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Abstract

We consider the problem of multicommodity flows in planar graphs. Okamura and
Seymour [11] showed that if all the demands are incident on one face, then the cut-condition
is sufficient for routing demands. We consider the following generalization of this setting
and prove an approximate max flow-min cut theorem: for every demand edge, there exists a
face containing both its end points. We show that the cut-condition is sufficient for routing
Ω(1)-fraction of all the demands. To prove this, we give a L1-embedding of the planar metric
which approximately preserves distance between all pair of points on the same face.

1 Introduction

Given a graph G with edge capacities and multiple source-sink pairs, each with an associated
demand, the multicommodity flow problem is to route all demands simultaneously without
violating edge capacities. The problem was first formulated in the context of VLSI routing in
the 70’s and since then it has seen a long and impressive line of work.

The demand graph, H is the graph obtained by including an edge (si, ti) for a demand with
source-sink si, ti. A necessary condition for the flow to be routed is that the capacity of every
cut exceeds the demand across the cut. This condition is known as the cut-condition and is
known to be sufficient when G is planar and all the source-sink pairs are on one face [11] or
when G+H is planar [14]. However, one can construct small instances where the cut-condition
is not sufficient for routing flow. When G is series-parallel, if every cut has capacity at least
twice the demand across it, then flow is routable [6, 3]. The flow-cut gap of a certain graph
class is the smallest α such that flow is routable when capacity of every cut is at least α times
the demand across it. Thus, for series-parallel graphs, the flow-cut gap is 2. For general graphs,
the flow-cut gap is Θ(log k) [10], where k is the number of demand pairs.

The flow-cut gap for planar graphs (G planar, H arbitrary) is O(
√

log n) [12] and is con-
jectured to be O(1) [6]. Chekuri et al. [4] showed a flow-cut gap of 2O(k) for k-outerplanar
graphs. Lee et al. [8] made progress towards this conjecture by showing an O(log h) bound on
the flow-cut gap, where h is the number of faces on which source-sink vertices are incident.
Filtser [5] further improved his bound by showing a flow-cut gap of O(

√
log h), when all the

source-sink vertices are incident on h faces. In this paper, we consider instances where the
source and sink of every demand lie on the same face, but all source-sink pairs don’t necessarily
lie on a single face, and show that the flow-cut gap of such instances is O(1). It is well known
that the cut-condition is not sufficient for such instances (see Figure 1). A common approach
to establish bounds on the flow-cut gap is to bound the L1 distortion incurred in embedding an
arbitrary metric on the graph G into a normed space. This, for instance, has been the method
used to establish flow-cut gaps for general graphs [10], series-parallel graphs [6, 3] and planar
graphs [12]. We too build on this technique to prove our results (see Theorem 5 and 6).
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Figure 1: This example first appeared in the work of Okamura and Seymour [11]. All supply
(blue) and demand (red) edges have value 1. S (green) is a cut. The total capacity of supply
edges across S is three while S separates three units of demand; hence S satisfies the cut-
condition. One can check that no cut violates the cut-condition. Since the source-sink of every
demand is distance two apart, a total capacity of 4 · 2 = 8 is required for a feasible routing, but
only six are available. Hence, no feasible routing is possible. This also implies that no more
than 3/4 of every demand can be routed simultaneously. Figure on the right shows a feasible
routing of 3/4 of every demand, which implies a flow-cut gap of 4/3.

2 Definitions and Preliminaries

Let G = (V,E) be a simple graph with edge capacities c : E → R≥0. We call this the supply
graph. Let H = (V,D) be a simple graph with demands on edges d : D → R≥0. We call this the
demand graph. The objective of the multicommodity flow problem is to find paths between
the end points of demand edges in the supply graph such that the following hold: for every
demand edge e ∈ D, d(e) paths are picked in the supply graph and every supply edge e ∈ E is
present in at most c(e) paths.

We say that an instance is feasible if paths satisfying the above two conditions can be found.
We also call such an instance integrally feasible. If there exists an assignment of positive real
numbers to paths such that total flow for every demand edge e ∈ F is de and total value of
paths using a supply edge e ∈ E is at most ce, then we say that the instance is (fractionally)
feasible. A cut S ⊆ V is a partition of the vertex set (S, V \S). The number of edges of G going
across the cut is denoted by δG(S). Similarly, δH(S) denotes the number of demand edges going
from S to V \ S. One necessary condition for routing the flow (fractionally or integrally) is as
follows: for every S ⊆ V, δG(S) ≥ δH(S). In other words, across every cut, total supply should
be at least the total demand. This condition is also known as the cut-condition. In general,
the cut-condition is not sufficient for a feasible routing. We can ask for the following relaxation:
given an instance for which the cut-condition is satisfied, what is the maximum value of f , such
that f fraction of every demand can be routed? The number f−1 is known as the flow-cut gap
of the instance. There is an equivalent definition of the flow-cut gap: given an instance (G,H)
satisfying the cut condition, the smallest number k, such that (kG,H) is feasible, where kG
denotes the graph with every edge capacity multiplied by k (see Figure 1 for an illustration).
The following two classic results identify settings where the cut-condition is also sufficient for
routing demands in planar graphs. We will be invoking these to prove our results.

Theorem 1 (Okamura-Seymour [11]) If G is a planar graph, all the edges of H are re-
stricted to a face and G + H is eulerian, then the cut-condition is necessary and sufficient for
integral routing of all the demands.
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Theorem 2 (Seymour [14]) If G+H is planar and eulerian, then the cut-condition is nec-
essary and sufficient for integral routing of all the demands.

Note that if eulerian condition is not satisfied, we get a half integral flow. Both the results
can be converted into algorithms which run in polynomial time. In this paper, we will not
be concerned with (half) integral flows and focus on proving flow-cut gap for instances that
generalize the setting of the above stated results (see Theorem 5).

From now on, we assume a fixed planar embedding of G. Without loss of generality, one can
assume that G is 2-vertex connected. If there is a cut vertex v and ab is a demand separated by
removal of v, then replacing ab by av, vb maintains the cut-condition. By doing this for every
cut vertex and demand separated by them, we get separate smaller instances for each 2-vertex
connected component. Hence, every vertex is a part of cycle corresponding to some face. By
our assumption, for every demand edge there exists a face such that both its end points lie on
that face. Hence, we can associate every demand with a face. We abuse notation and use f to
also denote the edges and vertices associated with the cycle of face f . Given a set S, we denote
the subgraph induced by vertices in S as G[S]. We call a subset A ⊆ V central if both G[A]
and G[V −A] are connected. The following is well-known.

Lemma 1 ([13]) (G,H) satisfies the cut-condition if and only if all the central sets satisfy the
cut-condition.

