complexity of computing the optimum

graph transformation and gave NP-hardness results and a constant-factor approximation algorithm for the problem.

Programmable Matter. �ere is a growing recent interest in studying the algorithmic foundations of systems that

can change their physical properties through local reconfigurations [1, 2, 11, 13, 22]. A prominent such property

is changing their shape. Typical examples of systems in this area are reconfigurable robotics, swarm robotics, and

self-assembly systems [10, 18]. In most of these se�ings, modification of structure can be represented as a dynamic

network, usually called shape, with additional geometric restrictions coming from the shape and the local reconfigura-

tion mechanism of the entities. �e goal is then to transform a given initial shape into a desired target shape through

a sequence of valid local moves. Our network transformation problem can be viewed as an non-geometric abstraction

of these geometric transformation problems. Apart from being motivated by this area, we also hope that the abstract

algorithmic principles of network reconfiguration might promote our understanding of the geometrically constrained

cases.

2 PRELIMINARIES

2.1 The Model

An actively dynamic network is modeled in this work by a temporal graph D = (V ,E), where V is a static set of n

nodes and E ⊆
(V
2

)

× N is a set of undirected time-edges. In particular, E(i) = {e : (e, i) ∈ E} is the set of all edges that

are active in the temporal graph at the beginning of round i . Since V is static, E(i) can be used to define a snapshot of

the temporal graph at round i , which is the static graph D(i) = (V , E(i)).

�e temporal graph D of an execution is generated by local operations performed by the nodes of the network,

starting from an initial graphGs = D(1). �roughout this paper,Gs is assumed to be connected. A node u can activate

an edge with node v in round i , if uv < E(i) and there exists a node w such that both uw and wv are active at the

beginning of round i . A node u can deactivate an edge with node v in round i , provided that uv ∈ E(i). An active

edge remains active indefinitely unless a node who is incident to that edge deactivates it. �ere is at most one active

edge between any pair of nodes, that is multiple edges are not allowed. If a node a�empts to activate an edge which is

already active, the action has no effect and the edge remains active; similarly for deactivating inactive edges. Moreover,

if a node u decides to activate an edge with a node v in round i and v decides to activate an edge with u in the same

round, then only one edge is activated between them. In case u and v disagree on their decision about edge uv , then

their actions have no effect on uv . We define Eac (i) as the set of all edges that were activated in round i and Edac (i)

as the set of all edges that were deactivated in round i . �en E(i + 1) = (E(i) ∪ Eac (i)) \ Edac (i).

We define set N i
1(u) of node u , where v ∈ N i

1(u) iff uv ∈ E(i) which means that set N i
1(u) contains the neighbors

of node u in round i . Additionally, set N i
2(u) of node u , where w ∈ N i

2(u) iff there exists v ∈ V s.t. v ∈ N i
1(u) and

v ∈ N i
1(w) and w < N i

1(u). �at is, set N i
2(u) of node u in round i contains the nodes at distance 2 which we will refer

to as potential neighbors. We will omit the i index for rounds, when clear from context.

Each node u ∈ V is identical to every other node v but for the unique identifier (UID) that each node possesses.

Each node u starts with a UID that is drawn from a namespaceU. �e maximum id is represented byO(logn) bits. An

algorithm is called comparison based if it manipulates the UIDs of the network using comparison operations (<, >,=)

only. All of the algorithms and lower bounds presented in this paper are comparison based.

�e nodes represent agents equipped with computation, communication, and edge-modification capabilities and

they operating in synchronous rounds. In each round all agents perform the following actions in sequence and in
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lock step: Send messages to their neighbors, Receive messages from their neighbors, Activate edges with potential

neighbors, Deactivate edges with neighbors, Update their local state.

We note that a node may choose to send a different message to different neighbors in a round and that the time

needed for internal computations is assumed throughout to be O(1). We do not impose any restriction on the size of

the local memory of the agents, still the space complexity of our algorithms is within a reasonable polynomial in n.

2.2 Problem Definitions and Performance Measures

For the current paper we are mainly interested in the following problems.

Leader Election. Every node u in graph D = (V , E) has a variable statusu that can be set to a value in {Follower,

Leader}. An algorithm A solves leader election if the algorithm has terminated and exactly one node has its status set

to Leader while all other nodes have their status set to Follower.

Token Dissemination. Given an initial graph D = (V ,E) where each node u ∈ V starts with some unique piece of

information (token), every node u ∈ V must terminate while having received that unique piece of information from

every other nodev ∈ V \ {u}. W.l.o.g. we will consider that unique information to be the UID of each node throughout

the paper.

Depth-d Tree. Given any initial graphGs from a given family, the distributed algorithmmust reconfigure the graph

into a target graphGf , such that Gf is a rooted tree of depth d with a unique leader elected at the root.

Apart from studying the running time of our algorithms, measured as their worst-case number of rounds to carry

out a given task, we also introduce the following measures related to their edge complexity.

Total Edge Activations. �e total number of edge activations of an algorithm is given by
∑T
i=1 |Eac (i)|, where T

is the running time of the algorithm.

MaximumActivated Edges. It is defined as maxi ∈[T ] |E(i) \E(1)|, that is, equal to the maximum number of active

edges of a round, disregarding the edges of the initial network.

Maximum Activated Degree. �e maximum degree of a round, if we again only consider the edges that have

been activated by the algorithm. Let deд(G) denote the degree of a graph G. �en, formally, the maximum activated

degree is equal to maxi ∈[T ] deд(D(i) \D(1)), where the graph difference is defined through the difference of their edge

sets.

In this paper, instead of measuring the maximum activated degree we will focus on preserving the maximum degree

of input networks from specific families. For example, one of our algorithms solves the Depth-d Tree problem on any

input network and, if the input network has bounded degree, then it guarantees that the degree in any round is also

bounded.

2.3 Basic Subroutines

We will now provide algorithms that transform initial graphs into graphs with small diameter and which will be used

as subroutines in our general algorithms.

�e first called TreeToStar transforms any initial rooted tree graph into a spanning star in O(logn) time with

O(n logn) total edge activations and O(n) active edges per round, provided that the nodes have a sense of orienta-

tion on the tree. �is means that each node can distinguish its parent from its children. In every round, each node

activates an edge with the potential neighbor that is its grandparent and deactivates the edge with its parent. �is

process keeps being repeated by each node until they activate an edge with the root of the tree.
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Proposition 2.1. Let T be any tree rooted at u0 of depth d . If the nodes have a sense of orientation on the tree, then

algorithm TreeToStar transforms T into a spanning star centered at u0 in ⌈logd⌉ ≤ logn rounds. TreeToStar has at most

(n − 1) + (n − 2) = 2n − 3 active edges per round.

Our next algorithm called LineToCompleteBinaryTree transforms any line into a binary tree in O(logn) time with

O(n logn) total edge activations, with O(n) active edges per round and the degree of each node is at most 4, provided

that the nodes have a common sense of orientation.

In each round, each node activates an edge with its grandparent and a�erwards it deactivates its edge with its par-

ent. �is process keeps being repeated by each node until they activate an edge with the root of the tree or if their

grandparent has 2 children.

Proposition 2.2. LetT be any line rooted at u0 of diameter d . If the nodes have a sense of orientation on the line, then

algorithm LineToCompleteBinaryTree transforms T into a binary tree centered at u0 in ⌈logd⌉ ≤ logn time. LineToCom-

pleteBinaryTree has at most (n − 1) + (n − 2) = 2n − 3 active edges per round, n logn total edge activations and bounded

degree equal to 3.

2.4 General Strategy for Depth-d Tree

All algorithms developed in this paper solve the Depth-d Tree problem starting from any initial network Gs from a

given family. Our aim is to always achieve this in (poly)logarithmic timewhile minimizing some of the edge-complexity

parameters. �ere is a natural trade-off between time and edge complexity and each of our algorithmsmakes a different

contribution to this trade-off. In particular, by paying for linear degree, our first algorithm manages to be optimal in

all other parameters. If we instead insist on bounded degree, then our second algorithm shows that we can still solve

Depth-d Tree within an additional O(logn) factor both in time and total edge activations. Finally, if the bound on the

degree is slightly relaxed to (poly)log(n) then our third algorithm achieves o(log2 n) time.

All three algorithms are built upon the same general strategy that we now describe. For each of them we choose an

appropriate gadget network, which has the properties of being “close” to the target networkGf to be constructed and

of facilitating efficient growth. For example, the Gf of our first algorithm is a spanning star and the chosen gadget is

a star graph, while the Gf of our second algorithm is a complete binary tree and the chosen gadget is the union of a

ring and a complete binary tree spanning that ring (called a wreath).

