
Parameterized algorithms for identifying gene co-expression modules via
weighted clique decomposition∗

Madison Cooley† Casey S. Greene‡ Davis Issac§ Milton Pividori¶

Blair D. Sullivan‖

September 8, 2021

Abstract

We present a new combinatorial model for identifying regu-

latory modules in gene co-expression data using a decompo-

sition into weighted cliques. To capture complex interaction

effects, we generalize the previously-studied weighted edge

clique partition problem. As a first step, we restrict our-

selves to the noise-free setting, and show that the problem is

fixed parameter tractable when parameterized by the num-

ber of modules (cliques). We present two new algorithms for

finding these decompositions, using linear programming and

integer partitioning to determine the clique weights. Fur-

ther, we implement these algorithms in Python and test

them on a biologically-inspired synthetic corpus generated

using real-world data from transcription factors and a latent

variable analysis of co-expression in varying cell types.

1 Introduction

Biomedical research has recently seen a burgeoning
of methods that incorporate network analysis to
improve understanding and prediction of complex phe-
notypes [16]. These approaches leverage information
encoded in the interactions of proteins or genes, which
are naturally modeled as graphs. Further, there has
been an explosion of available data including large
gene expression compendia [5, 19] and protein-protein
interaction maps [34].

A core problem in this area has always been iden-
tifying groups of co-acting genes/proteins, which often
manifest as a clique or dense subgraph in the resulting
network. In this work, we consider the specific setting

∗This work was supported by the NIH R01 HG010067 and the

Gordon & Betty Moore Foundation under awards GBMF4552 and

GBMF4560.
†University of Utah, mcooley@cs.utah.edu
‡University of Colorado School of Medicine,

greenescientist@gmail.com
§Hasso Plattner Institute, davis.issac@hpi.de
¶University of Pennsylvania,

milton.pividori@pennmedicine.upenn.edu
‖University of Utah, sullivan@cs.utah.edu

of identifying gene co-expression modules (or pathways)
from large datasets, with a downstream objective of aid-
ing the development of new therapies for human disease.

There is substantial evidence that drugs with ge-
netic support are more likely to progress through the
drug development pipeline [29]. Prior work has shown
that approaches that consider genes’ roles in biological
networks can be robust to gene mapping noise [9], which
might suggest alternative treatment avenues when a di-
rectly associated gene cannot be targeted.

Unfortunately, the membership of genes in modules
and the relative strength of effect a module has on
co-expression of its constituents are not directly observ-
able. In gene co-expression analysis, what we are able to
obtain is pairwise correlations for all genes in the organ-
ism [23]. Existing approaches rely on machine-learning
to identify clusters in these data sets [9, 21]; here, we
propose a new combinatorial model for the problem.

By modeling the observed gene expression data as
a projection of a weighted bipartite graph representing
gene-module membership and strength of expression
for each module, we can represent the problem as
a decomposition of the co-expression network into a
collection of (potentially overlapping) weighted cliques
(we call this Weighted Clique Decomposition).

While the resulting problem is naturally NP-hard,
we demonstrate that techniques from parameterized al-
gorithms enable efficient approaches when the number
of modules is small. We present two parameterized al-
gorithms for solving this problem1; both run in poly-
nomial time in the network size, but have exponen-
tial dependence on the number of modules. As a first
step towards practicality, we implement these meth-
ods2 and provide preliminary experimental results on
biologically-inspired synthetic networks with ground-
truth modules derived from data on gene transcription
factors and gene co-expression modules identified using

1one of which restricts to integral edge weights
2code is available at https://github.com/TheoryInPractice/cricca

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:2

10
6.

00
65

7v
2

 [
cs

.D
S]

 7
 S

ep
 2

02
1

a machine-learning approach.

2 Motivating Biological Problem

Complex human traits and diseases are caused by an
intricated molecular machinery that interacts with en-
vironmental factors. For example, although asthma has
some common features such as wheeze and shortness of
breath, research suggests that this highly heterogeneous
disease is comprised of several conditions [37], such as
childhood-onset asthma and adult-onset asthma, which
present different prognosis and response to treatment,
and also differ in their genetic risk factors [30]. Genome-
wide association studies (GWAS) are designed to im-
prove our understanding of how genetic variation leads
to phenotype by detecting genetic variants correlated
with disease. GWAS have prioritized causal molecular
mechanisms that, when disturbed, confer disease sus-
ceptibility, and these findings were later translated to
new treatments [35]. Drug targets backed by the sup-
port of genetic associations are more likely to succeed
through the process of clinical development [29]. How-
ever, understanding the influence of genetic variation
on disease pathophysiology towards the development of
effective therapeutics is complex. GWAS often reveal
variants with small effect sizes that do not account for
much of the risk of a disease [31]. On the one hand,
widespread gene pleiotropy (a gene affecting several un-
related phenotypes) and polygenic traits (a single trait
affected by several genes) reveal the highly intercon-
nected nature of biomolecular networks [25, 6].

Instead of looking at single gene-disease associa-
tions, methods that consider groups of genes that are
functionally related (i.e., that belong to the same path-
ways) can be more robust to identify putative mecha-
nisms that influence disease, and also provide alterna-
tive treatment avenues when directly associated genes
are not druggable [22, 10]. Large gene expression com-
pendia such as recount2 [5] or ARCHS4 [19] provide uni-
fied resources with publicly available RNA-seq data on
tens of thousands of samples. Leveraging this massive
amount of data, unsupervised network-based learning
approaches [21, 32, 9] can detect meaningful gene co-
expression patterns: sets of genes whose expression is
consistently modulated across the same tissues or cell
types. However, this is particularly challenging because
the observed data is an aggregated and noisy projec-
tion of a highly complex transcriptional machinery: co-
expressed genes can be controlled by the same regula-
tory program or module, but single genes can also play
different roles in different modules expressed in distinct
tissues or cell differentiation stages [2, 36]. For exam-
ple, Marfan syndrome (MFS) is a rare genetic disor-
der caused by a mutation in gene FBN1, which encodes

a protein that forms elastic and nonelastic connective
tissue [28]. However, MFS is characterized by abnor-
malities in bones, joints, eyes, heart, and blood ves-
sels, suggesting that FBN1 is implicated in indepen-
dent pathways across different tissues or cell types. In
other words, the membership of genes in modules and
the relative strength of effect a module has on the co-
expression of its constituents are not directly observable
from gene expression data.

3 Problem Modeling

We begin by observing that gene-module membership
is naturally represented by a bipartite graph B, where
each gene has an edge to all modules it participates
in. Further, in order to capture the notion of varied
effect-strength among modules, we associate a non-
negative real-valued weight wi to each module ci, since
we are interested in sets of co-expressed genes. In
other words, we assume that all pairs of genes that
are common to module i will be co-expressed with
strength wi; thus, the genes in each module will form
a clique in the co-expression network. Further, we
assume that modules interact with one another in a
linear, additive manner. That is, the co-expression
between genes u and v is the sum of the weights of all
modules containing both u and v. In a noise-free setting,
this means that the gene-gene co-expression network
is exactly a union of (potentially overlapping) cliques
m1, . . .mk with associated weights w1, . . . wk so that the
weight on uv is exactly

∑
{u,v}⊆mi

wi. It is important
to note that not all valid solutions are interesting;
specifically, one can always assign each pair of genes
to its own clique of size 2, and get a valid solution.
We rely on the principal of parsimony, and try to find
an assignment which minimizes the number of modules
in a valid solution. Realistically, the edge-weights
will not satisfy exact equality, and we will need to
consider an optimization variant of our problem which
minimizes an objective function incorporating penalties
for over/under-estimating the observed co-expressions.

To this end, we introduce a penalty function φ
on the edges based on the discrepancy between the
weight predicted by clique (module) membership and
the original weight (observed co-expression value), then
minimize φ to determine an optimal solution. For
example, a natural choice for φ might be the sum of
the absolute value of the discrepancies on each edge.
Formally, this leads to the following problem:

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

g1g2g3g4g5g6g7

3
11

3
g1

g2

g3

g4

g5

g6

g7

3

4
4

3

1

1

1

1 555

1

3

1

3

Figure 1: A bipartite graph (left) of genes g1, . . . g7 and modules (top, labelled with strength of expression) gives
rise to a gene-gene interaction network (right) with edges weighted by the sum of the strengths of all modules
that contain both endpoints (indicated by color coding).

Input: a graph G = (V,E), a non-negative
weight function we on E, a penalty func-
tion φ, and a positive integer k.

Output: a set of at most k cliques C1, . . . Ck with
weights γ1, . . . γk ∈ R+ that define γuv =∑

i:uv∈Ci
γi for all uv ∈ E, such that

φ({(we, γe) : e ∈ E}) is minimized.

Weighted Clique Decomposition

In the remainder of this paper, we restrict our at-
tention to the setting where equality can be achieved
(as one might expect in synthetic data); further discus-
sion of ideas for addressing the optimization variant is
deferred to the future work section. For convenience, we
define a decision version of WCD for this setting (this
is equivalent to having a penalty function which is zero
for matching the weight on an edge and infinite for any
discrepancy):

Input: a graph G = (V,E), a non-negative
weight function we for e ∈ E, and a
positive integer k.

Output: a set of at most k cliques C1, . . . Ck with
weights γ1, . . . γk ∈ R+ such that wuv =∑

i:uv∈Ci
γi for all uv ∈ E (if one exists,

otherwise output NO).

Exact Weighted Clique Decomposition

If the clique weights are constrained to be integers
then the problem becomes a generalization of the NP-
hard problem Edge Clique Partition [20, 13]. The
NP-hardness of the fractional-clique-weight version also
follows easily from the reduction in [20]. For complete-
ness, we give the proof in Appendix F.

3.1 Annotated and Matrix Formulations We
will work with the following more general version of
EWCD in our algorithms, where some of the vertices
are annotated with vertex weights.

Input: a graph G = (V,E), a non-negative
weight function we for e ∈ E, a special
set of vertices S ⊆ V , a non-negative
weight function wv for v ∈ S, and a
positive integer k.

Output: a set of at most k cliques C1, . . . Ck

with weights γ1, . . . γk ∈ R+ such that
wuv =

∑
i:uv∈Ci

γi for all uv ∈ E and
wv =

∑
i:v∈Ci

γi for all v ∈ S (if one
exists, otherwise output NO).

Annotated EWCD

Note that EWCD is the special case of AEWCD
when the set S = ∅.

