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Abstract

We consider non-cooperative facility location
games where both facilities and clients act strate-
gically and heavily influence each other. This con-
trasts established game-theoretic facility location
models with non-strategic clients that simply select
the closest opened facility. In our model, every fa-
cility location has a set of attracted clients and each
client has a set of shopping locations and a weight
that corresponds to her spending capacity. Facil-
ity agents selfishly select a location for opening
their facility to maximize the attracted total spend-
ing capacity, whereas clients strategically decide
how to distribute their spending capacity among the
opened facilities in their shopping range. We fo-
cus on a natural client behavior similar to classical
load balancing: our selfish clients aim for a distri-
bution that minimizes their maximum waiting times
for getting serviced, where a facility’s waiting time
corresponds to its total attracted client weight.
We show that subgame perfect equilibria exist and
give almost tight constant bounds on the Price of
Anarchy and the Price of Stability, which even hold
for a broader class of games with arbitrary client
behavior. Since facilities and clients influence each
other, it is crucial for the facilities to anticipate the
selfish clients’ behavior when selecting their loca-
tion. For this, we provide an efficient algorithm that
also implies an efficient check for equilibrium. Fi-
nally, we show that computing a socially optimal
facility placement is NP-hard and that this result
holds for all feasible client weight distributions.

1 Introduction
Facility location problems are widely studied in Operations
Research, Economics, Mathematics, Theoretical Computer
Science, and Artificial Intelligence. In essence, in these prob-
lems facilities must be placed in some underlying space to
serve a set of clients that also live in that space. Famous ap-
plications of this are the placement of hospitals in rural areas
to minimize the emergency response time or the deployment
of wireless Internet access points to maximize the offered

bandwidth to users. These problems are purely combinato-
rial optimization problems and can be solved via a rich set of
methods. Much more intricate are facility location problems
that involve competition, i.e., if the facilities compete for the
clients. These settings can no longer be solved via combina-
torial optimization and instead, methods from Game Theory
are used for modeling and analyzing them.

The first model on competitive facility location is
the famous Hotelling-Downs model, first introduced by
Hotelling [1929] and later refined by Downs [1957]. Their
original interpretations are selling a commodity in the main
street of a town, and parties placing themselves in a po-
litical left-to-right spectrum, respectively. They assume a
one-dimensional market on which clients are uniformly dis-
tributed and there are k facility agents that each want to place
a single facility on the market. Each facility gets the clients,
to which their facility is closest. Dürr and Thang [2007] in-
troduced Voronoi games on networks, that move the problem
onto a graph and assume discrete clients on each node.

The models mentioned above are one-sided, i.e., only the
facility agents face a strategic choice while the clients simply
patronize their closest facility independently of the choices
of other clients. Obviously, realistic client behavior can be
more complex than this. For example, a client might choose
not to patronize any facility, if there is no facility sufficiently
close to her. This setting was recently studied by Feldman
et al. [2016], Shen and Wang [2017] and Cohen and Pe-
leg [2019] albeit with continuous clients on a line. In their
model with limited attraction ranges, clients split their spend-
ing capacity uniformly among all facilities that are within a
certain distance. In contrast to the Hotelling-Downs model,
pure Nash equilibria always exist. In another related variant
by Fournier et al. [2020], clients that have multiple facili-
ties in their range choose the nearest facilities. Another natu-
ral client behavior is that they might avoid crowded facilities
to reduce waiting times. This notion was introduced to the
Hotelling-Downs model by Kohlberg [1983], also on a line.
Clients consider a linear combination of both distance and
waiting time, as they want to minimize the total time spent
visiting a facility. This models clients that perform load bal-
ancing between different facilities. Peters et al. [2018] prove
the existence of subgame perfect equilibria for certain trade-
offs of distance and waiting time for two, four and six facili-
ties and they conjecture that equilibria exist for all cases with
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an even number of facilities for client utility functions that are
heavily tilted towards minimizing waiting times. Feldotto et
al. [2019] investigated the existence of approximate pure sub-
game perfect equilibria for Kohlberg’s model and their results
indicate that 1.08-approximate equilibria exist. The most no-
table aspect of Kohlberg’s model is that it is two-sided, i.e.,
both facility and client agents act strategically. This implies
that the facility agents have to anticipate the client behavior,
in particular the client equilibrium. For Kohlberg’s model
Feldotto et al. [2019] show that this entails the highly non-
trivial problem of solving a complex system of equations.

In this paper we present a very general two-sided compet-
itive facility location model that is essentially a combination
of the models discussed above. Our model has an underlying
host graph with discrete weighted clients on each vertex. The
host graph is directed, which allows to model limited attrac-
tion ranges, and we have facilities and clients that both face
strategic decisions. Most notably, in contrast to Kohlberg’s
model and despite our model’s generality, we provide an effi-
cient algorithm for computing the facilities’ loads in a client
equilibrium. Hence, facility agents can efficiently anticipate
the client behavior and check if a game state is in equilibrium.

1.1 Further Related Work
Voronoi games were introduced by Ahn et al. [2004] on a
line. For the version on networks by Dürr and Thang [2007],
the authors show that equilibria may not exist and that exis-
tence is NP-hard to decide. Also, they investigate the ratio
between the social cost of the best and the worst equilibrium
state, where the social cost is measured by the total distance
of all clients to their selected facilities. With n the number of
clients and k the number of facilities, they prove bounds of
Ω(
√
n/k) and O(

√
kn). While we are not aware of other

results on general graphs, there is work for specific graph
classes: Mavronicolas et al. [2008] limit their investigation
to cycle graphs and characterize the existence of equilibria
and bound the Price of Anarchy (PoA) [Koutsoupias and Pa-
padimitriou, 1999] and the Price of Stability (PoS) [Anshele-
vich et al., 2004] to 9

4 and 1, respectively. Additionally, there
are many closely related variants with two agents: restaurant
location games [Prisner, 2011], a variant by Gur et al. [2018],
and a multi round version [Teramoto et al., 2006]. Moreover,
there are variants played in k-dimensional space: de Berg
et al. [2019], Ahn et al. [2004], Boppana et al. [2016]. To
the best of our knowledge, there is no variant with strategic
clients aiming at minimizing their maximum waiting time.