Our algorithms satisfy the following properties. �e nodes are always partitioned into commi�ees, where each

commi�ee is internally organized according to the corresponding gadget network of the algorithm and has a unique

leader, which is the node with maximum id in that commi�ee. Initially, every node forms its own trivial commi�ee and

commi�ees increase their size by competing with nearby commi�ees. In particular, commi�ees select and, if possible,

merge with the maximum-id commi�ee in their neighborhood. Prior to merging, such selections may give rise to

pairs of commi�ees, in which case merging is immediate, but also to rooted trees of commi�ees where all selections

are oriented towards the root and merging has to be deferred. In the la�er case, the winning commi�ee will eventually

be the root of the tree, at which point all other commi�ees of the tree will have merged to it. In all cases, merging

must be done in such a way that the gadget-like internal structure of the winning commi�ee is preserved. �is growth

guarantees that eventually there will be a single commi�ee spanning the network. At that point, the leader of that

commi�ee (which is always the node with maximum id in the network) is an elected unique leader. Moreover, the

gadget-like internal structure of that commi�ee can be quickly transformed into the desired target network, due to

the by-design close distance between them. For example, in the algorithm forming a star no further modification is
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required, while in the algorithm forming a complete binary tree, a ring is eliminated from a wreath so that only the

tree remains.

Our algorithms are designed to operate in asynchronous phases, with the guarantee that in every phase pairs of

commi�ees merge and trees of commi�ees halve their depth. �is can be used to show that in all our algorithms a

single commi�ee will remain within O(logn) phases. Each phase lasts a number of rounds which is within a constant

factor of the maximum diameter of a commi�ee involved in it, which is in turn upper bounded by the diameter of

the final spanning commi�ee. �e la�er is always equal to the diameter of the chosen gadget as a function of its

size. �e total time is then given by the product of the number of phases and the diameter of the chosen gadget. For

example, in our first algorithm the gadget is a star and the running time (in rounds) is O(1) · O(logn), in our second

algorithm the gadget is a wreath of diameter O(logn) and the running time is O(logn) ·O(logn) = O(log2 n), while in

our third algorithm the gadget is a modified wreath, called �inWreath, of diameter o(logn) and the running time is

o(logn) · O(logn) = o(log2 n). Given that every node activates at most one edge per round, the total number of edge

activations of our algorithms is within a linear factor of their running time.

3 AN EDGE OPTIMAL ALGORITHM FOR GENERAL GRAPHS

Our first algorithm, called GraphToStar, solves the Depth-d Tree problem, for d = 1. In particular, by using a star

gadget it transforms any initial graphGs into a target spanning star graphGf . Its running time isO(logn) and it uses

an optimal number of O(n logn) total edge activations and O(n) active edges per round. Optimality is established by

matching lower bounds, presented in Section 6.

Algorithm GraphToStar

Each commi�ee C(u) is a star graph where the center node u is the leader of the commi�ee and all other nodes

are followers. �e leader node of each commi�ee is the node with the greatest UID in that commi�ee. �e UID of

each commi�ee is defined by the UID of that commi�ee’s leader. �e winning commi�ee in the final graph, denoted

C(umax ), is the onewith the greatest UID in the initial graph. Every node starts as a leader and forms its own commi�ee

as a single node. �e original edges of Gs are assumed to be maintained until the last round of the algorithm and the

nodes can always distinguish them. �e algorithm proceeds in phases, where in every phase each commi�ee C(u)

executes in one of the following modes, always executing in selection mode in phase 1.

• Selection: If C(u) has a neighboring commi�eeC(z) such that U IDz > U IDu and C(z) is not in pulling mode,

then, from its neighboring commi�ees not in pulling mode,C(u) selects the one with the greatest UID; call the

la�er C(v). It does this, by u first activating an edge e1 with a potential neighbor in C(v). �en u activates an

edge withv , deactivates the previous edge e1, andC(u) enters either the merging or pullingmode. In particular,

if C(v) did not select, then C(u) and C(v) form a pair and C(u) enters the merging mode. If on the other hand

C(v) selected some C(w), then C(u) enters the pulling mode.

Otherwise, C(u) did not select. If C(u)was selected then it enters the waiting mode, else it remains in the

selection mode.

If C(u) has no neighboring commi�ees, then it enters the termination mode.

• Merging: Given that in the previous phase the leader of C(u) activated an edge with the leader of C(v), each

follower x in C(u) activates the edge xv and deactivates the edge xu . �e result is that C(u) and C(v) have

merged into commi�ee C(v), which remains a star rooted at v now spanning all nodes in V (C(u)) ∪V (C(v)).

�erefore, C(u) does not exist any more.
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• Pulling: Given that in the previous phase the leader of C(u) activated an edge with the leader of C(v) and

the leader of C(v) activated an edge with the leader of C(w), u activates uw , deactivates uv , and C(u) remains

in pulling mode. If, instead, the leader of C(v) did not activate in the previous phase, then C(u) enters the

merging mode.

• Waiting: If C(u) has no neighboring commi�ees, C(u) enters the termination mode. If in the previous phase

no commi�ee C(v) activated an edge with u , then C(u) enters the selection mode. Otherwise C(u) remains in

the waiting mode.

• Termination: C(u) deactivates every edge in E(Gs )\E(C(u)). In particular, each follower x inC(u) deactivates

all active edges incident to it but xu .

Correctness

Lemma 3.1. Algorithm GraphToStar solves Depth-1 Tree.

Proof. It suffices to prove that in any execution of the algorithm, one commi�ee eventually enters the termination

mode and that this commi�ee can only be C(umax ). If this holds, then by the end of the termination phase C(umax )

forms a spanning star rooted at umax and umax is the unique leader of the network. �is satisfies all requirements of

Depth-1 Tree.

A commi�ee dies (stops existing) only when it merges with another commi�ee by entering the merging mode. First

observe that there is always at least one alive commi�ee. �is is C(umax ), because entering the merging mode would

contradict maximality of umax . We will prove that any other commi�ee eventually dies or grows, which due to the

finiteness of n will imply that eventually C(umax ) will be the only alive commi�ee.

In any phase, but the last one which is a termination phase, it holds that every alive commi�eeC(u) is in one of the

selection, merging, pulling, and waiting modes. If C(u) is in the merging mode, then by the end of the current phase it

will have died by merging with another commi�ee C(v). It, thus, remains to argue about commi�ees in the selection,

pulling, and waiting modes.

We first argue about commi�ees in the pulling mode. Denote their set by Cp . Observe that, in any given phase, the

commi�ees in pulling mode form a forest F , where eachC(u) ∈ Cp belongs to a treeT of F . Any such tree executes the

TreeToStar algorithm (from Section 2.3) on commi�ees and satisfies the invariant that its root commi�eeCr is always

in the waiting mode andCr ’s children are in the merging mode. In every phase, Cr ’s children merge withCr and their

children become the new children ofCr and enter the merging mode. It follows that all non-root commi�ees inT will

eventually merge with Cr . �us, all commi�ees in pulling mode eventually die.

It remains to argue about commi�ees in the selection and waiting modes. We start from the waiting mode. Any

commi�ee C(u) in waiting mode is a root of either a tree in the forest F or of a star of commi�ees in which all leaf-

commi�ees are merging with C(u). In both cases, C(u) eventually exits the waiting mode and enters the selection

mode. �is happens as soon as all other commi�ees in its tree or star have merged to it, thus C(u) has grown upon its

exit.

Now, a commi�ee C(u) in the selection mode can enter any other mode. As argued above, if it enters the merging

or pulling modes it will eventually die and if it enters the waiting mode it will eventually grow. �us, it suffices to

consider the case in which it remains in the selection mode indefinitely. �is can only happen if all current and future

neighboring commi�ees ofC(u), including the ones to eventually replace neighbors in pullingmode, have an id smaller

than U IDu . But each of these must have selected a neighboring C(w), such that U IDw > U IDu , otherwise it would
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have selected C(u). Any such selection, results in C(w) (or a z, such that U IDz > U IDw in case w belongs to a tree)

becoming a neighbor of C(u), thus contradicting the indefinite local maximality of U IDu .

�

Time Complexity

Let us move on to proving the time complexity of our algorithm. At the beginning, we are going to ignore the

number of rounds within a phase, and we are just going to study the maximum number of phases before a single

commi�ee is le�. We define S(C(us)) to be the size of commi�eeC(u) in phase s .

Lemma 3.2. Consider commi�eeC(v) that is in waiting mode between phases s and s + j. If the size of every commi�ee

in phase s is at least 2k , then the size of commi�eeC(v) once it enters the selection mode in phase s + j + 1 is at least 2k+j .

Proof. Any commi�eeC(u) in waiting mode is a root of (i) either a tree in the forest F or (ii) a star of commi�ees

in which all leaf-commi�ees are merging with C(u).

