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Abstract
Recently, Brand, Ganian and Simonov introduced a parameterized refinement of the classical
PAC-learning sample complexity framework. A crucial outcome of their investigation is that for a
very wide range of learning problems, there is a direct and provable correspondence between fixed-
parameter PAC-learnability (in the sample complexity setting) and the fixed-parameter tractability of
a corresponding “consistency checking” search problem (in the setting of computational complexity).
The latter can be seen as generalizations of classical search problems where instead of receiving a
single instance, one receives multiple yes- and no-examples and is tasked with finding a solution
which is consistent with the provided examples.

Apart from a few initial results, consistency checking problems are almost entirely unexplored from
a parameterized complexity perspective. In this article, we provide an overview of these problems
and their connection to parameterized sample complexity, with the primary aim of facilitating
further research in this direction. Afterwards, we establish the fixed-parameter (in)-tractability for
some of the arguably most natural consistency checking problems on graphs, and show that their
complexity-theoretic behavior is surprisingly very different from that of classical decision problems.
Our new results cover consistency checking variants of problems as diverse as (k-)Path, Matching,
2-Coloring, Independent Set and Dominating Set, among others.
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1 Introduction

While the notion of time complexity is universally applicable and well studied across the
whole spectrum of theoretical computer science, on its own it cannot capture the performance
of the kinds of algorithms typically studied in the context of machine learning: learning
algorithms. That is the domain of sample complexity, and here we will focus on the notion
of (efficient) PAC learning [22, 16]—arguably the most classical, fundamental and widely
known sample complexity framework. An important trait of PAC learning is that while it
is built on different principles than time complexity, the two frameworks are connected in
a way which allows us to translate intractability and tractability results from one domain
to another. It is precisely this connection that gave rise to famous lower bounds in the
PAC learning setting, such as the inability to efficiently and properly learn 3-term DNF and
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3-clause CNF formulas [20, 2] under the assumption that P ̸= NP, and consistency checking
problems form the pillar of this connection.

Given the success of parameterized complexity as a concept generalizing classical time
complexity analysis, it would seem natural to ask whether its principles can also be used to
obtain a deeper understanding of efficient PAC-learnability. Brand, Ganian and Simonov [6]
very recently introduced the foundations for a parameterized theory of PAC learning, which
crucially also includes a bridge to parameterized complexity theory in the usual time
complexity setting. The primary goal of this article is to show how the parameterized
complexity paradigm can be used to draw new boundaries of tractability in the PAC learning
domain, and to provide the parameterized algorithms community with an understanding
of the parameterized consistency checking problems which allow us to travel between the
sample and time complexity settings in the parameterized regime. We showcase the tools
that can be used to deal with parameterized consistency checking problems and the obstacles
that await there in the domain of graph problems, where we obtain new algorithmic upper
and lower bounds for consistency checking variants of multiple natural problems on graphs.

A Gentle Introduction to PAC Learning. It will be useful to set the stage with a
high-level and informal example of the setting in which PAC learning operates1. Let us
imagine we would like to “learn” a way of labeling points in a plane as either “good” or “bad”,
knowing that the good points are precisely those contained in some unknown axis-parallel
rectangle R in the plane. A learning algorithm in the PAC regime would be allowed to
ask for a set of correctly labeled sample points, each of which would be drawn from some
unknown distribution D, and would attempt to use these to “learn” R (so that it can use it
to label any point that it looks at, even those which were not given as samples). This mental
experiment is useful since it immediately clarifies that

there is some probability that a PAC learning algorithm completely fails, since the samples
we receive could be non-representative (for instance, there is a non-zero probability that
even if D is uniform and R is small, the sample points could all be drawn from inside R),
and
even if a PAC learning algorithm intuitively “works correctly”, it is essentially guaranteed
that it will not classify some samples (i.e., the sample points) correctly (for instance,
there could be points that lie close to the exact boundary of R which are unlikely to be
drawn as samples based on D, making it impossible to obtain the exact position of R).

Given these natural limitations, we can informally explain what it means for a learning
problem to be efficiently PAC-learnable: it admits an algorithm which
1. takes as input a sample size n, a confidence measure δ and an accuracy measure ε,
2. runs in time (n + 1

δ + 1
ε )O(1) and asks for (n + 1

δ + 1
ε )O(1) samples, and then

3. outputs something which will, with probability at least 1 − δ, “work correctly” in almost
all cases (measured by ε).