The set of all faces of G will be denoted by F . The dual of a planar graph GD = (V D, ED)
is defined as follows: V D = F and if fi, fj ∈ F share an edge in G, then (fi, fj) ∈ ED. It is a
well known fact that edges of a central cut in G correspond to a simple circuit in GD and vice
versa. Given a graph G = (V,E) with edge length l : E → R≥0, we use dG(u, v) to denote the
shortest path distance between u and v in G w.r.t l. We now describe the connection between
flow-cut gap and embedding vertices into normed space.

2.1 Embedding Metrics into L1

Given an edge weighted graph G = (V,E) with edge length l : E → R≥0, associated shortest
path metric dG, a graph H = (V, F ) and an embedding f of vertices V into L1, the contraction
and expansion of f are the smallest α, β respectively, such that ||f(u) − f(v)||1 ≥ dG(u, v)/α
for all (u, v) ∈ F and ||f(u) − f(v)||1 ≤ β · dG(u, v) for all (u, v) ∈ E. The distortion of
the embedding, dist(G,H, f), is α · β. Given G,H, we are generally interested in finding an
embedding with low distortion. If H is a clique, we refer to dist(G,H, f) simply as dist(G, f)
and call it the distortion of G with respect to f . Linial et al. [10] built on the result of
Bourgain [1], and gave a polynomial time algorithm that embeds any graph on n vertices into
L1 with distortion O(log n). Furthermore, this result is asymptotically the best possible, as
there exist instances for which any embedding into L1 has distortion Ω(log n). There is a rich
literature on finding low distortion embeddings for special graph classes. It is well known that
a tree can be embedded into L1 with distortion 1, outerplanar graphs with distortion 1 [11],
k-outerplanar graphs with distortion 2O(k) [4], series-parallel graphs with distortion 2 [3]. Rao
[12] showed that any planar metric can be embedded into L1 with distortion O(

√
log n) and

there has essentially been no improvement upon this in the last two decades. It is conjectured
that any planar graph can be embedded into L1 with distortion O(1) [6] (also known as the
GNRS-Conjecture). In this paper, we make progress towards this conjecture. Given a drawing
of a planar graph in the plane, let H be the set of all pairs of vertices (u, v) such that u and
v lie on the same face. We show the existence of a polynomial time computable f : V → L1

such that dist(G,H, f) = O(1). In this paper, we will work exclusively with the 1-norm, so
we drop the subscript and denote ||f(u) − f(v)||1 simply as ||f(u) − f(v)||. Also, if β = 1, we
say that the embedding is non-expansive. By scaling, we may convert any L1 embedding into
a non-expansive one.
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2.2 Flow-Cut Gap and Embedding into L1

Flow-cut gaps and embedding graphs into L1 are intimately related. This connection was
first observed by Linial et al. [10], who used it to prove flow-cut gap results for arbitrary
graphs. We describe this connection formally now. Let G = (V,E), H = (V, F ) be fixed
graphs and c : E → R≥0, d : F → R≥0 and l : E → R≥0 be the capacity, demand and
length functions on respective edge sets. Let I be the set of all multicommodity flow in-
stances G = (V,E, c), H = (V, F, d) for which the cut-condition is satisfied. Let cong(G,H)
denote the maximum congestion required for routing in any multicommodity flow instance in
I. Let dist(G,H) be the minimum number such that for any length function l, there ex-
ists a f such that dist(G,H, f) ≤ dist(G,H), where G = (V,E) with edge-length l. The
congestion-distortion theorem states that cong(G,H) = dist(G,H). See Section 3 of [2]
for a simple proof of this fact using LP duality. This connection has been exploited extensively
to prove flow-cut gap results for general graphs [10], series-parallel graphs [3, 6] and planar
graphs [12]. All these results proceed by showing the existence of a low distortion embedding
of the corresponding metric into L1. Using the congestion-distortion theorem, we now restate
the theorem of Okamura and Seymour [11] and Seymour [14] in terms of metric embedding.

Theorem 3 (Okamura-Seymour[11]) Let G = (V,E) be a planar graph with edge length
l : E → R≥0 and t ∈ F be one of its faces. Then there exists an embedding of V into L1 such
that for all u, v ∈ t, ||f(u)− f(v)|| = dG(u, v) and for all (u, v) ∈ E, ||f(u)− f(v)|| ≤ dG(u, v) =
l(u, v).

Theorem 4 (Seymour[14]) Let G = (V,E) be a planar graph with edge length l : E →
R≥0 and H = (V, T ) be a demand graph such that G + H is planar. Then there exists an
embedding of V into L1 such that for all (u, v) ∈ T, ||f(u) − f(v)|| = dG(u, v) and for all
(u, v) ∈ E, ||f(u)− f(v)|| ≤ dG(u, v) = l(u, v).

2.3 Cut Metrics and L1 Embedding

Suppose we have a set of cuts with non-negative weights C = {(C1, w1), . . . , (Ck, wk)}. Define
δCi(u, v) to be wi if exactly one of u, v is contained in Ci and 0 otherwise. Let δC(u, v) =∑k

i=1 δCi(u, v). It is easy to verify that δC induces a metric on V . We refer to δC as the distance
induced by the cuts in C or a cut-metric C. One can construct f : V → Rk such that ∀u, v we
have ||f(u)−f(v)||1 = δC(u, v) as follows: for any vertex u, define f(u) = (u1, u2, . . . , uk) where
ui = wi if u ∈ Ci, 0 otherwise. In fact, the converse of above is also true: given any embedding
of vertices into L1, there exists a set of weighted cuts C such that the distance metric induced
by C is equal to the distance metric induced by the L1 embedding (see Lemma 15.2 of [15] for
a proof). Hence, to show a low distortion L1 embedding of a metric, it is equivalent to show
a collection of cuts which preserve distances with low distortion. Using the aforementioned
equivalence of the cut-metric and L1 embedding, we us them interchangeably from now on.
Given a scalar α and a collection of weighted cuts C, α · C denotes the the same collection of
cuts with the weight of all cuts scaled by a (multiplicative) factor of α.

3 Our Contribution

We generalize the result of Okamura and Seymour [11] and prove the following approximate
max flow-min cut theorem:

Theorem 5 Let G be an edge-capacitated planar graph and H be a set of demand edges such
that for each (u, v) ∈ H, there exists a face f containing both u and v. If the cut-condition is
satisfied, then there exists a feasible routing of Ω(1)-fraction of all the demands.
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Using the congestion-distortion theorem, Theorem 5 can be stated in terms of metric embedding
as follows:

Theorem 6 Let G = (V,E) be a planar graph with edge length l → R≥0 and T be pairs
of vertices (u, v) such that both u and v lie on the same face. Then there exists a constant
c > 1 and an embedding g : V → L1 such that ||g(u) − g(v)|| ≥ dG(u, v)/c for (u, v) ∈ T and
||g(u)− g(v)|| ≤ l(u, v) for (u, v) ∈ E.