For case (i): root commi�ee C(u) is always in waiting mode and C(u)’s children are in merging mode. In every

phase, C(u)’s children merge with C(u) and their children become the new children of C(u) and enter the merging

mode. It follows that all non-root commi�ees in the tree will eventually merge with C(u) in some phase j. Note

that due to the nature of the pulling mode, in each phase the children of C(u) are doubled. �is is true because the

pulling mode is simulating the TreeToStar algorithm on commi�ees. Recall that we assumed that the size of every

commi�ee is S(C(vs )) ≥ 2k in phase s . �en in each phase s + i , where 0 < i ≤ j, the size of the root commi�ee is

S(C(us+log i )) = S(C(us )) + 2 · S(C(vs )) + 4 · S(C(vs )) + . . . + 2
log(i−1) · S(C(vs )) = 2k+i .

For case (ii): root commi�ee C(us ) is in waiting mode and has at least one leaf commi�ee in phase s . A�er the leaf

commi�ee merges in 1 phase, commi�eeC(us+1) has size S(C(us+1)) ≥ S(C(us )) + S(C(us )) = 2k + 2k = 2k+1 . �

Lemma 3.3. If commi�ee C(u) stays in the selection mode for p ≥ 4 consecutive phases, then C(u) has a neighboring

commi�ee C(v) ∈ Cp that belongs to a tree T for at least p phases.

Proof. Let us assume that commi�eeC(u) stays in the selection mode for p ≥ 4 consecutive phases while having a

neighbor C(v) that does not belong to tree T . If C(v) does not belong to a tree in phase k , then it cannot be in pulling

mode. If C(v) is in selection mode in phase k and C(v) does not select C(u) and C(u) does not select C(v), then C(v)

has a neighbor C(w) where U IDw > U IDv > U IDu and C(v) selected C(w). �en C(v) enters the merging mode in

phase k + 1 and gets merged with C(w). In phase k + 2 commi�ee C(w) becomes a neighbor of C(v) and C(w) enters

the selection mode. �ereforeC(v)would selectC(w) in phase k + 2 and exit the selection mode. �us, a contradiction.

If C(v) is in waiting mode in phase k , it cannot be the root of a tree, and is the root of a star. �erefore in phase k + 1

it will enter the selection mode and based on the analysis of the previous paragraph, in phase k + 3 C(u) will exit the

selection mode. �us, a contradiction. �

Lemma 3.4. Let us assume that the minimum size of a commi�ee in phase s is 2k . If commi�ee C(u) stays in the

selection mode from phase s to phase s + p where p ≥ 4 consecutive phases, then in phase s + p + 1 it will select or get

selected by a commi�ee C(v) of size 2k+p−4.

Proof. From Lemma 3.3 it follows that, since C(u) is in the selection mode for at least 4 phases, there exists a

neighborC(v) that belongs to a treeT with. SinceC(u) exits the selectionmode in phase s+p, it either selects commi�ee

C(w) that the root of tree T or C(w) selects C(v). Since C(u) was in the selection phase for p phases, commi�ee C(w)

was on a tree of depth at least p − 3. From Lemma 3.2 it follows that the size of C(w) is 2k+p−3. �
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Lemma 3.5. Assume that the minimum size of every commi�ee in phase s is 2k and that every commi�ee will have

exited the selection mode in phase s + p at least once. �e size of all winning commi�ees in phase p + 1 is at least 2k+p−4.

Proof. Trivially, if p ≤ 4 the winning commi�ee has size at least 2k+1 in phase p + 1 since it has merged with at

least one other commi�ee.

From Lemma 3.4 it follows that ifp ≥ 4 the winning commi�ee betweenC(w) andC(u)will have size at least 2k+p−3

in phase s + p + 1. �

Lemma 3.6. A�er O(logn) phases, there is only a single commi�ee le� in the graph.

Proof. From Lemma 3.5, it follows that a�erO(logn)phases, there will be a commi�eewith at least 2logn nodes. �

Lemma 3.7. Each phase consists of at most 2 rounds.

Proof. Based on the description of the modes, the selection phase lasts 2 rounds, the pulling phase lasts 1 round,

the merging phase lasts 1 round, the waiting phase lasts 1 round and the termination phase lasts 2 rounds. �

Edge Complexity

It is very simple to prove the edge complexity for the algorithm. Note that in each round i each node activates at

most 1 edge. Furthermore, if a node had activated an edge u in round i , and it activates another edge v in round i + 1,

then it deactivates edge u . �erefore, each node cannot have more than 2 active edges that it has activated itself at any

time and since we have n nodes in the network, there can ever be at most 2n active edges per round.

Theorem 3.8. For any initial connected graph Gs , the GraphToStar algorithm solves the Depth-1 Tree problem in

O(logn) time with at most O(n logn) total edge activations and O(n) active edges per round.

4 MINIMIZING THE MAXIMUM DEGREE ON GENERAL GRAPHS

In the previous section, we devised an algorithm that minimizes the edge complexity of the graph but this came at a

cost of linear degree. In this section we will create an algorithm that minimizes the maximum activated degree to a

constant but has O(log2 n) running time and O(n log2 n) total edges activations.

Recall the commi�ees from section 3. Every commi�ee was a star graph which was very practical. First of all,

the leader of each commi�ee C(u) was a potential neighbor of each neighboring commi�ee C(v) and therefore u

could communicate in O(1) phases with every C(v) and decide with which C(v) to merge with. Additionally merging

commi�eeC(v)withC(u) requiredO(1) phases. Finally, the pulling phase cannot be used tomergemultiple commi�ees

fast in this section, since it does not guarantee a constant degree for every node All of the above techniques were

possible due to the small diameter of the star and the linear degree of each node.

For this algorithm, our commi�ees must have at least Ω(logn) diameter in order to have a constant degree and

therefore merging two different commi�ees in constant time while keeping a specific structure proves to be compli-

cated. �e new gadget of our commi�ees is going to be a graph we callwreath. A wreath graph is a graph that has both

a ring subgraph and a complete binary tree subgraph. We are going to use the edges of the ring subgraph to merge

commi�ees and the binary tree subgraph to exchange information between the nodes of the graph. First, let us define

the structure of the wreath graph.

Definition 4.1. We define a graph D = (V ,E) to belong to the wreath class of graphs if it has two subgraphs Dr =

(V , Er ) and Db = (V , Eb ), where Dr = (V , Er ) belongs to the class of ring graphs, Db = (V ,Eb ) belongs to the class of

complete binary tree graphs, and E = Er ∪ Eb .
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�e O(logn) diameter that the wreath graph possesses, will allow the leaders of commi�ees C(u) to communicate

with neighboring commi�ees C(v) in O(logn) time. Additionally, the merging phase of each pair of commi�ees will

require only O(logn) time. �e algorithm is almost identical to the GraphToStar as far as the high level strategy is

concerned. Commi�ees select neighboring commi�ees and merge with them. �e main difference is that when a tree

with rootw is formed, we cannot use the pulling mode since this would increase the degree significantly. Instead the

commi�ees on each tree merge in a single ring that includes all commi�ees in O(1) time (ring merging mode). A�er

this,w deactivates one of its incident edges in order to create a line subgraph. Once this happens, each node on the ring

executes an asynchronous version of the LineToCompleteBinaryTree subroutine inO(logn) time using the orientation

of the new ring, where rootw is the root of the line. Once the subroutine is finished, the complete binary tree subgraph

of the wreath graph is ready. �erefore we have managed to merge a tree graph of multiple commi�ees into a single

commi�ee.

Algorithm GraphToWreath

Each commi�ee C(u) is a wreath graph where u is the leader of the commi�ee and all other nodes are followers.

�e leader node of each commi�ee is the node with the greatest UID in that commi�ee. �e UID of each commi�ee is

defined by the UID of that commi�ee’s leader. �e winning commi�ee in the final graph is the one with the greatest

UID in the initial graph. Every node starts as a leader and forms its own commi�ee as a single node. We will sometimes

refer to a commi�ee by its leader’s name. �e original edges ofGs are assumed to be maintained until the last round

of the algorithm and the nodes can always distinguish them. Our algorithm proceeds in phases, where in every phase

each commi�ee C(u) executes in one of the following modes, always executing in selection mode in phase 1.

• Selection: If C(u) has a neighboring commi�eeC(z) such thatU IDz > U IDu and C(z) is not in Ring Merging

mode or Tree Merging mode then, from its neighboring commi�ees not in ring merging or tree merging mode,

C(u) selects the one with the greatest UID; call the la�er C(v). If C(u) selected C(v) or C(u)was selected, C(u)

enters the Ring Merging mode. If C(u) did not select anyone and C(u)was not selected by anyone, it stays in

the selection mode. If C(u) has no neighboring commi�ees, C(u) enters the termination mode.

• Ring Merging: Given that in the previous phase, C(u) selected C(v), commi�ee C(u)merges its ring compo-

nent with the ring component ofC(v) as described in the Merging the Spanning Ring Subgraph paragraph (see

Appendix). Given that in the previous phase, C(u)was selected by C(k), commi�ee C(k)merges its ring com-

ponent with the ring component of C(u) as described in the Merging the Spanning Ring Subgraph paragraph.