It needs to be clarified that beyond the study of efficient PAC learnability, a substantial
amount of fundamental work in the PAC learning direction has also been carried out on
whether a problem is PAC learnable at all [4, 14, 1], on the distinction between so-called
proper and improper learning [16, 5], and on many other aspects and considerations that lie
outside of the scope of this paper. Here, our focus lies on how the gap between efficient and
“non-efficient” PAC-learnability of learning problems can be bridged by the parameterized

1 Formal definitions are provided in Section 2.
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PAC learning framework of Brand, Ganian and Simonov [6], and the associated study of
consistency checking problems.

To illustrate how parameterized complexity can be used here, let us turn to a different
example of a simple learning problem that is based on the idea of representing cyber-attacks
as graphs proposed, e.g., by Sheyner and Wing [21, 24]. Assume we have a network consisting
of n nodes which is protected by k hidden defense nodes. A cyberattack on this network can
be represented as a set of edges over the n nodes, and is evaluated as successful if and only if
an edge in that attack is not incident to any defense node (i.e., an attack fails if and only
if the defense nodes form a vertex cover of the attack edges). Individual samples represent
attacks made on the network, and the learning task is to identify all the defense nodes. This
problem corresponds to Vertex Cover Learning [9], which Brand, Ganian and Simonov
showed to admit a PAC learning algorithm which requires polynomially many samples but
time 2k · (n + 1

δ + 1
ε )O(1) where k is the size of the sought-after vertex cover [6]. This is a

prototypical representative of the class FPT-PACtime. We remark that in the context of PAC
learning, one explicitly distinguishes between the time required by the learning algorithm and
the number of samples it uses, as the latter may in some contexts be much more difficult to
obtain. A picture of the parameterized complexity landscape above efficient PAC learnability
is provided later together with the formal definitions (see Figure 1).

Crucially, whenever we are dealing with a learning problem Plearn where the size of the
hypothesis space (i.e., the number of “possible outputs”) is upper-bounded by a certain
function (see Theorem 11), the parameterized sample complexity of Plearn can be directly
and formally linked to the parameterized time complexity of the consistency checking variant
Pcons of the same problem [6], where the task is to compute a “solution” (a hypothesis)
which is consistent with a provided set of positive and negative examples. This motivates
the systematic study of parameterized consistency checking problems, an area which has
up to now remained almost entirely unexplored from the perspective of fixed-parameter
(in-)tractability.

The Parameterized Complexity of Consistency Checking on Graphs. A few initial
examples of parameterized consistency checking problems have been solved by the theory-
building work of Brand, Ganian and Simonov [6]; in particular, they showed that consistency
checking for vertex-deletion problems where the base class H can be characterized by a
finite set of forbidden induced subgraphs is fixed-parameter tractable (which implies the
aforementioned fact that Vertex Cover Learning is in FPT-PACtime), but no analogous
result can be obtained for all classes H characterized by a finite set of forbidden minors
unless FPT ̸= W[1].

In this article, we expand on these results by establishing the fixed-parameter (in-
)tractability of consistency checking for several other classical graph problems whose decision
versions are well-known to the parameterized complexity community. The aim here is to
showcase how parameterized upper- and lower-bound techniques fare when dealing with
these new kinds of problems.

It is important to note that the tractability of consistency checking requires the tractability
of the corresponding decision/search problem (as the latter can be seen as a special case of
consistency checking), but the former can be much more algorithmically challenging than the
latter: many trivial decision problems become computationally intractable in the consistency
checking regime. We begin by illustrating this behavior on the classical 2-Coloring problem,
i.e., the task of partitioning the vertices of the graph into two independent sets. We show
that while consistency checking for 2-Coloring is intractable (and hence a 2-coloring is
not efficiently PAC-learnable), consistency checking for Split Graph, i.e., the task of
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partitioning the vertices into an independent set and a clique, is polynomial-time tractable.
Moving on to parameterized problems, we begin by considering three classical edge search

problems, notably Matching, (k-)Path and Edge Clique Cover. In the classical decision
or search settings, the first problem is polynomial-time solvable while the latter two admit
well-known fixed-parameter algorithms. Interestingly, we show that consistency checking for
the former two problems is W[2]-hard2, but is fixed-parameter tractable for the third, i.e.,
Edge Clique Cover.

