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Abstract
During a pandemic people have to find a trade-off between meeting others and staying safely at home.
While meeting others is pleasant, it also increases the risk of infection. We consider this dilemma
by introducing a game-theoretic network creation model in which selfish agents can form bilateral
connections. They benefit from network neighbors, but at the same time, they want to maximize
their distance to all other agents. This models the inherent conflict that social distancing rules
impose on the behavior of selfish agents in a social network. Besides addressing this familiar issue,
our model can be seen as the inverse to the well-studied Network Creation Game by Fabrikant et
al. [PODC 2003] where agents aim at being as central as possible in the created network. Thus, our
work is in-line with studies that compare minimization problems with their maximization versions.

We look at two variants of network creation governed by social distancing. In the first variant,
there are no restrictions on the connections being formed. We characterize optimal and equilibrium
networks, and we derive asymptotically tight bounds on the Price of Anarchy and Price of Stability.
The second variant is the model’s generalization that allows restrictions on the connections that
can be formed. As our main result, we prove that Swap-Maximal Routing-Cost Spanning Trees, an
efficiently computable weaker variant of Maximum Routing-Cost Spanning Trees, actually resemble
equilibria for a significant range of the parameter space. Moreover, we give almost tight bounds on
the Price of Anarchy and Price of Stability. These results imply that, compared the well-studied
inverse models, under social distancing the agents’ selfish behavior has a significantly stronger impact
on the quality of the equilibria, i.e., allowing socially much worse stable states.
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1 Introduction

Network Design is a core topic in Theoretical Computer Science and Operations Research.
Many classical combinatorial optimization problems, inspired by real world applications,
have been formulated and analyzed, such as the Minimum Spanning Tree problem [28],
the Network Design problem [34, 40] and finding geometric spanners [14, 45]. Typically,
a network having certain properties must be found by a centralized algorithm. However, in
many settings, the desired network is not created by a central authority but by individually
acting agents, e.g., people or institutions, controlling a local part of the network. Prominent
examples are the Internet, road networks, and, most relevant for our work, social networks.

Especially in settings with little coordination, these individual agents tend to selfishly
optimize their own utility without taking the impact of their actions on the efficiency of the
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whole network into account. To better understand the dynamics arising in these decentralized
settings and the network structures resulting from them, many influential game-theoretic
network formation models have been introduced in the last decades [32, 9, 23, 7, 8]. The
main research questions are: Do equilibrium networks, i.e., stable networks where no agent
can improve by performing a local change, exist? What properties do these networks have?
And how efficient are they compared to centrally computed optimal solutions?

All of the above mentioned influential game-theoretic network formation models assume
that the creation of an edge is costly but the agents benefit from having small distances to
other agents in the network. However, departing from this standard assumption in the field,
there are real-world settings that should better be modeled via an inverted utility function:
neighbors yield benefit but being close to many agents is costly as it yields an increased risk.
One example for this choice are financial networks. There, financial institutions benefit from
working together but suffer from risks arising from one of them failing1. Another example,
that is the main motivation of our work, came up with the current COVID-19 pandemic and
is described by the now commonly used term social distancing. It refers to reducing social
contacts in order to contain the spread of a contagious virus in the population. While often
mandated by the government, social distancing was performed by many people voluntarily.
One of the main reasons is quite simple: While reducing social contacts is a restriction of
the quality of life, it also reduces the probability of getting infected. Hence, the network of
social interactions between people was sparsified by individual strategic decisions.

In this work we introduce a novel game-theoretic network formation model in which
selfish agents strategically form a social network under the influence of social distancing.
Agents benefit from direct connections to other agents, modeling the positive effects of social
contacts on their social life. However, at the same time they want to maximize their distances
to all other agents in the network in order to reduce their risk of getting infected via an
increased reaction time in case a contagious disease starts spreading in the network. Here we
assume that a random network node becomes infected and that it is beneficial to be far away
from the source of infection in order to gain valuable time for setting up counter-measures.

The agents in our model act according to an inverted utility function, compared to
the famous models by Jackson and Wolinsky [32] and Fabrikant et al. [23]. Thus, to the
best of our knowledge, this is one of the rare cases of a game-theoretic model where both
minimizing and maximizing the utility function has a natural interpretation. Another similar
well-known example is the contrast between the Network Design Game with fair cost sharing
by Anshelevich et al. [7] and the Selfish Routing model by Roughgarden and Tardos [46].
In both models the agents select paths in a given network but in the former sharing an
edge is beneficial for the involved agents whereas in the latter edge sharing is detrimental.
This difference yields vastly different behavior in terms of the quality of the equilibria.
However, this is not obvious, as can also be seen by comparing classical minimization and
maximization variants of optimization problems, e.g., Minimum Spanning Tree versus
Maximum Spanning Tree or Shortest Path versus Longest Path. Sometimes, as with
spanning trees, the inverse problems are almost identical, whereas sometimes, as with the
path problems, the inverse problems may have completely opposite behavior. We set out
to explore this comparison for the natural inverse counter-part to the well-known Network
Creation Game by Fabrikant et al. [23]. Along the way, we will uncover a connection to
the Maximum Routing-Cost Spanning Tree problem that is inverse to the well-studied

1 The financial crisis in the late 2000s was mainly driven by contagious network effects of failing banks.
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Minimum Routing-Cost Spanning Tree problem [30]2.

1.1 Model and Notation
Before we start with the model definition, we introduce some notation regarding networks.
A network is a tuple G := (V,E) where V is the set of nodes and E is the set of edges. An
edge is represented by a set containing both incident nodes. If we do not give the tuple
defining G explicitly, we denote the set of nodes of G as VG and the set edges of G as EG.
We only consider unweighted undirected networks. For addition and removal of a single edge
e, we write G + e := (V,E ∪ {e}) and G − e := (V,E \ {e}). A network G′ with VG′ ⊆ V

and EG′ ⊆ E is called a subnetwork of G and denoted as G′ ≤ G. If G′ is connected and
VG′ = V , G′ is a spanning subnetwork of G. Let n ∈ N denote the number of nodes. The set
of all connected networks containing exactly n nodes will be referred to as Gn.

For two nodes v, x ∈ V , we define dG(v, x) as the distance between v and x in network G,
that is, the number of edges on a shortest path from v to x in G. For convenience, we extend
the definition of dG to sets of nodes: Let v ∈ V be a node and M,N ⊆ V be sets of nodes.
Then dG(v,M) :=

∑
x∈M dG(v, x) and dG(M,N) :=

∑
x∈M,y∈N dG(x, y). We call the special

case dG(v, V ) the distances from/for v and dG(V, V ) the total/summed distances or routing
costs of G. The degree of v in the network G is the number of edges that are incident to v
and is denoted as degG(v). We call a tree which is a spanning subnetwork of G a spanning
tree of G. A spanning tree of G with routing costs at least as high as the routing costs of any
other spanning tree of G will be called a Maximum Routing-Cost Spanning Tree (MRCST).
A spanning tree of G with routing costs that cannot be increased by swapping one edge is a
Swap-Maximal Routing-Cost Spanning Tree (SMRCST).

Now, we can define the game-theoretic model. Let H = (V,E) be a connected network.
We call H the host network and its nodes agents. A state of the game G ≤ H is a spanning
subnetwork of H. We only consider connected networks as host networks and states.

Each agent v ∈ V selfishly tries to maximize its utility in state G given by

uv(G) := α degG(v) + dG(v, V )

where α ∈ R>0 is a global parameter. We will call α degG(v) the edge utility and dG(v, V )
the distance utility of v. Note that α is a parameter of the game, i.e., equal for all agents,
that allows to adjust the agents’ trade-offs between edge utility and distance utility. Here α
is the benefit of a single edge, i.e., the benefit for each direct neighbor in the network.

For measuring the efficiency of the network G, we use the social welfare defined as
SW(G) :=

∑
v∈VG

uv(G) = 2α|EG|+ dG(V, V ). This quantifies the well-being of the society
of all agents. We call a network maximizing the social welfare for the host network H a
social optimum and denote it as OPTH .

Agents are allowed to form connections bilaterally. More specifically, each agent can
unilaterally remove any incident edge if it does not disconnect the network, and two agents
together can form an edge between them if it is contained in the host network. If removing
an edge strictly increases the utility of one of its incident nodes or adding an edge strictly
increases the utility of both incident nodes, we call this an improving move. A network
without improving moves is referred to as pairwise stable [32] or stable for short3. If there

2 This problem is also known as the Optimum Communication Spanning Tree problem.
3 As shown by Corbo and Parkes [18] for bilateral Network Creation Games, pairwise stability is equivalent

to pairwise Nash stability, which is a refinement of the Nash equilibrium: it must be stable against
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are no improving edge additions or removals we call the network stable against edge addition
and stable against edge removal, respectively.

For a host network H, we define S(H) as the set of all pairwise stable states. For
measuring the efficiency lost by letting agents form the network selfishly, we use the Price of
Anarchy (PoA) [37] and Price of Stability (PoS) [7] defined as

PoAn := max
H∈Gn

max
G∈S(H)

SW(OPTH)
SW(G) and PoSn := max

H∈Gn

min
G∈S(H)

SW(OPTH)
SW(G) .

We will call this model Social Distancing Network Creation Game (SDNCG). In Section 2
we will restrict the host networks to complete networks Kn. We will call this restricted
variant complete Social Distancing Network Creation Game (K-SDNCG).

1.2 Related Work
Variants of game-theoretic network formation models have been studied extensively for
decades and we refer to Jackson [31] for an overview.

Closest to our work is the literature on the Network Creation Game (NCG) by Fabrikant
et al. [23]. This influential model can be seen as the unilateral inverted variant of the
K-SDNCG. There, an agent can buy any incident edge without the consent of the other
endpoint for the price of α > 0. Each agent aims at minimizing its cost, which is defined as
the sum of α times the number of bought edges and the sum of hop-distances to all agents.
The authors of [23] show that Nash equilibria always exist, i.e., complete networks are stable
for α ≤ 2 and stars are stable for α ≥ 2. However, besides these generic examples finding
Nash equilibria is challenging since the NCG and many of its variants do not belong to the
class of potential games [38, 36]. Besides finding equilibria, also computing a best possible
strategy is challenging, since this problem was shown to be NP-hard in [23]. However, such
strategies can be efficiently approximated with greedy strategy changes [39]. Regarding the
quality of equilibrium states the authors of [23] show that the PoA is in O(

√
α), that the

PoA for tree Nash equilibria is constant, and that the PoS is at most 4
3 . Later, a series

of papers [2, 20, 42, 41, 4, 12, 5] improved the PoA bounds, with the best general upper
bound of 2O

√
logn by Demaine et al. [20]. The latter also proved that the PoA is constant

for α ∈ O(n1−ε) for any fixed ε > 1
logn . For large α, it was shown by Bilò and Lenzner [12]

that for α > 4n− 13 all Nash equilibria must be trees and this bound was recently improved
by Dippel and Vetta [21] to α > 3n− 3. This implies a constant PoA for α > 3n− 3. Finally,
Álvarez and Messegué [5] established a constant PoA for α > n(1 + ε), for any ε > 0.

The NCG was generalized by Demaine et al. [19] by introducing a host network that
specifies which edges can be bought. They show that the PoA deteriorates by providing
a lower bound of Ω(min{α/n, n2/α}) and an upper bound of O(

√
α), for α < n, and

O( min{
√
n, n2/α}), for α ≥ n. Interestingly, no results on the existence of equilibria are

known. Recently, a further generalization that allows weighted host networks was proposed
by Bilò et al. [11]. This variant has a tight PoA of (α + 2)/2 for metric weights. Later a
tight bound of Θ(α) was shown for arbitrary weights [24]. Also a bilateral variant of the
NCG was studied by Corbo and Parkes [18]. There, similar to our model, edges can only be
established by bilateral consent of the involved nodes and both nodes have to pay α. The

unilateral deviations and it must be stable against joint strategy changes by coalitions of agents of size
two. The strategy space of any agent i ∈ V is the power set of V \ i. An edge {u, v} is formed if and
only if v is in agent u’s strategy and u is in agent v’s strategy.
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authors of [18] prove existence of pairwise stable networks, i.e., complete networks are stable
for α ≤ 1 and stars are stable for α ≥ 1, they give a tight PoA bound of Θ(min{

√
α, n/

√
α}),

and they show that the PoS is 1. To the best of our knowledge, the bilateral variant with a
given host network has not yet been studied. Recently, also a bilateral variant modeling the
formation of social networks was introduced [10].

The idea of a game-theoretic model of network formation in a context of spreading risk is
not new. Goyal et al. [27] study a setting where a node is attacked and this attack spreads
to all vulnerable neighbors. Agents strategically create edges and immunize themselves
to maximize their connected component post attack. For this model, also the efficient
computation of best strategies [25] and a variant with probabilistic spread [17] was studied.
Moreover, there has been much research in the context of financial contagion, where agents
benefit from collaborating, but also suffer from the risk of cascading failure arising with
the collaboration [3, 29, 15, 1]. In particular, Blume et al. [13] developed an elegant model
where nodes form a network and then some randomly chosen nodes fail and this failure then
spreads with some probability via the edges. The utility is a linear combination of the node
degree and the risk of failing in the second phase. The virtue of this model is that utilities
are based on a random process that realistically models the spread of a contagious infection.
However, the major downside of this model is that the computation of the random process is
#P-complete. Thus, this model does not yield a realistic prediction of real-world behavior.

While analyzing our model for general host networks, we consider Maximum Routing-Cost
Spanning Trees. Routing costs have been studied much in mathematics, mostly under the
name of the Wiener index [47]. Trees were of special interest and there has been much
research on the Wiener index of trees with different properties. But although spanning
trees minimizing the Wiener index were studied extensively, the concept of spanning trees
maximizing the Wiener index received little attention [22, 48]. However, it was shown that
finding or even approximating a tree maximizing the Wiener index is NP-hard [16, 26].