C(u) enters the tree merging mode.

• Tree Merging: Every node x in C(u) executes one round of the asynchronous LineToCompleteBinaryTree

algorithm as described in the asynchronous LineToCompleteBinaryTree paragraph (see Appendix). If there

exists node x that has not terminated the asynchronous LineToCompleteBinaryTree algorithm, C(u) stays in

the Tree Merging mode. If all nodes x have terminated the asynchronous LineToCompleteBinaryTree algo-

rithm, all nodes x have now merged with commi�ee C ′(u) whose leader is the root of the complete binary

tree and C ′(u) enters the selection mode. C(u) does not exist anymore.

• Termination: Each follower x in C(u) deactivates every edge apart from the edges that define the spanning

complete binary tree subgraph.

Note here that we omit the communication steps for clarity and we claim that any communication performed

between neighboring commi�ees can be completed inO(logn) rounds since the diameter of each commi�ee is at most

O(logn).
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Theorem 4.2. For any initial connected graph with constant degree, the GraphToWreath algorithm solves Depth-logn

Tree in O(log2 n) time with O(n log2 n) total edge activations, O(n) active edges per round and O(1) maximum activated

degree.

5 TRADING THE DEGREE FOR TIME

For our new algorithm, we are going to try to have O(
logn

log logn
) time for the merging but we are going to allow the

maximum degree to reachO(log2 n). �is requires a new graph for our commi�ees where the diameter of the shape is

O(
logn

log logn
), so that the communication within the commi�ees is O(

logn
log logn

) and a new way to merge the commi�ees

in O(
logn

log logn ). We also have to make the assumption that all nodes know the size of the initial graph.

Our new graph is very similar to the Wreath graph and we call it �inWreath. �e main difference is that instead

of having a complete binary tree component, it has a complete polylogarithmic degree tree component with diameter

O(
logn

log logn
) and polylogarithmic degree. �e O(

logn
log logn

) diameter that the �inWreath graph possesses, will allow the

leaders of commi�ees C(u) to communicate with neighboring commi�ees C(v) in O(
logn

log logn
) time.

Algorithm GraphTo�inWreath

Each commi�eeC(u) is a�inWreath graph where u is the leader of the commi�ee and all other nodes are followers.

�e leader node of each commi�ee is the node with the greatest UID in that commi�ee. �e UID of each commi�ee is

defined by the UID of that commi�ee’s leader. �e winning commi�ee in the final graph is the one with the greatest

UID in the initial graph. Every node starts as a leader and forms its own commi�ee as a single node. We will sometimes

refer to a commi�ee by its leader’s name. �e original edges ofGs are assumed to be maintained until the last round

of the algorithm and the nodes can always distinguish them. We also have to assume that the nodes know the size of

the initial graph. Our algorithm proceeds in phases, where in every phase each commi�eeC(u) executes in one of the

following modes, always executing in selection mode in phase 1.

• Selection: If C(u) has a neighboring commi�ee C(z) such that U IDz > U IDu and C(z) is in selection mode,

then, from its neighboring commi�ees in the selectionmode,C(u) selects the one with the greatest UID; call the

la�er C(v). If C(u)was selected,C(u) enters the Matchmaker mode. If C(u)was not selected and C(u) selected

C(v), C(u) enters the Matched mode. If C(u) did not select anyone and C(u) was not selected by anyone, it

stays in the selection mode. If C(u) has no neighboring commi�ees, C(u) enters the termination mode.

• Matchmaker: If commi�ees C(k) had selected C(u) in the previous phase, commi�ee C(u)matches commit-

tees C(k) in pairs. If the number of commi�ees C(k) that selectedC(u) is odd, one commi�ee is matched with

C(u). C(u) enters the Matched mode.

• Matched: If commi�ee C(u) selected commi�ee C(v) in the last selection phase, commi�ee C(u) learns with

which commi�ee it has been matched. Commi�ee C(u) enters the Ring Merging mode.

• Ring Merging: Given that in the previous phase, C(u) was matched with C(v), commi�ee C(u) merges its

ring component with the ring component of C(v) as described in the Merging the Spanning Ring Subgraph

paragraph (see Appendix) where the winning commi�ee is C(u) if U IDu > U IDv and vice versa. Commi�ee

C(u) enters the Leader Merging mode.

• Leader Merging: Given that in the previous phase commi�eeC(u) lost to commi�eeC(k), the leader of C(u)

activates an edge with the leader of C(k). If commi�ee C(k) has lost to some other commi�ee C(l) in the
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previous phase, C(u) enters the Tree Merging mode. If C(u) did not lose to any other commi�ee, C(u) enters

the Tree Merging mode where u is the root.

• Tree Merging: �e leader of C(u) executes one round of the asynchronous LineToCompletePolylogarithmic-

Tree algorithm as described in the Asynchronous LineToCompletePolylogarithmicTree paragraph (see Ap-

pendix). If there exists node x that has not terminated the asynchronous LineToCompletePolylogarithmicTree

algorithm,C(u) stays in the Tree Merging mode. If all nodes x have terminated the asynchronous LineToCom-

pletePolylogarithmicTree algorithm, all nodes x have now merged with commi�ee C ′(u) whose leader u ′ is

the root of the complete polylogarithmic tree and C ′(u) enters the selection mode. Commi�ee C(u) does not

exist anymore.

• Termination: Each follower x in C(u) deactivates every edge apart from the edges that define the spanning

complete polylogarithmic tree subgraph.

Theorem 5.1. For any initial connected graph with polylogarithmic degree, the GraphTo�inWreath algorithm solves

Depth-logn Tree in O(
log2 n
log logn

) time with O(n log2 n) total edge activations, O(n) active edges per round and O(1) maxi-

mum activated degree.

6 LOWER BOUNDS FOR THE DEPTH-LOGN TREE PROBLEM

We now shi� our focus into proving lower bounds for Depth-logn Tree.

Lemma 6.1. Any centralized transformation strategy requires Ω(logn) rounds to solve Depth-logn Tree if the initial

graphGs is a spanning line.

Lemma 6.2. Any centralized transformation strategy that solves Depth-logn Tree inO(logn) rounds, requiresΩ(n) edge

activations and Ω(n/logn) edge activations per round.

On the positive side:

Theorem 6.3. �ere is a centralized transformation strategy that, for any initial graph D = (V ,E), solves Depth-logn

Tree in O(logn) rounds, with Θ(n) total edge activations.

We are now going to show that there is a difference in the minimum total edge activations required for solving the

Depth-logn Tree problem between the centralized and the distributed case.

Theorem 6.4. Any distributed algorithm that solves the Depth-logn Tree problem inO(logn) time, requires Ω(n logn)

total edge activations.

7 CONCLUSION AND OPEN PROBLEMS

In this work we considered a distributed model for actively dynamic networks. �e model can achieve global dis-

tributed computation and network reconfiguration in (poly)logarithmic time, but trivial solutions incur an impractical

cost, which is related to the creation and maintenance of edges in the dynamic network generated by the algorithm.

We defined natural cost measures associated with the edge complexity of actively dynamic algorithms. It turns out

that there is a natural trade-off between the time and edge complexity of algorithms. By focusing on the apparently

representative task of transforming any initial network from a given family into a target network of (poly)logarithmic

diameter, which can then be exploited for global computation or further reconfiguration, we obtained non-trivial in-

sight into this trade-off.
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Our model is inspired by recent developments in the algorithmic theory of dynamic networks and in the theory of

reconfigurable robotics. Still, it turns out to be very close to the interesting area of overlay network construction. It is

not clear yet what is the formal relationship between the polylogarithmic restriction on communication in overlay net-

works and our efforts to minimize the total number of edge activations in our algorithms. �is remains an interesting

question for future research.

�ere is also a number of technical questions specific to our model and the obtained results. We do not know yet

what are the ultimate lower bounds on time for different restrictions on the maximum degree. For maximum degree

bounded by a constant our best upper bound is O(log2 n) and if bounded by (poly)log(n) this drops slightly by an

O(log logn) factor. Can any of these be improved to O(logn), that is, matching the Ω(logn) lower bound on time? It

would also be valuable to investigate randomized algorithms for the same problems, like the ones already developed

in overlay networks.

Finally, there are many variants of the proposed model and complexity measures that would make sense and might

give rise into further interesting questions and developments. Such variants include anonymous distributed entities

which are possibly restricted to treat their neighbors identically even w.r.t. actions (e.g., through local broadcast) and

alternative potential neighborhoods, e.g., activating edges at larger distances.
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APPENDIX

A OMITTED DETAILS FROM SECTION 2.3 - BASIC SUBROUTINES

We will now provide algorithms that transform initial graphs into graphs with small diameter and which will be used

as subroutines in our general algorithms.