A concept related to our model are utility systems, as in-
troduced by Vetta [2002]. Agents gain utility by selecting a
set of acts, which they choose from a collection of subsets of
a groundset. Utility is assigned by a function that takes the
selected acts of all agents as an input. Two special types are
considered: basic and valid utility systems. For the former, it
is shown that pure Nash equilibria (NE) exist. For the latter,
no NE existence is shown but the PoA is upper bounded by 2.
We show in the supplementary material that our model with
load balancing clients is a valid but not a basic utility system.

Covering games [Gairing, 2009] correspond to a one-sided
version of our model, i.e., where clients simply distribute
their weight uniformly among all facilities in their shopping

range. There, pure NE exist and the PoA is upper bounded
by 2. More general versions are investigated by Goemans
et al. [2006] and Brethouwer et al. [2018] in the form of
market sharing games. In these models, k agents choose to
serve a subset of n markets. Each market then equally dis-
tributes its utility among all agents who serve it. Brethouwer
et al. [2018] show a PoA of 2− 1

k for their game.
Recently Schmand et al. [2019] introduced a model which

considers an inherent load balancing problem, however, each
facility agent can create and choose multiple facilities and
each client agent chooses multiple facilities.

For further related models we refer to the excellent surveys
by Eiselt et al. [1993] and ReVelle and Eiselt [2005].

1.2 Model and Preliminaries
We consider a game-theoretic model for non-cooperative fa-
cility location, called the Two-Sided Facility Location Game
(2-FLG), where two types of agents, k facilities and n clients,
strategically interact on a given vertex-weighted directed host
graph H = (V,E,w), with V = {v1, . . . , vn}, where w :
V → N denotes the vertex weight. Every vertex vi ∈ V cor-
responds to a client with weightw(vi), that can be understood
as her spending capacity, and at the same time each vertex is
a possible location for setting up a facility for any of the k fa-
cility agents F = {f1, . . . , fk}. Any client vi ∈ V considers
visiting a facility in her shopping range N(vi), i.e., her di-
rect closed neighborhood N(vi) = {vi} ∪ {z | (vi, z) ∈ E}.
Moreover, let w(X) =

∑
vi∈X w(vi), for any X ⊆ V , de-

note the total spending capacity of the client subset X .
In our setting the strategic behavior of the facility and the

client agents influences each other. Facility agents select a
location to attract as much client weight as possible, whereas
clients strategically decide how to distribute their spending
capacity among the facilities in their shopping range. More
precisely, each facility agent fj ∈ F selects a single loca-
tion vertex sj ∈ V for setting up her facility, i.e., the strategy
space of any facility agent fj ∈ F is V . Let s = (s1, . . . , sk)
denote the facility placement profile. And let S = V k denote
the set of all possible facility placement profiles. We will
sometimes use the notation s = (sj , s−j), where s−j is the
vector of strategies of all facilities agents except fj . Given
s, we define the attraction range for a facility fj on location
sj ∈ V as As(fj) = {sj} ∪ {vi | (vi, sj) ∈ E}. We ex-
tend this to sets of facilities F ⊆ F in the natural way, i.e.,
As(F ) = {sj | fj ∈ F} ∪ {vi | (vi, sj) ∈ E, fj ∈ F}.
Moreover, let ws(F) =

∑
vi∈As(F) w(vi).

We assume that all facilities provide the same service for
the same price and arbitrarily many facilities may be co-
located on the same location. Each client vi ∈ V strategically
decides how to distribute her spending capacity w(vi) among
the opened facilities in her shopping range N(vi). For this,
let Ns(vi) = {fj | sj ∈ N(vi)} denote the set of facilities in
the shopping range of client vi under s.

Let σ : S × V → Rk+ denote the client weight distri-
bution function, where σ(s, vi) is the weight distribution of
client vi and σ(s, vi)j is the weight distributed by vi to fa-
cility fj . We say that σ is feasible for s, if all clients having
at least one facility within their shopping range distribute all
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Figure 1: Example of the load balancing 2-FLG. The clients (ver-
tices) split their weight (shown by numbers) among the facilities
(colored dots) in their shopping range. The client distributions are
shown by colored pie charts. Left: The blue facility receives a load
of 2 while all other facilities get a load of 4

3
. The left client with

weight 2 distributes weight 4
3

to the yellow facility and 1
3

to both the
green and the red facility. The state is not in SPE as the red facil-
ity can improve her load to 3

2
by co-locating with the blue facility.

Right: A SPE for this instance, all facilities have a load of 3
2

.

their weight to the respective facilities and all other clients
distribute nothing. Formally, σ is feasible for s, if for all
vi ∈ V we have

∑
fj∈Ns

σ(s, vi)j = w(vi), if Ns(vi) 6= ∅,
and σ(s, vi)j = 0, for all 1 ≤ j ≤ k, if Ns(vi) = ∅. We use
the notation σ = (σi, σ−i) and (σ′i, σ−i) denotes the changed
client weight distribution function that is identical to σ except
for client vi, which plays σ′(s, vi) instead of σ(s, vi).

Any state (s, σ) of the 2-FLG is determined by a facility
placement profile s and a feasible client weight distribution
function σ. A state (s, σ) then yields a facility load `j(s, σ)
with `j(s, σ) =

∑n
i=1 σ(s, vi)j for facility agent fj . Hence,

`j(s, σ) naturally models the total congestion for the service
offered by the facility of agent fj induced by σ. A facility
agent fj strategically selects a location sj to maximize her
induced facility load `j(s, σ). We assume that the service
quality of facilities, e.g. the waiting time, deteriorates with
increasing congestion. Hence, for a client the facility load
corresponds to the waiting time at the respective facility.