1.3 Our Contribution
We introduce the Social Distancing Network Creation Game (SDNCG), a game-theoretic
model in which selfish agents try to maximize their utility by strategically connecting to other
agents and thereby creating a network. Each agent values direct connections to other agents
but at the same time wants to maximize the distances to all other agents in order to lower
their exposure and increase their reaction time to risks appearing in the network. In contrast
to the similar model by Blume et al. [13], our model, while not modeling a perfectly realistic
spread of the infection, has the advantage of an efficiently computable utility function. By
using the distance to the other agents as part of the utility, it also accounts for reaction time:
If an infection breaks out far away, an agent has more time to prepare or react to it. Another
virtue of our model is that it is the inverse to the well-known Network Creation Game [23]
and its bilateral variant [18]. Hence, we can study and compare the game-theoretic properties
of the inverted models. To the best of our knowledge, this is one of the rare cases where both
the minimization and the maximization of a utility function have a natural interpretation.

Our results and the comparison with the inverted models are summarized in Table 1.
We analyze two variants of the SDNCG. For the K-SDNCG, where we assume a complete
host network, we characterize optimal and several stable networks and show that the PoS
is 1. We provide an improving response cycle, which implies that equilibrium existence
for the (K-)SDNCG cannot be derived from potential function arguments. Finally, derive
several bounds for the PoA which are tight for α ≥ n

2 , asymptotically tight for α ≤
√
n, and

asymptotically tight up to a log-factor for α ≤ n
6 − 3.
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Optimum Equilibria PoA PoS

NCG [23]
α ≤ 2: Kn [23]
α ≥ 2: Sn [23]

α ≤ 1: Kn [23]
α ≥ 1: Sn [23]

2O
(√

logn
)
[20]

α ∈ O
(
n1−ε) : Θ(1) [20]

α > n(1 + ε) : Θ(1) [5]

α ≤ 1: 1 [23]
1<α<2: ≤ 4

3 [23]
α ≥ 2: 1 [23]

BNCG [18]
α < 1: Kn [18]
α > 1: Sn [18]

α < 1: Kn [18]
α > 1: Sn, . . . [18]

Θ
(

min
{√

α, n√
α

})
[18]

α < 1: 1 [18]
1 [18]

K-SDNCG
α < n

3 : Pn [T. 1]
α > n

3 : Kn [T. 1]

α ≤ 1: trees [T. 2]
1 ≤ α ≤ n

2 :
Pn,Kn, . . . [T. 2]

α ≥ n
2 : Kn [T. 2]

O(n) [T. 5]
α ≤
√
n : Θ(n) [T. 5]

α≤n6− 3: Ω
(

n
logn

)
[T. 5]

α≤
⌊
n
2
⌋
− 2: Ω (

√
n) [T. 5]

α ≥ n
2 : 1 [T. 5]

1 [T. 6]

H-NCG [19] open open

α < n : O (
√
α) [19]

α≥n : min
{
O
(√
n, n

2

α

)}
[19]

Ω
(

min
{
α
n ,

n2

α

})
[19]

open

SDNCG
α ≤ 1:MRCST [T. 7]
α > N3 : H [T. 7]

α ≤ 1: trees [T. 9]
1 ≤ α ≤ n

3 :
SMRCST [T. 10]

α ≥ N2 : H [T. 9]

O(n) [C. 14]
α≤n : Θ(n) [T.14]
α ≤ N2 : Ω

(
n2

α

)
[T. 14]

N2<α≤N3 : Θ(1) [T. 14]
α ≥ N3 : 1 [T. 14]

α ≤ 1: 1 [T. 15]
α < n

3 : O (
√
n) [T. 15]

N2<α≤N3 : Θ(1) [T. 15]
α ≥ N3 : 1 [T. 15]

Table 1 An overview of our results (yellow) and a comparison with the results for the inverted
models (white). BNCG abbreviates the bilateral NCG by Corbo and Parkes [18] whereas H-NCG
denotes the NCG on a host network by Demaine et al. [19]. N2 := (n−1)2

4 , N3 := (n−2)n(n+2)
24 , H

denotes the host network, Pn,Kn, Sn are the path, clique, and star networks on n nodes, respectively.

For the SDNCG on arbitrary host networks we utilize Maximum Routing-Cost Spanning
Trees for characterizing optimal networks for α ≤ 1. As our main result, we show that their
locally optimal variant, the Swap-Maximal Routing-Cost Spanning Trees, and hence also
Maximum Routing-Cost Spanning Trees, are pairwise stable for α ≤ n

3 . We prove that
computing the MRCST is NP-hard, while the SMRCST can be constructed efficiently. Thus,
for the significant range of 1 ≤ α ≤ n

3 , we not only have guaranteed equilibrium existence
on any host graph, but we can compute stable states efficiently. This is in stark contrast
to what is known for the inverse model studied by Demaine et al. [19]. Additionally, we
approximate optimal networks and we derive several (tight) bounds on the PoA and the PoS.

Compared with the NCG [23] and the bilateral NCG [18], we find that the results for
the K-SDNCG regarding optimal and stable networks are analogous but reversed, with the
spanning path taking over the role of the spanning star. Moreover, our PoA results for both
the K-SDNCG and the SDNCG show that our maximization variant has a significantly
worse PoA that is linear or almost linear in n, compared to the PoA upper bounds of o(nε)
and O(

√
α, n/

√
α) for the NCG and the bilateral NCG, respectively. As main take away

from our paper, this implies that under social distancing the agents’ selfish behavior has
significantly more impact on the quality of the equilibria. This calls for strong coordination
mechanisms governing the network formation to avoid detrimental stable states.
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2 Complete Host Networks

We analyze the properties of the K-SDNCG, i.e., the SDNCG on complete host networks.
First, we characterize optimal networks and give some examples for stable networks, dependent
on the relation between n and α. After that, we show several bounds on the PoA and PoS.

2.1 Stable and Optimal Networks
Intuitively, for small α the distance utility dominates the social welfare. Hence, the path
should be the optimum since it maximizes the total distances. For large α, the edge utility
dominates, which leads to the clique being optimal since it maximizes the number of edges.
Now we show that this intuition is indeed true. Moreover, the optimal construction is unique.

I Theorem 1. For α < n
3 , the unique social optimum is the path. For α > n

3 , the unique
optimum is the clique. For α = n

3 , the clique and the path are the only social optima.

Proof. Šoltés and Ľubomír [49] showed that for a fixed number of nodes and edges, the
network maximizing the summed distances is unique and contains a clique and a path with at
least two edges between one endpoint of the path and the clique. We call this a PathClique.
(Note that the clique can be empty, resulting in just a path) For a visualization, we refer
to Figure 1. Note, that the social optimum has to be such a network, since for every other

Figure 1 This figure shows a PathClique. It consists of a path (left) and a clique (right), which
are connected by at least two edges between one endpoint of the path and some nodes of the clique.

network, there is a PathClique with the same number of edges but larger summed distances
and therefore a larger social welfare.

Let G be a PathClique with n nodes having a clique containing k nodes. Then the
corresponding path contains n− k nodes. First, we show that, unless G is a path or a clique,
we get a socially better network by adding or removing edges.

Let G be neither a clique nor a path and let v be the endpoint of the path that is
connected to the clique. Observe that removing an edge between v and the clique results
in a PathClique. (This is still true if there are only two edges connecting v to the clique:
Removing one of these edges makes the remaining neighbor of v in the clique the new endpoint
of the path and reduces the size of the clique by 1.) Therefore, this is the socially best way
of removing an edge from G. Similarly, the best way of adding an edge to G is adding it
between v and the clique unless v is already fully connected to the clique in which case it is
best to add an edge between the neighbor of v on the path and the clique. We now make a
case distinction.

If v is fully connected to the clique, adding an edge decreases distances by 2(n− k − 1)
and deleting an edge increases distances by 2(n−k). This means, that G can only be optimal
if α ≤ 2(n− k − 1) and α ≥ 2(n− k), which is a contradiction.

If v is not fully connected to the clique, adding an edge decreases distances by 2(n− k)
and deleting an edge increases distances by 2(n− k). Thus, α = 2(n− k) is necessary for G
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to be socially optimal. But when α = 2(n− k), adding and deleting edges between v and the
clique does not change the social welfare. Let G′ be the network obtained by fully connecting
v to the clique. Then SW(G) = SW(G′). Additionally, G′ cannot be an optimum since it
fulfills the conditions of the first case. Therefore, G cannot be socially optimal, too.

So, the social optimum network must be the path Pn or the clique Kn. We have

SW(Pn) = 2α(n− 1) + 2
n−1∑
i=1

i(n− i) = 2α(n− 1) + 1
3(n− 1)n(n+ 1),

SW(Kn) = 2α
(
n

2

)
+ 2
(
n

2

)
= n(n− 1)(α+ 1).

For α = n
3 , we see that

SW(Pn) = 2
3n(n− 1) + 1

3(n− 1)n(n+ 1) = n(n− 1)
(n

3 + 1
)

= SW(Kn),

for α < n
3 we have SW(Pn) > SW(Kn), and α > n

3 yields SW(Kn) > SW(Pn). J

Next, we have a look at the existence of pairwise stable networks. Similar to the social
optimum, for small α, agents prefer large distances over many incident edges and therefore
should remove as many edges as possible, leading to only trees being stable. Interestingly,
the restrictions of pairwise stability lead to all trees being stable for small α, even if the
distances are very small (like in a star). This is shown by the next theorem.

I Theorem 2 (Stable Networks).
(1) For α ≤ 1, every tree is pairwise stable. For α < 1, any pairwise stable network is a tree.
(2) For α ≥ 1, the clique is pairwise stable.
(3) For α ≤ n−1

2 , the path is pairwise stable.
(4) For α > n

2 , the clique is the only pairwise stable network.

Proof of (1). Let G be a tree. Since removing an edge from G would lead to G being
disconnected, we only have to consider adding an edge. This would shorten the distances for
both endpoints by at least 1. Since α ≤ 1, this is not an improvement for the agents.

Let G be a network. If G contains a cycle, we can remove an edge without disconnecting
the network. By doing this, the distances for both endpoints increase by at least 1. Since
α < 1, this is an improvement for both agents. J

Proof of (2). Let G be a clique. Since adding an edge is not possible, we only look at
removing an edge. This would result in a distance increase of 1 for both endpoints. Since
α ≥ 1, this is not an improvement for either of the two incident agents. J

Proof of (3). Let G be the path consisting of n nodes v1, . . . , vn, in that order. Since G
is a tree, no edge can be removed without disconnecting the network. Therefore, the only
possible move is adding an edge. Let 1 ≤ i < j ≤ n be such that vi and vj are not adjacent
(i.e., j − i ≥ 2). If j ≤ n

2 , adding the edge e := {vi, vj} shortens distances from vi to at least
n
2 nodes. The same holds for i ≥ n

2 regarding node vj . It is easy to see that the distance
decrease is minimal when j − i = 2. Intuitively, edge e has to be as central as possible.
According to this, choosing i =

⌊
n
2
⌋
and j = i+ 2 yields

dG(vi, V )− dG+e(vi, V ) = n− j + 1 = n− i− 1 ≥ n− 2
2 and

dG(vj , V )− dG+e(vj , V ) = i ≥ n− 1
2 .

Thus, if α ≤ n−1
2 , adding edge e is not an improving move and G is pairwise stable. J
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Proof of (4). Let V be a set of n agents and G = (V,E) be a stable network. Let v ∈ V be
a node having minimum total distances, i.e., for all v′ ∈ V , we have dG(v, V ) ≤ dG(v′, V ).
Let NG[v] denote the closed neighborhood of v.

Now suppose, the network induced by NG[v] is not a clique. Then there are two neighbors
x, y of v with {x, y} /∈ E. We observe that for each node z ∈ V , the distances dG(v, z) and
dG(x, z) can only differ by 1, since v and x are neighbors. By choice of v, there are at least
as many nodes that are closer to v than nodes that are closer to x. Therefore, there are at
most n

2 many nodes that are closer to x. Adding an edge between x and y can, for node y,
only shorten distances to nodes which are closer to x than to v. Thus, this edge shortens
the distances from y by at most n

2 . The same holds for node x. Therefore, for α > n
2 , this

edge would improve the utility of agents x and y and, thus, G would not be stable. This
contradicts our assumption. Thus, NG[v] must induce a clique.

Now let x be a neighbor of v. Since x is connected to all neighbors of v, we have
dG(x, V ) ≤ dG(v, V ), i.e., also x minimizes pairwise distances. Hence, NG[x] also induces a
clique, leading to NG[v] = NG[x]. By induction, since G is connected, it must be a clique. J

Theorem 2 implies that socially optimal networks are also stable. In fact, they are stable for
a wide range of α-values. The clique is stable for α ≥ 1, meeting the bound below which only
trees are stable. Similarly, the path is stable for α ≤ n−1

2 , almost meeting the lower bound
for only the clique being stable. Additionally, we observe that we only need two networks
(path and clique) to provide pairwise stable networks for all possible values of α.

For further constructions, we need the following definition. Let G be a network. We call
G′ a clique network of G, if it can be obtained by replacing each node of G by a clique of
size at least 2 and for each edge of G connect the two corresponding cliques fully bipartite.
By using only constant-size cliques, some properties of G (density, length of shortest paths)
are preserved while the network is more stable against edge removal.

I Theorem 3. Let G be a clique network. For α ≥ 1, G is stable against edge removal.