�e first called TreeToStar transforms any initial rooted tree graph into a spanning star in O(logn) time with

O(n logn) total edge activations and O(n) active edges per round, provided that the nodes have a sense of orienta-

tion on the tree. �is means that each node can distinguish its parent from its children. In every round, each node

activates an edge with the potential neighbor that is its grandparent and deactivates the edge with its parent. �is

process keeps being repeated by each node until they activate an edge with the root of the tree.

Proposition A.1. Let T be any tree rooted at u0 of depth d . If the nodes have a sense of orientation on the tree, then

algorithm TreeToStar transforms T into a spanning star centered at u0 in ⌈logd⌉ ≤ logn rounds. TreeToStar has at most

(n − 1) + (n − 2) = 2n − 3 active edges per round.

Proof. Just before deactivating edges in the current round the set of active edges consists of the (n − 1) edges of

the tree in the previous round plus at most one new parent connection per node in all but the top 2 levels of the tree.

As the top 2 have at least 2 nodes, there are at most n − 2 edge activations per round. �en edges are being deleted

resulting in a tree by the end of each phase therefore the bound holds for all rounds.

Recall that the algorithm runs for ⌈logd⌉ < logn rounds and there are at most n − 2 edge activations per round.

�erefore we have O(logn) total edge activations. �

Our next algorithm called LineToCompleteBinaryTree transforms any line into a binary tree in O(logn) time with

O(n logn) total edge activations, with O(n) active edges per round and the degree of each node is at most 4, provided

that the nodes have a common sense of orientation. �is means that each node can distinguish its parent from its

children.

In each round, each node activates an edge with its grandparent and a�erwards it deactivates its edge with its par-

ent. �is process keeps being repeated by each node until they activate an edge with the root of the tree or if their

grandparent has 2 children.

Proposition A.2. LetT be any line rooted at u0 of diameter d . If the nodes have a sense of orientation on the line, then

algorithm LineToCompleteBinaryTree transforms T into a binary tree centered at u0 in ⌈logd⌉ ≤ logn. LineToComplete-

BinaryTree has at most (n − 1)+ (n − 2) = 2n − 3 active edges per round, n logn total edge activations and bounded degree

equal to 3.

Proof. �e proof for the total edge activations and active edges per round is identical to the proof of Proposition

A.1 since the two algorithms have exactly the same execution but for the termination criteria. �erefore the edge

performance analysis stays the same. For the bounded degree, by definition of the algorithm, in each round, each

node u activates an edge with its grandparent and deactivates an edge with its parent. Additionally, if node u has two

children, no other node v may activate an edge with u . If we take into account the above statements, and the fact

that each node starts with 2 incident edges, then the maximum degree of each node throughout the execution of the

algorithm is at most 4. �
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B OMITTED DETAILS FROM SECTION 4 - MINIMIZING THE MAXIMUM DEGREE ON GENERAL

GRAPHS

Correctness

Lemma B.1. Algorithm GraphToStar solves Depth − logn Tree.

Proof. It suffices to prove that in any execution of the algorithm, one commi�ee eventually enters the termination

mode and that this commi�ee can only be C(umax ). If this holds, then by the end of the termination phase C(umax )

forms a spanning complete binary tree rooted at umax and umax is the unique leader of the network. �is satisfies all

requirements of Depth-logn Tree.

A commi�ee dies only when it merges with another commi�ee by entering the tree merging mode. First observe

that there is always at least one alive commi�ee. �is is C(umax ), because when it enters the tree merging mode, it is

always the root of the complete binary tree. We will prove that any other commi�ee eventually dies or grows, which

due to the finiteness of n will imply that eventually C(umax ) will be the only alive commi�ee.

In any phase, but the last one which is a termination phase, it holds that every alive commi�eeC(u) is in one of the

selection, ring merging, and tree merging modes. IfC(u) is in the ring merging mode then it will enter the tree merging

mode and if its leader is not the root of the complete binary tree, then by the end of the current phase it will have died

by merging with another commi�ee C ′(u). It, thus, remains to argue about commi�ees in the selection mode.

Now, a commi�ee C(u) in the selection mode can enter the tree merging mode. As argued above, if it enters the

ring merging and tree merging modes in sequence it will either die or it will eventually grow. �us, it suffices to

consider the case in which it remains in the selection mode indefinitely. �is can only happen if all current and future

neighboring commi�ees of C(u) have an id smaller than U IDu . But each of these must have selected a neighboring

C(w), such that U IDw > U IDu , otherwise it would have selected C(u). Any such selection, results in C(w) becoming

a neighbor of C(u), thus contradicting the indefinite local maximality of U IDu . �

Time Complexity

Let us move on to proving the time complexity of our algorithm. At the beginning, we are going to ignore the

number of rounds within a phase, and we are just going to study the maximum number of phases before a single

commi�ee is le�.

Lemma B.2. A�er O(logn) phases, there is only a single commi�ee le� in the graph.

Proof. Note that there is a direct correspondence between the modes in the GraphToWreath algorithm and the

GraphToStar algorithm.

Both selectionmodes are used to decide the selections between the neighboring commi�ees. �e difference between

the two algorithms is that each selection phase has a different running time. In particular, �e GraphToStar selection

phase required 2 rounds while the selection phase of the GraphToWreath requiresO(logn) rounds due to the diameter

of the Wreath graph that each commi�ee has.

�e ring mode is always an intermediate phase between the selection phase and the tree merging phase that lasts

for O(1) rounds. �e purpose of this mode is to turn the tree T created by the commi�ees in the selection phase into

a line so that the LineToCompleteBinaryTree subroutine can work.

�e pulling mode in the GraphToStar implements the TreeToStar subroutine, while the tree merging mode in the

GraphToWreath implements the asynchronous version of the LinetoCompleteBinaryTree. Both subroutines are used to
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merge the TreesT of depth t created by the commi�ees inO(log t) time and recall from the basic subroutines subsection

that the TreeToStar and the LineToCompleteBinaryTree have the same running time. �erefore both algorithms require

the same amount of phases.

Note that there is nomerging orwaitingmode in theGraphToWreath since thosemodes have also been implemented

by the merging tree mode.

Since all modes that have been implemented in the GraphToWreath have equivalent modes in the GraphToStar with

similar running times, the GraphToWreath algorithm requires at most O(logn) phases. �

Lemma B.3. Each phase in the GraphToWreath algorithm, requires at most O(logn) rounds.

Proof. We defer the detailed analysis for the proof to the low level description of the GraphToWreath algorithm

where each different mode is described in detail with the upper bound on its running time.

In short, let us argue that the selection phase requiresO(logn) rounds since eachC(u) has to exchange information

with its neighboring commi�ees in order to decide with which commi�ee C(w) it is gonna merge with and whether

any other commi�eeC(v)will decide to merge withC(u). �is requires time that is upper bounded by the diameter of

each commi�ee.

�e ring merging phase requiresO(1) rounds since every commi�ee has to merge its ring component with commit-

tees C(v) and the running time does not depend on the size of each commi�ee participating.

�e tree merging mode implements one round of the asynchronous LineToCompleteBinaryTree.

�erefore each phase requires at most O(logn) rounds to execute. �

Edge Complexity

�e analysis for the total edge activations is simple. �e algorithm runs forO(log2 n) rounds and each node activates

at most 1 edge per round. �erefore the total edge activations are O(n log2 n).

Let us consider the maximum incident edges that a node can have, excluding the edges of the initial graph. Based

on the low level description of the GraphToWreath algorithm, a node can have 2 active incident edges for its ring

neighbors in the wreath graph and another 2 when two ring graphs are merging. Additionally, it can have 2 active

edges for the complete binary tree and another 2 for the execution of the LineToCompleteBinaryTree. �erefore the

active edges per round are O(n) and the maximum degree of each node is 8 + c , where c is the degree of each node in

the original graph.

B.1 Merging Wreath Graphs

We next give the low level description of the GraphToWreath algorithm.

Consider multiple commi�ees two of which areC(u) = (K ,L(p),u) andC ′(u) = (K ′
,L′(p),v) where each commi�ee

is a wreath graph and u,v are the leaders of each commi�ee respectively. Every node in each commi�ee knows the

leader, the size and the diameter of the commi�ee it belongs to and finally, all of the nodes share a common orientation

based on the ring subgraph of the commi�ee. W.l.o.g. we assume that the orientation is clockwise. Similar to the

algorithm in section 4, each commi�ee selects the neighboring commi�ee with the greatest U ID to merge with.

Communication

Here we describe how commi�ees communicate with other commi�ees and how they understand in which mode

they are and in which mode they should switch to.
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Each follower x in commi�ee C(u) sends a message {myU IDx ,maxNeiдhborU ID,maxNeiдhborDiameter } to its

leader u , wheremyU IDx contains theU ID of node x ,maxNeiдhborU ID contains theU ID of the neighboring commit-

tee with the greatest UID among along neighboring commi�ees that x has an edge with, andmaxNeiдhborDiameter

contains the diameter of that commi�ee. �is step requires at most logd ≤ logn rounds where d is the diameter of

commi�ee C(u).