There are many ways of how clients could distribute their
spending capacity. As proof-of-concept we consider the load
balancing 2-FLG with load balancing clients, i.e., a natural
strategic behavior where client vi strategically selects σ(s, vi)
to minimize her maximum waiting time. More precisely,
client vi tries to minimize her incurred maximum facility load
over all her patronized facilities (if any). More formally, let
Pi(s, σ) = {j | σ(s, vi)j > 0} denote the set of facilities pa-
tronized by client vi in state (s, σ). Then client vi’s incurred
maximum facility load in state (s, σ) is defined as Li(s, σ) =
maxj∈Pi(s,σ) `j(s, σ). We say that σ∗ is a client equilibrium
weight distribution, or simply a client equilibrium, if for all
vi ∈ V we have that Li(s, (σ∗i , σ−i)) ≤ Li(s, (σ

′
i, σ−i)) for

all possible weight distributions σ′(s, vi) of client vi. See
Figure 1 for an illustration of the load balancing 2-FLG.

We define the stable states of the 2-FLG as subgame per-
fect equilibria (SPE), since we inherently have a two-stage
game. First, the facility agents select locations for their facil-
ities and then, given this facility placement, the clients strate-
gically distribute their spending capacity among the facilities
in their shopping range. A state (s, σ) is in SPE, or stable, if

(1) ∀fj ∈ F ,∀s′j ∈ V : `j(s, σ) ≥ `j((s′j , s−j), σ) and

(2) ∀s ∈ S,∀vi ∈ V : Li(s, σ) ≤ Li(s, (σ
′
i, σ−i)) for all

feasible weight distributions σ′(s, vi) of client vi.

We say that client vi is covered by s, ifNs(vi) 6= ∅, and un-
covered by s, otherwise. Let C(s) = {vi | vi ∈ V,Ns(vi) 6=
∅} denote the set of covered clients under facility place-
ment s. We will compare states of the 2-FLG by measuring
their social welfare that is defined as the weighted participa-
tion rate W (s) = w(C(s)) =

∑
vi∈C(s) w(vi), i.e., the total

spending capacity of all covered clients. For a host graph H
and a number of facility agents k, let OPT(H, k) denote the
facility placement profile that maximizes the weighted par-
ticipation rate W (OPT(H, k)) among all facility placement
profiles with k facilities on host graph H .

We measure the inefficiency due to the selfishness of the
agents via the Price of Anarchy (PoA) and the Price of Sta-
bility (PoS). Let bestSPE(H, k) (resp. worstSPE(H, k)) de-
note the SPE with the highest (resp. lowest) social welfare
among all SPEs for a given host graph H and a facility num-
ber k. Moreover, let H be the set of all possible host graphs
H . Then the PoA is defined as

PoA := max
H∈H,k

W (OPT(H, k))/W (worstSPE(H, k)),

whereas the PoS is defined as

PoS := max
H∈H,k

W (OPT(H, k))/W (bestSPE(H, k)).

We study dynamic properties of the 2-FLG. Let an im-
proving move by some (facility or client) agent be a strategy
change that improves the agent’s utility. A game has the fi-
nite improvement property (FIP) if all sequences of improv-
ing moves are finite. The FIP is equivalent to the existence of
an ordinal potential function [Monderer and Shapley, 1996].

1.3 Our Contribution
We introduce and analyze the 2-FLG, a general model for
competitive facility location games, where facility agents and
also client agents act strategically. We focus on the load bal-
ancing 2-FLG, where clients selfishly try to minimize their
maximum waiting times that not only depend on the place-
ment of the facilities but also on the behavior of all other
client agents. We show that client equilibria always exist
and that all client equilibria are equivalent from the facility
agents’ point-of-view. Additionally, we provide an efficient
algorithm for computing the facility loads in a client equi-
librium that enables facility agents to efficiently anticipate
the clients’ behavior. This is crucial in a two-stage game-
theoretic setting. Moreover, since there are only n possible
locations for facilities, we can efficiently check if a given
state of the load balancing 2-FLG is in SPE. Using a potential
function argument, we can show that a SPE always exists.

Finally, we consider the 2-FLG with an arbitrary feasible
client weight distribution function. For this broad class of
games, we prove that the PoA is upper bounded by 2 and
we give an almost tight lower bound of 2 − 1

k on the PoA
and PoS. This implies an almost tight PoA lower bound for
the load balancing 2-FLG. Furthermore, we show that com-
puting a social optimum state for the 2-FLG with an arbitrary
feasible client weight distribution function σ is NP-hard for
all feasible σ, hence, also for the load balancing 2-FLG.



2 Load Balancing Clients
In this section we analyze the load balancing 2-FLG in which
we consider not only strategic facilities that try to get patron-
ized by as many clients as possible but we also have self-
ish clients that strategically distribute their spending capac-
ity to minimize their maximum waiting time for getting ser-
viced. We start with a crucial statement that enables the facil-
ity agents to anticipate the clients’ behavior.

Theorem 1. For a facility placement profile s, a client equi-
librium σ exists and every client equilibrium induces the same
facility loads (`1(s, σ), . . . , `k(s, σ)).

Proof. We consider the following optimization problem
(EQ):

min
σ

k∑
i=1

`i(s, σ)2

subject to
σ(s, vi)j ≥ 0 for all fj ∈ Ns(vi)

σ(s, vi)j = 0 for all fj /∈ Ns(vi)∑
fj∈Ns(vi)

σ(s, vi)j = w(vi) if Ns(vi) 6= ∅

It is easy to see that an optimal solution σ of EQ is a client
equilibrium. For the sake of contradiction, assume that there
exists a client vi and two facility agents fp and fq with
`q(s, σ) > `p(s, σ) and σ(s, vi)q > 0. However, this
contradicts the optimality of σ as the KKT conditions Per-
essini et al. [1988] demand that `q(s, σ) ≤ `p(s, σ) for all
fp, fq ∈ Ns(vi) with σ(s, vi)q > 0. Moreover, the KKT con-
ditions are precisely the conditions of a client equilibrium,
hence every equilibrium is an optimal solution of EQ.