We also introduce an equivalent matrix formulation
of AEWCD, as our techniques are heavily based on
linear algebraic properties. For this we use matrices
that allow wildcard entries denoted by ?. For a, b ∈
R ∪ {?}, we say a

?
= b if either a = b or a = ? or

b = ?. For matrices A and B, we say A
?
= B if

Aij
?
= Bij for each i, j. We call the matrix problem

as Binary Symmetric Weighted Decomposition
with Diagonal Wildcards. Note that EWCD is the
special case where all the diagonal entries are wildcards.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Input: a symmetric matrix A ∈
(
R+

0 ∪ {?}
)n×n

with wildcards appearing on a subset of
diagonal entries, and a positive integer k

Output: a matrix B ∈ {0, 1}n×k and a diag-
onal matrix W ∈ (R+

0)k×k such that

A
?
= BWBT . (if such (B,W) exist, oth-

erwise output NO).

BSWD-DW

4 Parameterized Algorithms

Parameterized algorithms are a method used to tackle
NP-hard problems where, besides the input size n,
we are given an additional parameter k, most often
representing the solution size. E.g., in our problem
WCD, the parameter k is the number of cliques. An
algorithm is said to be fixed parameter tractable if the
runtime is polynomial in the input size and exponential
only in the parameter—often resulting in tractable
algorithms when the parameter is much smaller com-
pared to the input size. One of the most effective tools
in parameterized algorithms is kernelization, which is
essentially a preprocessing framework that reduces the
input to an equivalent instance of the same problem
whose size depends only on the parameter k. The
reduced instance is called a kernel. Sometimes, the
reduction is not to the same problem itself but to a
different related problem, in which case it is called
a compression. For an extensive introduction to the
topic, we refer to the book by Cygan et al. [8].

5 Prior Work

The WCD problem with integer clique weights is
a generalization of the Weighted Edge Clique
Partition problem which in turn generalizes Edge
Clique Partition [20]):

Input: a graph G = (V,E), a weight function
we : E → Z+ and a positive integer k.

Output: a set of at most k cliques such that each
edge appears in exactly as many cliques
as its weight (if it exists, otherwise out-
put NO).

Weighted Edge Clique Partition

Weighted Edge Clique Partition (WECP)
was introduced by Feldmann et al. [12] last year.

They gave a 4k-compression and a 2O(k3/2w1/2 log(k/w))+
O(n2 log n) time algorithm for WECP, where w is the

maximum edge weight. The compression is into a more
general problem called Annotated Weighted Edge
Clique Partition (AWECP) where some vertices also
have input weights and these vertices are constrained to
be in as many cliques as its weight in the output. The
authors worked with an equivalent matrix formulation
for AWECP called Binary Symmetric Decomposi-
tion with Diagonal Wildcards (BSD-DW) where
given a n × n symmetric matrix A with wildcards (de-
noted by ?) in the diagonal, the task is to find a n × k
binary matrix B such that BBT ?

= A where
?
= denotes

that the wildcards are considered equal to any number.
The algorithm of Feldmann et al. [12] builds upon the
linear algebraic techniques used by Chandran et al. [3]
for solving the Biclique Partition problem. Our al-
gorithms further build upon the techniques of [12]. Note
that one could encode the clique weights (in the in-
teger weight case) into the WECP problem by think-
ing of a clique of weight w as w identical unweighted
cliques. This makes the parameter k equal to the sum
of clique weights, and hence the algorithms of Feldmann
et al. [12] are not sufficient for our application.

The unit-weighted case of WECP called Edge
Clique Partition (ECP) has been more well stud-
ied, especially from the parameterized point of view.
It is known that ECP admits a k2-kernel in polyno-
mial time [27]. The fastest FPT algorithm for ECP
is the algorithm by Feldmann et al. [12] which runs in

2O(k3/2 log k) +O(n2 log n) for ECP. There are faster al-
gorithms for ECP in special graph classes, for instance a

2O(
√
k)nO(1) time algorithm for planar graphs, 2dknO(1)

time algorithm for graphs with degeneracy d, and a
2O(k)nO(1) time algorithm for K4-free graphs [13]. A
closely related problem to ECP is the Edge Clique
Cover problem. Here, each edge should be present in
at least one clique but can be present in any number
of cliques. This unrestricted covering version is much
harder and is known to not admit algorithms running

faster than 22
o(k)

nO(1) [7].
There are a few papers that study symmetric

matrix factorization problems that are similar to the
Binary Symmetric Decomposition with diag-
onal Wildcards (BSD-DW) problem, defined by
Feldmann et al. [12]. Recall that BSD-DW is equivalent
to the AWECP problem. Zhang et al. [38] studied the
objective of minimizing ‖A−BBT ‖22. Their matrix
model does not translate into the clique model as they
do not have wildcards in the diagonal. Chen et al. [4]
studied the objective of minimizing ‖A−BBT ‖0,
but also without wildcards. A matrix model that has
diagonal wildcards was considered by Moutier et al. [26]
under the name Off-Diagonal Symmetric Non-negative
Matrix Factorization, but they allow B to be any

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

non-negative matrix and not just binary.
The non-symmetric variants of these matrix prob-

lems known as Binary Matrix Factorization, have
been receiving a lot of attention recently [24, 14, 15, 1,
18, 3]. Here the objective is to minimize ‖A − BC‖,
where A is an m×n input matrix, B is an m×k output
binary matrix and C is a k×n output binary matrix. For
example, a constant approximation algorithm running
in 2O(k2 log k)(mn)O(1) is known [18]. In the graph-world
the non-symmetric problems correspond to finding a
partition of the edges of a bipartite graph into bicliques
(complete bipartite graphs) instead of cliques [3].

6 Algorithms

We give two algorithms for BSWD-DW and hence
also for the equivalent AEWCD and the special case
EWCD. Both algorithms will have a common frame-
work similar to that of Feldmann et al. [12]. The
algorithms will differ in the method in which the clique
weights (represented by the diagonal matrix W) are
inferred. One uses an LP based method while the other
uses an integer partition dynamic program.

The first step in our pipeline is to preprocess disjoint
cliques and cliques that overlap only on single vertices
(and thus have no overlapping edges) out of each graph.
The specifics of this process are outlined in Appendix G,
but it essentially runs a modified breadth-first search
algorithm. Similar to Feldmann et al. [12], the second
step in our algorithms is to give a kernel. The kernel fol-
lows the same reduction rules as in Feldmann et al. [12]
i.e. by reducing blocks of twin vertices. The proof of
correctness follows analogously, and we omit it here due
to space constraints. After the kernelization, we can
assume that the number of vertices of G (equivalently
the number of rows of matrix A) is at most 4k.

Theorem 6.1. AEWCD (BSWD-DW resp.) has a
kernel with at most 4k vertices (4k rows resp.) that can
be found in O(n3) time.

The third step is to run a clique decomposition algo-
rithm on the kernelized AEWCD instance to obtain the
clique assignments for each vertex and clique weights.
Let A be the input instance for BSWD-DW and let G
be the corresponding input instance to AEWCD. Both
our algorithms use the basis-guessing principle used by
Feldmann et al. [12], first introduced by Chandran et
al. [3]. The principle is that once we correctly guess the
entries of a row-basis of B, then the remaining rows of
B can be filled iteratively without backtracking. How-
ever, the technique does not carry over directly to the
clique-weighted problem we have here. We additionally
need to infer the clique-weight matrix W , which poses
some additional challenges. Note that it is not feasible

to guess the entries of the diagonals of W as each en-
try could be as large as the largest element in A. So
once we have a guess for the basis, we also need to infer
compatible values of W . Since there could be multiple
choices for compatible W , we are not guaranteed to hit
the correct solution for W , likely producing some back-
tracking while filling the non-basis rows. We tackle this
by showing that if we guess a row-basis plus an addi-
tional k rows (thus at most 2k rows) then the choice of
W does not matter. If our guess for this 2k rows (we
call it the pseudo-basis of B) is correct, then we show
that we can fill the other rows iteratively without any
backtracking. The intuition of why we need the addi-
tional k rows is as follows: in the version without the W
matrix, once we fix the basis B̃ fo B, the matrix Ã given
by the corresponding rows of A is fixed. In particular
the diagonal values Ãii (that could have been wildcards
and hence not fixed apriori) are now fixed. But with
the matrix W , for different choices of W , we get dif-
ferent diagonal entries in Ã. We only need to add at
most one more row to the pseudo-basis in order to fix
one of these diagonal entries. Thus we need at most k
additional rows in the pseudo-basis.

We guess the rows of the pseudo-basis on-demand
i.e., we add a row as basis-row only if a compatible
row cannot be found for it under the current inferred
clique weights W from the current basis matrix. Every
time we add a new row to the basis, we recompute
the clique weights W . The two algorithms that we
present, differ in how they infer the clique weights
for the current pseudo-basis. The first algorithm uses
a linear programming method while the second uses
an integer partitioning dynamic programming method.
In our algorithms, we will often use partially filled
matrices, i.e. some of the entries are allowed to have
null values. If a row or matrix has all null values we
call them null row and null matrix respectively.

6.1 Clique Weight Recovery by Linear Pro-
gramming We use a linear program to infer the clique
weights for the current pseudo-basis of the algorithm.
The pseudocode is given in InferCliqWts-LP (Algo-

rithm 2). Suppose B̃ is the current pseudo-basis matrix

i.e. B̃ is an n×k matrix where the current pseudo-basis
rows (at most 2k) are filled by 0’s and 1′s, and the other
rows are null rows. For each pair of distinct non-null
rows B̃i and B̃j we add the constraint B̃T

i WB̃j = Aij

to the LP. Also, for each Aii that is not a ?, we add the
constraint B̃T

i WB̃i = Aii. Note that the variables of the
LP are the diagonal entries W11,W22, · · · ,Wkk. We also
have non-negativity constraints W11 ≥ 0, · · · ,Wkk ≥ 0.
Any feasible solution to this LP gives us a set of clique
weights compatible with the current pseudo-basis. If

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

the LP is infeasible, then we conclude that the current
pseudo-basis guess is infeasible and proceed to the next
guess. Note that since we are only concerned about
a feasible solution satisfying the constraints, we do not
have an objective function for the LP. We point out that
solving this LP is rather efficient as the number of vari-
ables are k and number of constraints are at most 4k2

and can be solved incrementally as we add constraints
everytime a basis row is added.