We now give a brief overview of our approach. As mentioned before, we work with a fixed
embedding of the given planar graph in the plane. We call a face f ∈ F geodesic if for all
u, v ∈ f , dG(u, v) is equal to the shortest path distance between u, v using only the edges of
the cycle corresponding to f . A face which is not geodesic is called non-geodesic. Let FG
and FN denote the set of all the geodesic and non-geodesic faces. Given a face f , let Gf be the
subgraph enclosing minimal area in the plane that supports the metric on the vertices of face
f . Let Sf be the minimal area cycle bounding Gf in the plane. Given a cycle S, let R(S) ⊆ R2

be the open region contained inside S.
If f is a geodesic face, then Gf is exactly the cycle bounding the face, i.e. Gf = Sf . In

Section 4, we first show that the set {R(Sf )|f ∈ F} forms a laminar or non-crossing set system.
This implies that there is a face f with minimal R(Sf ), i.e. for any f ′ 6= f either R(Sf ) ⊆ R(Sf ′)
or R(Sf ) ∩ R(Sf ′) = ∅. We then go on to show that removing the edges of (Gf \ Sf ) doesn’t
modify the metric on any of the non-geodesic faces other than f . We then go on to find a suitable
embedding of the graph (G \ Gf ) ∪ Sf inductively and show how to extend the embedding to
include all the faces contained in R(Sf ). This extension argument turns out to be non-trivial
and forms the core of our proof. To do this extension, we need to develop several new tools.
In Section 4, we give an algorithm to modify the original length function so as to allow a nice
inductive decomposition. We call such length functions α-good and believe that this could be a
useful tool in proving flow-cut gaps for other planar instances as well. In Section 5, we come up
with an embedding for all geodesic pairs of vertices,i.e. pairs of vertices for which there exists
a shortest path using only the edges on the corresponding face. In Section 6, we develop a
low distortion embedding for all pairs of vertices whose shortest path uses a fixed vertex of the
graph. We believe that this problem is interesting in its own right and could prove to be useful
in other settings. In Sections 7 and 8, we combine the tools developed in previous sections to
complete the inductive step.

4 Laminar Structure of Face Supports

We partition the set of faces of a planar graph G into two sets: geodesic and non-geodesic.
A face f is called geodesic if for all u, v ∈ f , there exists a shortest path between u and v
using only the vertices of the cycle associated with f . A face which is not geodesic is called a
non-geodesic face. Let FG, FN denote the set of geodesic and non-geodesic faces. Observe that
F = FG ∪ FN .

Let f be a face of G. A set of edges E′ ⊆ E is called a support of f if for all u, v ∈ f ,
dG′(u, v) = dG(u, v), where G′ = (V,E′). In other words, restricting to E′ doesn’t change the
shortest path metric on f . A support of f is called minimal if deleting any edge from it changes
the shortest path metric on vertices of f . Given a cycle C, let R(C) (resp. R(C)) denote the
open (resp. closed) region contained inside the cycle C in the planar embedding of G. We
choose R(C) and R(C) such that it does not contain the infinite face. Let Sf be a cycle such

that R(Sf ) is the inclusion wise minimal region containing a support of f (i.e. there exists a

support Ef of f such that u, v ∈ R(Sf ) for all (u, v) ∈ Ef ). Note that if f ∈ FG, then Sf = f .

Also, for any f ∈ F , R(f) ⊆ R(Sf ). We stress that the Sf is a function of the edge-lengths.

Lemma 2 Let f1, f2 ∈ FN . Then one of the following must hold: R(Sf1) ∩ R(Sf2) = ∅ or
R(Sf1) ⊆ R(Sf2) or R(Sf2) ⊆ R(Sf1).
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Proof. For the sake of contradiction, assume that there exist f1, f2 ∈ FN such that R(Sf1) \
R(Sf2) 6= ∅ and R(Sf2) \ R(Sf1) 6= ∅. Then either R(f1) ∈ R(Sf2) or R(f1) ∩ R(Sf2) = ∅. We
present the argument for the case when R(f1) ∈ R(Sf2), an analogous argument works for the
second case as well. Suppose R(f1) ∈ R(Sf2). Then there must exist u1, v1 ∈ f1 such that
any shortest path from u1 to v1 exits and enters the region R(Sf2) at least once. Let P (u1, v1)
be one such shortest path and x1, y1 be the first point of entry/last point of exit of P (u1, v1)
from/into R(Sf2) respectively. Let P (x1, y1) be the portion of the path between x1 and y1 on

the cycle Sf2 . Note that P (x1, y1) is a path on the boundary of R(Sf2). Since R(Sf2) defines
the minimal region containing the support of the metric on f2, there must exist u2, v2 ∈ f2 such
that some shortest path between u2 and v2 uses an edge on the path P (x1, y1). Let P (u2, v2) be
such a shortest path and let x2, y2 be the first and the last point of intersection of P (u2, v2) with
P (u1, v1). Then replacing the portion of the path P (u1, v1) between x2 and y2 by portion of the
path P (u2, v2) between x2 and y2, we obtain a shortest u1, v1 path contained completely inside
Sf2 . This contradicts our assumption on the minimality of R(Sf1). We can use an analogous
argument to arrive at a contradiction in case R(f1) ∩R(Sf2) = ∅. Hence such f1, f2 can’t exist
and it must be true that R(Sf1) ∩ R(Sf2) = ∅ or R(Sf1) ⊆ R(Sf2) or R(Sf2) ⊆ R(Sf1) for any
f1, f2 ∈ FN .

Given a cycle C, let I(C) be the set of vertices contained in R(C). Note that I(C) doesn’t
contain vertices of C. Let α > 1 be a given constant. Given a face f ∈ FN and its support
cycle Sf , we say that Sf is α-loose if the following holds: for any u, v ∈ f , the length of any
path between u and v using only the vertices in I(Sf ) ∪ {u, v} is at least α · dG(u, v).

To make the induction argument work, only the laminar property of face supports is not
sufficient and we need a stronger structure. We now describe this property in more detail now.
By Lemma 2, the set of regions {R(Sf )|f ∈ FN} forms a laminar structure. This implies that
there exists a face f ∈ FN such that for any f ′ ∈ FN , eitherR(Sf ) ⊆ R(Sf ′) orR(f)∩R(Sf ′) = ∅.
We call such faces innermost. Note that there could be multiple innermost faces. An α-good
length function l : E → R+ is defined inductively as follows: if f ∈ FN is an innermost face,
then the graph obtained by removing all the edges contained completely inside R(Sf ) is α-good
and Sf is α-loose. We now show than any length function can be converted into a α-good one
by modifying the edge lengths by a factor of at most α.

Theorem 7 Let G = (V,E) be a planar graph with fI as the infinite face, edge length l : E →
R≥0 and α > 1 be a constant. Then there exists a new edge length l′ : E → R+ such that G is
α-good with respect to l′, l′(e) = l(e) for e ∈ E ∩ fI and l(e)/α ≤ l′(e) ≤ l(e) for e ∈ E.