Observe that the objective of EQ is convex in the facilities’
loads `1(s, σ), . . . , `k(s, σ) and the set of feasible solutions is
compact and convex. Suppose there are two global optima σ
and σ′ of EQ. By convexity of the objective function, we must
have `j(s, σ) = `j(s, σ

′) for all facility agents fj as other-
wise a convex combination of σ and σ′ would yield a feasible
solution for EQ with smaller objective function value.

Two facility agents sharing a client have equal load if the
shared client puts weight on both of them:

Lemma 1. In the load balancing 2-FLG, for a facility place-
ment s, in a client equilibrium σ, if there are two facility
agents fp and fq and a client vi with p, q ∈ Pi(s, σ), then
`p(s, σ) = `q(s, σ).

Proof. Let vi be a client and p be the agent with the highest
load in Pi(s, σ). Assume that there is an agent q ∈ Pi(s, σ)
with `p(s, σ) > `q(s, σ). In this case, the client vi decreases
her weight on fp (and all facility agents in Pi(s, σ) with the
same load) and increases her weight on fq , decreasing her
total costs. This contradicts σ being a client equilibrium.

Next, we define a shared client set, which represents a set of
facility agents who share weight of the same clients.

Definition 1. For a facility placement profile s, let fp be an
agent, σ be a client equilibrium. We define a shared client set
of facility agents Sσ(fp), such that (1) fp ∈ Sσ(fp) and (2)
For two facility agents fq, fr: If fq ∈ Sσ(fp) and there is a
client vi with q, r ∈ Pi(s, σ), then fr ∈ Sσ(fp).

We prove two properties of such a shared client set: First,
all facility agents in a shared client set have the same load,
and second, a client’s weight is either completely inside or
completely outside a shared client set in a client equilibrium.

Lemma 2. For a facility placement s in a client equilibrium
σ, for every fq, fr ∈ Sσ(fp) we have `q(s, σ) = `r(s, σ).

Proof. As fq and fr are both members of Sσ(fp) there ex-
ists a sequence of facility agents F = (fq, fi1 , fi2 , . . . , fr),
in which two adjacent facility agents share a client. By
Lemma 1, each pair of neighbors in F has identical loads.
Thus, `q(s, σ) = `r(s, σ).

The next lemma follows from Definition 1:

Lemma 3. For a facility placement s, in a client equilibrium
σ for every client vi and facility agent fp with p ∈ Pi(s, σ) ,
we have that for every facility agent fr /∈ Sσ(fp) it holds that
r /∈ Pi(s, σ).

Additionally, we show that each facility agent’s load can only
take a limited number of values.

Lemma 4. For a facility placement profile s, in a client equi-
librium σ a facility agent’s load can only take a value of the
form x

y for x ≤ ws(F) and y ≤ k with x, y ∈ N.

Proof. If a client is shared between two facilities, these two
facilities must, by Lemma 1, have the same load. We con-
sider an arbitrary facility agent fj and her shared client set
Sσ(fj). All facility agents in Sσ(fj) have the same load
by Lemma 2 and all clients which have weight on a facility
agent on Sσ(fj) have their complete weight inside Sσ(fj)
by Lemma 3. Therefore, the sum of loads of the facility
agents Sσ(fj) must be an integer i ≤ ws(F). Thus, the
load of fj is i

|Sσ(fj)| . Since i ≤ ws(F) (sum of client
weights) and |Sσ(fj)| ≤ k (number of facility agents) with
i, |Sσ(fj)| ∈ N, the lemma is true.

Definition 2. For a facility placement profile s, a set of fa-
cility agents ∅ ⊂ M ⊆ F is a minimum neighborhood set
(MNS) if for all ∅ ⊂ T ⊆ F:w(As(M))

|M | ≤ w(As(T ))
|T | . We define

the minimum neighborhood ratio (MNR) as ρs := w(As(M))
|M | ,

with M being a MNS.

We show that a MNS receives the entire weight of all clients
within its range and this weight is equally distributed.

Lemma 5. For a facility placement profile s, in a client equi-
librium σ, each facility fj ∈ M of a minimum neighborhood
set M has a load of exactly `j(s, σ) = ρs.

Proof. Let M be a MNS and σ be an arbitrary client equilib-
rium. Let T = arg minfj∈F (`j(s, σ)) be the set of facility
agents who share the lowest load in σ. Let `T be the load
of each facility agents in T , hence for each fj ∈ T we have



`j(s, σ) = `T . Assume for the sake of contradiction that
`T <

w(As(M))
|M | . Since M is a MNS, we have

w(As(T ))

|T |
≥ w(As(M))

|M |
.

Thus,

∑
fj∈T

`j(s, σ) = |T | · `T < |T |
w(As(M))

|M |

≤ |T |w(As(T ))

|T |
= w(As(T )).

Hence, there is at least one client agent vi in a range of at
least one facility agent fa ∈ T , who does not put her com-
plete weight on the facility agents in T . Therefore, there is a
facility agent fb /∈ T , with `b(s, σ) > `T and σ(s, vi)b > 0.
However, since `b(s, σ) > `T , vi would prefer to move
weight away from fb to fa. Thus, we arrive at a contradic-
tion and in all client equilibria we have for each facility agent
fj ∈ F that `j(s, σ) ≥ |As(M)|

|M | .
The facility agents in M only have access to the clients

in As(M). Thus, if for any facility agent fc ∈ M the util-
ity is `c(s, σ) > w(As(M))

|M | , there must be another facility

agent fd ∈ M where `d(s, σ) < w(As(M))
|M | holds. Since this

is not possible, we get for each facility agent fj ∈ M that
`j(s, σ) = w(As(M))

|M | .