Algorithm 1. CliqueDecomp-LP

1: for P ∈ {0, 1}2k×k do

2: initialize B̃ to a n× k null matrix
3: b, i← 1
4: while b ≤ 2k do
5: B̃i ← Pb

6: b← b+ 1
7: W ← InferCliqWts-LP (A, B̃)
8: if W is not null matrix then
9: (B, i)← FillNonBasis (A, B̃, W)

10: if i = n+ 1 then return (B, W)

11: else b← 2k + 1 . null W ; break out of while

12: return No

Algorithm 2. InferCliqWts-LP (A, B̃)

1: let γ1, · · · , γk ≥ 0 be variables of the LP
2: for all pairs of non-null rows B̃i, B̃j s.t. Aij 6= ? do

3: Add LP constraint
∑

1≤q≤k B̃iqB̃jqγq = Aij

4: if the LP is infeasible then return the null matrix
5: else return the diagonal matrix given by γ1, . . . , γk

Algorithm 3. FillNonBasis (A, B̃, W)

1: B ← B̃
2: while B has a null row do
3: let Bi be the first null row
4: for v ∈ {0, 1}k do
5: if iWCompatible (A, B, W , i, v) then
6: Bi ← v
7: goto line 2

8: return (B, i) . there is no (i,W)-compatible v

9: return (B,n + 1) . B has no null row

Once we have inferred a W compatible with the
current pseudo-basis, we then try to fill the remaining
rows (we call them non-basis rows) one by one in

FillNonBasis. We say that a vector v ∈ {0, 1}k is
(i,W) compatible with row Bj if vTWBj = Aij . We
say that v is (i,W) compatible with matrix B if it

Algorithm 4. iWCompatible (A, B̃, W , i, v)

1: for each non-null row Bj do
2: if vTWBj 6= Aij then return false

3: if vTWv 6 ?= Aii then return false

4: return true

is (i,W)-compatible with each non-null row Bj , and

vTWv
?
= Aii. We say B and W are compatible with

each other if for each pair of non-null rows Bi and Bj ,

we have BT
i WBj

?
= Aij . We keep filling the rows Bi of

B one-by-one with (i,W)-compatible rows until either
B is completely filled or there is an i such that there
is no (i,W)-compatible vector in {0, 1}k. In the former
case we show that (B,W) gives a solution, and in the
latter case we proceed on to take row i into the pseudo-
basis row. Note that when we take a new row into the
pseudo-basis row we throw away all the non-basis rows
and make them null rows again. We will show that we
only need to take up to 2k rows into the pseudo-basis
for the algorithm to correctly find a solution.

6.1.1 Algorithm Correctness

Theorem 6.2. CliqueDecomp-LP (Algorithm 1) cor-
rectly solves the BSWD-DW problem, and hence
also correctly solves AEWCD and EWCD, in time
O(4k

2

k2(32k + k3L)), where L is the number of bits re-
quired for input representation.

First we prove in the following lemma that if
CliqueDecomp-LP outputs Yes, i.e. if it outputs through
line 10, then the matrices B and W output indeed
satisfy that A

?
= BWBT . The proof follows because

we checked for (i,W)-compatibility whenever we filled
Bi. The full proof of the Lemma can be found in
Appendix B.1.

Lemma 6.1. If CliqueDecomp-LP returns through
line 10, then the matrices B and W output satisfy that
A

?
= BWBT .

Lemma 6.1 immediately implies that if the instance
is a No-instance then the algorithm does not output
through line 10. Since the only other possibility for
output is through Line 12, which outputs No, we can
conclude that for a No-instance we correctly output No.
The following arguments are therefore related to the
correctness of Yes instances.

For arguing the correctness in the Yes case, we fix
a valid solution (B∗,W ∗) of the instance. If the output
occurs through Line 10, then by Lemma 6.1, we are
done. So for the sake of contradiction assume that the
output does not occur through Line 10. For I ⊆ [n], we

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

define B∗I as the n × k matrix whose i-th row is equal
to B∗i for all i ∈ I and the other rows are null rows.
The following lemma follows because we iterate over all
possible values of pattern matrix P .

Lemma 6.2. Let I ⊆ [n] be such that |I| ≤ 2k − 1. If

B̃ is equal to B∗I at some point in the algorithm, and if

FillNonBasis (A, B̃ = B∗I ,W) called in Line 9 returns

i ≤ n, then B̃ is equal to B∗I∪{i} at some point in the
algorithm.

So, if we start with I = ∅, and repeatedly apply
Lemma 6.2, then at some point in the algorithm, we
have B̃ = B∗I such that |I| = 2k. Towards this, we

define the matrix E(B̃) formed by the rows that are

element-wise products of pairs of non-null rows in B̃.
More precisely:

Definition 6.1. E(B̃) is the matrix containing rows

B̃i� B̃j for each pair i, j (not necessarily distinct) such
that Aij 6= ?. Here � denotes element-wise product.

The above definition means that E(B̃) is the coef-
ficient matrix of the LP that the algorithm would con-
struct in the call InferCliqWts-LP (A, B̃).

Definition 6.2. (Pseudo-rank) The pseudo-rank of

B̃ is defined as the sum of ranks of B̃ and E(B̃), where

by rank of B̃ we mean the rank of the matrix formed by
the non-null rows of B̃.

Since the number of columns in B̃ and E(B̃) are each
k, we have the following lemma.

Lemma 6.3. The pseudo-rank of B̃ is at most 2k.

We say that a vector v ∈ {0, 1}k i-extends B̃ if B̃i is

currently a null row, and adding v as B̃i increases the
pseudo-rank of B̃.

Lemma 6.4. If FillNonBasis (A, B̃ = B∗I ,W) called
on Line 9 returns i ≤ n, then B∗i i-extends B∗I .

Proof. Suppose for the sake of contradiction that B∗i
does not i-extend B∗I . This means that B∗i is linearly
dependent on the non-null rows of B∗I and each B∗i �B∗j
for j ∈ I is linearly dependent on the rows of E(B̃).
Also, if Aii 6= ? then B∗i � B∗i is linearly dependent

on the rows of E(B̃). Now, consider each non-null row
Bj of the matrix B when iWCompatible (A,B,W, i, v)
was called in Line 5 in FillNonBasis. We prove that
B∗Ti WBj = Aij and that B∗Ti WB∗i

?
= Aii. This

then implies that B∗i is (i,W)-compatible with B and
hence FillNonBasis could not have returned i, giving
a contradiction.

First consider the case when Bj is a pseudo-basis
row, i.e. j ∈ I. Since B∗i does not i-extend B∗I , we know

B∗i �B∗j is linearly dependent on the rows of E(B̃). This

means that adding B∗i as B̃i would not add any linearly
independent equality constraints to the LP system that
solves for W . So, either the LP becomes infeasible or
all the solutions to the LP still remain solutions. But
the LP is not infeasible as the diagonal elements of W ∗

gives a feasible solution to the LP. Thus, the current W
remains a feasible solution even after the addition of B∗i
the row B̃i. Hence, B∗Ti WB∗j = Aij .

Now, consider the case when Bj is not a pseudo-

basis row, i.e. j /∈ I. In other words B̃j is a null row and
Bj was added in FillNonBasis. Since B∗i does not i-
extendB∗I , we know thatB∗i is linearly dependent on the
non-null rows of B∗I . In other words, B∗i =

∑
`∈I λ`B

∗
`

where each λ` ∈ R. Then,

B∗Ti WBj =
∑
`∈I

λ`B
∗T
` WBj(6.1)

=
∑
`∈I

λ`A`j(6.2)

= Aij(6.3)

where Eq. (6.2) is because Bj could have been selected
for row j only if it was (j,W)-compatible with B∗I , and
Eq. (6.3) follows by using that W ∗B∗ is a linear map
from B∗ to A and hence the linear dependencies in B∗

are preserved in A. More precisely,∑
`∈I

λ`A`j =
∑
`∈I

λ`B
∗T
` W ∗B∗j

= B∗iW
∗B∗j

= Aij

Note that we have here crucially used ` 6= j (as j /∈ I)

and j 6= i to say = and not just
?
=. This is the reason we

required a separate argument for j ∈ I. The argument
for B∗Ti WB∗i

?
= Aii follows the same argument as in the

case of j ∈ I by observing that if Aii 6= ? then B∗i �B∗i
is linearly dependent on the rows of E(B̃).

Now starting with I = ∅, and applying Lemmas 6.2
and 6.4 repeatedly, we have that at some point in the
algorithm, B̃ is equal to some B∗I such that the pseudo-
rank of B∗I is 2k. At this point, the FillNonBasis call
at Line 9 should return i = n+ 1 because if it returned
i ≤ n, then adding B∗i to B̃ would make the pseudo-rank

of B̃ equal to 2k + 1, a contradiction to Lemma 6.3.
Hence, the algorithm outputs through Line 10. This
concludes the correctness of the algorithm. We defer
the runtime analysis to Appendix C.1.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

6.2 Clique Weight Recovery by Integer Parti-
tioning We give an algorithm for inferring the current
pseudo-basis’s clique weights by solving an integer par-
titioning dynamic program. The pseudocode is given in
InferCliqWts-IP (Algorithm 6). Similar to 6.1, con-

sider B̃, the current pseudo-basis matrix. Additionally,
a list W is maintained, containing partially filled diag-
onal weight matrices each of which are compatible with
the current pseudo-basis matrix B̃. Here compatibil-
ity is defined as follows. For a matrix B, first define
its relevant indices, denoted by R(B), as the set of all
r ∈ [k] such that there exist non-null rows Bi, Bj such
that BirBjr = 1 and Aij 6= ?. For a diagonal matrix
W we define F (W) as the set of all i ∈ [k] such that

Wii is not null. We say that B̃ and W are compatible if
F (W) = R(B̃) and for each pair of non-null rows B̃i, B̃j

such that Aij 6= ?, it is true that
∑

r∈R(B̃) B̃irWrrB̃jr =

Aij . We maintain in W, all the possible fillings of in-
dices R(B) of the diagonal vector of clique-weight ma-

trix W such that W is compatible with B̃.
InferCliqWts-IP is given as input the cur-

rent B̃ after initially inserting Pb at Line 6 in
CliqueDecomp-IP. Thus, B̃i is the potential basis row
we are considering. At the start of the function call, we
know that each non-null rows B̃j is (j,W)-compatible

with each non-null row B̃j′ for j, j′ 6= i. If B̃i is not
(i,W)-compatible, this implies that either there are null
weights in W in relevant positions, or the current basis
P being considered is not the correct one. Let B̃j be a

non-null row such that B̃i is not (i,W)-compatible with

B̃j . We define X ⊆ [k] as the indices of null positions
in the diagonal of W , X = [k] \ X, and P ⊆ [k] as

the set of positions in B̃i � B̃j having 1 values. The

sum t =
∑k

l∈P∩X B̃ilB̃jlWll is the sum of all previously
fixed clique-weights that contribute to Aij . The differ-
ence s = t − Aij has to be contributed by P ∩X. The
UpdateWs function finds all possible ways to sum to s
using |P ∩X| number of non-negative integers via a dy-
namic program. This is an integer partitioning problem
and is a simple variant of the common change-making
problem. Then for each such combination a new W -
matrix is created by inserting the combination in the
indices P ∩ X. UpdateWs returns the list of all such
W -matrices created. Note that s could be negative in
which case UpdateWs returns an empty list.