Next, we turn our attention to the behavior of two classical vertex search problems,
specifically Independent Set and Dominating Set. While both problems are fixed-
parameter intractable already in the classical search regime, here we examine their behavior
on bounded-degree graphs (where they are well-known to be fixed-parameter tractable).
Again, the consistency checking variants of these problems on bounded-degree graphs exhibit
a surprising complexity-theoretic behavior: Dominating Set is FPT, but Independent
Set is W[2]-hard even on bounded-degree graphs.

As the final contribution of the paper, we show that most of the aforementioned consistency
checking lower bounds can be overcome if one additionally parameterizes by the number of
negative samples. In particular, we obtain fixed-parameter consistency checking algorithms
for 2-Coloring, Matching and (k-)Path when we additionally assume that the number of
negative samples is upper-bounded by the parameter. On the other hand, Independent Set
remains fixed-parameter intractable (at least W[1]-hard) even under this additional restriction.
As our final result, we show that Independent Set becomes fixed-parameter tractable
if we instead consider the total number of samples (i.e., both positive and negative) as an
additional parameter. The proofs of these results are more involved than those mentioned
in the previous paragraphs and rely on auxiliary graph constructions in combination with
color coding. We remark that the parameterization by the number of negative samples in
the consistency checking regime could be translated into a corresponding parameterization
of the distribution in the PAC learning framework. A summary of our individual results for
consistency checking problems is provided in Table 1.

Related Work. The connection between parameterized learning problems and parameter-
ized consistency checking was also hinted at in previous works that studied the (parameterized)
sample complexity of learning juntas [3] or learning first-order logic [23]. Moreover, the
problem of computing optimal decision trees, which has received a significant amount of
recent attention [19, 11], can also be seen as a consistency checking problem where the
sought-after solution is a decision tree.

2 Preliminaries

We assume familiarity with basic graph terminology [10] and parameterized complexity
theory [7]. We use [t] to denote the set {1, . . . , t}. For brevity, we will denote sets of tuples of
the form {(α1, β1), . . . , (αt, βt)} as (αi, βi)i∈[t], and the set of two-element subsets of a set Z

as
(

Z
2
)
. As basic notation and terminology, we set {0, 1}∗ =

⋃
m∈N{0, 1}m. A distribution on

{0, 1}n is a mapping Dn : {0, 1}n → [0, 1] such that
∑

x∈{0,1}n Dn(x) = 1, and the support
of Dn is the set supp Dn = {x | Dn(x) > 0}.

2 More precisely, a fixed-parameter algorithm for either of these problems would imply FPT=W[1] (see
Section 4).
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Problem Decision/Search Consistency Checking Consistency Checking[samples]
2-Coloring P NP-hard (Thm. 12) FPT (Thm. 16)
Split Graph P P (Thm. 14) —
Matching P W[2]-hard (Thm. 17) FPT (Thm. 20)
(k)-Path FPT W[2]-hard (Thm. 18) FPT (Thm. 21)
Edge Clique Cover FPT FPT (Thm. 19) —
Independent Set[degree] FPT W[2]-hard (Thm. 22) W[1]-hard⋆ (Thm. 24, 25)
Dominating Set[degree] FPT FPT (Thm. 23) —

Table 1 An overview of the concrete results obtained for consistency checking problems in this
article, where the columns provide a comparison between the complexity of the decision/search
variant, the consistency checking variant, and the consistency checking variant where the number
of negative samples is taken as an additional parameter. Problems marked with “[degree]” are
considered over bounded-degree input graphs/samples, and the “⋆” marks that the problem becomes
fixed-parameter tractable when additionally parameterized by the total number of samples. The
lower bounds stated in the table are simplified; the precise formal statements are provided in the
appropriate theorems.

2.1 Consistency Checking
While the original motivation for consistency checking problems originates from specific
applications in PAC learning, one can define a consistency checking version of an arbitrary
search problem.