2.1 Facility Loads in Polynomial Time
We present a polynomial-time combinatorial algorithm to
compute the loads of the facility agents in a client equilibrium
for a given facility placement profile s. As each facility agent
only has n possible strategies, this implies that the best re-
sponses of facility agents are computable in polynomial time.

Algorithm 1 iteratively determines a MNS M , assigns to
each facility in M the MNR and removes the facilities and all
client agents in their range from the instance. See Figure 2
for an example of a run of the algorithm.

Algorithm 1: computeUtilities(H = (V,E,w),F , s)
1 if F = ∅ then return;
2 M ← computeMNS(H,F , s);
3 for fj ∈M do
4 `j(s, σ)← w(As(M))

|M | ;

5 H ′ ← (V,E,w′) with w′(vi) = 0 if vi ∈ As(M) else
w′(vi) = w(vi);

6 computeUtilities(H ′,F \M, s);

The key ingredient of Algorithm 1 is the computation of a
MNS in Algorithm 2. Here, we first identify the MNR by a
reduction to a maximum flow problem. To this end, we con-
struct a graph, where from a common source vertex s demand
flows through the clients to the facility agents in their respec-
tive ranges and then to a common sink t. See Figure 3 for

f1 f4

f2

f3

S1 S2 S3

Figure 2: An instance of the load balancing 2-FLG with a facility
placement profile marked by dots and 10 clients with weight 1 each.
Algorithm 1 successively finds and removes the minimum neighbor-
hood sets S1 = {f1}, S2 = {f2, f3} and S3 = {f4}.

Algorithm 2: computeMNS(H = (V,E,w),F , s)
1 construct directed graph G = (V ′, Est ∪ ERange);
2 V ′ ← {s, t} ∪ V ∪ F ;
3 Est ← {(s, vi, w(vi)) | vi ∈ V } ∪ {(fj , t, 0) | fj ∈ F};
4 ERange ← {(vi, fj , w(vi)) | vi ∈ V, fj ∈ As(vi)};
5 possibleUtilities←

sorted({x/y | x, y ∈ N , 0 ≤ x ≤ ws(F), 1 ≤ y ≤ k});
6 for binary search over i ∈ possibleUtilities do
7 ∀fj ∈ F : capacity((fj , t))← i;
8 h← maximum s-t-flow in G;
9 if value(h) = i · k then i too small else i too large;

10 T ← ∅, ρ← highest i ∈ possibleUtilities below threshold;
11 for fj ∈ F do
12 ∀fp ∈ F : capacity((fp, t))← ρ;
13 capacity((fj , t))←∞;
14 start with flow from binary search for i = ρ;
15 if @ augmenting path in G then
16 T ← T ∪ {fj};

17 return T;

an example of such a reduction. By using binary search, we
find the highest capacity value of the edges from the facility
agents to the sink such that the flow can fully utilize all these
edges. This capacity value is the value of the MNR ρs. Note
that by Lemma 4 the MNR can only attain a limited number
of values. After determining the MNR, we identify the facil-
ity agents belonging to a MNS M by individually increasing
the capacity of the edge to the sink t for each facility agent.
Only if this does not increase the maximum flow, a facility
agent belongs to M . By reusing the flow for ρs a search for
an augmenting path with the increased capacity is sufficient
to determine if the flow is increased.
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Figure 3: Left: An instance of the load balancing 2-FLG with the
graph H and the facility placement profile s marked by dots. Right:
The maximum flow instance constructed by Algorithm 2.

We first prove the correctness of Algorithm 2:



Theorem 2. For an instance of the load balancing 2-FLG, a
facility placement profile s, Algorithm 2 computes a MNS.

Proof. We show that the MNR ρ computed by the algorithm
is correct by proving that ρ is a lower and upper bound for ρs.

We show that for each set of facility agents T , we get ρ ≤
w(As(T ))
|T | . To this end, consider the maximum flow for i = ρ.

The value of this flow must be value(h) = kρ, since ρ is
below the threshold found by the binary search. As the total
capacity of the edges leaving the source s towards vertices
vi ∈ As(T ) is upper bounded by w(As(T )) and every vertex
fp with fp ∈ T is only reachable via vertices vi ∈ As(T ), the
total inflow to the vertices fp ∈ T isw(As(T )). Furthermore,
the capacity of each edge from a facility vertex to the sink
vertex t is exactly ρ, hence each of these edges carries a flow
of exactly ρ. Thus, we get |T |ρ ≤ w(As(T )) for every set of
facility agents T .

For the upper bound, we show that there is a set T for
which ρ ≥ w(As(T ))

|T | . We consider the flow at i = ρ + δ,
the value immediately above ρ in possibleUtilities. We as-
sume that for each set T , ρ + δ ≤ w(As(T ))

|T | . By Lemma 5,
there must be a weight distribution σ, such that every facility
agent receives ρ+δ load. Thus, setting the flow of every edge
(vi, fj) in h to σ(s, vi)j for each vi ∈ V, fj ∈ F results in a
flow of (ρ+δ)k. This leads to ρ+δ being below the threshold
and, hence, we have a contradiction. Therefore, there must be
a set of facility agents T with ρ+δ > w(As(T ))

|T | . By Lemma 4,

there is no value in between ρ and ρ+ δ, which w(As(T ))
|T | can

attain. Thus, there must be a set T with ρ ≥ w(As(T ))
|T | .

It remains to show that the set of facility agents M com-
puted by the algorithm is indeed a MNS. By the feasibil-
ity of the total flow of k · ρ for the instance with capacity
bounds of ρ, we have have for every set of facility agents T ,
w(As(T ))
|T | ≥ ρ. For every fj /∈M , there exists an augmenting

path where the edge (fj , t) has capacity ∞. Hence, there is
a total flow strictly larger than k · ρ with flow of exactly ρ
through all fq 6= fj . As the flow through each fi is bounded
by w(As(fi)), for every T with fj ∈ T , w(As(T ))

|T | > ρ.
Therefore, fj does not belong to the MNS.