6.2.1 Algorithm Correctness

Theorem 6.3. CliqueDecomp-IP (Algorithm 5) cor-
rectly solves the BSWD-DW problem, and hence
also correctly solves AEWCD and EWCD, in time
O(4k

2

32kwkk) where w is the maximum entry of A.

Algorithm 5. CliqueDecomp-IP

1: for P ∈ {0, 1}2k×k do

2: B̃ ← n× k null matrix
3: b, i← 1
4: W← {null matrix}
5: while b ≤ 2k do
6: B̃i ← Pb

7: b← b+ 1
8: S ← InferCliqWts-IP (A, B̃, W, i)
9: if S is not empty then

10: W← S
11: (B, i)← FillNonBasis (A, B̃, W [0])
12: if i = n+ 1 then return (B, W [0])

13: else
14: b← 2k + 1

15: return No

Algorithm 6. InferCliqWts-IP (A, B̃, W, i)

1: S← []
2: for l← 1 to |W| do
3: X← {x ∈ [k] | W [l]xx is null}
4: X← [k] \X
5: temp← empty queue
6: temp.push(W[l])

7: for each non-null row B̃j s.t. Aij 6= ? do
8: iters← |temp|
9: P← {p ∈ [k] | B̃ipB̃jp = 1}

10: for q ← 1 to iters do
11: S′ ← temp.pop()

12: s← Aij −
∑

f∈P∩X S
′
ff

13: T← UpdateWs (S′,P ∩X, s)
14: temp.push(T)
15: if temp is empty then goto Line 16

16: S.push(temp)

17: return S

Algorithm 7. UpdateWs (W , I, s)

1: V← []

2: Y← all partitions of s into |I| non-negative integers
3: for each parts in Y do
4: y ← 0
5: C ← W
6: for each i ∈ I do
7: Cii ← parts[y]
8: y ← y + 1

9: V.push(C)

10: return V

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
K

10 2

10 1

100

101

102

103

tim
e

(lo
g

sc
al

e)

wecp
ipart
lp

Figure 2: Log-scale plot showing distribution of total
algorithm runtimes when binned by K (the sum of
the clique weights). All K values shown in Figure 8 in
Appendix E.

The proof of CliqueDecomp-IP’s correctness is similar
to the proof of CliqueDecomp-LP in Section 6.1.1. We
describe the differences in Appendix B.2 and defer the
runtime analysis to Appendix C.2.

7 Experimental Setup

This section describes the synthetic corpora; hardware
descriptions can be found in Appendix E.2. We gen-
erate two sets of biologically-inspired synthetic graphs.
The first dataset defines modules (cliques) using known
relationships between transcription factors and genes;
the second uses latent variables from a machine learning
approach for analyzing co-expression data.

7.1 TF-Dataset Our first dataset emulates the bi-
partite gene-module network by using known rela-
tionships between transcription factors (TFs) and
genes [11]. To generate a network with a ground truth
of k cliques, we randomly select k TFs and form the
network which is the union of all associated genes with
edges between those that share at least one selected TF.

Since the relative strengths of effect on expression
are unknown, we specify a desired maximum edge
weight (see Appendix D.1), and generate integral clique
weights as described in Appendix D.2. A heavy-tailed
distribution is chosen to mimic the view that modules
have widely varying effects on gene co-expression, and
a small minority likely have drastically higher impact
than all others [32].

7.2 LV-Dataset A similar approach is taken when
generating the set of the latent variable-associated syn-
thetic graphs. In this data [17, 32], each latent variable

0

500

1000

1500

n k
er

parameter = K (wecp)

3
4
6
7
9
10

0 250 500 750 1000 1250 1500 1750
n

0

500

1000

1500

n k
er

parameter = k (ipart/lp)

Figure 3: Instance size reduction due to kernelization
(from n to nker); points along the diagonal experienced
no reduction from kernel rules. Top shows reduction
using parameter K, bottom shows reduction when using
parameter k.

(LV) represents a set of genes that are co-expressed in
the same cell types. A score for every gene in each
LV indicates the strength of its association to the mod-
ule. Further, some latent variables have been shown to
align with prior knowledge of pathway associations [32].
Our generator randomly selects k latent variables, with
80% drawn from those known to be aligned with path-
ways, and the remaining 20% chosen uniformly from all
LVs. For each LV, we only include genes with associa-
tion scores above a threshold, determined as described
in Appendix D.3.

In contrast to the TF data, here the clique weights
have a basis in the underlying data. For each LV, we
compute the average associate score over all included
genes then linearly transform this to control the maxi-
mum edge weight in the network (see Appendix D.1).

8 Results

This section highlights the key outcomes of our prelimi-
nary experimental evaluation. We begin by highlighting
the effects of reparameterization, comparing the algo-
rithm of [12] (referred to as wecp) to CliqueDecomp-IP

and CliqueDecomp-LP (shortened to ipart and lp for
consistency with figure legends).

8.1 Effects of Reparameterization To compare
the effects on the runtime of reparameterizing from the
sum of the clique weights K to the number of distinct
cliques k, we tested wecp, ipart, and lp on all instances
with k ≤ 11 and small/medium weight scalings. As
seen in Figure 2, and Figures 5, 6, 8 in Appendix E,
both algorithms parameterized by k are faster across
the entire corpus when k >= 6. It should be noted that
the slower ipart and lp runtimes for k < 6 are partly

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2 3 4 5 6 7 8 9 10 11
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ip
ar

t t
im

e
(s

) /
 lp

 ti
m

e
(s

)

Figure 4: Relative runtimes of ipart and lp on full
corpus with 2 ≤ k ≤ 11 and all weight scalings; times
exclude kernel (which is shared). Outliers not shown.

due to the preprocessing often removing highly weighted
cliques, effectively setting k = K. When k = K, it is
slightly faster to run wecp due to not having to compute
the clique weights. Figure 2 shows the runtimes for K ∈
[2, 20], and Figure 8 shows all K ∈ [2, 49]. After K = 13
wecp timedout for every instance, whereas ipart and lp

are still able to compute solutions in under an hour.
Some performance increase may be attributed to

the kernelization, as shown in Figure 3. Since one of the
reduction rules relies on the parameter, the instance size
after kernelization (denoted nker) is different between
wecp (which uses K) shown in the top figure, and
ipart/lp (which use k) shown in the bottom figure.
Figure 3 shows that the kernel gives great reduction
when parameterized by k when k is small and has less
of an impact when k is large. Figure 6 in Appendix E
shows a comparison of the runtimes when instances are
sorted by the size of the kernelized instance.

8.2 Integer Partitioning vs LP From Figure 2, we
observe that ipart runs slightly faster on average than
lp, which was unexpected. To further compare the two,
we ran both algorithms on a larger corpus including
all instances with k ≤ 11 regardless of weight scaling.
Figure 4 shows the runtime ratio of the two algorithms3.
We observe that despite a consistent advantage for
ipart on small k, the methods’ runtimes seem to
converge as we approach k = 9 and we hypothesize
that lp will become the dominant approach for larger
k when testing with a longer timeout than one hour.
To test whether the specific clique-weight assignment
mattered, we evaluated runtimes on 6 random weight
assignment permutations for each instance. Table 4 in
Appendix E.3 shows that both algorithms are virtually
unaffected by the assignments.

Finally, since ipart’s complexity depends on the
maximum weight w, we evaluated this effect by compar-

3these times exclude the shared kernel to emphasize the
difference in the two approaches

ing performance across the small, medium, and large
weight-scale variants of each instance. Figure 10 in
Appendix E shows that the relative increase in runtime
between weight scalings is fairly consistent across algo-
rithms, indicating minimal effect. However, it is note-
worthy that ipart experiences much higher variance.

8.3 Ground Truth While these algorithms are guar-
anteed to find a decomposition using at most k weighted
cliques if one exists, a unique solution is not guaranteed.
For the synthetic corpus, we verified that our output re-
covered the LVs/TFs selected by the generators, but we
do not know whether this will generalize to real data
(where weight distributions may be quite different) or
much larger k. Additionally, Appendix E.4 analyzes the
impact on incorrect k input on the recovered solution.

9 Conclusions & Future Work

This paper offers a new combinatorial framing of the
problem of module identification in gene co-expression
data, Weighted Clique Decomposition. Further,
we present two new parameterized algorithms for the
noise-free setting (EWCD), removing the dependence
of a prior approach on the magnitude of the clique
weights. To address concerns of practicality, we imple-
ment both approaches and evaluate them on a corpus of
biologically-inspired genetic association data. The em-
pirical results show that both new approaches signifi-
cantly outperform the Weighted Edge Clique Par-
tition algorithm of [12], and that worst-case asymp-
totic runtime bounds are not realized on typical inputs.

While these algorithms provide a nice first step
towards a polynomial-time algorithm for module-
identification, there remain many unaddressed chal-
lenges before use on real data. While our exponential
dependence on the number of modules is to be expected
from an FPT algorithm, in many real-world datasets
there are hundreds of underlying functional groups. One
way to overcome this limitation is to incorporate a hi-
erarchical approach, which would provide an extra bio-
logically meaningful outcome: the relationships between
cliques could be mapped to representations such as the
Gene Ontology, where descendents represent more spe-
cialized function.

We would like to extend our approach to the non-
exact setting, targeting approximation schemes for the
optimization variant of the problem. Understanding the
correct penalty function for under- and over-estimating
edges, and whether this should be amplified for edges
below the threshold in the original coexpression data
will be critical in informing a useful technique.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

A Kernel for AEWCD

Here, we give the 4k-kernelization for BSWD-DW (and
hence also for the equivalent AEWCD), and prove
its correctness and runtime. Let (A, k) be the input
BSWD-DW instance and let (G,we, wv, k) be the cor-
responding AEWCD instance. For a vertex u of G we
will use Au and Bu to denote their corresponding rows
in matrices A and B respectively. Similarly we use Auv

for an element of the matrix A corresponding to the pair
of vertices u and v.