Proof. Removing any edge from G only effects the distances between its endpoints. These
distances increase by 1. J

Finally, we show that stable states may not be found by simply letting agents iteratively
play improving moves, i.e., via a sequential process of improving strategy changes. Figure 2
provides an example of a cyclic sequence of improving moves. This also implies that both
the K-SDNCG and the SDNCG do not belong to the class of potential games [44], i.e., the
existence of equilibria cannot be proven via potential function arguments.

I Theorem 4. The Social Distancing Network Creation Game is not a potential game.

Proof. This is shown by the existence of improving cycles. See Figure 2 for an example. J

Figure 2 This figure shows a cyclic sequence of improving moves performed by n = 5 agents for
α = 2.5. In each step, the nodes responsible for the next change are highlighted in orange. Note
that the last step is isomorphic to the first step.
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2.2 Price of Anarchy and Price of Stability
In this section, we give a series of bounds for the Price of Anarchy and the Price of Stability.

I Theorem 5 (Price of Anarchy).
(1) The Price of Anarchy is in O(n).
(2) For α ≤ 1, the Price of Anarchy is in Θ(n).
(3) For 1 < α ≤

√
n, the Price of Anarchy is in Θ(n).

(4) For
√
n ≤ α ≤ n

6 − 3, the Price of Anarchy is in Ω
(

n
logn

)
.

(5) For n
6 − 3 < α ≤

⌊
n
2
⌋
− 2, the Price of Anarchy is in Ω (

√
n).

(6) For α ≥ n
2 , the Price of Anarchy is 1.

Proof of (1). Let α ∈ R>0. Every connected network has at least n− 1 ∈ Ω(n) and at most(
n
2
)
∈ O(n2) edges. Furthermore, the summed distances are at least n(n− 1) ∈ Ω(n2), since

every node has at least distance 1 to every other node, and at most n3, since every node has
at most distance n to every other node. With this, we get the trivial bound of

PoAn ∈ O
(
αn2 + n3

αn+ n2

)
= O(n). J

Proof of (2). For α ≤ 1, the social optimum is the path as shown in Theorem 1. It has
social welfare of

α(n− 1) + 1
3(n− 1)n(n+ 1).

Because of Theorem 2 and the star being a tree, it is pairwise stable for α ≤ 1. It has social
welfare of

α(n− 1) + 2(n− 1) + 2(n− 1)(n− 2) = α(n− 1) + 2(n− 1)2.

Together with (1), this yields

PoA ≥
α(n− 1) + 1

3 (n− 1)n(n+ 1)
α(n− 1) + 2(n− 1)2 =

α+ 1
3n(n+ 1)

α+ 2(n− 1) ∈ Θ(n). J

Proof of (3). We construct a star-like network with cliques as leaves in the following way.
Let c := dαe+ 2. Additionally, let K1, . . . ,Kd be d :=

⌊
n−2
c

⌋
cliques containing c− 2 nodes

and v1, v
′
1, v2, v

′
2, . . . , vd, v

′
d be 2d nodes. Let furthermore M be a clique of size n− cd. We

now define our network G as

VG :=
d⋃
i=1

VKi
∪

d⋃
i=1
{vi, v′i} ∪ VM

EG :=
d⋃
i=1

EKi
∪ EM ∪

d⋃
i=1
{{vi, v′i}}

∪
d⋃
i=1

⋃
v∈Ki

{{v, vi}, {v, v′i}} ∪
d⋃
i=1

⋃
v∈M
{{v, vi}, {v, v′i}}.

We essentially connect the outer cliques K1, . . . ,Kd to the center clique M via d 2-cliques
and each connection is fully bipartite (see Figure 3). Since n = |VG|, G is a network of the
desired size.
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K1

K2

K3

M

v1

v′1

v′2
v2

v3

v′3

Figure 3 The figure shows a star-like clique network, where the center is formed by a clique M
and each ray consists of two nodes vi, v

′
i and a clique Ki.

We now show that G is pairwise stable. We see that G is a clique network. Because of
Theorem 3 and α > 1, G is stable against edge removal. On the other hand, adding an edge
shortens distances to at least |Ki| = c− 2 ≥ α nodes which means a distance decrease of at
least α for the two incident nodes. This also does not increase their utility. Therefore, G is
pairwise stable.

For the center clique M , we see that |VM | = n − cd = n − c
⌊
n−2
c

⌋
and therefore

2 ≤ |VM | < n− (n− 2− c) = c+ 2. With this and 1 < α ≤
√
n, we obtain

|EG| = d

(
c− 2

2

)
+
(
|VM |

2

)
+ 2d+ d(c− 2)2 + d|VM |2

=
⌊
n− 2
dαe+ 2

⌋(
dαe(dαe − 1)

2 + 2 + 2dαe+ 2|VM |
)

+ |VM |(|VM | − 1)
2

∈ Θ(αn)

and dG(VG, VG) ∈ Θ(n2).
For α <

√
n, the socially optimal network is the path. With the previous calculations, we

can now bound the Price of Anarchy as

PoA ≥ 2α(n− 1) + Θ(n3)
2αΘ(αn) + Θ(n2) = Θ(n3)

Θ(n2) ∈ Ω(n).

From (1), we have PoA ∈ O(n) and therefore PoA ∈ Θ(n). J

Proof of (4). Let d = blognc − 1. Then, the d-dimensional hypercube is represented by GH
with VGH

= {0, 1}d and EGH
= {{v, x} | v, x ∈ V ∧ dH(v, x) = 1} where dH(v, x) denotes

the Hamming Distance between v and x. Let G be a clique network for GH with |VG| = n

such that the sizes of the cliques replacing the nodes of GH differ by at most 1. Observe,
that each clique is of size 2 or 3 if 2 · 2d ≤ n < 3 · 2d and of size 3 or 4 if 3 · 2d ≤ n < 4 · 2d. By
Theorem 3 and since α ≥ 1, we know that G is stable against edge removal. We now show
that adding an edge shortens the total distances for the incident nodes by at least n

6 − 3.
Let v, x ∈ VG such that e := {v, x} /∈ EG and let v′, x′ ∈ VGH

be the nodes corresponding
to the cliques that contain v and x, respectively. Therefore, e′ := {v′, x′} /∈ EGH

, which
implies dH(v′, x′) ≥ 2. By symmetry of the hypercube, we can assume w.l.o.g. that

v′ = 00 . . . 0︸ ︷︷ ︸
dH (v,x)

0 . . . 00︸ ︷︷ ︸
d−dH (v,x)

and x′ = 11 . . . 1︸ ︷︷ ︸
dH (v,x)

0 . . . 00︸ ︷︷ ︸
d−dH (v,x)

.

Adding e′ to GH decreases the distances from v′ to another node y′ ∈ VGH
if and only if

dH(v′, y′) ≥ dH(x, y) + 2. The difference in distance can only come from the first dH(v′, x′)



12 Social Distancing Network Creation

bits of the label since the remaining bits are equal for v′ and x′. Let ` be the number of the
first dH(v′, x′) bits of y′ equal to 1. Then, dH(v′, x′)− ` is the number of the first dH(v′, x′)
bits of y′ equal to 0. We obtain dH(v′, y′)− dH(x′, y′) = `− (dH(v′, x′)− `) = 2`− dH(v′, x′).
Thus, adding e′ to GH shortens the distance from v′ to y′ by 2`− dH(v′, x′)− 1.

The number of nodes where exactly ` of the first dH(v′, x′) bits are equal to 1 is
(
dH (v′,x′)

`

)
·

2d−dH (v′,x′). Therefore, we get a distance decrease for v′ of

dGH
(v′, VGH

)− dGH +e′(v′, VGH
)

=
dH (v′,x′)∑

`=
⌈

dH (v′,x′)
2

⌉
+1

(
dH(v′, x′)

l

)
· 2d−dH (v′,x′) · (2`− dH(v′, x′)− 1)

= 2d−dH (v′,x′)

⌊
dH (v′,x′)

2

⌋
−1∑

`=0

(
dH(v′, x′)

`

)
· (dH(v′, x′)− 2`− 1)

≥ 2d−dH (v′,x′)

⌊
dH (v′,x′)

2

⌋
−1∑

`=0

(
dH(v′, x′)

`

)

≥ 2d−dH (v′,x′) 1
2

dH (v′,x′)∑
`=0

(
dH(v′, x′)

`

)
−
(
dH(v′, x′)⌊
dH (v′,x′)

2

⌋)
= 2d−dH (v′,x′) 1

2

2dH (v′,x′) −
(
dH(v′, x′)⌊
dH (v′,x′)

2

⌋)
≥ 2d−dH (v′,x′) 1

22dH (v′,x′)−1

= 2d

4 .

Observe that the distances from v to all nodes in other cliques in G are exactly the same
as the distances from v′ to all other nodes in GH . The same holds for G+ e and GH + e′,
with the exception of the distances from v to the (at most 3) nodes in the same clique as x.
We distinguish two cases:

If 2 · 2d ≤ n < 3 · 2d, each clique consists of 2 or 3 nodes. Therefore, we have a distance
decrease of at least

dG(v, VG)− dG+e(v, VG) ≥ 2(dGH
(v′, VGH

)− dGH +e′(v′, VGH
))− 3 ≥ 2d

2 − 3 ≥ n

6 − 3.

If 3 · 2d ≤ n < 4 · 2d, each clique consists of 3 or 4 nodes. This means, we have a distance
decrease of at least

dG(v, VG)− dG+e(v, VG) ≥ 3(dGH
(v′, VGH

)− dGH +e′(v′, VGH
))− 3 ≥ 32d

4 − 3 ≥ n

6 − 3.

Thus, edge additions are not beneficial for the incident agents if α ≤ n
6 − 3 and we conclude

that the constructed network is stable for 1 ≤ α ≤ n
6 − 3. We also see that the number

of edges m is in Θ(n logn) and the distance d(VG, VG) is in Θ(n2 logn). Since the social
optimum for 1 ≤ α ≤ n

6 − 3 is the path Pn, we get for the Price of Anarchy:

PoAn ≥
SW (Pn)
SW (G) = α(n− 1) + Θ(n3)

αΘ(n logn) + Θ(n2 logn) ∈ Ω
(

n

logn

)
. J
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Proof of (5). We construct a path of cliques in the following way. Let 2 ≤ d ≤ n−6
2 be some

even number and c =
⌊
n−6
d

⌋
. Furthermore, let K1, . . . ,Kd be d cliques consisting of c or c+ 1

nodes, such that
∑d
i=1 |VKi | = n− 6 and

∑ d
2
i=1 |VKi | =

⌈
n−6

2
⌉
and

∑d
i= d

2 +1 |VKi | =
⌊
n−6

2
⌋
,

and v1, v
′
1, v2, v

′
2, v3, v

′
3 be 6 more nodes. We now define the network G as

VG :=
d⋃
i=1

VKi
∪ {v1, v

′
1, v2, v

′
2, v3, v

′
3},

EG :=
d⋃
i=1

EKi
∪ {{v1, v

′
1}, {v2, v

′
2}, {v3, v

′
3}} ∪ {{v, x} | v ∈ {v2, v

′
2} ∧ x ∈ {v1, v

′
1, v3, v

′
3}}

∪
d
2−1⋃
i=1
{{v, x} | v ∈ Ki ∧ x ∈ Ki+1} ∪

⋃
v∈K d

2

{{v, v1}, {v, v′1}}

∪
d−1⋃

i= d
2 +1

{{v, x} | v ∈ Ki ∧ x ∈ Ki+1} ∪
⋃

v∈K d
2 +1

{{v, v3}, {v, v′3}}.

Figure 4 shows a sketch of G.

K1 K2 Kd
2

Kd
2+1 Kd−1 Kd

v1 v2 v3

v′1 v′2 v′3

Figure 4 The figure shows clique network for a path consisting of d cliques K1, . . . ,Kd highlighted
in yellow with 6 additional nodes in the middle. Note, that edges inside the cliques are not shown in
this figure.

We observe thatG is stable against edge removal because of Theorem 3, since α > n
6−3 ≥ 1

and G being a clique network for the path. We now show that adding an edge is also not an
improving move.

We quickly see that, for a node v, adding an edge into the 2-neighborhood always shortens
distances the least. We therefore only have to consider these edges. We observe that adding
an edge between v1 and v3 (or because of symmetry, v′1 or v′3) decreases distances from v1
to v3 and all nodes in K d

2 +1, . . . ,Kd and decreases distances from v3 to v1 and all nodes in
K1, . . . ,K d

2
by exactly 1. This means, we get

dG(v1, V )− dG+{v1,v3}(v1, V ) = 1 +
d∑

i= d
2 +1

|VKi | =
⌊n

2

⌋
− 2 and

dG(v3, V )− dG+{v1,v3}(v3, V ) = 1 +
d
2∑
i=1
|VKi
| =

⌈n
2

⌉
− 2.

Every other edge we could add decreases distances to all the cliques of one side of the path,
resulting in larger distance decreases. This means that adding an edge is not an improving
move for α ≤

⌊
n
2
⌋
− 2. Therefore, G is pairwise stable for the desired values of α.
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We now evaluate the number of edges. We have |EKi | ∈ Θ(c2). The number of edges
between two neighboring cliques is also in Θ(c2). This means that the total number of edges
is |EG| ∈ Θ(dc2). We also see that the diameter of G is d and therefore dG(V, V ) ∈ O(dn2).
If we choose d = 2

⌊√
n

2

⌋
, we have d ∈ Θ(

√
n) and c ∈ Θ(

√
n). Since α ∈ Θ(n), we get for

the Price of Anarchy

PoAn ≥
α(n− 1) + Θ(n3)
αΘ(dc2) +O(dn2) ∈ Ω

(
n3

n
5
2 + n

5
2

)
= Ω

(√
n
)
. J

Proof of (6). This follows directly from the clique being socially optimal (see Theorem 1)
and the only pairwise stable network (see Theorem 2). J

We have established that the Price of Anarchy is relatively high for α ≤ n
2 . It even meets

the trivial upper bound of O(n) for a large range of α. In contrast to the high PoA values,
we observe that the Price of Stability is independent of α and best possible.