A�er commi�ee leader u receives all the triplets {myU IDx ,maxNeiдhborU ID,maxNeihbourDiameter }, then if

� maxNeiдhborU ID > U IDu , commi�ee C(u) does not select another commi�ee and commi�ee leader u waits to

see whether another commi�ee has selected C(u). Commi�ee leader u knows the maximum waiting time since it

just received the maximum diameter of all neighboring commi�ees. If ∃maxNeiдhborU ID > U IDu , C(u) selects the

neighbouring commi�eeC(v)with the greatestmaxNeiдhborU ID and sends a message to x to initiate the connection

with that commi�ee. �is step requires logd ≤ logn rounds.

A�er follower x receives the initiation message, it sends a message to its neighbor y ∈ K ′ that C(u) has selected

C(v). Follower y sends the selection request to its leader v . Leader v waits enough in order to receive all possible

selection requests from different neighboring commi�ees. When v receives all the requests, it sends back an approval

message to all nodes y with a timestamp that defines in which round the merging should happen. �is step requires

2 logd + 2 ·maxNeiдhborDiameter ≤ 4 ∗ logn rounds.

�erefore every commi�eeC(u) can understand which commi�eeC(v) it has selected and whether any commi�ees

C ′(v) have selected C(u). �is means that C(u) knows which mode it should enter a�er the selection phase.

Merging the Spanning Ring Subgraph

Suppose that multiple commi�ees C(u) have selected commi�ee C(v) and are trying to merge their ring com-

ponent in the Ring Merging mode. For simplicity, let us call those commi�ees C(1),C(2), . . . ,C(n) and let us call

x1 ∈ V (C(1)),x2 ∈ V (C(2)), . . . ,xp ∈ V (C(p)) the nodes of each commi�ee that are neighbors to y ∈ C(v). �e

merging description follows. �e clockwise neighbor of y activates an edge with the counterclockwise neighbor of

x1, x1 activates an edge with the counterclockwise neighbor of x2, . . ., and xp−2 activates an edge with the counter

clockwise neighbor of xp−1. �is process requires 2 rounds because each pair of nodes has distance 3 from each other.

A�erwards, y deactivates an edge with its clockwise neighbor and x1, x2, . . . ,xp deactivate the edge with their counter-

clockwise neighbor. Note here that at this point,C(v) has a spanning ring that includes the nodes from all commi�ees

C(1),C(2), . . . ,C(n). �e above operations requireO(1) rounds since they do not depend on the size of each commi�ee.

A�er the operations are finished, every commi�ee enters the tree merging mode.

Note here that the above process creates a graph with diameter d ∈ O(logn) if all commi�ees involved were in a

star subgraph, and a graph with diameter d > O(logn) if all commi�ees involved were in a tree subgraph. �erefore

we have to handle the two cases differently. Also note that there are some special cases where the above process needs

to be tweaked in order to work e.g. when a commi�ee consists of 1 or 2 nodes and it has not formed a ring yet.

Merging the CompleteBinaryTree Subgraph

Stars. Assume that commi�ee C(u) selected no commi�ee but at least 1 other commi�ee C(v) selected C(u). A�er

the ring merging is complete, commi�ee leader u sends a message to all nodes in commi�ee C(u) with a timestamp

that defines in which round they should deactivate the edges of the previous complete binary tree subgraph and then

execute the LineToCompleteBinaryTree subroutine where the edges of the ring subgraph define the line graph for the

subroutine and the orientation of the ring defines the parent/children of each node. A�er the subroutine is finished,

we have a spanning complete binary tree subgraph and therefore the final merging is complete. A�er that, commi�ee
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leader v also sends the size, the diameter, and U IDv to all followers x in C(u). �e messaging part of this algorithm

requires logd ′ + logmaxNeiдhborDiameter and the LineToCompleteBinaryTree requires log |V (C(u))|).

Trees. Since d > O(logn) we cannot use the previous method to form the CompleteBinaryTree. Note here that while

d > O(logn), the distance b of each node from at least 1 ex-commi�ee leader is b < O(logn) which we will take

advantage of. Since the ex-commi�ee leaders knew that they were on a directed tree subgraph in the graph of com-

mi�ees, once each of them finished with its own merging, it will send an activation message that will be propagated

to all nodes. Once a node receives the activation message, it starts executing the asynchronous variation of the Line-

ToCompleteBinaryTree. Since we know that every node has b < O(logn), every node will start executing the the

asynchronous variation of the LineToCompleteBinaryTree a�er at most O(logn) rounds. Basically, every node has a

different waking-up round between 0 and logn �e asynchronous LineToCompleteBinaryTree requires logn rounds

a�er the final node in the line awakens. �erefore this step takes O(logn) rounds.

Asynchronous LineToCompleteBinaryTree

Our goal here is to make the nodes simulate the protocol of the synchronous LineToCompleteBinaryTree. �e

difficulty arises from the fact that nodes wake up at different points. Consider a spanning line of size n with the root

being the “right” endpoint of the line. Let us call the nodes u0,u1,u2, . . . ,un−1 for j = 1, 2, . . . ,n − 1 starting from

the “le�” endpoint of the line. In order to make sure that asynchronous version works correctly we have to make

sure of the following things: (i) Each node uj never has a degree of more than 4. �is guarantees that the degree of

each node stays the same as the synchronous version. (ii) Each node uj has to activate exactly the following edges

(uj ,uj+21 ), (uj ,uj+22 ), . . . , (uj ,uj+2i ) in this exact order, for ((i = 1, 2, . . . ,n) ∨ (j + 2i < n − 1)) and has to deactivate

exactly the following edges (uj ,uj+20 ), (uj ,uj+21 ), . . . , (uj ,uj+2i−1 ) in this exact order for (i = 1, 2, . . . ,n) ∨ j + 2i−1 <

n − 1. �is guarantees that both versions have the exact same edge activations and deactivations.

�e asynchronous LineToCompleteBinaryTree works as follows:

Each node u keeps a counter called EA = 0 and EDA = 0. Counter EA tracks how many edges node u has activated

and counter DEA tracks how many edges node u has deactivated. Consider node u where its parent is called v , its

grandparent is called w , its child is called x and the root of the tree is called r . In each round 2 · i + 1, each node u

activates an edgew if u,v,w are awake AND EAu = EAv ANDDEAu = EAu . In each round 2 · i , each node deactivates

an edge with its parent if u,v,x are awake AND EAx = DEAu + 1 AND EAu = DEAu + 1. In each round i , r sends

a termination if it has two children. If in some arbitrary round j node u receives a termination message, and in the

beginning of round 2 ·i+1 > j its grandparentw has 2 children AND EAu = EAw −1 then nodeu enters the termination

state where in each round, it sends a termination message to its children. Note here that the two children of r have no

grandparent, and they enter the termination state once their parent (which is r ) has two children.

Lemma B.4. Consider two initial line graphs D(i) = (V , E(i)) and D′(i) = (V ′
,E′(i)) with size n, where V = V ′ and

E(i) = E′(i). Executing the asynchronous LineToCompleteBinaryTree algorithm on graph D(i) = (V ,E(i)) yields the final

graphD(f ) = (V ,E(f )) and executing the synchronous LineToCompleteBinaryTree algorithm on graphD′(i) = (V ′
,E′(i))

yields the final graph D′(logn) = (V ′
, E′(logn)), where E(f ) = E′(logn).

Proof. Consider any arbitrary node uj on the line u0,u1, . . . ,un−1. �e condition (DEAuj = EAuj ) for activating

an edge imposed by the algorithm does not allow nodeuj to have more than 2 active edges with nodesuk , where k > j.

�e condition EAuj = EAui for activating an edge imposed by the algorithm does not allow nodeuj to have more than

2 active edges with nodes ul , where l < j. �erefore node uj can never have more than 4 active edges.
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Now let us prove that node uj always activates and deactivates the edges based on the previous analysis.

Consider p the round in which node uj has woken up. For every round д < p, node uj+1 will not deactivate edge

(uj+1,uj+2) by definition of the algorithm, and if node uj−1 is not awake node uj will not deactivate (uj−1,uj ). Once

nodes uj ,uj+1,uj+2, node uj will activate edge (uj ,uj+2) and a�er this once node uj−1 activates (uj−1,uj+1) node uj

will deactivate (uj−1,uj ).

Consider round 2 · b > p. Lets us assume that in rounds p,p + 1, . . . ,b − 1, the correct edges were being activated.