In a search problem, we are given an instance I ∈ {0, 1}∗, and the task is to find a
solution S ∈ {0, 1}∗, where the solution is verified by a predicate ϕ(·, ·), so that ϕ(I, S) is
true if and only if S is a solution to I. Since our focus here will lie on problems which are in
NP, the predicate ϕ(·, ·) will in all cases be polynomial-time computable. In the context of
graph problems, I will typically be a graph (possibly with some auxiliary information such
as edge weights or the bound on solution size), and S could be a set of vertices, a set of
edges, a partitioning of the vertex set, etc. For example, in the search version of the Vertex
Cover problem the input is a graph G together with a bound k on the size of the target
vertex cover, potential solutions are subsets of V (G), and a subset S is a solution if and only
if the size of S is k and S covers all edges of the graph G. One can then write the verifying
predicate as

ϕ ((G, k), S) = (S ⊂ V (G)) ∧ (|S| = k) ∧ (∀{u, v} ∈ E(G), {u, v} ∩ S ̸= ∅).

For a search problem P , we define the corresponding consistency checking problem Pcons
as follows. Instead of receiving a single instance I ∈ {0, 1}∗ as input, we receive a set of
labeled samples I = {(I1, λ1), (I2, λ2), . . . , (It, λt)} where each Ii, i ∈ [t], is an element of
{0, 1}∗ and λi ∈ {0, 1}. The task is to compute a (consistent) solution S ⊂ {0, 1}∗ such that
ϕ(Ii, S) holds if and only if λi = 1, for each i ∈ [t], or to correctly determine that no such
solution exists.

In the example of Vertex Cover, for each i ∈ [t], the instance is the pair (Gi, ki), so
that the target solution has to be a vertex subset3 of V (Gi), of size ki, and it has to cover

3 The property of being a subset is given by the implicit encoding in {0, 1}∗, e.g., vertices in all V (Gi)
and S are indexed by integers, and is defined in the same way across all instances. We thus say that S
could be a subset of all V (Gi) even though, formally speaking, these are disjoint sets.
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all edges of Gi, for each i ∈ [t]. Since vertices in all Gi’s and S are implicitly associated
with their respective counterparts in the other graphs, we can instead treat the graphs Gi

as defined over the same vertex set. Also, for instances i ∈ [t] where λi = 1, if their values
of ki mismatch, then there is clearly no solution; and for those i ∈ [t] with λi = 0, if the
value ki does not match the respective value of a positive sample, then the condition for
λi is always satisfied. Therefore, we can equivalently reformulate the consistency checking
version of Vertex Cover as follows: Given the vertex set V , a number k, and a sequence
of labeled edge sets (E1, λ1), . . . , (Et, λt), over V , is there a subset S ⊂ V of size exactly k,
so that S covers all edges of Ei if and only if λi = 1, for each i ∈ [t]?

One can immediately observe that the polynomial-time tractability of a search problem is
a prerequisite for the polynomial-time tractability of the corresponding consistency checking
problem. At the same time, the exact definition of the search problem (and in particular
the solution S) can have a significant impact on the complexity of the consistency checking
problem. We remark that there are two possible ways one can parameterize a consistency
checking problem: one either uses the parameter to restrict the sought-after solution S, or
the input I. Each of these approaches can be tied to a parameterization of the corresponding
PAC learning problem (see Subsection 2.3).

Formally, we say that (Pcons, κ, λ) is a parameterized consistency checking problem, where
Pcons is a consistency checking problem, κ maps solutions S ∈ {0, 1}∗ to natural numbers,
and λ maps lists of labeled instances ((I1, λ1), . . . , (It, λt)), Ii ∈ {0, 1}∗, λi ∈ {0, 1}, to
natural numbers. The input is then a list of labeled instances L = ((I1, λ1), . . . , (It, λt))
together with parameters k, ℓ, such that ℓ = λ(L), and the task is to find a consistent solution
S with κ(S) = k. For example, k could be a size bound on the targeted solution, and ℓ could
be the maximum degree in any of the given graphs or the number of instances with λi = 0.

2.2 PAC-Learning
The remainder of this section is dedicated to a more formal introduction of the foundations
of parameterized PAC learning theory and its connection to parameterized consistency
checking problems. We note that while the content of the following subsections is important
to establish the implications and corollaries of the results obtained in the article, readers
who are interested solely in the obtained complexity-theoretic upper and lower bounds for
consistency checking problems can safely skip them and proceed directly to Section 3.