First, we divide the vertices of input graph G
(correspondingly the rows of input matrix A) into
blocks, as follows. We say that i and j are in the same
block if Ai

?
= Aj . Note that

?
= is an equivalence relation

over the rows of A, as proven by Feldmann et. al. [12,
Lemma 7]. Then, we apply the following two reduction
rules exhaustively.

Rule 1. If there are more than 2k blocks then output
that the instance is a NO-instance.

Rule 2. If there is a block D of size greater than 2k,
then pick two distinct i, j ∈ D. We reduce to an instance
(A′, k) as follows: G′ := G − (D \ {i}), A′ii = Aij, and
A′uv = Auv for all (u, v) ∈ (V (G′)× V (G′)) \ {(i, i)}.
Given a solution (B′,W ′) for (A′, k) we construct a
solution for (A, k) as W = W ′, Bu = B′u for all u /∈ D,
and Bu = B′i for all u ∈ D.

Once the two rules are applied exhaustively, then
the reduced instance has size at most 4k because there
are at most 2k blocks by Rule 1 and each block size is
at most 2k by Rule 2. So, it only remains to prove that
the two reduction rules are correct, and also to prove
the runtime of the kernelization. The following lemma
gives the correctness of Rule 1.

Lemma A.1. If (A, k) is a YES-instance of BSWD-
DW, then there are at most 2k blocks in A.

Proof. Suppose there are more than 2k blocks. Let
(B,W) be a solution. Since there are only 2k distinct
binary vectors, there exist i and j in different blocks
such that Bi = Bj . Then we have Ai

?
= BT

i WBi =

BT
j WBj

?
= Aj . This implies Ai

?
= Aj (because if

x
?
= y

?
= z and y does not contain any ? then x

?
= z), and

hence i, j and j are in the same block, a contradiction.

Now, we prove the correctness of Rule 2 in the
following two lemmas.

Lemma A.2. In Rule 2, if the reduced instance (A′, k)
has a solution (B′,W ′) then the solution (B,W) con-
structed by Rule 2 is indeed a solution to (A, k).

Proof. It is sufficient to prove that BT
uWBv

?
= Auv

for all u, v ∈ V (G). First consider the case when
u, v /∈ D, the block picked by Rule 2. Then BT

uWBv =

B′u
T
WB′v

?
= A′uv = Auv. Now, consider the case when

u ∈ D, v /∈ D. Then BT
uWBv = B′u

T
WB′i

?
= A′ui =

Aui. Finally, consider the case when u ∈ D, v ∈ D. We
can assume Auv 6= ? as this case follows trivially. Then
BT

uWBv = B′i
T
WB′i

?
= A′ii = Aij = Auv. Here, the last

equality is because any two entries (that are not ?) in
the same block of matrix A are equal [12, Lemma 7].

Lemma A.3. In Rule 2, if (A, k) is a YES-instance
then the reduced instance (A′, k) is a YES-instance.

Proof. Let (B,W) be a solution of (A, k). Since the
block D contains more than 2k rows, there exist row
indices p and q such that Bp = Bq. We define a solution
(B′,W) for (A′, k) as B′u := Bu for all u ∈ V (G′) \ {i}
and B′i := Bp.

To prove that (B′,W) is indeed a valid solution for

(A′, k), it is sufficient to show that B′u
T
WB′v

?
= A′uv for

all u, v ∈ V (G′). First consider the case when u, v 6= i.

Then B′u
T
WB′v = Bu

TWBv
?
= Auv = A′uv. Now,

consider the case when u = i,v 6= i. Then B′i
T
WBv =

Bp
TWBv

?
= Apv = Aiv = A′iv, where the second-to-

last equality followed as p and i are in the same block
D. Finally, consider the case when u = v = i. Then
B′i

T
WB′i = Bp

TWBp = BT
p WBq = Apq

?
= Aij = A′ii.

Here, the
?
= follows because any two entries (that are not

?) in the same block of matrix A are equal [12, Lemma
7]. Also, note that the third equality is an equality (and

not only a ‘
?
= equivalence’) as Apq is not a diagonal

entry.

It is rather easy to see that the runtime of the
kernelization is O(n3). The division into blocks can be
easily realized in O(n3) time. The application of Rule 1
then takes only O(1) time. Rule 2 is applied at most
once to each block and all the applications together take
only O(n2) time.

B Algorithm Correctness

B.1 CliqueDecomp-LP Here we give the miss-
ing proofs for the correctness of algorithm
CliqueDecomp-LP.

Proof. [Proof of Lemma 6.1] Each row of B is ei-
ther a pseudo-basis row that was filled in Line 5 of
CliqueDecomp-LP or it is a non-basis row that was filled
in Line 6 of FillNonBasis. Now consider two pseudo-
basis rows Bi and Bj . For them, we have BT

i WBj = Aij

as W was a solution to the LP that contained the con-
straint BT

i WBj = Aij . Also, for a pseudo-bais row Bi,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

we have that BT
i Bi

?
= Aii because if Aii 6= ?, then we

added the constraint BT
i WBi = Aii to the LP. Now

consider a non-basis row Bi and some other row Bj

that was filled before Bi. Note that Bj could be a
pseudo-basis row or a non-basis row. Since the algo-
rithm filled Bi in Line 6 of FillNonBasis, we know
that Bi is (i,W)-compatible with all the rows filled
before. Thus BT

i WBj = Aij . Moreover, by (i,W)-

compatibility, we also have BT
i WBi

?
= Aii. Hence, we

have that BWBT ?
= A.

B.2 CliqueDecomp-IP As noted in the main text, the
majority of the proof of CliqueDecomp-IP’s correctness
follows the proof of CliqueDecomp-LP in Section 6.1.1,
so here we only point out the differences.

Since the main difference with the LP algorithm is
the InferCliqWts-IP routine, we prove the correctness
of it in the following lemma. The lemma follows
directly from the construction of InferCliqWts-IP and
UpdateWs algorithms.

Lemma B.1. Consider the function call
InferCliqWts-IP(A, B̃, W, i) in Line 8 of

CliqueDecomp-IP. Let B̃′ be the matrix B̃ before
the insertion of current row B̃i, i.e. B̃′i is a null row.

Suppose W contains all the compatible W with B̃′ then
the list S returned contains all the compatible W with B̃.

Once we have the above lemma, the correctness of
the algorithm follows more or less the same proof as
that of the LP algorithm. We state the following two
key lemmas that are counterparts of Lemma 6.1 and
Lemma 6.4.

Lemma B.2. If CliqueDecomp-IP returns through
line 12, then the matrices B and W [0] output satisfy

that A
?
= BW [0]BT .

Lemma B.3. If FillNonBasis (A, B̃ = B∗I ,W [0])
called on Line 11 of CliqueDecomp-IP returns i ≤ n,
then B∗i i-extends B∗I .

Both the lemmas follow the same proof as that of
their counterparts. To derive Lemma B.3 from the
proof of Lemma 6.4, it is sufficient to observe that the
statement, all solutions of the LP still remain solutions,
can be interpreted as all compatible W ’s still remain
compatible. This is the reason why we need only to
check with W [0] in FillNonBasis and not with all
matrices in the list W. In fact, this is what we do
even in the LP; the LP has many possible solutions but
we check with only one solution. The difference is that
the many solutions are implicitly captured by the LP
constraint system, whereas CliqueDecomp-IP explicitly
maintains all compatible combinations.

C Runtime Analysis

Here, we estimate the runtimes of CliqueDecomp-LP

and CliqueDecomp-IP. Note that the runtimes we give
are after kernelization, i.e. the input to these two
algorithms are assumed to be a kernel according to
Theorem 6.1. The kernelization incurs an additional
runtime additive factor of O(n3).

C.1 CliqueDecomp-LP

Lemma C.1. CliqueDecomp-LP (Algorithm 1) runs in

time O(4k
2

k2(32k+k3L)), where L is the number of bits
required for input representation.

Proof. The for loop in Line 1 has at most 22k
2

iterations. The while loop in Line 4 has at most 2k
iterations. The only steps that take more than unit time
in the while loop are the calls to InferCliqWts-LP

and FillNonBasis. InferCliqWts-LP solves an LP
with k variables and at most 4k2 constraints.This can
be solved in at least O(k4L) time by using standard
algorithms [33]. It only remains to estimate the runtime
of FillNonBasis. The while loop in Line 2 of
FillNonBasis has at most n iterations and the for

loop in Line 4 has at most 2k iterations. The only non-
trivial step in the for loop is the call to iWCompatible.
The for loop in Line 1 of iWCompatible has at most
n iterations and Line 2 takes at most k operations.
Thus the time taken for iWCompatible is at most
O(nk) and the time taken for FillNonBasis is at most
O(n2k2k). Hence, the time taken for CliqueDecomp-LP

is in O(22k
2

2k(k4L+ n2k2k)). The claimed run-time in
the theorem follows by putting n ≤ 4k due to the kernel.

C.2 CliqueDecomp-IP

Lemma C.2. CliqueDecomp-IP (Algorithm 5) runs in

O(4k
2

32kwkk), where w is the maximum weight value
in A.

Proof. The for loop in Line 1 has at most 22k
2

itera-
tions. Let y be the number of distinct partially filled
weight matrices. We have y ≤ (w + 2)k since each such
matrix is defined by the k entires along its diagonal,
each of which is either null or an integer from 0 to w.

Now, we show that for a fixed iteration of for loop
in Line 1 of CliqueDecomp-IP,

1. each line of CliqueDecomp-IP in the for loop is
executed at most y times,

2. each line in InferCliqWts-IP is executed at most
y times (across all calls to the function from the
fixed iteration of for loop), and

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

3. the for loop in Line 3 of UpdateWs is executed at
most y times (across all calls to UpdateWs from all
calls of InferCliqWts-IP from the fixed iteration
of for loop in CliqueDecomp-IP).

For (1) observe that the list W in CliqueDecomp-IP

always gets new matrices whenever it is modified. At
any point the elements of the list are disjoint from the
past entries of the list (during the fixed iteration of for
loop). For (2) observe that between the two consecutive
executions of a line, temp would have seen a new matrix
that was not in it before. For (3) observe that every time
a new matrix is pushed to V, it is a new matrix that it
did not have before.