I Theorem 6. The Price of Stability is 1.

Proof. This follows directly from the path being stable and socially optimal for α ≤ n
3 and

the clique being stable and socially optimal for α ≥ n
3 (see Theorem 1 and Theorem 2). J

From an efficiency point-of-view, the huge gap between the PoA and the PoS suggests that
having an outside force assigning an initial strategy to all players is beneficial. That way,
stability and optimal social welfare can be guaranteed. Without such coordination, the
players could end up in socially bad equilibria or in a cyclic sequence of improving moves.

3 General Host Networks

We now analyze the SDNCG on arbitrary connected but not necessarily complete host
networks. First, we analyze socially optimal networks and then we investigate the existence
of pairwise stable networks. We prove our main result that establishes equilibrium existence
on any connected host network for a wide parameter range of α. Finally, we derive bounds
on the Price of Anarchy and the Price of Stability. Additionally, we show that computing the
social optimum and the Maximum Routing-Cost Spanning Tree is NP-hard while computing
a Swap-Maximal Routing-Cost Spanning Tree can be done in polynomial time.

3.1 Stable and Optimal Networks
While for the K-SDNCG, we only have two possible social optima (dependent on α), this
gets more complicated for general host networks. Of course, if they exist on general host
networks, then the optima for the K-SDNCG are still the most efficient networks. Intuitively,
if the host network does not contain a Hamilton path, then the social optimum should be a
tree if α is small enough. Since all trees have the same number of edges, the social welfare of
a tree is only influenced by the total distances. Remember that the spanning tree maximizing
the total distances is by definition the Maximum Routing-Cost Spanning Tree (MRCST).
We now show, that this intuition is indeed correct.

I Theorem 7 (Social Optimum). Let H be a connected host network containing n nodes.
(1) If H contains a Hamilton path, then this path is the social optimum for α ≤ n

3 . The
Hamilton path is the unique social optimum if α < n

3 .
(2) For α ≤ 1, the MRCST of H is socially optimal.
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(3) For α > 1
24 (n− 2)n(n+ 2), H itself is the unique social optimum.

Proof of (1). This follows directly from Theorem 1. J

Proof of (2). Let Topt be the MRCST of H and G some state of H, that is, a spanning
subnetwork of H. Furthermore, let T be a spanning tree of G. Then SW(G) ≤ SW(T ), since
we can construct G by adding edges to T and for every edge added, the social welfare goes
up by α ≤ 1 and down by at least 1, because of distances decreasing. Since Topt maximizes
the total distances, we have SW(T ) ≤ SW(Topt) and therefore SW(G) ≤ SW(Topt). J

Proof of (3). We show that any edge added to any network shortens the total distances by
at most 1

24 (n− 1)n(n+ 1). It is easy to see that adding an edge between the two endpoints of
a Hamilton path maximizes the distance decrease. This means, if α is larger than that, it is
always socially better to add more edges to the network, resulting in H itself to be optimal.

We already know the social welfare of a Hamilton path Pn from Section 2. After adding
an edge between the two endpoints of Pn, we get a cycle Cn. In this cycle, we see that
for each node there are exactly two nodes for every possible distance 1 ≤ d < n

2 and an
additional node at distance n

2 , if n is even. This yields

SW(Pn) = 2α(n− 1) + 1
3(n− 1)n(n+ 1),

SW(Cn) = 2αn+ n

n−1
2∑
i=1

2i = 2αn+ 1
4(n− 1)n(n+ 1) for n odd,

SW(Cn) = 2αn+ n

n
2−1∑
i=1

2i+ n

2

 = 2αn+ 1
4(n− 2)n2 + n2

2 for n even.

We then have SW(Cn) > SW(Pn) if and only if

α >
1
24(n− 1)n(n+ 1) for n odd,

α >
1
24(n− 2)n(n+ 2) > 1

24(n− 1)n(n+ 1) for n even.

This shows the claim. J

Contrasting statement (3) from Theorem 7, we observe that for α < 1
24 (n− 2)n(n+ 2), the

host network is not necessarily the social optimum. Consider the host network H := Cn for
even n, i.e., an even cycle with n nodes. In the proof of (3), we see that SW(Pn) > SW(Cn),
implying that Cn cannot be the social optimum. In fact, in this example, Pn is the optimum
since there are only two possible states (up to isomorphism): Pn and Cn itself. This is in
stark contrast to the K-SDNCG, where the host network is optimal for α ≥ n

3 .
Since finding a MRCST is NP-hard [16], finding the social optimum for a given host

network must also be NP-hard.

I Theorem 8 (Computational Hardness). Computing the social optimum for a connected host
network H is NP-hard.

Proof. This follows directly from the MRCST being hard to compute [16] and the unique
social optimum for α < 1 (see Theorem 7). J
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Next, we discuss stable networks. In contrast to the K-SDCNG, it is not obvious that
pairwise stable networks are guaranteed to exist for any connected host network. However,
we can directly transfer the result that spanning trees are stable for small α. For large α,
similar to the clique being the unique stable network for α > n

2 for complete host networks,
as shown in Theorem 2, we show that the whole host network is pairwise stable. However, in
contrast to the K-SDNCG, this is true only for much larger values of α.

I Theorem 9 (Stable Networks). Let H be a connected host network containing n nodes.
(1) For α ≤ 1, every spanning tree of H is pairwise stable. For α < 1, spanning trees are

the only pairwise stable networks.
(2) For α > 1

4 (n− 1)2, H is the only pairwise stable network.

Proof of (1). The proof is exactly the same as for (1) of Theorem 2. J

Proof of (2). Consider a network G on a host network H = (V,EH). The largest distance
decrease a node v ∈ V can suffer when forming an edge e ∈ EH is when G is a path and
v one of its endpoints connecting to the other endpoint x ∈ V . This move decreases the
distances by

∆d := dG(v, V )− dG+e(v, V ) = dG(x, V )− dG+e(x, V )

=
n−1

2∑
i=1

(n− 2i) = 1
4(n− 1)2 for n odd,

∆d =
n
2−1∑
i=1

(n− 2i) = 1
4(n− 2)n < 1

4(n− 1)2 for n even.

Thus, since α > 1
4 (n − 1)2, forming edges is always beneficial for the incident nodes.

Similarly, edge removal always decreases the utility of the incident nodes. Therefore, the
host network H is the only pairwise stable network. J

Contrasting statement (2) of Theorem 9, using H := Cn for odd n and α < 1
4 (n− 1)2 shows

that the host network is not necessarily pairwise stable. This example also shows that the
optimum is not necessarily stable: For α ≥ 1

4 (n− 1)2 and H := Cn as the host network, Cn
is the only pairwise stable network but it is not the optimum for α < 1

24 (n − 2)n(n + 2).
This is another significant difference to the K-SDNCG.

Now that we characterized stable networks for extreme α-values, the question remains
whether stable states also exist for in-between values. For the K-SDNCG, the path is stable
up to α < n−1

2 . This is, of course, still true for non-complete host networks if they contain a
Hamilton path. Since a Hamilton path (if it exists) is the MRCST, it is natural to suspect
that the MRCST properties at least partially ensure stability for some α ≥ 1. However, even
if true, the MRCST is still NP-hard to compute. Hence, in quest of an efficiently computable
stable network, we introduce a less strict variant of MRCSTs which is only locally optimal:
Swap-Maximal Routing-Cost Spanning Trees. Remember, a SMRCST is a spanning tree
whose summed distances cannot be increased by removing one edge and adding another edge.

As our main result, we now show that SMRCSTs (and therefore MRCSTs, too) are indeed
stable beyond α ≤ 1. Note, that for the inverse model of the NCG on an arbitrary host
network [19], so far no equilibrium existence statement is known.

I Theorem 10. Let H be a connected host network containing n nodes. Then for α ≤ n
3 ,

any Swap-Maximal Routing-Cost Spanning Tree is pairwise stable.
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Figure 5 This figure shows the cycle formed by adding e1 to the SMRCST. The cycle is of length
d and contains the nodes v1, . . . , vd. Every other node is contained in one of the subtrees rooted
in one of the nodes on the cycle. These subtrees are represented in yellow. The number of nodes
contained in the subtree rooted in vi is xi. Middle and right: the cycle for d being odd or even,
respectively, and the two special edges e2 and e3.

Proof. Let G with VG = VH and EG ⊆ EH be a SMRCST. Since G is a tree, we only have
to consider edge additions. We show that adding any edge decreases the summed distances
for at least one of the edges endpoints by at least n

3 . This is sufficient to show the claim.
Let e1 ∈ EH \ EG be an edge not part of the SMRCST. Adding e1 would form a cycle

of length d ∈ N consisting of nodes v1, . . . , vd ∈ V with v1 and vd being the nodes incident
to e1. Let EC be the set of all edges on this cycle. Removing all edges in EC from G would
create d trees rooted in v1, . . . , vd respectively. Let furthermore x1, . . . , xd be the number of
nodes in each of the d trees. See Figure 5 for an illustration.

Since G is a tree, there is exactly one path between each pair of nodes (which is also the
shortest). For each edge e ∈ EG, we define dG(e) as the number of paths between two nodes
in G which include e. We then can express the total distances as

dG(V, V ) = 2
∑
e∈EG

dG(e).

Note, that each path between two nodes contributes twice to the total distances (one for
each node), which leads to the factor of 2.

Let x := (x1, . . . , xd). We now define for each edge e ∈ EC on the cycle

ce(x) :=
∑
e′∈EC

dG+e1−e(e′) =
d−1∑
i=1

d∑
j=i+1

xixjdG+e1−e(vi, vj).

This is the contribution of all the edges on the cycle to the total distances if we add e1 to
it and instead remove e from it. Note that ce1 is the value for the original network since
G+ e1 − e1 = G. We see that ce does not depent on the structure of the subtrees rooted in
the vi but only on the number of nodes in each subtree. Since the number of paths going
over an edge that is not on the cycle does not change when we add e1 and remove e, we have

dG(V, V )− dG+e−e1(V, V )

= 2
∑
e′∈E

(dG(e′)− dG+e−e1(e′))

= 2
∑
e′∈EC

(dG(e′)− dG+e−e1(e′)) + 2
∑

e′∈EG\EC

(dG(e′)− dG+e−e1(e′))
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= 2ce1(x)− 2ce(x).

We know that G is a SMRCST of H. This means that dG(V, V ) ≥ dG′(V, V ) for any
other spanning tree G′ which can be obtained from G by a swap of one edge. We therefore
also have

∀e ∈ EC : ce1(x) ≥ ce(x). (1)

Now, we use the previous observations to formulate and solve a minimization problem
which yields the desired bound. We start with some definitions.

We call x = (x1, . . . , xd) ∈ Nd with xi ≥ 1 and
∑d
i=1 xi = n a node distribution. For each

edge e ∈ EC , we call ce(x) (defined above) the cost of e. And lastly, we define the distance
decrease ∆d as

∆d(x) := max


b d−1

2 c∑
i=1

(d− 2i)xi,
b d−1

2 c∑
i=1

(d− 2i)xd−i+1

 . (2)

The goal then is: Find a node distribution x that fulfills 1 and minimizes ∆d(x). Observe
that this indeed yields a lower bound for the distance decrease when adding e to G. If we
show that this is at least n

3 , we proved the statement.
Let x = (x1, . . . , xd) ∈ Nd be a node distribution minimizing ∆d(x). We first show the

claim for d = 3 and d = 4.
For d = 3, we have x2 ≤ x1 and x2 ≤ x3 from 1 and ∆d(x) = max{x1, x3}. Since

x1 + x2 + x3 = n, this yields ∆d(x) ≥ n
3 .

For d = 4, we have ce1(x)−c{x1,x2}(x) = 2x1x4−2x1x2, and therefore ce1 ≥ c{x1,x2} if and
only if x4 ≥ x2. Similarly, we get x1 ≥ x3 from {x3, x4}. Together with x1 +x2 +x3 +x4 = n,
we see that max{x1, x4} ≥ n

4 . We conclude that ∆d(x) = 2 max{x1, x4} ≥ n
2 >

n
3 .

For d > 4, we make a case distinction between d being odd and d being even and simplify
the problem by doing several relaxation steps. For d ≤ 4, it is easy to show that ∆d(x) ≥ n

3 .
For further steps, we allow x ∈ Rd≥1. Note, that this only allows for smaller minima and
therefore still yields a lower bound for the original problem.

The high level idea of the following steps is that we can redistribute weights of the node
distribution x without changing ∆(x) or violating 1 and thereby reducing the number of
variables contained in x by setting most xi to 1. We now make a case distinction.

Case d odd: Let m = d+1
2 and e2 := {vm−1, vm} and e3 := {vm, vm+1}. Thus, vm is the

node equidistant from v1 and vd in C and e2 and e3 are the edges on C incident to vm. (see
Figure 5 (middle)) We will only consider the two constraints

ce1(x) ≥ ce2(x) and ce1(x) ≥ ce3(x), (3)

where

ce1(x) =
d−1∑
i=1

d∑
j=i+1

(j − i)xixj ,

ce2(x) =
m−2∑
i=1

m−1∑
j=i+1

(j − i)xixj +
d−1∑
i=m

d∑
j=i+1

(j − i)xixj +
m−1∑
i=1

d∑
j=m

(i+ d− j)xixj ,

ce3(x) =
m−1∑
i=1

m∑
j=i+1

(j − i)xixj +
d−1∑

i=m+1

d∑
j=i+1

(j − i)xixj +
m∑
i=1

d∑
j=m+1

(i+ d− j)xixj .
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This still yields a lower bound for the original problem since the constraints from 3 are a
subset of the constraints from 1.