For every fj ∈ M , the absence of an augmenting path
certifies that the flow is constrained by capacity representing
the clients’ spending capacities. Hence, w(As(T ))

|T | = ρ for
every T ⊆M .

With that, we bound the runtime of Algorithm 2.

Lemma 6. Algorithm 2 runs in O(log(ws(F)k)nk(n+ k)).

Proof. Since |possibleUtilities| ≤ ws(F)k, the binary search
needs logws(F)k steps. In each iteration, the dominant part
is the computation of the flow, since all other operations are
executable in constant time or are linear iterations through G.
Therefore, the runtime of the binary search is the runtime of
logws(F)k flow computations in G. For the loop, we need k
breadth-first searches to determine the existence of augment-
ing paths.

The graph G we create has |V ′| = n + k + 2 vertices and
at most |E′| ≤ n + k + nk edges. These values are not
changed throughout the algorithm. Thus, by using Orlin’s
algorithm [Orlin, 2013], to compute the maximum flow in
O(nk(n + k)), which dominates the complexity of the loop
and its augmenting path searches. Therefore, the algorithm
runs in O(log(ws(F)k)nk(n+ k)).

We return to Algorithm 1 and prove correctness and runtime:

Theorem 3. Given a facility placement profile s, Algorithm 1
computes the agent loads for an instance of the load balanc-
ing 2-FLG in O(log(ws(F)k)nk2(n+ k)).

Proof. Correctness: By Lemma 5 the utilities determined for
the client agents in the MNS M are correct for the given in-
stance. Also by Lemma 5, the client equilibria of F \ M
are independent of the facility agents in M and the clients in
As(M). Therefore, we can remove M , set the weight of each
client vi ∈ As(M) to w(vi) = 0 and proceed recursively.

Runtime: The recursive function is called at most k times
because the instance size is decreased by at least one facility
agent in each iteration. Apart from the call to Algorithm 2, all
computations can be done in constant or linear time. There-
fore, the algorithm runs in O(log(ws(F)k)nk2(n+ k)).

Algorithm 2 implicitly computes a client equilibrium.

Corollary 1. A client equilibrium can be constructed by us-
ing the flow values on the edges between a client and the facil-
ity agents of the MNSs computed during the binary search in
Algorithm 2 as the corresponding client weight distribution.

Proof. Let s be a facility placement profile and for each fa-
cility fj let hj be the maximum s-t-flow found by the bi-
nary search during the run of Algorithm 2, which finds fj
to be part of a MNS. We construct a client weight distri-
bution σ in the following way: For each pair vi, fj , we set
σ(s, vi)j = hj(vi, fj), i.e., equal to the flow between vi and
fj in hj .

We now show that σ is indeed a client equilibrium: Let vi
be an arbitrary client. The algorithm removes her from the
instance (i.e., sets her weight to 0) in the first round of Algo-
rithm 1, where she has any facility fp of the MNSM found in
that round in her shopping range. Thus, all facilities fj with
σ(s, vi)j > 0 are part of M . By the limit on the outgoing ca-
pacity of these facilities in the binary search in Algorithm 2,
all facilities in M have equal load in σ. Since the MNR is
nondecreasing throughout the run of the algorithm, all facili-
ties which are part of an MNS found in a later iteration, have
a equal or higher load in σ than the facilities inM . Therefore,
client vi cannot improve by moving her weight.

2.2 Existence of Subgame Perfect Equilibria
We show that the load balancing 2-FLG always possesses
SPE using a lexicographical potential function. For that, we
show that when a facility agent fp changes her strategy, no
other facility agent fq’s load decreases below fp’s new load.

Lemma 7. Let s be a facility placement profile and fp
a facility agent with an improving move s′p such that



`p((s
′
p, s−p), σ

′) > `p(s, σ), where σ, σ′ are client equi-
libria. For every facility agent fq with `q((s′p, s−p), σ

′) <
`q(s, σ), we have that `q((s′p, s−p), σ

′) ≥ `p((s′p, s−p), σ′).

Proof. Let Q be the set of facility agents fq
with `q((s

′
p, s−p), σ

′) < `q(s, σ). Let Qmin =
arg minq∈Q{`q((s′p, s−p), σ′)}. Now, we distinguish
two cases for fp:

Case 1: fp ∈ Qmin. The statement is trivially true.
Case 2: fp /∈ Qmin. All facility agents in Qmin have

the same clients in their ranges as before. Thus, there must
be a client vi, who has decreased her weight on a facility
agent fr ∈ Qmin and increased her weight on a facility agent
fs /∈ Qmin. Hence, we have `s((s′p, s−p), σ

′) ≤ `r(s, σ) as
otherwise, the client vi would not put weight on fs. We as-
sume fp 6= fs. As σ is a client equilibrium, we have that
`r(s, σ) ≤ `s(s, σ). This implies `s((s′p, s−p), σ

′) < `s(s, σ)
which contradicts fs /∈ Qmin. Therefore, fp = fs and
`r((s

′
p, s−p), σ

′) ≥ `p((s
′
p, s−p), σ

′), which means that for
each facility agent fq ∈ Q, it holds that `q((s′p, s−p), σ

′) ≥
`p((s

′
p, s−p), σ

′).

With this lemma, we prove the FIP and, hence, existence of a
SPE by a lexicographic potential function argument.

Theorem 4. The load balancing 2-FLG has the FIP.

Proof. Let Φ(s) ∈ Rk be the vector that lists the loads
{`1(s, σ), `2(s, σ), . . . , `k(s, σ)} in an increasing order.