From Appendix C.1, we know that FillNonBasis

runs in O(n2k2k) time. All the other non-loop lines
in CliqueDecomp-IP, InferCliqWts-IP and UpdateWs

can be done in at most O(k2) time. The for loop in
Line 6 takes only O(k) time.

Therefore, the total running time of
InferCliqWts-IP is

O(22k
2

· wk · (n2k2k + k2))

= O(4k
2

2kwkn2k)

= O(4k
2

32kwkk)

where the last equality follows by using that n ≤ 4k

after kernelization.

D Synthetic Data Specifications

Here we detail the parameter settings and methodology
for the synthetic corpus generation. Each instance is
generated by specifying a random seed, a desired num-
ber of cliques k, one of three weight scaling factors, and
an underlying dataset (TF or LV). For each combination
of parameters selected, we used 20 random seeds. We
used all k values in [2, 20], resulting in an initial corpus
of 2280 graphs. We only ran experiments on those in-
stances which had k values in [2, 11] after pre-processing
(see Appendix G), resulting in a final corpus of 1917
networks. Table 1 summarizes the average number of
nodes and edges for the generated corpus.

Table 2 summarizes statistics about how the ground
truth cliques overlapped across the entire corpus. For
example, about six percent of the graphs (119 of the
1917) contained at least one clique which overlapped
almost all (81−100%) of the remaining cliques, and over
ten percent (201) have their average clique overlapping
over 40% of all the other cliques. Alternatively, if
you measure entanglement of cliques (modules) by the
percentage of their nodes (genes) that are shared with
at least one other clique, we can see that fifteen percent

LV TF
k # n m # n m

2 60 129.3 6325.2 64 36.4 1221.7
3 60 229.3 17571.3 67 67.7 2315.7
4 60 352.6 32644.5 65 83.0 2750.1
5 60 387.8 41867.6 65 111.8 5434.5
6 60 445.0 42498.8 69 175.0 16745.6
7 60 605.5 92604.6 65 113.0 3212.9
8 60 661.6 89747.0 63 222.9 15585.9
9 60 713.7 110952.1 72 233.8 19834.6
10 60 737.2 74706.4 67 269.9 17520.0
11 60 823.1 77260.8 63 222.7 13646.4
12 45 876.8 112389.7 70 272.3 20116.5
13 42 872.9 69691.5 63 361.8 35362.8
14 45 859.9 69564.9 55 286.7 10791.9
15 27 954.6 66220.1 59 386.4 38712.8
16 12 848.2 45401.5 65 319.9 18656.3
17 - - - 43 361.0 16164.7
18 6 897.5 44828.5 37 354.6 24494.3
19 21 1042.7 57171.1 24 345.0 13114.5
20 3 1029.0 41588.0 40 340.4 13205.0

Table 1: Average instance sizes (number of nodes n and
edges m) across k values for TF and LV datasets. The
number of graphs for a given k value may be smaller
than 60 if some instances were eliminated for not having
2− 11 cliques after preprocessing.

(286) have some clique which shares more than 80
percent of its nodes with another clique, and just less
than four percent (70 graphs) have an average overlap
greater than 40% for all their cliques.

D.1 Clique Weight Scaling: In both corpora, we
use three different scale factors (which we refer to as
small, medium, and large) to control the maximum
edge weight in the resulting networks. In the TF data,
this takes the form of three different maximum edge
weight values for our heavy-tailed weight generator: 1,
4, and 16. In the LV data, we scale the average gene-LV
association scores by 1, 2, and 4. When this results in
a non-integral weight; we take the ceiling.

D.2 TF Weight Generation As noted in Sec-
tion 7.1, the transcription factor dataset provides no
inherent strength of association for each TF. Given the
belief that real data follows a heavy-tailed distribution,
we generate random integer weights that mimic this (to
the extent possible, given the extremely small number
of cliques to be assigned weights) as follows.

We take as input a desired maximum weight ∆, and
define three intervals L = [1, `∆], M = [ml∆,mr∆],

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

0 250 500 750 1000 1250 1500 1750

10 2

10 1

100

101

102

103

tim
e

(lo
g

sc
al

e)

algorithm = wecp

k
3
4
6
7
9
10
datatype
tf
lv

0 250 500 750 1000 1250 1500 1750
n

algorithm = ipart

0 250 500 750 1000 1250 1500 1750

algorithm = lp

Figure 5: Log-scale runtimes (kernel + decomposition) of wecp, ipart, and lp on corpus of all TF (circle) and
LV (star) instances with 2 ≤ k ≤ 11 and small/medium weight scalings, sorted by instance size (prior to running
the kernel).

0 250 500 750 1000 1250 1500 1750

10 3

10 2

10 1

100

101

102

103

tim
e

(lo
g

sc
al

e)

algorithm = wecp

k
3
4
6
7
9
10
datatype
tf
lv

0 250 500 750 1000 1250 1500 1750
nker

algorithm = ipart

0 250 500 750 1000 1250 1500 1750

algorithm = lp

Figure 6: Log-scale runtimes (decomposition only) of wecp, ipart, and lp on corpus of all TF (circle) and LV
(star) instances with 2 ≤ k ≤ 11 and small/medium weight scalings, sorted by reduced instance size (after running
the kernel).

H = [h∆,∆]. We set ` = .14, m1 = .20, m2 = .28,
and h = .90, ensuring the ranges are well-separated.
To create a heavy-tail, we assign different probabilities
to a weight being drawn from each range, pL = .75,
pM = .15, and pR = .1. Once an interval is selected, the
weight is chosen uniformly at random among integers
in its range. Each clique weight is generated from this
process independently at random, with the caveat that
we ensure that some clique receives weight ∆ (to avoid
instances with no high-valued clique).

D.3 LV Membership Thresholding The LV data
includes an association score for each gene-LV pair; in
order to identify strongly-associated genes to be in-
cluded in the clique generated from a given LV, we use
a uniform threshold. In order to determine an appropri-
ate threshold for maintaining some variability of clique-
size without including large numbers of spurious associ-
ations, we computed an elbow plot showing the number
of genes per latent variable. This resulted in a threshold
of 0.6, which was used for all instances.

E Supplemental Experimental Results

In this section, we provide additional experimental re-
sults. Note that in all data and analysis (in the appendix
and main paper), k is referring to the parameter value
of the instances after preprocessing.

E.1 Additional Reparametrization Effects Fig-
ure 5 shows the combined runtime of the kernel and
decomposition algorithms on each instance sorted by
the instance size before kernelization and colored by k
value. ipart (middle) and lp (right) roughly solve in-
stances with the same k value (regardless of n) in a
similar amount of time. This is shown by the light to
dark gradient from the bottom to the top of the figures.
Whereas wecp (left) has no discernible gradient, mean-
ing there is no connection between k and the running
time of this algorithm. This is as expected since the
input parameter to wecp is K and not k.

Figure 6 is similar to Figure 5, but instead shows
the running time of only the decomposition algorithms
sorted by the instance size after kernelization and
colored by k value. When compared to Figure 5, these

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2 3 4 5 6 7 8 9 10 11
k

10 2

10 1

100

101

102

103

104

tim
e

(lo
g

sc
al

e)

wecp
ipart
lp

Figure 7: Log-scale distribution of total runtimes (pre-
processing + kernel + decomposition) binned by k on all
TF and LV instances with 2 ≤ k ≤ 11 for small/medium
weight scalings.

figures show that the kernel algorithm dramatically
reduces the size of instances with small k and has
a negligible effect on instances with large k values.
The light to dark gradient is again apparent in the
ipart (middle) and lp (right) figures, meaning the
decomposition runtimes are dependent mainly on k.
There is a slight increase in running time as nker
increases as well. While the running time increases
as nker increases for wecp (left), again, the colors are
sporadic. wecp timed out on 337 instances, whereas lp

timed out on 204 instances and ipart timed out on 171
instances (out of 986 total instances) indicated by the
points running across the top lines in both figures.

Figure 7 shows the total runtime of preprocessing,
kernelization, and decomposition binned by k. This
figure shows that the median runtime of wecp across
all k values is larger than both ipart and lp and has
more variability. The median runtime of ipart is also
less than lp. Figure 8 shows the runtime of the kernel
and decomposition algorithms binned over all K values.
ipart and lp can compute solutions up to K = 44,
whereas wecp consistently times out once K ≥ 13.

Table 3 shows the average peak memory usage for
graphs with medium and large weight scales for the
entire corpus (combining both TF and LV graphs). We
observe that the ipart algorithm’s average memory
usage is slightly larger than the lp algorithm’s, but
the difference is not substantial. This contrasts with
the ipart algorithm’s large theoretical bound on the
number of stored weight matrices. All k values for
both algorithms have a standard deviation around 25.

Node Overlap Clique Overlap
min. avg. max. min. avg. max.

0-20% 1911 1279 722 1785 917 311
21-40% 6 568 397 108 787 405
41-60% 0 70 266 21 201 672
61-80% 0 0 246 3 12 410
81-100% 0 0 286 0 0 119

Table 2: Summary of overlap between cliques across
the corpus. At left, we report on the number of nodes
shared between cliques in each graph (as a percent of n).
The first column (min) reports the number of graphs
where every clique had at least the given amount of
overlap, the second (avg) reports based on the average,
and the third (max) gives the number of graphs where
the clique with the most overlap fell into the given range.
At right, we use the same min, avg, max criterion,
but instead measure overlap by the percentage of other
cliques sharing at least one vertex.

k ipart lp

2 126.97 124.00
3 122.15 119.15
4 129.10 126.09
5 132.28 129.23
6 134.00 131.01

Table 3: Average peak memory usage in megabytes
between the ipart and lp algorithms for k between
[2−6]. Data are combined for medium and large weight
scales for both TF and LV datasets.

Peak memory usage was tracked for each run of the
algorithms using the python resource module.

E.2 Hardware All experiments used identical hard-
ware; each machine runs Arch Linux version 3.10.0 −
957.27.2.el7.x86 64, have 40 Intel(R) Xeon(R) Gold
6230 CPUs (2.10GHz), and have 192GB of memory. All
code is written in Python 3.

E.3 Varying Clique Weights To test if clique
weight assignments affect the runtime of the ipart and
lp algorithms, we randomly permuted the assignment
of the same set of clique weights to the cliques of each
TF graph six times. We ran both the ipart and lp

algorithms for each weight assignment and recorded the
runtimes. To compare runtimes for each k value, we
first normalized all runtimes using min-max normaliza-
tion. Using these normalized runtimes, we computed
the difference between the maximum for a particular

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 49
K

10 2

10 1

100

101

102

103

tim
e

(lo
g

sc
ale

)

wecp
ipart
lp

Figure 8: Log-scale plot showing distribution of total algorithm runtimes (kernel + decomposition) when binned
by K for all K values.