We observe that the claim is trivially true for n
3 ≤

d+3
2 since ∆d(x) ≥ d+3

2 (tight for
n = 5, d = 5, x = (1, 1, 1, 1, 1)). This means, we can assume

n >
3(d+ 3)

2 , or rather n > 3(m+ 1). (4)

In the following, we perform a series of relaxations. For that, we define the node
distributions x(1), x(2), x(3) such that for all 1 ≤ i ≤ d

x
(1)
i :=



x1 +
∑m−2
p=2

m−1−p
m−2 (xp − 1) if i = 1,

xm−1 +
∑m−2
p=2

p−1
m−2 (xp − 1) if i = m− 1,

xm if i = m,

xm+1 +
∑d−1
p=m+2

d−p
m−2 (xp − 1) if i = m+ 1,

xd +
∑d−1
p=m+2

p−m−1
m−2 (xp − 1) if i = d,

1 else,

(Without loss of generality, we assume x(1)
1 ≥ x(1)

d

and (2m− 3)x(1)
1 + x

(1)
m−1 = (2m− 3)x(1)

d + x
(1)
m+1.)

x
(2)
i :=


x

(1)
1 if i = 1 or i = d,

x
(1)
m−1 if i = m− 1 or i = m+ 1,
x

(1)
m + (2m− 4)

(
x

(1)
1 − x

(1)
d

)
if i = m,

1 else,

x
(3)
i :=


x

(2)
m + 2 2m−4

2m−3

(
x

(2)
m−1 − 1

)
if i = m,

x
(2)
1 + 1

2m−3

(
x

(2)
m−1 − 1

)
if i = 1 or i = d,

1 else.

.

It is easy to see that ∆d(x) = ∆d
(
x(1)) = ∆d

(
x(2)) = ∆d

(
x(3)). We show that

ce1

(
x(i)) ≥ ce2

(
x(i)) and ce1

(
x(i)) ≥ ce3

(
x(i)) for 1 ≤ i ≤ 3. This means, x(3) is also a

solution of the minimization problem.
First, we show this for x(1). Let 1 < p < m− 1. Consider x∗, a modification of x where

the weight of xp is distributed among x1 and xm−1 as follows:

∀1 ≤ i ≤ d : x∗i =


x1 + m−1−p

m−2 (xp − 1) if i = 1,
1 if i = p,

xm−1 + p−1
m−2 (xp − 1) if i = m− 1,

xi else.

To show that x∗ also fulfills (3), we show that ce2(x) − ce1(x) = ce2(x∗) − ce1(x∗) and
ce3(x)− ce1(x) = ce3(x∗)− ce1(x∗). We have

ce2(x)− ce1(x) =
m−1∑
i=1

d∑
j=m

(i+ d− j − (j − i))xixj =
m−1∑
i=1

d∑
j=m

(2i+ d− 2j)xixj

and

ce2(x∗)− ce1(x∗)
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=
m−1∑
i=1

d∑
j=m

(2i+ d− 2j)x∗i x∗j

=
m−1∑
i=1

d∑
j=m

(2i+ d− 2j)xixj + m− 1− p
m− 2 (xp − 1)

d∑
j=m

(2 + d− 2j)xj

− (xp − 1)
d∑

j=m
(2p+ d− 2j)xj + p− 1

m− 2(xp − 1)
d∑

j=m
(2(m− 1) + d− 2j)xj

=
m−1∑
i=1

d∑
j=m

(2i+ d− 2j)xixj + m− 1− p
m− 2 (xp − 1)(d−m+ 1)2

− (xp − 1)(d−m+ 1)2p+ p− 1
m− 2(xp − 1)(d−m+ 1)2(m− 1)

=
m−1∑
i=1

d∑
j=m

(2i+ d− 2j)xixj

+ (xp − 1)(d−m+ 1)(−2p+ 2
m− 2((m− 1− p) + (p− 1)(m− 1)))

=
m−1∑
i=1

d∑
j=m

(2i+ d− 2j)xixj + (xp − 1)(d−m+ 1)
(
−2p+ 2

m− 2(m− 2)p
)

= ce2(x)− ce1(x).

The calculations for ce3(x)− ce1(x) = ce3(x∗)− ce1(x∗) are exactly the same with the only
difference being the sum indices (first sum goes to m and second sum starts at m+ 1).

Because of symmetry, for m+ 1 < p < d, we can similarly distribute weights from xp to
xm+1 and xd. Using this for all 1 < p < m− 1 and m+ 1 < p < d iteratively, we get exactly
x(1), which therefore still fulfills (3).

Next, we show that x(2) fulfills (3), too. We have

ce1(x(1)) = (m− 2)x(1)
1 x

(1)
m−1 + (m− 1)x(1)

1 x(1)
m +mx

(1)
1 x

(1)
m+1 + (2m− 2)x(1)

1 x
(1)
d

+ x
(1)
m−1x

(1)
m + 2x(1)

m−1x
(1)
m+1 +mx

(1)
m−1x

(1)
d + x(1)

m x
(1)
m+1 + (m− 1)x(1)

m x
(1)
d

+ (m− 2)x(1)
m+1x

(1)
d + x

(1)
1 (m− 3)(2m− 2) + x

(1)
d (m− 3)(2m− 2)

+ x
(1)
m−1(m− 3)m+ x

(1)
m+1(m− 3)m+ x(1)

m (m− 3)m

+ 1
3(m− 4)(m− 3)(m− 2) + (m− 3)(m− 3)m,

ce2(x(1)) = (m− 2)x(1)
1 x

(1)
m−1 +mx

(1)
1 x(1)

m + (m− 1)x(1)
1 x

(1)
m+1 + x

(1)
1 x

(1)
d

+ (2m− 2)x(1)
m−1x

(1)
m + (2m− 3)x(1)

m−1x
(1)
m+1 + (m− 1)x(1)

m−1x
(1)
d + x(1)

m x
(1)
m+1

+ (m− 1)x(1)
m x

(1)
d + (m− 2)x(1)

m+1x
(1)
d

+ x
(1)
1 (m− 3)(m− 1) + x

(1)
d (m− 3)(m− 1) + x

(1)
m−1(m− 3)(2m− 3)

+ x
(1)
m+1(m− 3)(2m− 3) + x(1)

m (m− 3)(2m− 1)

+ 1
3(m− 4)(m− 3)(m− 2) + (m− 3)(m− 3)(m− 1) and
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ce3(x(1)) = (m− 2)x(1)
1 x

(1)
m−1 + (m− 1)x(1)

1 x(1)
m + (m− 1)x(1)

1 x
(1)
m+1 + x

(1)
1 x

(1)
d

+ x
(1)
m−1x

(1)
m + (2m− 3)x(1)

m−1x
(1)
m+1 + (m− 1)x(1)

m−1x
(1)
d + (2m− 2)x(1)

m x
(1)
m+1

+mx(1)
m x

(1)
d + (m− 2)x(1)

m+1x
(1)
d

+ x
(1)
1 (m− 3)(m− 1) + x

(1)
d (m− 3)(m− 1) + x

(1)
m−1(m− 3)(2m− 3)

+ x
(1)
m+1(m− 3)(2m− 3) + x(1)

m (m− 3)(2m− 1)

+ 1
3(m− 4)(m− 3)(m− 2) + (m− 3)(m− 3)(m− 1).

We can further assume that (2m− 3)x(1)
1 + x

(1)
m−1 = (2m− 3)x(1)

d + x
(1)
m+1. This is because

if (without loss of generality) (2m − 3)x(1)
1 + x

(1)
m−1 < (2m − 3)x(1)

d + x
(1)
m+1 holds, we can

move value from x
(1)
m−1 to x(1)

1 without changing ∆d(x(1)). This increases ce1(x(1)) more than
ce2(x(1)) and ce3(x(1)).

Let (without loss of generality) x(1)
1 ≥ x

(1)
d and y := x

(1)
1 − x(1)

d . Then we have x(1)
d =

x
(1)
1 − y and x(1)

m+1 = x
(1)
m−1 + (2m− 3)y. We see, that

∀1 ≤ i ≤ d : x(2)
i =


x

(1)
m + (2m− 4)y if i = m,

x
(1)
m−1 if i = m− 1 or i = m+ 1,
x

(1)
1 if i = 1 or i = d,

1 else.

We show ce1(x(2)) ≥ ce3(x(2)), by showing that ce1(x(1))−ce3(x(1))−ce1(x(2))+ce3(x(2)) > 0.
We have

∆x(1) := ce1(x(1))− ce3(x(1))

= x
(1)
1 x

(1)
m+1 + (2m− 3)x(1)

1 x
(1)
d − (2m− 5)x(1)

m−1x
(1)
m+1 + x

(1)
m−1x

(1)
d

− (2m− 3)x(1)
m x

(1)
m+1 − x(1)

m x
(1)
d + x

(1)
1 (m− 3)(m− 1) + x

(1)
d (m− 3)(m− 1)

− x(1)
m−1(m− 3)(m− 3)− x(1)

m+1(m− 3)(m− 3)− x(1)
m (m− 3)(m− 1)

+ (m− 3)(m− 3)

= x
(1)
1 x

(1)
m−1 + x

(1)
1 (2m− 3)y + (2m− 3)x(1)

1 x
(1)
1 − (2m− 3)x(1)

1 y

− (2m− 5)x(1)
m−1x

(1)
m−1 − (2m− 5)(2m− 3)x(1)

m−1y + x
(1)
m−1x

(1)
1 − x

(1)
m−1y

− (2m− 3)x(1)
m x

(1)
m−1 − (2m− 3)x(1)

m (2m− 3)y − x(1)
m x

(1)
1 + x(1)

m y

+ x
(1)
1 (m− 3)(m− 1) + x

(1)
1 (m− 3)(m− 1)− y(m− 3)(m− 1)

− x(1)
m−1(m− 3)(m− 3)− x(1)

m−1(m− 3)(m− 3)

− (2m− 3)y(m− 3)(m− 3)− x(1)
m (m− 3)(m− 1) + (m− 3)(m− 3)

and
∆x(2) := ce1(x(2))− ce3(x(2))

= x
(1)
1 x

(1)
m−1 + (2m− 3)x(1)

1 x
(1)
1 − (2m− 5)x(1)

m−1x
(1)
m−1 + x

(1)
m−1x

(1)
1

− (2m− 3)x(1)
m x

(1)
m−1 − (2m− 3)(2m− 4)yx(1)

m−1 − x(1)
m x

(1)
1 − (2m− 4)yx(1)

1

+ x
(1)
1 (m− 3)(m− 1) + x

(1)
1 (m− 3)(m− 1)− x(1)

m−1(m− 3)(m− 3)

− x(1)
m−1(m− 3)(m− 3)− x(1)

m (m− 3)(m− 1)− (2m− 4)y(m− 3)(m− 1)
+ (m− 3)(m− 3),
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and therefore

∆x(2) −∆x(1) = (2m− 5)(2m− 3)x(1)
m−1y + x

(1)
m−1y + (2m− 3)x(1)

m (2m− 3)y

− (2m− 3)(2m− 4)yx(1)
m−1 − x(1)

m y − (2m− 4)yx(1)
1 + y(m− 3)(m− 1)

+ (2m− 3)y(m− 3)(m− 3)− (2m− 4)y(m− 3)(m− 1)

= x
(1)
m−1y((2m− 5)(2m− 3) + 1− (2m− 3)(2m− 4))

+ x(1)
m y((2m− 3)(2m− 3)− 1)− (2m− 4)x(1)

1 y

+ y(m− 3)(m− 1 + (2m− 3)(m− 3)− (2m− 4)(m− 1))

= − 2x(1)
m−1y(m− 2) + 4x(1)

m y(m− 2)(m− 1)− 2x(1)
1 y(m− 2)

− 2y(m− 3)(m− 2)

= 2y(m− 2)(−x(1)
m−1 + 2x(1)

m (m− 1)− x(1)
1 −m+ 3)

= 2y(m− 2)(x(1)
m − x

(1)
1 − x

(1)
m−1 + 2x(1)

m (m− 1.5)−m+ 3)
≥ 0.

The last step follows from x
(1)
m ≥ x(1)

1 + x
(1)
m−1 ≥ 1, m ≥ 3 and y ≥ 0.

Since x(1) fulfills (3), we see that ce1(x(2)) ≥ ce3(x(2)) holds, too. With x(2) being
symmetric, ce1(x(2)) ≥ ce2(x(2)) holds as well. This shows that x(2) also fulfills (3).

Now, we show that x(3) fulfills (3), too. Let y := x
(2)
m−1−1
2m−3 . We see that

∀1 ≤ i ≤ d : x(3)
i =


x

(2)
m + 2(2m− 4)y if i = m,

x
(2)
1 + y if i = 1 or i = d,

1 else.