Let s be a facility placement profile and fp a facility agent
with an improving move s′p such that `p((s′p, s−p), σ

′) >
`p(s, σ), where σ, σ′ are client equilibria. We show that
Φ(s′p, s−i) <lex Φ(s). Let Φ(s) be of the form Φ(s) =
(φ1, . . . , φα, `p(s, σ), φα+1, . . . , φβ , φβ+1, . . . , φk−1), for
some α ≤ β ≤ k − 1, such that for every 1 ≤ j ≤ β:
φj < `p((s

′
p, s−p), σ

′) and for every j ≥ β + 1 : φj ≥
`p((s

′
p, s−p), σ

′).
By Lemma 7, we have for all facility agents fq with a load

`q(s, σ) ∈ {φ1, . . . , φβ) that their loads did not decrease.
and for agents fq with `q(s, σ) ∈ {φβ+1, . . . , φk) we have
`q((s

′
p, s−p), σ

′) ≥ `p((s
′
p, s−p), σ

′). With the improvement
of fp, Φ(s′p, s−p) >lex Φ(s) holds. By Lemma 4, there is
a finite set of values that the loads can attain, thus, Φ is an
ordinal potential function and the game has the FIP.

3 Comparison with Utility Systems
A utility system (US) [Vetta, 2002] is a game, in which agents
gain utility by selecting a set of actions, which they choose
from a collection of subsets of a groundset available to them.
Utility is assigned to the agents by a function of the set of
selected actions of all agents.

Definition 3 (Utility Systems (US) [Vetta, 2002]). A utility
systems consists of a set of k agents, a groundset Vp for each
agent p, a strategy set of feasible action sets Ap ⊆ 2Vp , a
social welfare function γ : 2V

∗ → R and a utility function
αp : 2V

∗ → R for each player p, where V ∗ = ∪p∈PVp.
For a strategy vector (a1, . . . , ak), let A = a1 ∪ · · · ∪ ak

and A ⊕ a′p denotes the set of actions obtained if player p

changes her action set from ap to a′p. A game is a utility
system if αp(A) ≥ γ(A ⊕ ∅). The utility system is basic if
αp(A) = γ(A⊕ ∅) and is valid if

∑
p∈P αp(A) ≤ γ(a).

We show that the load balancing 2-FLG is not a basic but a
valid US and we can apply the corresponding bounds for the
PoA but not the existence of stable states.

Lemma 8. The load balancing 2-FLG is a US.

Proof. Each facility agent fp corresponds to a player p in the
US with the groundset Vp = {vp | for each v ∈ V } and the
action set Ap = {{vp} ∪ {wp ∈ V | (v, w) ∈ E} | v ∈ V }.
We can define γ(X) =

∑
v∈V |∃p:vp∈X w(v), which corre-

sponds to the sum of weights of covered clients and αp(A)
to correspond to the load of fp which can be expressed as a
function of the sets of clients in range of each facility. To
show the US condition αp(A) ≥ γ(A ⊕ ∅), we let the social
welfare decrease by a value of x through a removal of player p
from strategy profile a resulting in a new strategy profile a−p.
Hence, clients with a total weight of x were only covered by
p in a. Thus, player p must receive at least x utility in a, and
the condition is fulfilled.

As γ merely depends on the covered clients, we have for ev-
ery X,Y ⊂ V ∗ with X ⊆ Y and any vp ∈ V ∗ \ Y , we have
that γ(X ∪ {vp}) − γ(X) ≥ γ(X ∪ {vp}) − γ(X). Hence,
the following lemma is immediate.

Lemma 9. The function γ is non-decreasing and submodular.

We now show that the load balancing 2-FLG is a valid but not
basic US.

Theorem 5. The load balancing 2-FLG is a valid, but not a
basic US.

Proof. The following example proves that the load balanc-
ing 2-FLG is not a basic US . Let H = (V,E,w) with V =
(v1, v2), w(v1) = w(v2) = 1 and E = {(v1, v2), (v2, v1)}.
Furthermore, we have two facility players fp and fq with
s = (v1, v2). Removing player fp does not change the
weighted participation rate W (s) since all clients are still
covered. However, the utility of the removed facility player
fp is equal to 1. Hence, equality in the utility system condi-
tion does not hold and the US is not basic.

To show that the load balancing 2-FLG is a valid US, note
that each client v who is in the attraction range of at least
one facility player distributes her total weight w(v) among
the players. All other clients are uncovered and hence, their
distributed weight is equal to 0. Thus, the total weight∑
vi∈C(s) w(vi) distributed by clients, which is equal to the

sum of the facility players’ loads, is equal to the value of the
welfare function W (s).

We are now able to apply the PoA bound of [Vetta, 2002] to
our model.

Corollary 2. The PoA of the load balancing 2-FLG is at
most 2.
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Figure 4: The host graph H of an instance I of the 2-FLG with
arbitrary client behavior with a unique SPE.

4 Arbitrary Client Behavior
In the following, we investigate the quality of stable states of
the 2-FLG with arbitrary client behavior, i.e., the client costs
are arbitrarily defined, and provide an upper and lower bound
for the PoA as well as a lower bound for the PoS. Addition-
ally, we show that computing the social optimum is NP-hard.

Theorem 6. The PoA of the 2-FLG is at most 2.

Proof. Fix a 2-FLG with k facility players. Let OPT be a
facility placement profile that maximizes social welfare and
let (SPE, σSPE) be a SPE. Let C(SPE) be the set of clients
vi which are covered in SPE and C(OPT) be the set of
clients vi which are covered in OPT, respectively. Let UN-
COV = C(OPT) \ C(SPE) be the set of clients which are
covered in OPT but uncovered in SPE.

Assume that W (OPT) > 2W (SPE) and hence,∑
v∈UNCOV w(v) > W (SPE). Then, there exists a facility

player fp that receives in OPT more than W (SPE)
k load from

the clients in UNCOV. Now consider a facility agent fq with
load `q (SPE, σSPE) ≤ W (SPE)

k . By changing her strategy and
selecting the position of facility agent fp in OPT, agent fq
receives the weight of all clients in UNCOV which are cov-
ered by fp in OPT since they are currently uncovered and
therefore, obtains more than W (SPE)

k load. As this contra-
dicts the assumption of (SPE, σSPE) being a SPE, we have
that W (OPT) ≤ 2W (SPE).