To make the connection between consistency checking problems and parameterized
sample complexity clear, we first recall the formalization of the classical theory of PAC
learning [22, 17].

▶ Definition 1. A concept is an arbitrary Boolean function c : {0, 1}n → {0, 1}. An
assignment x ∈ {0, 1}n is called a positive sample for c if c(x) = 1, and a negative sample
otherwise. A concept class C is a set of concepts. For every m ∈ N, we write Cm = C ∩ Bm,
where Bm is the set of all m-ary Boolean functions.

▶ Definition 2. Let C be a concept class. A surjective mapping ρ : {0, 1}∗ → C is called a
representation scheme of C.

We call each r with ρ(r) = c a representation of concept c.

▶ Definition 3. A learning problem is a pair (C, ρ), where C is a concept class and ρ is a
representation scheme for C.

▶ Definition 4. A learning algorithm for a learning problem (C, ρ) is a randomized algorithm
such that:
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1. It obtains the values n, ε, δ as inputs, where n is an integer and 0 < ε, δ ≤ 1 are rational
numbers.

2. It has access to a hidden representation r∗ of some concept c∗ = ρ(r∗) and a hidden
distribution Dn on {0, 1}n through an oracle that returns labeled samples (x, c∗(x)), where
x ∈ {0, 1}n is drawn at random from Dn.

3. The output of the algorithm is a representation of some concept, called its hypothesis.

When dealing with individual instances of a learning problem, we will use s = |r∗| to
denote the size of the hidden representation.

▶ Definition 5. Let A be a learning algorithm. Fix a hidden hypothesis c∗ and a distribution
on {0, 1}n. Let h be a hypothesis output by A and c = ρ(h) be the concept h represents. We
define

errh = Px∼Dn(c(x) ̸= c∗(x))

as the probability of the hypothesis and the hidden concept disagreeing on a sample drawn
from Dn, the so-called generalization error of h under Dn.

The algorithm A is called probably approximately correct (PAC) if it outputs a hypothesis
h such that errh ≤ ε with probability at least 1 − δ.

Usually, learning problems in this framework are regarded as tractable if they are PAC-
learnable within polynomial time bounds. More precisely, we say that a learning problem L

is efficiently PAC-learnable if there is a PAC algorithm for L that runs in time polynomial
in n, s, 1/ε and 1/δ.

Consider now a classical search problem P and its consistency checking version Pcons. One
can naturally define the corresponding learning problem Plearn: For a solution S ∈ {0, 1}∗,
let ϕ(·, S) be a concept and S its representation; this describes the concept class and its
representation scheme. Going back to the Vertex Cover example, for each graph size N ,
the concepts are represented by subsets of [N ] (encoded in binary). For a subset S ⊂ [N ],
the respective concept cS is a binary function that, given the encoding of an instance E,
returns 1 if and only if S is a vertex cover of G = ([N ], E) of size k, where [N ] is treated as
the respective “ground” vertex set of size N . A PAC-learning algorithm for this problem is
thus given a vertex set V = [N ], an integer k, and an oracle that will produce a sequence of
samples (E1, λ1), . . . , (Et, λt), where the instances Ei are drawn from a hidden distribution
D. With probability at least (1 − δ), the algorithm has to return a subset S ⊂ [N ] that is
consistent with an instance sampled from D with probability at least (1 − ε). In fact, for
Vertex Cover and many other problems, it is sufficient to return a hypothesis that is
consistent only with the seen samples (Ei, λi), i ∈ [t]; this is formalized in the next subsection.

Naturally, we do not expect the learning version of Vertex Cover to be efficiently
PAC-learnable, as even finding a vertex cover of a certain size in a single instance is NP-hard.
This motivates the introduction of parameters into the framework, which is presented next.
We also recall the complexity reductions between (parameterized) consistency checking
problem and its respective (parameterized) learning problem, which in particular allows to
formally transfer the hardness results such as NP-hardness above.
Remark. A more general definition of learning problems is sometimes considered in the
literature, where the output of a learning algorithm need not necessarily be from the same
concept class C (e.g., it can be a sub- or a super-class of C). This is usually called improper
learning, as opposed to the classical setting of proper learning defined above and considered
in this article.
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2.3 Parameterized PAC-Learning
We now define parameterized learning problems and recall the connection to the consistency
checking problems, as given by the framework of Brand, Ganian, and Simonov [6]. For
brevity, we omit some of the less important technical details; interested readers can find the
full technical exposition in the full description of the framework [6]

First we note that in parameterized PAC-learning, both the hidden concept and the hidden
distribution can be parameterized, which is formally represented in the next definitions. We
call a function κ from representations in {0, 1}∗ to natural numbers parameterization of
representations, and a function λ assigning a natural number to every distribution on {0, 1}n

for each n parameterization of distributions.