We see that

∆x(2) = 2x(2)
1 + 2(2m− 3)yx(2)

1 + (2m− 3)x(2)
1 x

(2)
1 − (2m− 5)(1 + (2m− 3)y)2

− (2m− 3)x(2)
m − (2m− 3)x(2)

m (2m− 3)y − x(2)
1 x(2)

m + 2x(2)
1 (m− 3)(m− 1)

− 2(m− 3)(m− 3)− 2(2m− 3)y(m− 3)(m− 3)− x(2)
m (m− 3)(m− 1)

+ (m− 3)(m− 3)

= 2x(2)
1 + (2m− 3)x(2)

1 x
(2)
1 − (2m− 5)− (2m− 3)x(2)

m − x
(2)
1 x(2)

m

+ 2x(2)
1 (m− 3)(m− 1)− 2(m− 3)(m− 3)− x(2)

m (m− 3)(m− 1)
+ (m− 3)(m− 3)

+ y(2m− 3)(2x(2)
1 − (2m− 5)2− (2m− 3)x(2)

m − 2(m− 3)(m− 3))
− y2(2m− 3)2(2m− 5),

∆x(3) := ce1(x(3))− ce2(x(3))

= 2x(2)
1 + 2y + (2m− 3)(x(2)

1 + y)2 − (2m− 5)− (2m− 3)(x(2)
m + 2(2m− 4)y)

− (x(2)
1 + y)(x(2)

m + 2(2m− 4)y) + 2(x(2)
1 + y)(m− 3)(m− 1)

− 2(m− 3)(m− 3)− (x(2)
m + 2(2m− 4)y)(m− 3)(m− 1)

+ (m− 3)(m− 3)
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= 2x(2)
1 + (2m− 3)x(2)

1 x
(2)
1 − (2m− 5)− (2m− 3)x(2)

m − x
(2)
1 x(2)

m

+ 2x(2)
1 (m− 3)(m− 1)− 2(m− 3)(m− 3)− x(2)

m (m− 3)(m− 1)
+ (m− 3)(m− 3)

+ y(2 + (2m− 3)2x(2)
1 − (2m− 3)2(2m− 4)− x(2)

m − 2(2m− 4)x(2)
1

+ 2(m− 3)(m− 1)− 2(2m− 4)(m− 3)(m− 1))
+ y2((2m− 3)− 2(2m− 4))

and obtain

∆x(3) −∆x(2) = y(2− 2(2m− 3) + (2m− 3)2x(2)
m + 2(2m− 3)(m− 3)(m− 3)− x(2)

m

− 2(2m− 4)x(2)
1 + 2(m− 3)(m− 1)− 2(2m− 4)(m− 3)(m− 1))

+ y2((2m− 3)− 2(2m− 4) + (2m− 3)2(2m− 5))

= y(m− 2)(−4x(2)
1 + 4(m− 1)x(2)

m − 4(m− 2))
+ 4y2(2m− 5)(m− 1)(m− 2)

≥ 0.

The last step follows from x
(2)
m ≥ x(2)

1 , m ≥ 3 and y ≥ 0.
Since x(2) fulfills (3), x(3) does, too. Because of x(3) being a node distribution with only

two variables (x(3)
1 = x

(3)
d and x(3)

m ), we can simplify ∆x(3) and ∆d to

∆x(3) = ce1(x(3))− ce2(x(3))

= 2x(3)
1 + (2m− 3)x(3)

1 x
(3)
1 − (2m− 5)− (2m− 3)x(3)

m − x
(3)
1 x(3)

m

+ 2x(3)
1 (m− 3)(m− 1)− 2(m− 3)(m− 3)− x(3)

m (m− 3)(m− 1)
+ (m− 3)(m− 3)

= (2m− 3)x(3)
1 x

(3)
1 + 2x(3)

1 (m− 2)2 − x(3)
1 x(3)

m −m(m− 2)x(3)
m − (m− 2)2

and

∆d(x(3)) = (m− 2)2 + (2m− 3)x(3)
1 .

We now prove the lower bound.
We see that ∆d(x(3)) is only dependent on x(3)

1 which means we have to minimize x(3)
1 .

Since x(3) sums to n, we have n = 2x(3)
1 +x(3)

m +2m−4, and therefore x(3)
m = n−2x(3)

1 −2m+4.
Substituting this into ∆x(3) yields

∆x(3) = (2m− 3)x(3)
1 x

(3)
1 + 2x(3)

1 (m− 2)2 − x(3)
1 (n− 2x(3)

1 − 2m+ 4)

−m(m− 2)(n− 2x(3)
1 − 2m+ 4)− (m− 2)2

= x
(3)
1 x

(3)
1 (2m− 1) + x

(3)
1 (2(m− 2)(2m− 1)− n) + (2m− 1)(m− 2)2

− nm(m− 2).

Observe that x(3) fulfills (3) if and only if ∆x(3) ≥ 0. Solving the quadratic equation, we
see that this is only the case for

x
(3)
1 ≥ − (m− 2) + n

2(2m− 1)

+

√(
n

2(2m− 1) − (m− 2)
)2

+ nm(m− 2)− (2m− 1)(m− 2)2.
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With (4), we see that the term under the root is larger than

02 + 3(m+ 1)m(m− 2)− (2m− 1)(m− 2)2

≥ (m+ 1)m(m− 2)
≥ (m− 2)2.

This yields

x
(3)
1 ≥ −(m− 2) + n

2(2m− 1) +
√

(m− 2)2 = n

2(2m− 1) ,

and therefore

∆d(x(3)) ≥ (m− 2)2 + 2m− 3
2m− 1 ·

n

2 ≥
n

3 .

Case d even: Let m = d
2 and e2 := {vm−1, vm} and e3 := {vm+1, vm+2}. (see Fig-

ure 5 (right)) Again, we will only consider the two constraints

ce1(x) ≥ ce2(x) and ce1(x) ≥ ce3(x), (5)

where

ce1 =
d−1∑
i=1

d∑
j=i+1

(j − i)xixj ,

ce2 =
m−2∑
i=1

m−1∑
j=i+1

(j − i)xixj +
d−1∑
i=m

d∑
j=i+1

(j − i)xixj +
m−1∑
i=1

d∑
j=m

(i+ d− j)xixj ,

ce3 =
m∑
i=1

m+1∑
j=i+1

(j − i)xixj +
d−1∑

i=m+2

d∑
j=i+1

(j − i)xixj +
m+1∑
i=1

d∑
j=m+2

(i+ d− j)xixj ,

We observe that the claim is trivially true for n
3 ≤

d+6
2 , since ∆d(x) ≥ d+6

2 (tight for
n = 6, d = 6, x = (1, 1, 1, 1, 1, 1)). This means we can assume

n >
3(d+ 6)

2 , or rather n > 3(m+ 3). (6)

Similar to the odd case, we perform a series of relaxations. For that, we define the node
distributions x(1), x(2), x(3), x(4) such that for all 1 ≤ i ≤ d

x
(1)
i :=



x1 +
∑m−2
p=2

m−1−p
m−2 (xp − 1) if i = 1,

xm−1 +
∑m−2
p=2

p−1
m−2 (xp − 1) if i = m− 1,

xm if i = m,

xm+1 if i = m+ 1,
xm+2 +

∑d−1
p=m+3

d−p
m−2 (xp − 1) if i = m+ 1,

xd +
∑d−1
p=m+3

p−m−2
m−2 (xp − 1) if i = d,

1 else,

(Without loss of generality, we assume x(1)
1 ≥ x(1)

d

and (m− 1)x(1)
1 + x

(1)
m−1 = (m− 1)x(1)

d + x
(1)
m+2.)
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x
(2)
i :=



x
(1)
1 if i = 1 or i = d,

x
(1)
m−1 if i = m− 1 or i = m+ 2,
x

(1)
m if i = m

x
(1)
m+1 + (m− 2)

(
x

(1)
1 − x

(1)
d

)
if i = m+ 1,

1 else,

x
(3)
i :=


x

(2)
1 if i = 1 or i = d,

x
(2)
m−1 if i = m− 1 or i = m+ 2,
x(2)

m +x(2)
m+1

2 if i = m or i = m+ 1,
1 else,

x
(4)
i :=


x

(3)
1 + 1

m−1

(
x

(3)
m−1 − 1

)
if i = 1 or i = d,

x
(3)
m + m−2

m−1

(
x

(3)
m−1 − 1

)
if i = m or i = m+ 1,

1 else.

Again, it is easy to see that ∆d(x) = ∆d
(
x(1)) = · · · = ∆d

(
x(4)). We show ce1

(
x(i)) ≥

ce2

(
x(i)) and ce1

(
x(i)) ≥ ce3

(
x(i)), for 1 ≤ i ≤ 4. Therefore, x(4) is a solution of the

minimization problem.

First, we observe that ce2(x) − ce1(x) = ce2(x(1)) − ce1(x(1)) and ce3(x) − ce1(x) =
ce3(x(1))− ce1(x(1)) follow the same way as in the odd case (with slight adjustments to the
sum indices). This means that x(1) fulfills (5).

Next, we show that x(2) fulfills (5), too. We have

ce1(x(1)) = (m− 2)x(1)
1 x

(1)
m−1 + (m− 1)x(1)

1 x(1)
m +mx

(1)
1 x

(1)
m+1 + (m+ 1)x(1)

1 x
(1)
m+2

+ (2m− 1)x(1)
1 x

(1)
d + x

(1)
m−1x

(1)
m + 2x(1)

m−1x
(1)
m+1 + 3x(1)

m−1x
(1)
m+2

+ (m+ 1)x(1)
m−1x

(1)
d + x(1)

m x
(1)
m+1 + 2x(1)

m x
(1)
m+2 +mx(1)

m x
(1)
d

+ x
(1)
m+1x

(1)
m+2 + (m− 1)x(1)

m+1x
(1)
d + (m− 2)x(1)

m+2x
(1)
d

+ (m− 3)(2m− 1)x(1)
1 + (m− 3)(m+ 1)x(1)

m−1 + (m− 3)(m+ 1)x(1)
m

+ (m− 3)(m+ 1)x(1)
m+1 + (m− 3)(m+ 1)x(1)

m+2 + (m− 3)(2m− 1)x(1)
d

+ 1
3(m− 4)(m− 3)(m− 2) + (m− 3)(m− 3)(m+ 1),

ce2(x(1)) = (m− 2)x(1)
1 x

(1)
m−1 + (m+ 1)x(1)

1 x(1)
m +mx

(1)
1 x

(1)
m+1 + (m− 1)x(1)

1 x
(1)
m+2

+ x
(1)
1 x

(1)
d + (2m− 1)x(1)

m−1x
(1)
m + (2m− 2)x(1)

m−1x
(1)
m+1 + (2m− 3)x(1)

m−1x
(1)
m+2

+ (m− 1)x(1)
m−1x

(1)
d + x(1)

m x
(1)
m+1 + 2x(1)

m x
(1)
m+2 +mx(1)

m x
(1)
d

+ x
(1)
m+1x

(1)
m+2 + (m− 1)x(1)

m+1x
(1)
d + (m− 2)x(1)

m+2x
(1)
d

+ (m− 3)(m− 1)x(1)
1 + (m− 3)(2m− 3)x(1)

m−1 + (m− 3)(2m+ 1)x(1)
m

+ (m− 3)(2m− 1)x(1)
m+1 + (m− 3)(2m− 3)x(1)

m+2 + (m− 3)(m− 1)x(1)
d

+ 1
3(m− 4)(m− 3)(m− 2) + (m− 3)(m− 3)(m− 1) and
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ce3(x(1)) = (m− 2)x(1)
1 x

(1)
m−1 + (m− 1)x(1)

1 x(1)
m +mx

(1)
1 x

(1)
m+1 + (m− 1)x(1)

1 x
(1)
m+2

+ x
(1)
1 x

(1)
d + x

(1)
m−1x

(1)
m + 2x(1)

m−1x
(1)
m+1 + (2m− 3)x(1)

m−1x
(1)
m+2

+ (m− 1)x(1)
m−1x

(1)
d + x(1)

m x
(1)
m+1 + (2m− 2)x(1)

m x
(1)
m+2 +mx(1)

m x
(1)
d

+ (2m− 1)x(1)
m+1x

(1)
m+2 + (m+ 1)x(1)

m+1x
(1)
d + (m− 2)x(1)

m+2x
(1)
d

+ (m− 3)(m− 1)x(1)
1 + (m− 3)(2m− 3)x(1)

m−1 + (m− 3)(2m− 1)x(1)
m

+ (m− 3)(2m+ 1)x(1)
m+1 + (m− 3)(2m− 3)x(1)

m+2 + (m− 3)(m− 1)x(1)
d

+ 1
3(m− 4)(m− 3)(m− 2) + (m− 3)(m− 3)(m− 1).

Similar to the odd case, we can further assume that (m−1)x(1)
1 +x(1)

m−1 = (m−1)x(1)
d +x(1)

m+2.
If this is not the case and (without loss of generality) (m−1)x(1)

1 +x(1)
m−1 > (m−1)x(1)

d +x(1)
m+2,

we could move weight from x
(1)
m+2 to x(1)

d without changing ∆d(x(1)). This would increase
ce1(x(1)) more than ce2(x(1)) and ce3(x(1)).

Let (without loss of generality) x(1)
1 ≥ x

(1)
d and y := x

(1)
1 − x(1)

d . Therefore, we have
x

(1)
d = x

(1)
1 − y and x(1)

m+2 = x
(1)
m−1 + (m− 1)y. We see that

∀1 ≤ i ≤ d : x(2)
i =



x
(1)
m if i = m,

x
(1)
m+1 + (m− 2)y if i = m+ 1,
x

(1)
m−1 if i = m− 1 or i = m+ 2,
x

(1)
1 if i = 1 or i = d,

1 else.

We now show that

∆2x
(2) := ce1(x(2))− ce2(x(2)) ≥ ce1(x(1))− ce2(x(1)) = ∆2(x(1))

and
∆3x

(2) := ce1(x(2))− ce3(x(2)) ≥ ce1(x(1))− ce3(x(1)) = ∆3(x(1)).