�is means that nodeuj now has an active edge with its current parentuj+2b−1 . Note here that nodeuj will not activate

an edge with its grandparent since EAuj > EAu
j+2b−1

. Once node uj+2b−1 activates EAuj in total, it will have uj+2b as

a parent. Once this happens, node uj activates an edge with uj+2b . Consider round 2 · b + 1 > p. Now let us assume

that in rounds p,p + 1, . . . ,b − 1, the correct edges were being deactivated. �is means that node uj now has an active

edge with its child uj−2b−1 . Node uj will not deactivate the edge with uj+2b−1 since EAuj−2b−1 < DEAuj + 1. Once node

uj−2b−1 activates an edge with uj+2b−1 , EAuj−2b−1 = DEAuj + 1 and node uj will deactivate an edge with with uj+2b−1 .

Finally we need to prove, that nodeuj will terminate and will not keep activating and deactivating edges indefinitely.

Note here that nodeun−1 will definitely terminate at some point since nodeun−3 will activate an edge withun−1 once it

awakens. Each time that a nodeu terminates, its sends a message to its children to terminate as well. �erefore, we can

see that all nodes will eventually terminate. Also note that no node will receive a termination message until its parent

terminates as well. �e termination state condition can then be translated to: “if my parent (and my grandparent) has

entered termination mode, and my grandparent has 2 children, i will also enter the termination mode”. Note that his

can only happen when node u has reached its final position in the CompleteBinaryTree. Node u can never activate an

edge a�er it reaches its final position since its grandparent w will always have two children. �

Corollary B.5. Consider an initial line graph D(i) = (V , E(i)) with n nodes. We execute the asynchronous LineTo-

CompleteBinaryTree algorithm on the graph. Assume that the final node on the graph wakes up in round k . �e LineTo-

CompleteBinaryTree algorithm requiresO(log(n) + k) rounds to terminate.

Proof. Note that a�er all nodes have awoken, the algorithm requiresO(logn) rounds to terminate. Consider node

uj that was one of the last nodes to wake up. In each odd round a�er waking up, node uj will activate an edge and in

each even round a�er waking up, it will deactivate an edge. �is happens because every neighbor uk of uj is awake

and it has EAuk ≥ EAuj and EDAuj ≥ EDAui . �

C OMITTED DETAILS FROM SECTION 5 - TRADING THE DEGREE FOR TIME

Since the high level strategy of our algorithm is exactly the same as the previous ones apart from minor differences,

we are just going to list how we handle the new differences instead of the whole algorithm. First consider the selection

graph.

(1) Each commi�ee u that has more than 1 child prepares to deactivate all of its edges with its children in the

selection graph apart from the one with the greatest UID among its children. Note now that if the deactiva-

tions do happen, in the selection graph we will have subgraphs that are either single commi�ees, or pairs of

commi�ees or lines of commi�ees. �us, we have managed to get rid of the directed trees. �e problem now

is that we have a lot of single commi�ees.

(2) Each commi�ee u performs a matching between its children that are leaves. If they are an odd number of

children, then u matches itself with one if its children as well so that everyone is matched. �us, we have also

managed to minimize the number of single commi�ees.
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(3) Each commi�ee u deactivates the edges listed on step 1.

Currently in the selection graph, we have pairs of commi�ees and lines of commi�ees. Each pair merges in a single

commi�ee in 1 phase and each commi�ee on a line execute a variant of the LineToCompleteBinaryTree which requires

O(logk) rounds where k is the diameter of the line. We have now finished with the high level strategy of the algorithm.

We are now going to provide the low level details of our algorithm which are the ones that allow us to minimize

the running time of our algorithm. We are going to omit the communication description since it is very similar to the

GraphToWreath algorithm.

Leader Merging Mode

Consider two commi�ees which areC(p) = (K ,L(p),u) and C ′(p) = (K ′
,L′(p),v) and commi�ee u decides to merge

with commi�ee v through nodes x ∈ K and y ∈ K ′. �ey both agree on the merging (identical to how the Graph-

ToWreath commi�ees communicate), first they merge their ring components (identical to how theWreath commi�ees

merge their ring component) and then node x activates edges inC(p) until it activates an edge with leader u and node

y activates edges inC ′(p) until it activates an edge with leader y. A�er that,u activates an edge withy and the merging

is complete. We now have the new commi�ee C ′′(p) = (K ′′
, L′′(p),v). Let us assume that prior to the merging the

shortest path between leader u and every other node in commi�ees C(p) is O(
logn

log logn ). Let us assume the same for

commi�ee v . �en a�er the merging, the same is true for leader v and every other node in commi�eeC ′′(p).

Asynchronous LineToCompletePolylogarithmicTree

Every leader starts executing a variant of the asynchronous LineToCompleteBinaryTree. �e difference of this

variant algorithm called LineToCompletePolylogarithmicTree, is that the criteria for entering the termination stage

is that your grandparent has logn children instead of 2. Every node knows the size n of the network, and therefore

knows the logn upper bound needed for termination. Note here that once all of the leaders finish the asynchronous

LineToCompletePolylogarithmicTree the shortest path between any 2 leaders is O(
logn

log logn
). Let us assume that prior

to the merging the shortest path between leader u and every other node in commi�ees C(p) is O(
logn

log logn ). Let us

assume the same for all commi�ees on the line. �en a�er the merging, the same is true for leader v and every other

node in the final commi�ee.

Matching

We still have to define how the matching is done between the children of each commi�ee u . �e difficulty here is

that a�er we do the matching, the children have to become neighbors throughu and we have to handle this properly so

that we can guarantee that the degree of each node stays polylogarithmic. In order to achieve this, each leader u keeps

a virtual addressing of each node in its commi�ee on the leaves of its commi�ee. Since n/2 nodes of the commi�ee are

leaf nodes, we can achieve this by addressing two nodes to each leaf node. Consider multiple neighboring commi�ees

that commi�eeu has to match. Commi�eeu computes the minimum distance between all pair of commi�ees and then

matches the pair the minimum distance. Commi�ee u keeps recomputing and matching until all pairs of nodes are

matched. Note here that a�er each merging that commi�ee u does, it has to virtually readdress all the nodes in its

commi�ee based on the new polylogarithmic tree.

D OMITTED DETAILS FROM SECTION 6 - LOWER BOUNDS FOR THE DEPTH-LOGN TREE PROBLEM

We will now shi� our focus into proving lower bounds for our model. We are going to provide lower bounds for both

a centralized model and a distributed one because we want to show that there is an important difference between the

two of them.

25



D.1 Centralized Se�ing

In the centralized se�ing, everything we have previously defined in the model subsection stays the same but now every

node also has complete knowledge of the graph and a centralized controller can decide what each node will do in each

round.

Definition D.1. We define the potential of a U IDu to v as its minimum ”distance” from v . �e distance is defined

as follows: Consider all nodes w in the network that know U IDu . Compute the length of the shortest path between

each nodew and nodev . �e minimum length among all shortest paths is the distance betweenU IDu and nodev . We

denote the potential ofU IDu to v by POu,v .

Note that in any initial graph D = (V ,E), ∀u,v ∈ V , POu,v = max
u

POu,v = n − 1. Consider any pair of nodes u,v ,

where POu,v = k . �ere are two ways to reduce POu,v in each round i :

• Information Propagation. Consider all nodesw that currently knowU IDu . Compute the shortest path between

all pairs ofw andv and pick nodew that yields the smallest shortest path. Nodew can send toU IDu one of its neighbors

y that belong on the shortest path betweenw and v to reduce POu,v by 1.

• Reduce Shortest Paths. Consider all nodes w that currently know U IDu . Compute the shortest path between

all pairs of w and v and pick node w that yields the smallest shortest path with size = k . Now consider all pairs of

nodes x,y that are potential neighbors and also belong on the shortest path betweenw and v . Activating xy between

one pair of x,y reduces POu,v by 1. Activating multiple xy between different pairs in one round can reduce POu,v

even more but at most by k/2.

Observation 1. In order for an algorithm to solve the Depth-logn Tree Problem, ∀u,v ∈ V , POu,v ≤ logn.

Lemma D.2. Any transformation strategy based on this model requires Ω(logn) time to solve the Depth-logn tree

problem if the initial graphGs is a spanning line.

Proof. Consider a spanning line where, for simplicity, we call the node that resides at the “le�” endpoint of the line

u and the node that resides at the “right” endpoint of the line v . According to observation 1, in order for an algorithm

to solve the Depth-logn tree problem, POu,v ≤ logn. In the initial graph, POu,v = n − 1. We know that by using Edge

Activations, we can reduce POu,v by half in each round, and by using Information Propagation we can reduce POu,v

by 1 in each round. �erefore in order for POu,v = logn, any algorithm would required at least Ω(logn) rounds. �

LemmaD.3. Any transformation strategy based on this model that solves the Depth-logn Tree problem inO(logn) time,

requires Ω(n) edge activations.