Proof. We prove the theorem by induction on the number of faces in the graph. In case |F | = 1
or there are no non-geodesic faces, the statement of the theorem follows trivially by setting
l′ = l. Suppose that G has at least one non-geodesic face w.r.t the length function l. By Lemma
2, regions in the set {R(Sf )|f ∈ FN} form a laminar structure. A face f ∈ FN is called maximal
if for any other face f ′, either R(Sf ′) ⊆ R(Sf ) or R(Sf ′) ∩ R(Sf ) = ∅. Let f1, f2, . . . , fk be
the maximal faces of G w.r.t length function l. Let Gi be the graph consisting of vertices and
edges contained completely inside R(Sfi). If k = 1 and R(fI) ⊂ R(Sf1) or k ≥ 2, then each Gi
has strictly less number of faces than G. By induction, for each Gi we have length functions
li satisfying the conditions of the theorem. We construct the new length function l′ as follows:
for an edge (u, v) not contained in any of the Gi, we set l′(u, v) = l(u, v). If an edge (u, v) is
contained in Gi, we set l′(u, v) = li(u, v). Note that if an edge (u, v) is contained in Gi and
Gj , then it must be present on the infinite face of Gi, Gj and li(u, v) = lj(u, v) = l(u, v) (by
induction). Hence l′ is a valid length function and by construction G is α-good with w.r.t l′.
Suppose that k = 1 and R(Sf1) = R(fI). We consider two cases depending on whether face fI
is α-loose or not.

Suppose the face fI is not α-loose. By the definition of a α-loose face, there must exist
u, v ∈ fI such that the shortest u, v path using no edges on fI has length β · dG(u, v), for some
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β ≤ α. Let P = {u, u1, . . . , ul, v} be such a path. For every edge e ∈ P , we set l′(e) = l(e)/β.
Since P contains no edge of the infinite face fI , the length of edges on fI remain unchanged
due to this operation. The path P divides R(fI) into two closed regions, say R1 and R2. Let
G1 ⊂ G and G2 ⊂ G be the graphs contained inside R1 and R2 respectively. Since P is a
shortest u, v path w.r.t l′, it follows that for any f ∈ Gi, R(Sf ) ⊆ Ri for i = 1, 2. Hence, if
u, v ∈ Gi, then dGi(u, v) = dG(u, v) for i = 1, 2. Therefore we can compute length functions
for G1, G2 separately by using induction and combine them as before. Using induction, we find
length functions l1, l2 satisfying the conditions of the theorem and set l′(e) = li(e) depending
on whether e ∈ G1 or e ∈ G2. If e belongs to both to G1 and G2, then e is on the infinite face
of G1 and G2 and by the statement of the theorem, l1(e) = l2(e). Hence l′ is a valid length
function satisfying the conditions of the theorem.

Suppose that face the fI is α-loose. Then the statement of the theorem holds for non-
geodesic face f1. Let g1, g2, . . . , gk be the maximal non-geodesic faces contained strictly inside
R(fI). By the laminar structure of regions in {R(Sf )|f ∈ FN}, we have R(Sgi)∩R(Sgj ) = ∅ for

i 6= j. Let Gi be the graph consisting of vertices and edges contained completely inside R(Sgi).
By induction hypothesis, we have length functions l1, . . . , lk such that each one of them satisfies
the statement of the theorem. We set l′(e) = l(e) for any edge not contained inside any of the
G′is and set l′(e) = li(e) if e ∈ Gi. Since for any edge e ∈ Sgi , l′(e) = l(e), we do not create any
new non-geodesic face in R(fI)\∪ki=1R(Sgi). We complete the proof of the theorem by showing

that R(Sf1) = R(fI) and fI is α-loose w.r.t l′. To show this, we prove that the metric on f1
w.r.t to l and l′ are the same.

Lemma 3 Let u, v ∈ f ∈ FN and P = {u, u1, u2, . . . , ul, v} be a shortest u, v path, then P ∩
I(Sf ) = {u, v}.

Proof. Suppose there exists u, v and a shortest path P = {u, u1, u2, . . . , ul, v} between them
such that {u1, u2, . . . , ul}∩ I(Sf ) 6= ∅. Let S′f be the cycle created by replacing the u, v path on

the cycle Sf by P such that R(f) ⊆ R(S′f ). Since {u1, u2, . . . , ul} ∩ I(Sf ) 6= ∅, R(S′f ) ⊂ R(Sf )

and for any u1, v1 ∈ f , there exists a u1, v1 shortest path contained completely inside R(S′f ).

Hence, R(S′f ) contains a support of face f and this contradicts the minimality of Sf . Hence,
P ∩ I(Sf ) = {u, v} and this completes proof of the lemma.

By Lemma 3, deleting the edges contained completely inside a R(Sgi) doesn’t affect the
metric on f1. Doing this for each i = 1, 2, . . . , k in a sequential order and noting that for any
e ∈ ∪li=1Sgi , l

′(e) = l(e), we conclude that the metric on f1 remains unchanged under l′, and
this completes the proof of the theorem.

5 Embedding For The Geodesic Pairs

Let G = (V,E) be a planar graph and F be the set of its faces and u, v ∈ V be a pair of vertices
on the same face (i.e. there exists a face f ∈ F such that u, v ∈ f). Furthermore, suppose
that there exists a shortest path between u and v using only the edges of f . We call (u, v) a
geodesic pair. Let T be the set of all the geodesic pairs in G. In Theorem 9, we show that
there exists an embedding of V into L1 which preserves the distances between all the geodesic
pairs within a constant factor. Using the congestion-distortion theorem, the following result
follows directly from Theorem 12 of Kumar [9].

Theorem 8 Let G = (V,E) be a planar graph with edge length l : E → R≥0 and T be pairs
of vertices (u, v) such that both u and v lie on the same face. Let Tf ⊆ T denote the set of
pairs of vertices incident on face f . Suppose for each f ∈ F , there exists disjoint set of vertices
X1, Y1, X2, Y2, . . . , Xk, Yk ⊆ f such that Xi, Yi appear contiguously on f in clockwise order and
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for each (u, v) ∈ Tf , u ∈ Xj , v ∈ Yj for some j ∈ {1, 2, . . . , k}. Then there exists an embedding
h : V → L1 such that ||h(u)−h(v)|| ≤ dG(u, v) for all (u, v) ∈ E and ||h(u)−h(v)|| ≥ dG(u, v)/3
for all (u, v) ∈ T .

Theorem 9 Let G be a planar graph with edge length l : E → R+. Then there exists an
embedding g : V → L1 such that ||g(u)−g(v)|| ≤ dG(u, v) for all (u, v) ∈ E and ||g(u)−g(v)|| ≥
dG(u, v)/21 for all (u, v) ∈ T .