.6k .4k .2k k 1.2k 1.4k 1.6k
0

500

1000

1500

2000

2500

3000

3500

tim
e

(s
)

k = 5.0
lp
ipart

.6k .4k .2k k 1.2k 1.4k 1.6k

k = 6.0

.6k .4k .2k k 1.2k 1.4k 1.6k

k = 7.0

Figure 9: Average runtimes (kernel + decomposition) between all instances with ground truth k = 5, 6, 7 when
inputting k values in the range [0.6k, 0.4k, 0.2k, k, 1.2k, 1.4k, 1.6k]. Vertical dashed line indicates average time for
ground-truth k as input.

k ipart lp

5 0.001 (0.004) 0.000 (0.001)
6 0.019 (0.060) 0.016 (0.066)
7 0.004 (0.012) 0.071 (0.189)
8 0.000 (0.000) 0.275 (0.287)

Table 4: Average difference (and standard deviation)
between the maximum and minimum normalized run-
times when clique weight assignments were permuted
six times per TF graph. Data are grouped by k. The
runtime differences when k ∈ [2, 4] were all too small to
be measured.

weight assignment and the minimum for each graph,
then averaged across all graphs with the same k value.
Table 4 shows these results. Since the differences are
quite small, we conclude that specific clique weight as-
signments have little effect on the runtime of both the
ipart and lp algorithms.

E.4 Performance When k is Unknown In prac-
tice, the ground truth number of distinct cliques (mod-
ules) in real-world graphs is unknown. We tested the
effect of incorrect input of this parameter value on the
runtime and solution quality. Figure 9 shows the run-
time ratio (including the kernel time) across the same
instances when inputing k not equal to the ground truth
value. Inputting incorrect k values for both ipart

and lp results in an large increase in runtime. When
k = 0.6k (i.e., a much smaller value than the true k), the
kernel outputs a No answer, thus the runtime of the de-
composition algorithms is always zero. Interestingly, for
all instances with k ∈ [0.6k, 0.4k, 0.2k], no solution was
recovered, and for k ∈ [k, 1.2k, 1.4k, 1.6k], all ground
truth solutions were recovered, even when the input k
value is larger than the ground truth.

F NP-hardness of EWCD

We use the same construction as given by [20]. Using
this, we will show that EWCD is NP-hard even when

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

ipa
rt s

ml/m
ed

 tf

ipa
rt s

ml/m
ed

 lv

ipa
rt m

ed
/lrg

 tf

ipa
rt m

ed
/lrg

 lv

lp s
ml/m

ed
 tf

lp s
ml/m

ed
 lv

lp m
ed

/lrg
 tf

lp m
ed

/lrg
 lv

0

10

20

30

40

tim
e

ra
tio

Figure 10: Runtime ratio of ipart and lp when run
on the same underlying instance with increased weight
scaling factor: small vs medium and medium vs large.

restricted to K4-free graphs and unit edge-weights.
They use a reduction from the NP-hard Exact 3-
Cover (E3C). In this problem, we are given a universe
U of 3q elements and a collection S = {S1, S2, . . . , Sm}
of m 3-ary subsets of U . The decision problem is
whether there exist q sets that cover all the elements.
Note that if there is such a covering then each element
is covered exactly once in the solution.

Given an instance of E3C, we construct an instance
of EWCD on a K4-free graph G as follows. For each
element u ∈ U , we will have an edge uu′ in G. We
call these edges as the element-edges. For each set
Si = {u, v, w} in S, we will have three vertices ai, bi, ci
that form a triangle. We connect this triangle to the
edges uu′, vv′ and ww′ as shown in Fig. 11. All edges
have weight 1. We set the budget k for EWCD to be
6m+ q.

First we show that if the E3C instance has a
solution then so does the EWCD instance. Without
loss of generality assume that S1, S2, . . . Sq is a solution
to E3C. Then for each 1 ≤ i ≤ q, we take the
7 cliques {u, u′, ai}, {v, v′, ci}, {w,w′, bi}, {ai, bi, ci},
{u, bi}, {v, ai}, and {w, ci} into the solution. For each
q + 1 ≤ i ≤ m, we take the 6 cliques {u, ai, bi},
{v, ai, ci}, {w, ci, bi}, {u′, ai}, {v′, ci}, and {w′, bi} into
the solution. We give each clique a weight of 1. It is
easy to check that this gives a valid solution for EWCD
using exactly k = 6m+ q cliques.

Now, we show that if the EWCD instance has a
solution then so does the E3C instance. Let C be the
set of cliques in the solution to EWCD. Note that the
cliques’ weights could be fractional. However, each edge

Figure 11: The gadget for set Si = {u, v, w}

has to be present in at least one of the cliques in C. Let
Ei denote the set of edges in the gadget corresponding
to set Si that are exclusively in the gadget (the 12 thin
edges in Fig. 11), that is, for Si = {u, v, w}, the set Ei =
{aibi, aiu, ubi, aici, aiv, civ, bici, biw,wci, aiu′, civ′, biw′}.
Let Ci be the set of all cliques in C which contain at
least one edge from Ei. It is easy to see that at least 6
distinct cliques are required to cover the edge set Ei.
Hence, |Ci| ≥ 6. Also, it is easy to see that Ci ∩ Cj = ∅
for distinct i, j.

Lemma F.1. If a clique C ∈ Ci contains an element-
edge then |Ci| ≥ 7.

Proof. Let Si = {u, v, w}. Without loss of generality,
let the element-edge contained in C be ww′. Then
C = {w,w′, bi}. Then Ci contains the K2 {ci, w}. This
is because the only other clique that could cover the
edge ciw is {bi, ci, w}; but this clique can have a weight
strictly less than 1 as otherwise the total weight of the
cliques containing edge biw exceeds 1. Further, the
edges in Ei \ {biw′, biw,wci} require at least 5 cliques
to cover, proving |Ci| ≥ 7.

Since k is only 6m + q, the above lemma implies
that there are q indices i ∈ [m] such that Ci covers 3
element-edges. Taking the sets Si for these q indices
gives the required solution for E3C.

G Preprocessing Specification

CliqueDecomp-LP and CliqueDecomp-IP both have
runtime exponential in the number of cliques (k). Prun-
ing away easily detectible cliques before running the ex-
pensive decomposition algorithms reduces the size of the
input parameter, thus reducing the overall runtime.

The preprocessing works by running a modified
breadth-first search algorithm to detect and remove
cliques that are either (1) disjoint from the rest of the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

k n m k
cliques

removed

2 92.74% 92.74% 92.74% 1.85
3 67.45% 65.09% 72.97% 2.19
4 65.78% 62.98% 73.60% 2.94
5 51.08% 46.98% 66.56% 3.33
6 36.53% 31.41% 53.75% 3.22
7 44.59% 36.08% 62.29% 4.36
8 36.30% 30.74% 52.95% 4.24
9 36.43% 31.47% 52.95% 4.77
10 19.08% 10.78% 43.23% 4.32
11 26.95% 17.94% 47.67% 5.24
12 21.33% 11.32% 47.76% 5.73
13 20.89% 12.98% 47.40% 6.16
14 16.32% 6.27% 46.29% 6.48
15 14.99% 6.14% 45.53% 6.83
16 25.05% 15.15% 54.22% 8.67
17 20.74% 9.61% 56.95% 9.68
18 16.78% 6.44% 52.27% 9.41
19 18.41% 7.51% 49.47% 9.40
20 24.64% 14.60% 59.33% 11.87

Table 5: Percentage reduction in instance size (n, m)
and number of cliques (k) after preprocessing. TF and
LV data are combined and grouped by initial k value
(prior to preprocessing). Average (absolute) number of
cliques removed is also reported.

network (i.e. in their own connected component) or
(2) intersect other cliques exclusively on single vertices
(i.e., share no edges with other cliques). In any valid
decomposition, a clique C of size ` with edges of weight
w from either of these categories must be represented by
between one and `(` − 1)/2 cliques, all with weight w.
Thus, if there is any solution with k cliques, there must
also be a solution which includes C (with weight w)
and has at most k cliques. Thus, removing C from the
instance and reducing k by 1 will not change whether
or not we have a yes-instance (and C can be added to
the resulting set to form a valid solution for the original
instance). Because our algorithm depends exponentially
on k, this pre-processing results in much faster overall
runtimes.

Our algorithm first loops over each vi ∈ V checking
if all its incident edges have the same weight. If they
do, call this edge weight wi and Ui the set of vertices
adjacent to vi. We then iterate over each uj ∈ Ui and
check that there exists an edge from uj to uk for each
uk ∈ Ui with edge weight equal to wi. If this process
returns true, then the set Ui ∪ vi forms a clique. Since
all edge weights are equal, the clique does not share any
edges with other cliques, making it safe for removal.

This process takes O(V E) time. In our experiments,
preprocessing took an average of 4.67 seconds to run on
the TF graphs, and 33.71 seconds on the LV graphs.
Table 5 shows the average reduction in instance sizes
and clique counts.

References

[1] F. Ban, V. Bhattiprolu, K. Bringmann, P. Kolev,
E. Lee, and D. P. Woodruff. A PTAS for `p-low rank
approximation. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
747–766. Society for Industrial and Applied Mathemat-
ics, 2019.

[2] William S. Bush, Matthew T. Oetjens, and Dana C.
Crawford. Unravelling the human genome-phenome
relationship using phenome-wide association studies.
Nature Reviews Genetics, 17(3):129–145, 2016. URL:
https://doi.org/10.1038/nrg.2015.36.

[3] S. Chandran, D. Issac, and A. Karrenbauer. On the
parameterized complexity of biclique cover and par-
tition. In 11th International Symposium on Parame-
terized and Exact Computation (IPEC 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[4] S. Chen, Z. Song, R. Tao, and R. Zhang. Symmetric
boolean factor analysis with applications to instahide.
arxiv. preprint, 2021. arXiv:2102.01570.

[5] Leonardo Collado-Torres, Abhinav Nellore, Kai Kam-
mers, Shannon E Ellis, Margaret A Taub, Kasper D
Hansen, Andrew E Jaffe, Ben Langmead, and Jeffrey T
Leek. Reproducible RNA-seq analysis using recount2.
Nat. Biotechnol., 35(4):319–321, 2017.