We contrast the upper bound of the PoA with a lower bound
for the PoA and PoS.

Theorem 7. The PoA and PoS of the 2-FLG is at least 2− 1
k .

Proof. We prove the statement by providing an example of an
instance I which has a unique equilibrium. Let x ≥ 4, x ∈ N.
We construct a 2-FLG with k facility players, a host graph
H(V,E,w) with V = {v1, . . . , vk, v1,1, . . . , v1,x−1, v2,1,
. . . , vk−1,x−1, vk,1, . . . , vk,kx}, for all v ∈ V , w(v) = 1 and
E = {(vi, vi,j) | i ∈ [1, k− 1], j ∈ [1, x− 1]} ∪{(vk, vk,i) |
i ∈ [1, kx]} ∪ {(vk,i, vi,1) | i ∈ [1, k − 1]}. See Figure 4.

We note that H consists of a large star Sk with central ver-
tex vk, leaf vertices (vk,1, . . . , vk,kx) and k − 1 small stars
Si for i ∈ [1, k − 1] with central vertices vi and leaf vertices
(vi,1, . . . , vi,x−1). Each star Si is connected to Sk via an edge
between a leaf vertex of Sk and Si, i.e., (vk,i, vi,1).

vc1 vc2

vx v¬x vy v¬y vz v¬z

Figure 5: An example of a corresponding host graph H to the 3SAT
instance (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z).

If the k facility players are placed on sOPT = (v1, . . . , vk),
all clients are covered by exactly one facility. Hence,
W (OPT (H, k)) = |V | = kx+ k + (k − 1)(x− 1).

In any equilibrium, a facility fj for j ∈ [1, k] must receive
a load of at least kx+1

k = x+ 1
k as otherwise switching to ver-

tex vk with kx + 1 adjacent vertices yields an improvement.
However, any other vertex in H has at most x − 1 adjacent
vertices, hence, every facility player gets a load of at most x.
Therefore, the unique SPE is sSPE = (vk, . . . , vk) with
W (sSPE) = kx+ 1 and PoA = PoS = kx+k+(k−1)(x−1)

kx+1 =
(2k−1)x+1
kx+1 . We get lim

x→∞

(
(2k−1)x+1
kx+1

)
= 2k−1

k = 2− 1
k .

By a reduction from 3SAT, we show that computing
OPT(H, k) is an NP-hard problem.

Theorem 8. Given a host graph H and a number of k
facilities, computing the facility placement maximizing the
weighted participation rate OPT(H, k), is NP-hard.

Proof. We prove the theorem by giving a polynomial time
reduction from the NP-hard 3SAT problem.

For a 3SAT instance φ with a set of clauses C and a set of
variables X , we create a 2-FLG instance with k = |X| facil-
ity players where the host graph H(VX ∪ VC , EX ∪ EC , w)
is defined as follows:

w(v) = {1 | v ∈ VX ∪ VC}
VX = {vx, v¬x | x ∈ X}
VC = {vc | c ∈ C}}
EX = {(vx, v¬x), (v¬x, vx) | x ∈ X}
EC = {(vc, vl) | c ∈ C, literal l ∈ c},

where vl = vx if the contained variable x is used as a true
literal in c, and vl = v¬x, otherwise. See Figure 5 for an
example.

Let φ be satisfiable and α be an assignment of the variables
satisfying φ. We set s = (s1, . . . , sk) such that for i ∈ [1, k],
xi ∈ X , si = vxi if xi is true in α and si = v¬xi otherwise.
By EX , vxi and v¬xi are covered by a facility player either
located on vxi or v¬xi . To show that each client vc ∈ VC
is covered as well, consider the corresponding clause c =
l1 ∨ l2 ∨ l3. Since φ is satisfied, at least one of the literals is
true, which means that at least one of vl1 , vl2 and vl3 must be
occupied by a facility in s. Thus, if φ is satisfied, we get a
placement where all clients are covered, which is optimal.

Let s be a facility placement profile where all clients are
covered. Note that this implies that for each x ∈ X either
vx, v¬x is occupied by a facility player. Hence, all facilities
are placed on vertices in VX . We construct an assignment



of the variables α as follows: x = true, if vx ∈ s and x =
false, if v¬x ∈ s. Let c ∈ C be an arbitrary clause in φ.
The corresponding vertices vc is covered by a facility player
which is placed on an adjacent vertex, vl1 , vl2 , or vl3 . This
implies that at least one of the literals l1, l2, and l3 is true in
α and therefore c is satisfied. Hence, φ is satisfiable.

5 Conclusion and Future Work
We provide a general model for non-cooperative facility lo-
cation with both strategic facilities and clients. Our load bal-
ancing 2-FLG is a proof-of-concept that even in this more in-
tricate setting it is possible to efficiently compute and check
client equilibria. Also, in contrast to classical one-sided mod-
els and in contrast to Kohlberg’s two-sided model, the load-
balancing 2-FLG has the favorable property that stable states
always exist and that they can be found via improving re-
sponse dynamics. Moreover, our bounds on the PoA and the
PoS show that the broad class of 2-FLGs is very well-behaved
since the societal impact of selfishness is limited.

The load balancing 2-FLG is only one possible realistic in-
stance of a competitive facility location model with strategic
clients; other objective functions are conceivable, e.g., de-
pending on the distance and the load of all facilities in their
shopping range. Also, besides the weighted participation rate
other natural choices for the social welfare function are pos-
sible, e.g., the total facility variety of the clients, i.e., for each
client, we count the facilities in her shopping range. This
measures how many shopping options the clients have. More-
over, we are not aware that the total facility variety has been
considered for any other competitive facility location model.
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