Proof. We first construct a set of geodesic pairs Tp ⊆ T as follows. Initially Tp = ∅. Let f ∈ F
and V (f) = {v1, v2, . . . , vn, vn+1 = v1} be the vertices of f in clockwise order. We partition
V (f) into contiguous sets of vertices as follows: let vk be the largest k such that (v1, vk) is a
geodesic pair. We set Tp = Tp ∪ (v1, vk) and S1

f = {v1, v2, . . . , vk}. We then start from vk+1

and find the largest index l such that (vk+1, vl) is a geodesic pair, set Tp = Tp ∪ (vk+1, vl) and
S2
f = {vk+1, vk+2, . . . , vl}, and we continue with this process until all the vertices in C(f) have

been exhausted, i.e. C(f) = ∪i≥0Sif . We do the above for all the faces of G. By construction,
the graph G ∪ Tp is planar. Therefore by Theorem 4, we have an embedding, say h : V → L1,
that preserves the distance between the end points of vertices in Tp exactly. In other words,
||h(u)− h(v)|| = dG(u, v) for all (u, v) ∈ Tp and ||h(u)− h(v)|| ≤ dG(u, v) for all (u, v) ∈ E. Let
T ′ = {(u, v)|u, v ∈ Sif , f ∈ F, i ≥ 0}. By construction, the first and the last vertex (w.r.t the

numbering above) of each of the set Sif form a geodesic pair, hence for all u, v ∈ T ′, we have
that ‖|h(u)− h(v)|| = dG(u, v).

In Claim 1, we show that the geodesic pairs in T\T ′ can be partitioned into T0, T1, T2, T3, T4, T5
such that each one of them satisfies the condition of Theorem 8. Then by Theorem 8, there exists
hi : V → L1 such that ||hi(u)−hi(v)|| ≤ dG(u, v) for (u, v) ∈ E and ||hi(u)−hi(v)|| ≥ dG(u, v)/3

for (u, v) ∈ Ti for i = 0, 1, 2, 3, 4, 5. By setting g =
1

7
(h+h0 +h1 +h2 +h3 +h4 +h5), we obtain

||g(u)− g(v)|| ≤ dG(u, v) for (u, v) ∈ E and ||g(u)− g(v)|| ≥ dG(u, v)/21 for (u, v) ∈ T .

Claim 1 T \ T ′ can be partitioned into T0, T1, T2, T3, T4, T5 such that each of the Ti’s satisfies
the condition of Theorem 8.

Proof. It is sufficient to show that the geodesic pairs incident on each face can be partitioned
into T fi for i = 0, 1, 2, 3, 4, 5 such that each T fi satisfies the condition of Theorem 8. Let
f ∈ F and S1

f , S
2
f , . . . .S

k
f be the partition of C(f) created in the first step. Suppose there exists

(u, v) ∈ T \ T ′ such that u ∈ S[l]
f , v ∈ S

[l+t]
f for some t ≥ 3, where [p] = p if p ≤ k and p − k

otherwise. Then our procedure in the first step would not have created separate partitions for

S
[l+1]
f and S

[l+2]
f and hence such a geodesic pair (u, v) can’t exist. Therefore for all u, v ∈ C(f)

and (u, v) ∈ T \ T ′, one of the following must hold: u ∈ S
[l]
f , v ∈ S

[l+1]
f (called type 1 ) or

u ∈ S[l]
f , v ∈ S

[l+2]
f (called type 2 ) for some l.

Let (u, v) be a geodesic pair (u, v) such that u ∈ Sif and v ∈ Sjf . We say that (u, v) belongs

to class i if min(i, j) mod 3 = i. Let T f0 , T
f
1 , T

f
2 be the geodesic pairs of class 0,1,2 of type 1

incident on the face f and T f3 , T
f
4 , T

f
5 be the geodesic pairs of class 0,1,2 of type 2 incident on

the face f . We set Ti =
⋃
f∈F T

f
i for i = 0, 1, 2, 3, 4, 5. The geodesic pairs in each of the Ti’s

satisfy the condition of Theorem 8 and this completes the proof of the claim.

6 Single Source Shortest Path Embeddings

We next show how to find an embedding such that the distance between all pairs of vertices
whose shortest path uses a fixed vertex v is approximately preserved. To prove this result, we
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make use of a well known result of Klein, Plotkin and Rao [7] on small diameter decomposition.
Let (X,D) be a finite metric space. A distribution µ over (vertex) partitions of X is called
(β,∆)-lipschitz if every partition P in the support of µ satisfies S ∈ P =⇒ diamX(S) ≤ ∆

and moreover for all x, y ∈ X, P
P∼µ

[P (x) 6= P (y)] ≤ β · d(x, y)

∆
. Klein, Plotkin and Rao [7]

showed that there exists a (c,∆)-lipschitz partition of a planar metric where ∆ > 0 is arbitrary
and c is an absolute constant. 1

Theorem 10 (Klein, Plotkin and Rao [7]) Let (X,D) be a finite planar metric and let ∆ ∈
R≥0 be a given number. Then there exists a polynomial-time computable (c,∆)-lipschitz partition
of (X,D), where c is some absolute constant.

Theorem 11 Let G = (V,E) be a planar graph with edge-length l : E → R≥0 and v ∈ V .
Let T = {(si, ti)}ki=1 be the set of pair of vertices such that d(si, ti) = d(v, si) + d(v, ti) for
i = 1, 2, . . . , k. Then there exists an embedding g : V → L1 and a constant β > 1 such that
d(si, ti)/β ≤ ||g(si)−g(ti)|| ≤ d(si, ti) for all i. Furthermore such an embedding can be computed
in polynomial time.

Proof. We first prove the theorem for the special case when d(v, si) = d(v, ti) for all (si, ti) ∈ T .
Let Bi = {x|d(v, x) ≤ 2i+1} for i ≥ 0. Since d(v, sj) = d(v, tj) for each (sj , tj) ∈ T , there exists
an i such that (sj , tj) ∈ Bi+1 \ Bi. Let Ti = {(sj , tj)|2i ≤ d(v, sj) = d(v, tj) ≤ 2i+1} and Gi be
the graph obtained by setting the edge length of all the edges contained inside Pi = Bi−2 and
Qi = V \ Bi+2 to 0. More formally, for all (u,w) ∈ E such that u,w ∈ Pi or u,w ∈ Qi, we set
l(u,w) = 0 to obtain Gi from G. Claim 2 shows that distance between the (si, ti) pairs in Gi are
within a constant factor of the distance in G.

Claim 2 dG(sj , tj)/4 ≤ dGi(sj , tj) ≤ dG(sj , tj) for all (sj , tj) ∈ Ti.