We have

∆2x
(1) = ce1(x(1))− ce2(x(1))

= − 2x(1)
1 x(1)

m + 2x(1)
1 x

(1)
m+2 + (2m− 2)x(1)

1 x
(1)
d − (2m− 2)x(1)

m−1x
(1)
m

− (2m− 4)x(1)
m−1x

(1)
m+1 − (2m− 6)x(1)

m−1x
(1)
m+2 + 2x(1)

m−1x
(1)
d

+ (m− 3)mx(1)
1 − (m− 3)(m− 4)x(1)

m−1 − (m− 3)mx(1)
m

− (m− 3)(m− 2)x(1)
m+1 − (m− 3)(m− 4)x(1)

m+2 + (m− 3)mx(1)
d

+ 2(m− 3)(m− 3)

= − 2x(1)
1 x(1)

m + 2x(1)
1 x

(1)
m−1 + 2(m− 1)x(1)

1 y + (2m− 2)x(1)
1 x

(1)
1 − (2m− 2)x(1)

1 y

− (2m− 2)x(1)
m−1x

(1)
m − (2m− 4)x(1)

m−1x
(1)
m+1 − (2m− 6)x(1)

m−1x
(1)
m−1

− (2m− 6)x(1)
m−1(m− 1)y + 2x(1)

m−1x
(1)
1 − 2x(1)

m−1y + (m− 3)mx(1)
1

− (m− 3)(m− 4)x(1)
m−1 − (m− 3)mx(1)

m − (m− 3)(m− 2)x(1)
m+1

− (m− 3)(m− 4)x(1)
m−1 − (m− 3)(m− 4)(m− 1)y + (m− 3)mx(1)

1

− (m− 3)my + 2(m− 3)(m− 3)
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and

∆2x
(2) = − 2x(1)

1 x(1)
m + 2x(1)

1 x
(1)
m−1 + (2m− 2)x(1)

1 x
(1)
1 − (2m− 2)x(1)

m−1x
(1)
m

− (2m− 4)x(1)
m−1x

(1)
m+1 − (2m− 4)x(1)

m−1(m− 2)y − (2m− 6)x(1)
m−1x

(1)
m−1

+ 2x(1)
m−1x

(1)
1 + (m− 3)mx(1)

1 − (m− 3)(m− 4)x(1)
m−1 − (m− 3)mx(1)

m

− (m− 3)(m− 2)x(1)
m+1 − (m− 3)(m− 2)(m− 2)y

− (m− 3)(m− 4)x(1)
m−1 + (m− 3)mx(1)

1 + 2(m− 3)(m− 3),

and therefore

∆2x
(2) −∆2x

(1) = − (2m− 4)x(1)
m−1(m− 2)y + (2m− 6)x(1)

m−1(m− 1)y

+ 2x(1)
m−1y − (m− 3)(m− 2)(m− 2)y

+ (m− 3)(m− 4)(m− 1)y + (m− 3)my

= x
(1)
m−1y(−(2m− 4)(m− 2) + (2m− 6)(m− 1) + 2)

+ (m− 3)y(−(m− 2)(m− 2) + (m− 4)(m− 1) +m)

= x
(1)
m−1y · 0 + (m− 3)y · 0

= 0.

Furthermore, we see that

∆3x
(1) = ce1(x(1))− ce3(x(1))

= 2x(1)
1 x

(1)
m+2 + (2m− 2)x(1)

1 x
(1)
d − (2m− 6)x(1)

m−1x
(1)
m+2 + 2x(1)

m−1x
(1)
d

− (2m− 4)x(1)
m x

(1)
m+2 − (2m− 2)x(1)

m+1x
(1)
m+2 − 2x(1)

m+1x
(1)
d

+ (m− 3)mx(1)
1 − (m− 3)(m− 4)x(1)

m−1 − (m− 3)(m− 2)x(1)
m

− (m− 3)mx(1)
m+1 − (m− 3)(m− 4)x(1)

m+2 + (m− 3)mx(1)
d

+ 2(m− 3)(m− 3)

= 2x(1)
1 x

(1)
m−1 + 2x(1)

1 (m− 1)y + (2m− 2)x(1)
1 x

(1)
1 − (2m− 2)x(1)

1 y

− (2m− 6)x(1)
m−1x

(1)
m−1 − (2m− 6)x(1)

m−1(m− 1)y + 2x(1)
m−1x

(1)
1 − 2x(1)

m−1y

− (2m− 4)x(1)
m x

(1)
m−1 − (2m− 4)x(1)

m (m− 1)y − (2m− 2)x(1)
m+1x

(1)
m−1

− (2m− 2)x(1)
m+1(m− 1)y − 2x(1)

m+1x
(1)
1 + 2x(1)

m+1y

+ (m− 3)mx(1)
1 − (m− 3)(m− 4)x(1)

m−1 − (m− 3)(m− 2)x(1)
m

− (m− 3)mx(1)
m+1 − (m− 3)(m− 4)x(1)

m−1 − (m− 3)(m− 4)(m− 1)y

+ (m− 3)mx(1)
1 − (m− 3)my + 2(m− 3)(m− 3)

and

∆3x
(2) = 2x(1)

1 x
(1)
m−1 + (2m− 2)x(1)

1 x
(1)
1 − (2m− 6)x(1)

m−1x
(1)
m−1 + 2x(1)

m−1x
(1)
1

− (2m− 4)x(1)
m x

(1)
m−1 − (2m− 2)x(1)

m+1x
(1)
m−1 − (2m− 2)(m− 2)yx(1)

m−1

− 2x(1)
m+1x

(1)
1 − 2(m− 2)yx(1)

1 + (m− 3)mx(1)
1 − (m− 3)(m− 4)x(1)

m−1

− (m− 3)(m− 2)x(1)
m − (m− 3)mx(1)

m+1 − (m− 3)m(m− 2)y

− (m− 3)(m− 4)x(1)
m−1 + (m− 3)mx(1)

1 + 2(m− 3)(m− 3),
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and therefore

∆3x
(2) −∆3x

(1) = (2m− 6)x(1)
m−1(m− 1)y + 2x(1)

m−1y + (2m− 4)x(1)
m (m− 1)y

− (2m− 2)(m− 2)yx(1)
m−1 + (2m− 2)x(1)

m+1(m− 1)y − 2(m− 2)yx(1)
1

− 2x(1)
m+1y − (m− 3)m(m− 2)y + (m− 3)(m− 4)(m− 1)y

+ (m− 3)my

= − x(1)
1 y(2m− 4)

+ x
(1)
m−1y((2m− 6)(m− 1) + 2− (2m− 2)(m− 2))

+ x(1)
m y(2m− 4)(m− 1)

+ x
(1)
m+1y((2m− 2)(m− 1)− 2)

+ (m− 3)y(−(m− 2)m+ (m− 4)(m− 1) +m)

= 2(m− 2)y(−x(1)
1 − x

(1)
m−1 + (m− 1)x(1)

m +mx
(1)
m+1 − (m− 3))

≥ 0.

The inequality in the last step comes fromm ≥ 3, y ≥ 0, x(1)
1 +x(1)

m−1 ≤ n
3 and x(1)

m +x(1)
m+1 ≥ n

3 .
Since x(1) fulfills (5) and we have ∆2x

(2) −∆2x
(1) = 0 and ∆3x

(2) −∆3x
(1) ≥ 0, the

node distribution x(2) fulfills (5), too.
Now, we show that x(3) fulfills (5), as well. Without loss of generality, we can assume

x
(2)
m+1 ≥ x

(2)
m .

We have

∆3x
(2) = 4x(2)

1 x
(2)
m−1 + (2m− 2)x(2)

1 x
(2)
1 − (2m− 6)x(2)

m−1x
(2)
m−1 − (2m− 4)x(2)

m x
(2)
m−1

− (2m− 2)x(2)
m+1x

(2)
m−1 − 2x(2)

m+1x
(2)
1 + 2(m− 3)mx(2)

1 − 2(m− 3)(m− 4)x(2)
m−1

− (m− 3)(m− 2)x(2)
m − (m− 3)mx(2)

m+1 + 2(m− 3)(m− 3)

and

∆3x
(3) = 4x(2)

1 x
(2)
m−1 + (2m− 2)x(2)

1 x
(2)
1 − (2m− 6)x(2)

m−1x
(2)
m−1

− (2m− 4)x(2)
m−1

x
(2)
m + x

(2)
m+1

2 − (2m− 2)x(2)
m−1

x
(2)
m + x

(2)
m+1

2 − 2x(2)
1
x

(2)
m + x

(2)
m+1

2

+ 2(m− 3)mx(2)
1 − 2(m− 3)(m− 4)x(2)

m−1 − (m− 3)(m− 2)
x

(2)
m + x

(2)
m+1

2

− (m− 3)m
x

(2)
m + x

(2)
m+1

2 + 2(m− 3)(m− 3)

= 4x(2)
1 x

(2)
m−1 + (2m− 2)x(2)

1 x
(2)
1 − (2m− 6)x(2)

m−1x
(2)
m−1 − (2m− 3)x(2)

m−1x
(2)
m

− (2m− 3)x(2)
m−1x

(2)
m+1 − x

(2)
1 x(2)

m − x
(2)
1 x

(2)
m+1 + 2(m− 3)mx(2)

1

− 2(m− 3)(m− 4)x(2)
m−1 − (m− 3)(m− 1)x(2)

m − (m− 3)(m− 1)x(2)
m+1

+ 2(m− 3)(m− 3),

and therefore

∆3x
(3) −∆3x

(2) = − x(2)
m−1x

(2)
m + x

(2)
m−1x

(2)
m+1 − x

(2)
1 x(2)

m + x
(2)
1 x

(2)
m+1

− (m− 3)x(2)
m + (m− 3)x(2)

m+1
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= (x(2)
m+1 − x(2)

m )(x(2)
m−1 + x

(2)
1 +m− 3)

≥ 0.

We also see that ∆2x
(3) −∆2x

(3) ≥ 0 because x(3) is symmetric. Since x(2) fulfills (5), x(3)

does, too. This also means that the two inequalities from (5) are equivalent.

Finally, we show that x(4) fulfills (5). Let y := x
(3)
m−1−1
m−1 . We see that

∀1 ≤ i ≤ d : x(4)
i =


x

(3)
m + (m− 2)y if i = m or i = m+ 1,
x

(3)
1 + y if i = 1 or i = d,

1 else.

We have

∆3x
(3) = 4x(3)

1 x
(3)
m−1 + (2m− 2)x(3)

1 x
(3)
1 − (2m− 6)x(3)

m−1x
(3)
m−1 − (4m− 6)x(3)

m−1x
(3)
m

− 2x(3)
1 x(3)

m + 2(m− 3)mx(3)
1 − 2(m− 3)(m− 4)x(3)

m−1 − (m− 3)(2m− 2)x(3)
m

+ 2(m− 3)(m− 3)

= 4x(3)
1 + 4x(3)

1 (m− 1)y + (2m− 2)x(3)
1 x

(3)
1 − (2m− 6)(1 + (m− 1)y)2

− (4m− 6)x(3)
m − (4m− 6)x(3)

m (m− 1)y − 2x(3)
1 x(3)

m + 2(m− 3)mx(3)
1

− 2(m− 3)(m− 4)− 2(m− 3)(m− 4)(m− 1)y − (m− 3)(2m− 2)x(3)
m

+ 2(m− 3)(m− 3)

= 4x(3)
1 + (2m− 2)x(3)

1 x
(3)
1 − (2m− 6)− (4m− 6)x(3)

m − 2x(3)
1 x(3)

m + 2(m− 3)mx(3)
1

− 2(m− 3)(m− 4)− (m− 3)(2m− 2)x(3)
m + 2(m− 3)(m− 3)

+ y(m− 1)(4x(3)
1 − 2(2m− 6)− (4m− 6)x(3)

m − 2(m− 3)(m− 4)))
− y2(m− 1)2(2m− 6)

and

∆3x
(4) = 4x(3)

1 + 4y + (2m− 2)(x(3)
1 + y)2 − (2m− 6)− (4m− 6)x(3)

m

− (4m− 6)(m− 2)y − 2(x(3)
1 + y)(x(3)

m + (m− 2)y) + 2(m− 3)mx(3)
1

+ 2(m− 3)my − 2(m− 3)(m− 4)− (m− 3)(2m− 2)x(3)
m

− (m− 3)(2m− 2)(m− 2)y + 2(m− 3)(m− 3)

= 4x(3)
1 + (2m− 2)x(3)

1 x
(3)
1 − (2m− 6)− (4m− 6)x(3)

m − 2x(3)
1 x(3)

m + 2(m− 3)mx(3)
1

− 2(m− 3)(m− 4)− (m− 3)(2m− 2)x(3)
m + 2(m− 3)(m− 3)

+ y(4 + 2(2m− 2)x(3)
1 − (4m− 6)(m− 2)− 2x(3)

1 (m− 2)− 2x(3)
m

+ 2(m− 3)m− (m− 3)(2m− 2)(m− 2))
+ y2((2m− 2)− 2(m− 2))

= 4x(3)
1 + (2m− 2)x(3)

1 x
(3)
1 − (2m− 6)− (4m− 6)x(3)

m − 2x(3)
1 x(3)

m + 2(m− 3)mx(3)
1

− 2(m− 3)(m− 4)− (m− 3)(2m− 2)x(3)
m + 2(m− 3)(m− 3)

+ y(2mx(3)
1 − 2x(3)

m + 4− (4m− 6)(m− 2) + 2(m− 3)m
− (m− 3)(2m− 2)(m− 2))

+ 2y2,
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and therefore

∆3x
(4) −∆3x

(3) = y(−(2m− 4)x(3)
1 + (2m− 4)(2m− 1)x(3)

m + 4− (4m− 6)(m− 2)
+ 2(m− 3)m− (m− 3)(2m− 2)(m− 2)
+ 2(2m− 6)(m− 1) + 2(m− 3)(m− 4)(m− 1))

+ y2(2 + (m− 1)2(2m− 6))

= y(2m− 4)(−x(3)
1 + (2m− 1)x(3)

m − (m− 2))
+ y2(2 + (m− 1)2(2m− 6))

≥ 0.