[6] Heather J. Cordell. Detecting gene-gene interactions
that underlie human diseases. Nature Reviews Genet-
ics, 10(6):392–404, 2009. URL: https://doi.org/10.
1038/nrg2579.

[7] M. Cygan, M. Pilipczuk, and M. Pilipczuk. Known
algorithms for edge clique cover are probably optimal.
SIAM Journal on Computing, 45(1):67–83, 2016.

[8] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel
Lokshtanov, Dániel Marx, Marcin Pilipczuk, Micha l
Pilipczuk, and Saket Saurabh. Parameterized algo-
rithms, volume 5. Springer, 2015.

[9] Christiaan A. de Leeuw, Joris M. Mooij, Tom Heskes,
and Danielle Posthuma. Magma: Generalized gene-set
analysis of gwas data. PLOS Computational Biology,
11(4):e1004219, 2015. doi:10.1371/journal.pcbi.

1004219.
[10] Mikhail G. Dozmorov, Kellen G. Cresswell, Silviu-

Alin Bacanu, Carl Craver, Mark Reimers, and Ken-
neth S. Kendler. A method for estimating coher-
ence of molecular mechanisms in major human dis-
ease and traits. BMC Bioinformatics, 21(1):473, 2020.
doi:10.1186/s12859-020-03821-x.

[11] Ahmed Essaghir, Federica Toffalini, Laurent Knoops,
Anders Kallin, Jacques van Helden, and Jean-
Baptiste Demoulin. Transcription factor regulation

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

can be accurately predicted from the presence of
target gene signatures in microarray gene expression
data. Nucleic Acids Research, 38(11):e120–e120,
03 2010. arXiv:https://academic.oup.com/nar/

article-pdf/38/11/e120/16764928/gkq149.pdf,
doi:10.1093/nar/gkq149.

[12] A. E. Feldmann, D. Isaac, and A. Rai. Fixed-
parameter tractability of the weighted edge clique
partition problem. In 15th International Sympo-
sium on Parameterized and Exact Computation (IPEC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020.

[13] R. Fleischer and X. Wu. Edge clique partition of k
4-free and planar graphs. In International Conference
on Computational Geometry, Graphs and Applications
. , , Heidelberg, pages 84–95, Berlin, 2010. Springer.

[14] F. V. Fomin, P. A. Golovach, D. Lokshtanov,
F. Panolan, and S. Saurabh. Approximation schemes
for low-rank binary matrix approximation problems.
ACM Transactions on Algorithms (TALG), 16(1):1–39,
2019.

[15] F. V. Fomin, P. A. Golovach, and F. Panolan. Param-
eterized low-rank binary matrix approximation. Data
Mining and Knowledge Discovery, 34(2):478–532, 2020.

[16] Casey S. Greene, Arjun Krishnan, Aaron K. Wong,
Emanuela Ricciotti, Rene A. Zelaya, Daniel S. Him-
melstein, Ran Zhang, Boris M. Hartmann, Elena Za-
slavsky, Stuart C. Sealfon, Daniel I. Chasman, Gar-
ret A. FitzGerald, Kara Dolinski, Tilo Grosser, and
Olga G. Troyanskaya. Understanding multicellular
function and disease with human tissue-specific net-
works. Nature Genetics, 47(6):569–576, 2015. URL:
https://doi.org/10.1038/ng.3259.

[17] Qiwen Hu and Jaclyn Taroni. Multiplier
- latent variables extracted from recount2.
https://figshare.com/articles/dataset/recount_

rpkm_RData/5716033/4, 2018.
[18] R. Kumar, R. Panigrahy, A. Rahimi, and D. Woodruff.

Faster algorithms for binary matrix factorization. In
International Conference on Machine Learning, pages
3551–3559. PMLR, 2019.

[19] Alexander Lachmann, Denis Torre, Alexandra B.
Keenan, Kathleen M. Jagodnik, Hoyjin J. Lee, Lily
Wang, Moshe C. Silverstein, and Avi Ma’ayan.
Massive mining of publicly available rna-seq data
from human and mouse. Nature Communications,
9(1):1366, 2018. URL: https://doi.org/10.1038/

s41467-018-03751-6.
[20] SH Ma, WD Wallis, and JL Wu. The complexity of

the clique partition number problem. Congr. Numer,
67:59–66, 1988.

[21] Weiguang Mao, Elena Zaslavsky, Boris M. Hartmann,
Stuart C. Sealfon, and Maria Chikina. Pathway-level
information extractor (plier) for gene expression data.
Nature Methods, 16(7):607–610, 2019. URL: https:

//doi.org/10.1038/s41592-019-0456-1.
[22] Jörg Menche, Amitabh Sharma, Maksim Kitsak, Su-

san Dina Ghiassian, Marc Vidal, Joseph Loscalzo,

and Albert-László Barabási. Uncovering disease-
disease relationships through the incomplete in-
teractome. Science, 347(6224):1257601, Febru-
ary 2015. URL: http://science.sciencemag.org/

content/347/6224/1257601.abstract, doi:10.1126/

science.1257601.
[23] Daniele Mercatelli, Laura Scalambra, Luca Triboli,

Forest Ray, and Federico M. Giorgi. Gene reg-
ulatory network inference resources: A practical
overview. Biochimica et Biophysica Acta (BBA)
- Gene Regulatory Mechanisms, 1863(6):194430,
2020. URL: https://www.sciencedirect.

com/science/article/pii/S1874939919300410,
doi:10.1016/j.bbagrm.2019.194430.

[24] P. Miettinen and S. Neumann. Recent developments in
boolean matrix factorization. preprint, 2020. arXiv:

2012.03127.
[25] Jason H. Moore, Folkert W. Asselbergs, and

Scott M. Williams. Bioinformatics challenges for
genome-wide association studies. Bioinformatics,
26(4):445–455, 2010. URL: https://doi.org/10.

1093/bioinformatics/btp713.
[26] F. Moutier, A. Vandaele, and N. Gillis. Off-diagonal

symmetric nonnegative matrix factorization. Numeri-
cal Algorithms, pp, pages 1–25, 2021.

[27] E. Mujuni and F. Rosamond. Parameterized complex-
ity of the clique partition problem. In Proceedings
of the fourteenth symposium on Computing: the Aus-
tralasian theory-Volume 77, pages 75–78, 2008.

[28] National Heart, Lung, and Blood Institute (NHLBI.
Marfan syndrome. https://www.nhlbi.nih.gov/

health-topics/marfan-syndrome, (Accessed in
March 4, 2021).

[29] Matthew R Nelson, Hannah Tipney, Jeffery L Painter,
Judong Shen, Paola Nicoletti, Yufeng Shen, Aris
Floratos, Pak Chung Sham, Mulin Jun Li, Junwen
Wang, Lon R Cardon, John C Whittaker, and Philippe
Sanseau. The support of human genetic evidence for
approved drug indications. Nat. Genet., 47(8):856–
860, 2015.

[30] Milton Pividori, Nathan Schoettler, Dan L Nicolae,
Carole Ober, and Hae Kyung Im. Shared and dis-
tinct genetic risk factors for childhood-onset and adult-
onset asthma: genome-wide and transcriptome-wide
studies. Lancet Respir Med, 7(6):509–522, 2019. PM-
CID: PMC6534440. doi:10.1016/S2213-2600(19)

30055-4.
[31] Vivian Tam, Nikunj Patel, Michelle Turcotte, Yohan

Bossé, Guillaume Paré, and David Meyre. Benefits
and limitations of genome-wide association studies.
Nature Reviews Genetics, 20(8):467–484, 2019. doi:

10.1038/s41576-019-0127-1.
[32] Jaclyn N. Taroni, Peter C. Grayson, Qiwen Hu,

Sean Eddy, Matthias Kretzler, Peter A. Merkel, and
Casey S. Greene. Multiplier: A transfer learn-
ing framework for transcriptomics reveals systemic
features of rare disease. Cell Systems, 8(5):380–
394.e4, 2019. URL: http://www.sciencedirect.com/

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

science/article/pii/S240547121930119X.
[33] P. M. Vaidya. Speeding-up linear programming using

fast matrix multiplication. In 30th Annual Symposium
on Foundations of Computer Science, pages 332–337,
1989. doi:10.1109/SFCS.1989.63499.

[34] Kavitha Venkatesan, Jean-François Rual, Alexei
Vazquez, Ulrich Stelzl, Irma Lemmens, Tomoko
Hirozane-Kishikawa, Tong Hao, Martina Zenkner, Xi-
aofeng Xin, Kwang-Il Goh, Muhammed A. Yildirim,
Nicolas Simonis, Kathrin Heinzmann, Fana Gebreab,
Julie M. Sahalie, Sebiha Cevik, Christophe Simon,
Anne-Sophie de Smet, Elizabeth Dann, Alex Smolyar,
Arunachalam Vinayagam, Haiyuan Yu, David Szeto,
Heather Borick, Amélie Dricot, Niels Klitgord, Ryan R.
Murray, Chenwei Lin, Maciej Lalowski, Jan Timm,
Kirstin Rau, Charles Boone, Pascal Braun, Michael E.
Cusick, Frederick P. Roth, David E. Hill, Jan Tav-
ernier, Erich E. Wanker, Albert-László Barabási, and
Marc Vidal. An empirical framework for binary inter-
actome mapping. Nature Methods, 6(1):83–90, 2009.

doi:10.1038/nmeth.1280.
[35] Peter M Visscher, Naomi R Wray, Qian Zhang, Pamela

Sklar, Mark I McCarthy, Matthew A Brown, and Jian
Yang. 10 years of GWAS discovery: Biology, function,
and translation. Am. J. Hum. Genet., 101(1):5–22,
2017.

[36] Kyoko Watanabe, Sven Stringer, Oleksandr Frei, Maša
Umićević Mirkov, Christiaan de Leeuw, Tinca J C
Polderman, Sophie van der Sluis, Ole A Andreassen,
Benjamin M Neale, and Danielle Posthuma. A global
overview of pleiotropy and genetic architecture in com-
plex traits. Nat. Genet., 51(9):1339–1348, 2019.

[37] Sally E. Wenzel. Asthma phenotypes: the evolu-
tion from clinical to molecular approaches. Nature
Medicine, 18(5):716–725, 2012. URL: https://doi.

org/10.1038/nm.2678.
[38] Z. Y. Zhang, Y. Wang, and Y. Y. Ahn. Overlapping

community detection in complex networks using sym-
metric binary matrix factorization. Physical Review E,
87:6, 2013.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