Proof. dGi(sj , tj) ≤ dG(sj , tj) follows directly from construction since each Gi is formed by
setting the length of some edges of G to 0. Since (sj , tj) ∈ Ti, we have d(sj , tj) = d(sj , v) +
d(tj , v) ≥ 2i+1 and d(sj , tj) = d(sj , v) + d(tj , v) ≤ 2i+2. If the shortest path between (sj , tj) in
Gi doesn’t use any vertex in Pi or Qi, then d(sj , tj) remains unchanged and the statement of
claim follows trivially. Suppose the (sj , tj) shortest path in uses a vertex in Pi or Qi. Then we
have:

d(Pi, sj) = d(Bi−2, sj) ≥ d(Bi−2, V \Bi−1) ≥ 2i−1

d(Qi, sj) = d(V \Bi+2, sj) ≥ d(V \Bi+2, Bi+1) ≥ 2i+1

d(Pi, tj) = d(Bi−2, tj) ≥ d(Bi−2, V \Bi−1) ≥ 2i−1

d(Qi, tj) = d(V \Bi+2, tj) ≥ d(V \Bi+2, Bi+1) ≥ 2i+1

We have dGi(sj , tj) ≥ min{d(Pi, sj) + d(Pi, tj), d(Qi, sj) + d(Qi, tj)} ≥ 2i ≥ dG(sj , tj)/4 and the
claim follows.

We now use Theorem 10 to construct a distribution over (vertex) partitions P of Gi by
setting ∆ = 2i−1. Suppose the partition is (c,∆)-lipschitz for some constant c > 0. We
construct a cut metric Ci using P as follows: for each partition P = {P1, P2, . . . , Pk} ∈ P with

weight µ(P ), we include P1, P2, . . . , Pk in Ci, each with weight
µ(P ) ·∆

c
. Claim 3 shows that Ci

preserves distances between the pair of vertices in Ti.

Claim 3 For any (u,w) ∈ Gi, we have δCi(u,w) ≤ dGi(u,w). Furthermore, for any (sj , tj) ∈

Ti, we have δCi(sj , tj) ≥
dGi(sj , tj)

4c
.

1In fact Klein, Plotkin and Rao [7] showed that such a partition exists for any minor-closed family of graphs.
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Proof. By the definition of (c,∆)-lipschitz partition, we have that for any u,w ∈ Gi, probability

that u and w are in separate partitions is at most
c · dGi(u,w)

∆
. Hence, for any u,w ∈ Gi, we

have:

δCi(u,w) =
∑

C∈Ci:|C∩{u,w}|=1

w(C) = P
P∼µ

[P (u) 6= P (w)] · ∆

c
≤ c · dGi(u,w)

∆
· ∆

c
≤ dGi(u,w).

We now show the other part. Since dGi(sj , tj) ≥ 2i > ∆, we have that in every partition P ∈ P,
(sj , tj) are in different subsets of P . This implies that the total weight of cuts in Ci separating

(sj , tj) is at least
∆

c
. Hence, δCi(sj , tj) ≥

2i−1

c
≥ dGi(sj , tj)

4c
and the claim follows.

Claim 4 Let C =
⋃
i≥2
Ci. For any (u,w) ∈ G, we have δC(u,w) ≤ 3 ·dG(u,w). Furthermore, for

any (sj , tj) ∈ T , we have δC(sj , tj) ≥
dG(sj , tj)

16 · c
.

Proof. By Theorem 10, if an edge has length 0 in Gi, then it is not separated by any cut in Ci.
Furthermore, any edge (u,w) ∈ E can be a part of at most three Gi’s. Hence, using Claim 3, we
obtain δC(u,w) ≤ 3·dG(u,w). By Claim 3, for any (sj , tj) ∈ Ti, δCi(sj , tj) ≥ dGi(sj , tj)/4c. Using
Claim 2, we have dGi(sj , tj) ≥ dG(sj , tj)/4. Hence, δC(sj , tj) ≥ δCi(sj , tj) ≥ dG(sj , tj)/16c.

We have shown that the theorem holds when dG(v, sj) = dG(v, tj) for all (sj , tj) ∈ T . We now
prove a more general version of Claim 4 when dG(v, sj) 6= dG(v, tj).

Claim 5 For any (sj , tj) ∈ T , δC(sj , tj) ≥
dG(sj , tj)

16 · c
− 3|dG(v, sj)− dG(v, tj)|.

Proof. Without loss of generality, we may assume that dG(v, sj) ≥ dG(v, tj). Let s′j be the
vertex on a shortest path from v to sj such that dG(v, s′j) = dG(v, tj). By Claim 4, we have
δC(s

′
j , tj) ≥ dG(s′j , tj)/16c. All the cuts in C which contain exactly one of s′j and tj contribute to

δC(s
′
j , tj) and they can be partitioned into two groups: one in which s′j and sj are in the same

partition and the other in which sj and tj are in the same partition. Let’s call them δC(s
′
jsj , tj)

and δC(s
′
j , sjtj) respectively. Observe that,

δC(s
′
j , tj) = δC(s

′
jsj , tj) + δC(s

′
j , sjtj) and δC(s

′
jsj , tj) ≤ δC(sj , tj).

Hence δC(sj , tj) ≥ δC(s′j , tj)− δC(s′j , sjtj). By Claim 4, we have,

δC(s
′
j , sjtj) ≤ δC(s′j , sj) ≤ 3dG(s′j , sj) = 3|dG(v, sj)− dG(v, tj)|

Using δC(s
′
j , tj) ≥ dG(s′j , tj)/16c, we obtain:

δC(sj , tj) ≥ δC(s′j , tj)− 3|dG(v, sj)− dG(v, tj)| ≥ dG(sj , tj)/16c− 3|dG(v, sj)− dG(v, tj)|.

We augment C by the following single source cuts: let V = {v1, v2, . . . , vn} such that dG(v, v1) ≤
dG(v, v2) ≤ . . . ≤ dG(v, vn). Let Ri = {v1, v2, . . . , vi} and w(Ri) = 3 · (dG(vi+1) − dG(vi)) for
i = 1, 2, 3, . . . , n. Let R = {(R1, w(R1)), . . . , (Rn, w(Rn))} and C′ = C ∪ R.

Claim 6 For any (u,w) ∈ G, we have δC′(u,w) ≤ 6 · dG(u,w). Furthermore, for any (sj , tj) ∈
T , we have δC′(sj , tj) ≥ dG(sj , tj)/16c.

Proof. Observe that δR(u,w) = 3 · (dG(v, u)− dG(v, w)) ≤ 3 · dG(u,w). Using Claim 5, for any
(u,w) ∈ E we have, δC′(u,w) = δC(u,w) + δR(u,w) ≤ 3 · dG(u,w) + 3 · dG(u,w) = 6 · dG(u,w).
Using Claim 5, for any (sj , tj) ∈ T we have δC′(sj , tj) = δC(sj , tj) + δR(sj , tj) ≥ dG(sj , tj)/16c−
3|dG(v, sj)− dG(v, tj)|+ 3|dG(v, sj)− dG(v, tj)| = dG(sj , tj)/16c.