The last step follows from x
(3)
m ≥ x(3)

1 , m ≥ 3 and y ≥ 0.
Since x(3) and x(4) are symmetric, we also have ∆2(x(4)) − ∆2(x(3)) ≥ 0, and with

x(3) fulfilling (5), the node distribution x(4) fulfills (5), too. Because of x(4) being a node
distribution with only two variables (x(4)

1 = x
(4)
d and x(4)

m = x
(4)
m+1), we can simplify ∆x(4)

and ∆d(x(4)) to

∆x(4) := ∆2x
(4) = ∆3x

(4)

= 4x(4)
1 + (2m− 2)x(4)

1 x
(4)
1 − (2m− 6)− (4m− 6)x(4)

m − 2x(4)
1 x(4)

m

+ 2(m− 3)mx(4)
1 − 2(m− 3)(m− 4)− (m− 3)(2m− 2)x(4)

m

+ 2(m− 3)(m− 3)

= 2(m− 1)x(4)
1 x

(4)
1 + 2(m− 1)(m− 2)x(4)

1 − 2x(4)
1 x(4)

m − 2m(m− 2)x(4)
m

and

∆d(x(4)) = 2(m− 1)x(4)
1 + (m− 2)(m− 1) + 2.

We now prove the lower bound.
We see that ∆d is now only dependent on x(4)

1 which means we have to minimize x(4)
1 . Since

x(4) sums up to n, we have n = 2x(4)
1 + 2x(4)

m + 2m− 4, and therefore x(4)
m = n

2 −x
(4)
1 −m+ 2.

Substituting this into ∆x(4) yields

∆x(4) = 2(m− 1)x(4)
1 x

(4)
1 + 2(m− 1)(m− 2)x(4)

1 − 2x(4)
1

(n
2 − x

(4)
1 −m+ 2

)
− 2m(m− 2)

(n
2 − x

(4)
1 −m+ 2

)
= 2mx(4)

1 x
(4)
1 + (4m(m− 2)− n)x(4)

1 −m(m− 2)(n− 2m+ 4).

We know that x(4) fulfills (5) if and only if ∆x(4) ≥ 0. Solving the quadratic inequality leaves
us with

x
(4)
1 ≥ n

4m − (m− 2) +
√( n

4m − (m− 2)
)2

+ (m− 2)
(n

2 − (m− 2)
)
.

Because of (6), we see that the term under the root is larger than

0 + (m− 2)
(

3(m+ 3)
2 −m+ 2

)
≥ 1

2(m− 2)(m− 2).
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We therefore obtain

x
(4)
1 ≥ n

4m − (m− 2) +
√

2
2 (m− 2)

≥ n

4m −
m− 2

2 ,

and finally

∆d(x(4)) ≥ 2(m− 1)
(
n

4m −
m− 2

2

)
+ (m− 2)(m− 1) + 2 ≥ m− 1

m
· n2 ≥

n

3 ,

which concludes the proof. J

Next, we show that we can find a SMRCST in polynomial time via Algorithm 1 and even
guarantee some bounds on the social welfare of the resulting network. Our algorithm employs

Algorithm 1 Computes a SMRCST for a given connected host network.

Input: connected host network H
Output: SMRCST T

1 P ← greedyLongPath (H);
2 T ← extend P to form a spanning tree of H;
3 while ∃e ∈ ET, e

′ ∈ EH \ ET : dT−e+e′(VH, VH) > dT(VH, VH) do
4 T ← T− e+ e′

5 end

a greedy algorithm developed by Karger et al. [35] which can find a path of length at least
|EH |
|VH | in O(|EH |) as a subroutine for initialization. We call this subroutine greedyLongPath.
This will help us to derive bounds on the total distances of the computed SMRCST later.
For extending the path to a spanning tree in line 2 of Algorithm 1, we can simply iterate
over all edges and add them to the network if they do not close a cycle.

I Theorem 11. Let H be a connected network containing n nodes and m edges. Then
Algorithm 1 finds a Swap-Maximal Routing-Cost Spanning Tree of H in runtime O(n5m).

Proof. It is easy to see that, by construction, T is always a spanning tree of H. The condition
in the while-loop ensures that all possible swaps are tried. This means that the while-loop
ends if and only if T is a SMRCST. Therefore if the while-loop stops, the result is correct.

In every iteration in which the while-loop does not stop, the total distances of T increase
by at least 1. Since the tree maximizing the total distances is the path, we get its total
distances 1

3 (n− 1)n(n+ 1) ∈ O(n3) as an upper bound for the number of iterations.
The runtime of Algorithm 1 is clearly dominated by the while-loop. Since T has n− 1

edges which can be removed and EH \ ET has O(m) possible edges to add, the number of
possible swaps is in O(nm). For each swap, the total distances can be computed in O(n) [43].
Therefore computing the condition can be done in O(n2m). Altering the current solution in
the body of the while-loop only takes O(n) when using adjacency lists. Since there are at
most O(n3) iterations of the while-loop, the overall runtime is in O(n5m). J

For the K-SDNCG, the social optima were also stable. For general host networks, this is
not necessarily the case. However, we can show that for α ≤ n

3 there are stable states which
approximate the social welfare better than with the trivial factor of O(n).
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I Theorem 12 (OPT-Approximation via the MRCST). Let H be a connected host network
containing n nodes and m edges and T be the MRCST of H.
(1) We have SW(OPTH )

SW(T ) ∈ O
(
m
n

)
.

(2) For α ∈ O
(
n2

m

)
, we have SW(OPTH )

SW(T ) ∈ O(1).

(3) For α ∈ ω
(
n2

m

)
, we have SW(OPTH )

SW(T ) ∈ O
(

min
{
m
n , α

n
m

}
+ 1
)
.

Proof of (1). Let V := VH and O := OPTH . Since T is a MRCST of H, we have dT (V, V ) ≥
dO(V, V ). This yields

SW(O)
SW(T ) = 2α|EO|+ dO(V, V )

2α|ET |+ dT (V, V ) ≤
2αm+ dT (V, V )

2α(n− 1) + dT (V, V ) ≤
m

n− 1 + 1 ∈ O
(m
n

)
. J

Proof of (2). Let V := VH and O := OPTH . We have 2α|ET | ≤ 2α|EO| ≤ 2αm ∈ O(n2)
and dO(V, V ) ∈ Ω(n2). We also know that dO(V, V ) ≤ dT (V, V ) because T is a MRCST.
This yields

SW(O)
SW(T ) = 2α|EO|+ dO(V, V )

2α|ET |+ dT (V, V ) ∈ O
(
dO(V, V )
dT (V, V )

)
= O(1). J

Proof of (3). Let V := VH and O := OPTH . Algorithm 1 uses the greedyLongPath
algorithm to construct an initial tree that contains a path of at least length l ≥ m

n [35]. Every
node in that tree has a distance of at least l

3 to at least l
3 of the nodes on the long path.

This means that the total distances are at least n
(
l
3
)2 ∈ Ω

(
m2

n

)
. Since Algorithm 1 only

increases the total distances, this is a lower bound for every solution found by the algorithm,
and therefore also for the MRCST. With this, we get

SW(O)
SW(T ) = 2α|EO|+ dO(V, V )

2α|ET |+ dT (V, V ) ≤
2αm

2α(n− 1) + dT (V, V ) + dT (V, V )
2α(n− 1) + dT (V, V )

∈ O

(
αm

αn+ m2

n

+ 1
)

= O
(

min
{m
n
,α

n

m

}
+ 1
)
. J

Since finding the MRCST is NP-hard [16], these are only existence results. However, the next
theorem yields a bound for dense networks and the computed SMRCST from Algorithm 1.

I Theorem 13. Let H be a connected host network containing n nodes and m edges and T
be the SMRCST obtained by Algorithm 1. Then for α ∈ O(n), we have SW(OPTH )

SW(T ) ∈ O
(
n4

m2

)
.

Proof. Let V := VH and O := OPTH . We can trivially upper bound the distances and
number of edges with dO(V, V ) ∈ O(n3) and |EO| ≤ m. Since T is a result of Algorithm 1,
we have dT (V, V ) ∈ Ω

(
m2

n

)
, as seen in the previous proof. This yields

SW(O)
SW(T ) = 2α|EO|+ dO(V, V )

2α|ET |+ dT (V, V ) ≤
2αm

2α(n− 1) + m2

n

+ n3

2α(n− 1) + m2

n

∈ O
(
n2

m
+ n4

m2

)
= O

(
n4

m2

)
. J

This means, for α ≤ n
3 and a dense host network, we can compute a state which is pairwise

stable and also has a favorable social welfare.
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Figure 6 This figure shows a clique network (black) for a wheel network (yellow).

3.2 Price of Anarchy and Price of Stability
We derive several bounds on the PoA and the PoS for the SDNCG. For the K-SDNCG, the
PoA is already quite high for small α. The next Theorem shows that this gets even worse for
general host networks since the PoA is linear up to α ≤ n and super-constant for α ∈ o(n2).

I Theorem 14 (Price of Anarchy).
(1) The Price of Anarchy is in O(n).
(2) For α < 1, the Price of Anarchy is in Θ(n).
(3) For 1 ≤ α ≤ n, the Price of Anarchy is in Θ(n).
(4) For n < α ≤ n2, the Price of Anarchy is in Ω

(
n2

α

)
.

(5) For 1
4 (n− 1)2 < α ≤ 1

24 (n− 2)n(n+ 2), the Price of Anarchy is in Θ(1).
(6) For α > 1

24 (n− 2)n(n+ 2), the Price of Anarchy is 1.

Proof of (1) and (2). This follows in the same way as (1) and (2) of Theorem 5. J

Proof of (3) and (4). Let W = (VW , EW ) be a wheel network on n′ :=
⌊
n
2
⌋
nodes, i.e.,

VW := {v1, . . . , vn′} and
EW := {{v1, vi} | 2 ≤ i ≤ n′} ∪ {{vi, vi+1} | 2 ≤ i ≤ n′} ∪ {{v2, vn′}}.

We then define the host network H as the clique network obtained by replacing every node
of W by a clique of size 2. (See Figure 6 for an illustration.) For odd n, we instead replace
the central node by a clique of size 3. We see that H contains n nodes, Θ(n) edges, and most
importantly a Hamilton path. We also know that H is stable because of Theorem 3 and
since no edge can be added. This yields the following lower bound for the Price of Anarchy

PoA ≥ SW (P )
SW (H) = α(n− 1) + Θ(n3)

αΘ(n) + Θ(n2) ∈ Ω
(

min
{
n,
n2

α

})
,

which proves the claim. J

Proof of (5). Let H be a (connected) host network and O := OPTH and V := VH . From
Item 2 we know that H itself is the only pairwise stable network. Since we can bound
|EO| ≤ |EH | and dO(V, V ) ≤ n3, we obtain

PoAn ≤
SW(O)
SW(H) = 2α|EO|+ dO(V, V )

2α|EH |+ dH(V, V ) ≤
2α|EH |+ n3

2α|EH |
∈ Θ

(
1 + n3

αn

)
= Θ(1).

J

Proof of (6). This follows directly from the host network being socially optimal and the
only stable network (see Theorem 7 and Theorem 9). J
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I Theorem 15 (Price of Stability).
(1) The Price of Stability is in O(n).
(2) For α ≤ 1, the Price of Stability is 1.
(3) For 1 < α ≤ n

3 , the Price of Stability is in O(
√
n).

(4) For 1
4 (n− 1)2 < α ≤ 1

24 (n− 2)n(n+ 2), the Price of Stability is in Θ(1).
(5) For α > 1

24 (n− 2)n(n+ 2), the Price of Stability is 1.

Proof of (1), (4), and (5). This follows from Theorem 14 and the Price of Anarchy being
an upper bound for the Price of Stability. J

Proof of (2). This follows directly from the MRCST being socially optimal and stable (see
Theorem 7 and Theorem 9). J

Proof of (3). Let H be a (connected) host network and T be the MRCST of H. Let
furthermore O := OPTH and V := VH . From Theorem 10 we know that T is stable. From
Theorem 7 and Theorem 12, we know that

SW(O)
SW(T ) ∈ O

(
min

{m
n
,α

n

m

})
≤ O

(
min

{
m

n
,
n2

m

})
≤ O

(√
n
)
. J

4 Conclusion

We introduced and analyzed a natural game-theoretic model for network formation governed
by social distancing. Besides modeling this timely issue, our model resembles the inverse
compared to the well-known (bilateral) Network Creation Game [23, 18]. Thus, via our
analysis we could explore the impact of inverting the utility function in a non-trivial strategic
game. We find that this inverts some of the properties, like the rough structure of optimum
states, while it also yields non-obvious insights. First of all, for the variant with non-complete
host networks we could show a strong equilibrium existence result, whereas no such result is
known for the inverse model. Moreover, we established that the PoA is significantly higher
in the (K-)SDCNG compared to the (bilateral) NCG. This demonstrates that the impact of
the agents’ selfishness is higher under social distancing, which calls for external coordination.

The most obvious open question for future work is to settle the equilibrium existence.
Do pairwise stable states exist for all connected host networks H and α? Another research
direction would be to consider the unilateral variant of the SDNCG. While this no longer
realistically models the formation of social networks, it might still yield interesting insights
and it allows for studying stronger solution concepts like the Nash equilibrium or strong Nash
equilibria, similar to [33, 6]. Also, altering the utility function, e.g., to using the maximum
distance instead of the summed distances, or the probability of infection, similar to [13],
seems promising. Finally, also considering weighted host networks, as in [11], where the edge
weight models the benefit of the social interaction, would be an interesting generalization.
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