Proof. Let us again consider a spanning line as the initial graph. W.l.o.g. let us assume that the size of the network

is odd. Let us call u the node that is the “le�” end point of the line and v the “right” endpoint of the line.

Let us assume that in some round i , where i ≤ logn, that POu,v ≤ logn. We can produce the following equation

based on the two rules that allow us to reduce the potential: InitialPotential − #EdдeActivations − #MessaдesSent ≤

logn. �e maximum value of MessaдesSent is logn and InitialPotential = n − 1 and if we add those in the previous

equation we get #EdдeActivations ≥ n − 1 − 2 logn and therefore, in order for POu,v ≤ logn at least n − 1 − 2 logn

edges have to have been activated. �

LemmaD.4. Any transformation strategy based on this model that solves the Depth-logn Tree problem inO(logn) time,

requires Ω(n/logn) edge activations per round.
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Proof. From Lemma D.3 we know that POu,v = 0 to be possible in logn time, the following equation has to be

true EdдeActivations = Ω(n). Now, since we are trying to find the minimum number of edge activations per round

possible, we can easily do this by dividing the total number of edge activations with the number of rounds. �erefore

EdдeActivationsPerRound ≥
EdдeActivations

Rounds
≥ Ω(n)

logn
. �

Since we have have just proven that Ω(n) edge activations are required in order to solve the Depth-logn problem

given any initial graph, we are now going to prove that Θ(n) edges are sufficient in order to solve it. First, we are

going to informally prove it for the special case of the spanning line graph and a�erwards we are going to prove it for

general graphs.

Consider a spanning line with nodes u1,u2, . . . ,uj for j = 1, 2, . . . ,n. For simplicity, assume that u1 is the “le�”

endpoint of the line, u2 is the neighbor of u1 etc, u3 is a neighbor of u2 etc. In each round i , we activate edge uj ,uj+2i ∀

{uj |(j mod (2i ) = 1)∧(j +2i ≤ n)}. A�er logn rounds, the diameter of the shape is equal to logn. Let us now proceed

to analyzing the total edge activations. By definition of the algorithm, in each round i , n
2i

edges are activated. Since

the algorithm runs for lognrounds , we have
∑logn
i=1

n
2i
= n total edge activations. We call this algorithm CutInHalf.

Theorem D.5. Given any initial graph D = (V , E), the Depth-logn problem can be solved in O(logn) time, with Θ(n)

total edge activations.

Proof. Since we are in a centralized se�ing, we are first going to perform some global computations that are going

to output the specific edges that have to be activated in order for the diameter of the shape to drop to logn. We consider

any initial graph D = (V , E) and we pick an arbitrary node called u . First, we compute a spanning tree that starts from

node u . A�erwards we compute an eulerian tour starting from u . �is way we can create a virtual ring D′
= (V ′

, E′)

that has |V ′ | ≤ |2 ·V | and |E′ | ≤ 2|E |. Now in this ring, node u deactivates one of its incident edges and the graph is

now a line. We can now execute the CutInHalf algorithm to solve the Depth-logn Tree problem in O(logn) time, with

Θ(n) total edge activations . �

D.2 Distributed Se�ing

In this part, we are going to show that there is a difference in the minimum total edge activations required for solving

the Depth-logn problem between the centralized and the distributed model.

Definition D.6. Let U = u1,u2, . . . ,uk be a sequence of UIDs of length k . We say that U is an increasing order

sequence if, for all i, j, 1 ≤ i, j ≤ k , we have i ≤ j iff ui ≤ uj .

Definition D.7. Let A be a comparison-based algorithm executing on an increasing order ring graph. Let i and j be

two nodes in the ring graph. We say that i and j are in corresponding states if the UIDs that they both have received

from counterclockwise neighbors are a decreasing order sequence and the UIDs they have received are an increasing

order sequence and vice versa.

Definition D.8. We define the increasing order ring R as follows. Suppose we have an increasing order sequence U

of UIDs to be assigned on a ring with n nodes. We assign the smallest UID fromU = u1,u2, . . . ,uk to an arbitrary node

and we continue assigning increasing UIDs clockwise (or counterclockwise). We call this an increasing order ring.

Definition D.9. We define a round of an execution/algorithm to be active if at least one message is sent in it or an

edge is activated in it.
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Definition D.10. We define the k-expo-neighborhood of node i in ring R of size n, where 0 ≤ k ≤ n
2 , to consist of the

2 · 2k + 1 nodes i − 2k , . . . , i + 2k , that is, those that are within distance at most 2k from node i (including i itself).

Lemma D.11. Let A be a comparison-based algorithm executing in an increasing order ring of size n and let dmin be

the initial distance from between node d and the node with the minimum UID called d0 and dmax be the initial dis-

tance from between node d and the node with me maximum UID called dn−1. Let i and j be two nodes in A where

2k = min(max(imin , imax ),max(jmin, jmax )). �en, at any point a�er at most k active rounds, nodes i and j are in

corresponding states, with respect to the UID sequences.

Proof. Note here that nodes i and j are in corresponding states as long as (((POd0,i > 0) ∨ (POdn−1,i > 0)) ∧

((POd0, j > 0) ∨ (POdn−1, j > 0)). In simple terms, i and j are in corresponding states as long as both of them do not

know bothU IDd0 andU IDdn−1 . Consider p = max(POd0,i , POdn−1,i ) prior to the execution of the algorithm. We know

that the initial distance between d0, i and dn−1, i is at least 2
k and therefore p > 2k . We already know from a previous

proof that at least k − logk are needed before ((POd0,i > 0) ∨ (POdn−1,i > 0)). A similar argument is used for j. �

Observation 2. Any transformation strategy based on this model that solves the Depth-logn Tree problem inO(logn)

time in an increasing order ring, requires at least logn active rounds.

TheoremD.12. Any distributed algorithm that solves theDepth-logn Tree problem inO(logn) time, requiresΩ(n logn)

total edge activations.

Proof. Consider an increasing order ring R with n nodes and algorithm A that solves the Depth-logn problem.

Consider the node with the greatest UID in the network, called umax , the node with the smallest UID in the network,

called u1, and the antipodal node of umax called uc .

First of all, note that in the first round, all nodes except from u1 and umax are in corresponding states. We can

generalize this statement by using Lemma D.11 to state that in round i , each node whose i-expo-neighborhood does

not include bothu1,umax is in a corresponding state with each such node. �erefore those nodes behave the same way

e.g. if in round i , one of those c nodes activates an edge, then all c nodes activate an edge. For this proof, we define a

round of algorithm A to be live if the c nodes activates at least one edge in it, we also define a round of algorithm A to

be asleep if none of the c nodes activate an edge in it.

We already know that we need at least logn active rounds to connect umax with uc from Lemma 2. Our goal here

is to prove that logn of those active rounds also have to be live rounds.

For simplicity, we define the set C where node u ∈ C if u is in the same corresponding state as ua (including ua),

the set A where node u ∈ A if u is not in the same corresponding state as uc .

Consider an arbitrary round i , where the shortest path between umax and uc is |P | = k . �is shortest path can be

split into two different paths. �e one called PA that includes nodes u ∈ A and the one called PC that includes nodes

v ∈ C . Essentially, the potential POumax ,a = |PC |. Let us divide our analysis between asleep and live rounds and study

how much the potential can be reduced in each round.

• Asleep rounds. In each asleep round a, only nodes u ∈ A can activate edges and |PC | can only be reduced by at

most l + 1 where l is the total number of live rounds before round a. We can reduce it l by having u ∈ A activating an

edge with each potential neighbor v ∈ C , and reduce it by 1 by having u send U IDumax to all v ∈ C .

• Live rounds. In each live round l , all nodes can activate an edge so we can reduce |PC | by l + 1 by following the

above strategy and additionally, use edge activations between nodes v ∈ C so that |PC | is reduced by at most half.
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Note here, that Asleep rounds are not enough to reduce the potential to 0 in order to solve the Depth-logn problem.

A�er O log(n) asleep rounds, POumax ,a ≥ InitialPotential − (logn)(l + 1) = n
2 − (logn)(l + 1). �erefore we need at

least logn live rounds to solve the Depth-logn problem.

We are now gonna examine how many edges are activated in each live round. Recall that in each live round l , at

least 1 nodev ∈ C activates an edge and by LemmaD.11, all nodesv ∈ C activate an edge. �e number of nodesv ∈ C in

round i are |u | ≥ #CnodesInInitialGraph−NodesRemovedInPreviousLiveRounds−NodesRemovedInPreviousAsleepRounds

= (n−2)−(
∑l−1
i=1 2

i )(
∑a
i=1 −i(l−1))−a(l−1). �e number of edges activated in each round l are at least |C | ≥ |u |.�ere-

fore the total number of edge activations in live rounds a�er logn rounds is at least (n − 2) − (
∑logn
i=1 2i )(

∑logn
i=1 −i(l −

1)) − a(l − 1) = Θ(logn) �
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