Let C′′ = C′/6. Then for any (u,w) ∈ G, we have δC′(u,w) ≤ dG(u,w) and for any (sj , tj) ∈ T ,
we have δC′(sj , tj) ≥ dG(sj , tj)/96c. By using the equivalence between the cut-metric and
L1-embedding, we have the desired g : V → L1 with β = 96c.
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7 Constrained Embedding

Let G = (V,E) be a planar graph and f be its infinite face. Let V (f) = {v1, v2, . . . , vl = v1}
be the vertices on the cycle of f in clockwise ordering. Suppose that we are given a cut-metric
C = {(C1, w1), (C2, w2), . . . , (Cm, wm)} w.r.t V (f) such that each cut Ci ⊆ V (f) corresponds to
a contiguous subset of vertices on cycle of f . We say that C is a cut-metric w.r.t f . Suppose
we wish to extend C to V , i.e. we wish to find a cut-metric D w.r.t V 2 such that D = ∪mi=1Di,
Di = {(D1

i , w
1
i ), (D

2
i , w

2
i ), . . . , (D

k
i , w

ki
i )},

∑ki
j=1w

j
i = wi, Ci ⊆ Dj

i , (V (f) \ Ci) ∩ Dj
i = ∅ for

i = 1, 2, . . . ,m, and δD(u, v) ≤ dG(u, v) for (u, v) ∈ E. We call D an extension of C to G w.r.t
face f . Lemma 4 shows that this is always possible if δC(u, v) ≤ dG(u, v) for u, v ∈ V (f). Note
that by definition of D, it follows that δD(u, v) = δC(u, v) for all u, v ∈ V (f).

Lemma 4 Let G = (V,E) be a planar graph and f be its infinite face. Let C be a cut-metric
w.r.t face f such that δC(u, v) ≤ dG(u, v) for all u, v ∈ f and Ci corresponds to a contiguous set
of vertices on f . Then there exists an extension D of C to G w.r.t f .

Proof. We set up a multicommodity flow instance in the planar dual of G such that all the
sink-source pairs are on the infinite face and the cut-condition is satisfied. We use Theorem 1
to find a feasible flow and the fact that circuits in a planar graph correspond to (central) cuts
in the (planar) dual to finish the proof. Let C = {(C1, w1), (C2, w2), . . . , (Cm, wm)}, V (f) =
{v1, v2, . . . , vl = v1} be the vertices on cycle of f and ei = (vi, vi+1), 1 ≤ i ≤ l − 1 be the edges.
Let GD = (V D, ED) be the planar dual of G and fD be the dual vertex corresponding to the
infinite face f . For each edge eD ∈ ED, we set the capacity of edge eD as c(eD) := l(e). Let
eD1 , . . . , e

D
l−1 be the edges incident on fD in GD. We split the vertex fD into l − 1 vertices

fD1 , . . . , f
D
l−1 such that eDi is the only edge incident on vertex fDi . Note that each of the vertices

fDi lie on a single face of GD.
Each Ci ∈ C separates exactly two of the edges on f , say ej , ek (since each Ci is a contiguous

subset of vertices on f). We set up a multicommodity flow instance in GD as follows: for each
Ci ∈ C, we introduce a demand edge (fDj , f

D
k ) with demand value wi. By Lemma 1, to check

that the cut-condition is satisfied for the instance, we only need to verify it for central cuts. In
this case, each central cut corresponds to a (vi, vj) path in G for some 1 ≤ i < j ≤ l − 1. The
total capacity of the supply edges across such a cut is the length of shortest path between (vi, vj)
in G and total demand across such a cut is equal to δC(vi, vj). Since for each vi, vj ∈ V (f),
δC(u, v) ≤ dG(u, v), the cut-condition is satisfied and we have a feasible flow satisfying all the
demands. Each flow path in GD corresponds to a set of edges in G, which in turn correspond to
a cut in G (recall that a circuit in a planar graph corresponds to a cut in its (planar) dual). Let
D be such a set of cuts. Since the total flow through any edge in GD is at most c(eD) = l(e),
the total weight of cuts in G separating e is at most l(e). Since each D ∈ D corresponds to a
path in GD, D∩ (V (f)\Ci) = ∅. Hence D is a valid extension of C and this completes the proof
of the lemma.

Theorem 12 Let G = (V,E) be a planar graph with edge-length l : E → R≥0 and F be its
set of faces. Furthermore, let S be a α-loose cycle and f2 ∈ F be the unique non-geodesic face
contained inside R(S). Let G1 = (V1, E1) ⊆ G be the graph induced by the vertices and edges in
R(S) and F1 be the set of faces of G1

3. Let C be a cut-metric w.r.t S and α ≥ 12β be a constant
such that dG(u, v)/α ≤ δC(u, v) ≤ dG(u, v) for u, v ∈ S4. Then there exists an extension of C to
G1, say Z, such that for all u, v ∈ f ∈ F1, we have dG(u, v)/α ≤ δZ(u, v) ≤ dG(u, v).

Proof. As mentioned before, we abuse notation and let S also denote the set of vertices and
edges incident on the cycle S. Consider two copies of G1, say H1 = (V1, E1) and H2 = (V1, E1)

2i.e. each cut in D corresponds to a partition of V
3note that S, f2 ∈ F1 and R(S) is the closed region bounded by cycle S
4β is the constant from Theorem 11
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with length functions l1, l2 defined as follows: l1(u, v) := l(u, v) for all (u, v) ∈ S and l(u, v)/α
otherwise; l2(u, v) := 0 for all (u, v) ∈ S and l(u, v) otherwise. By definition of a α-loose cycle, it
immediately follows that for any u, v ∈ S, dH1(u, v) ≥ dG(u, v). Lemma 4 shows that the cuts in
C can be extended to H1 such that δC(u, v) ≤ dH1(u, v) for each (u, v) ∈ E1. Let this cut-metric
be C′. For notational convenience, we create an (equivalent) L1 embedding h : V1 → L1 from C′
by forming a new coordinate for each C ∈ C′ and setting h(u) = 0 if u ∈ C and wC otherwise.

Consider the graph H2 with metric l2. Since the length of all the edges in S have been set
to zero in l2, we may treat all the vertices on the cycle S as a single node, say vS . If dH2(u, v) 6=
dG(u, v) for some u, v ∈ V1, then it must be the case that dH2(u, v) = dH2(u, vS) + dH2(vS , u).
Let T1 be the set of all pairs of vertices (u, v) in H2 such that the shortest path between u and
v in H2 uses the vertex vS . We use Theorem 11 to find an embedding g1 : V1 → L1 such that
dH2(u, v)/β ≤ ||g1(u)− g1(v)|| ≤ dH2(u, v) for all (u, v) ∈ T1.

Let T2 be the set of all geodesic pairs in G2 (see Section 5 for the definition of geodesic pairs).
In this case, we use Theorem 9 to find an embedding g2 : V1 → L1 such that dH2(u, v)/21 ≤
||g2(u)−g2(v)|| ≤ dH2(u, v) for all (u, v) ∈ T2. Let T3 be the set of all pair of vertices (u, v) such
that u, v ∈ f2 i.e. the set of all pairs of points on the non-geodesic face f2. We use Theorem 3
to find an embedding g3 : V1 → L1 such that ||g3(u)− g3(v)|| = dH2(u, v) for all (u, v) ∈ T3 and
||g3(u)− g3(v)|| ≤ dH2(u, v) for all (u, v) ∈ E1.

Let g = (g1 + g2 + g3)/3. Since ||gi(u)− gi(v)|| ≤ dH2(u, v) for i = 1, 2, 3, we have ||gi(u)−
gi(v)|| ≤ dH2(u, v) for (u, v) ∈ E1. Let T be the set of all pair of vertices u, v which lie on the
same face, i.e. T = {(u, v)|u, v ∈ f for somef ∈ F1}. Since f2 is the only non-geodesic face in
F1 \S, for any u, v ∈ T , the shortest path between u, v in H2 either goes through vS or (u, v) is
a geodesic pair or u, v ∈ f2. Hence, T ⊆ T1 ∪ T2 ∪ T3 and we have ||g(u)− g(v)|| ≥ dH2(u, v)/β1

where β1 = max{3 · β, 3 · 21, 3 · 1} = 3β. Let z := h+
α− 1

α
· g.

Claim 7 ||z(u)− z(v)|| ≤ l(u, v) for (u, v) ∈ E1.

Proof. Consider an edge (u, v) ∈ S. Since l1(u, v) = l(u, v) and l2(u, v) = 0 we have:

||z(u)− z(v)|| = ||h(u)− h(v)||+ α− 1

α
· ||g(u)− g(v)|| ≤ l1(u, v) +

α− 1

α
· l2(u, v) = l(u, v)

Now consider an edge (u, v) ∈ E1 \ S. Since l1(u, v) =
l(u, v)

α
and l2(u, v) = l(u, v),

||z(u)− z(v)|| = ||h(u)− h(v)||+ α− 1

α
· ||g(u)− g(v)|| ≤ 1

α
· l(u, v) +

α− 1

α
· l(u, v) = l(u, v).

Claim 8 ||z(u)− z(v)|| ≥ dG(u, v)

α
for (u, v) ∈ T .

Proof. Let (u, v) ∈ T . We consider two cases depending on whether the shortest u, v path
in H2 uses the vertex vS . If the shortest u, v path doesn’t use the vertex vS , then we have
dG(u, v) = dH2(u, v) and,

||z(u)− z(v)|| ≥ α− 1

α
· ||g(u)− g(v)|| ≥ 1

2
· dH2(u, v)

3β
≥ dG(u, v)

α

Suppose that the shortest u, v path uses the vertex vS . Recall that vS was formed by identifying
all the vertices in S as a single vertex. We uncontract vS and let u−u1− v1− v be the shortest
u, v path where u1, v1 ∈ S are the first and last vertices of S on the path. Note that the shortest
u1-v1 path may contain some of the vertices in G\G1. Since δC(u1, v1) ≥ dG(u1, v1)/α, we have,

||h(u)− h(v)|| ≥ dG(u1, v1)

α
− dH1(u1, u)− dH1(v1, v).

12



Using the fact that α ≥ 12β = 4β1, we have:

||z(u)− z(v)|| ≥ dG(u1, v1)

α
− dH1(u1, u)− dH1(v1, v) +

α− 1

α
· dH2(u, u1) + dH2(v1, v)

β1

≥ dG(u1, v1)− dG(u1, u)− dG(v1, v)

α
+

1

2
· dG(u, u1) + dG(v1, v)

β1

≥ dG(u, u1) + dG(u1, v1) + dG(v1, v)

α

=
dG(u, v)

α
.

Using the equivalence of cut-metric and L1-embedding, we can construct a cut-metric Z from
z : V1 → L1 satisfying the conditions of the theorem.

8 Putting Everything Together

Theorem 13 Let G = (V,E) be a planar graph with length function l : E → R≥0, F be
its set of faces and T = {(u, v)|u, v ∈ f ∈ F}. Then there exists a z : V → L1 such that
||z(u) − z(v)|| ≤ l(u, v) for (u, v) ∈ E and ||z(u) − z(v)|| ≥ dG(u, v)/c for (u, v) ∈ T , where
c = 144β2.

Proof. We prove the theorem by using induction on the number of vertices. We first compute
a α-good length function l′ by setting α = 12β in Theorem 7. If there are no non-geodesic
faces w.r.t l′, then we use Theorem 9 to get an L1 embedding with distortion at most 21.
If there exists a non-geodesic face w.r.t l′, we use the decomposition guaranteed by α-good
length function and find an innermost non-geodesic α-loose face. Let G1 = (V1, E1) be the
graph obtained by removing all the vertices in I(Sf ). Since f is non-geodesic w.r.t l′, there
exists a vertex in I(Sf ). Hence, the number of vertices in G1 is strictly smaller than G and we
inductively compute an embedding z1 : V → L1 satisfying the conditions of the theorem. Using
the equivalence between L1-embedding and cut-metric, we compute a cut-metric equivalent to
z1 , say Z1. Let Zf1 be the cut-metric induced by Z1 on the cycle Sf . We use Theorem 12

to compute a cut-metric which extends Zf1 to vertices in G \ G1, say Zf . We obtain the final

cut-metric by setting Z = (Z1 \ Zf1 ) ∪ Zf . Let z : V → L1 be the equivalent embedding to Z.
By induction hypothesis and statement of Theorem 12, ||z(u) − z(v)|| ≤ l′(u, v) for (u, v) ∈ E
and ||z(u)−z(v)|| ≥ dG′(u, v)/α for (u, v) ∈ T , where dG′ is the shortest path metric on G w.r.t
l′. The statement of the theorem then follows by noting that l′ is constructed by reducing the
length of edges w.r.t l by a factor of at most α.

9 Conclusions

In this paper, we proved a O(1) flow-cut gap when G is planar and both end points of every
demand edge is incident on one of the faces. Although our result does not directly imply any
bounds on the (half)-integral flow-cut gap, we believe that it should be possible to exploit the
laminar structure of flows in such instances to prove such a bound. Inductive arguments have
been used successfully for proving better flow-cut gaps for planar instances, for example series-
parallel graphs [3] and k-outer planar graphs [4]. We believe that the techniques developed in
this paper could be useful for extending such an approach to a more general setting.
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