▶ Definition 6 (Parameterized Learning Problems). A parameterized learning problem is
a learning problem (C, ρ) together with a pair (κ, λ), called its parameters, where κ is a
parameterization of representations and λ is a parameterization of distributions.

▶ Definition 7 (Parameterized Learning Algorithm). A parameterized learning algorithm for
a parameterized learning problem (C, ρ, κ, λ) is a learning algorithm for (C, ρ) in the sense of
Definition 4. In addition to n, ε, δ, a parameterized learning algorithm obtains two inputs k

and ℓ, which are promised to satisfy k = κ(r∗) as well as ℓ = λ(Dn), and the algorithm is
required to always output a hypothesis h satisfying κ(h) ≤ k.

Let poly(·) denote the set of functions that can be bounded by non-decreasing polynomial
functions in their arguments. Furthermore, fpt(x1, . . . , xt; k1, . . . , kt) and xp(x1, . . . , xt; k1, . . . ,

kt) denote those functions bounded by f(k1, . . . , kt) · p(x1, . . . , xt) and p(x1, . . . , xt)f(k1,...,kt),
respectively, for any non-decreasing computable function f in k1, . . . , kt and p ∈ poly(x1, . . . , xt).

▶ Definition 8 ((T, S)-PAC Learnability). Let T (n, s, 1/ε, 1/δ, k, ℓ), S(n, s, 1/ε, 1/δ, k, ℓ) be
any two functions taking on integer values, and non-decreasing in all of their arguments.

A parameterized learning problem L = (C, ρ, {Rk}k∈N, λ) is (T, S)-PAC learnable if there
is a PAC learning algorithm for L that runs in time O(T (n, s, 1/ε, 1/δ, k, ℓ)) and queries the
oracle at most O(S(n, s, 1/ε, 1/δ, k, ℓ)) times.

We denote the set of parameterized learning problems that are (T, S)-PAC learnable
by PAC[T, S]. This is extended to sets of functions S, T through setting PAC[T, S] =⋃

S∈S,T ∈T PAC[T, S].

▶ Definition 9. Define the complexity classes as follows:

FPT-PACtime = PAC[fpt, poly],
FPT-PAC = PAC[fpt, fpt],

XP-PACtime = PAC[xp, poly],
XP-PAC = PAC[xp, xp],

where we fix

poly = poly(n, s, 1/ε, 1/δ, k, ℓ),
fpt = fpt(n, s, 1/ε, 1/δ; k, ℓ),
xp = xp(n, s, 1/ε, 1/δ; k, ℓ).

There are examples of natural problems falling into each of these classes [6]. In addition
to the above, there is a fifth class that may be considered here: PAC[xp, fpt]. However, we are
not aware of any natural problems residing there that are not given by the “lower” classes.

Figure 1 provides an overview of these complexity classes and their relationships.
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PAC

XP-PAC

XP-PACtime FPT-PAC
FPT-PACtime

efficient PAC

Figure 1 A schematic view of the parameterized learning classes defined in Definition 9.

2.4 Consistency Checking for PAC-Learning
We now recall the results tying the complexity of (parameterized) PAC-learning to (paramet-
erized) consistency checking. We have already shown that a consistency checking problem can
be transformed into a learning problem, by viewing the hidden solution as the representation
of the hidden concept; the same operation can also be done the other way around. Moreover,
this transformation can be performed while respecting the parameters. Let Pcons be a
consistency checking problem, and let Plearn be the respective learning problem. Consider a
parameterized version (Pcons, κ + λ) of Pcons, where κ maps solutions S ∈ {0, 1}∗ to natural
numbers, and λ maps lists of labeled instances ((I1, λ1), . . . , (It, λt)), Ii ∈ {0, 1}∗, λi ∈ {0, 1},
to natural numbers. The parameterized learning problem is then (Plearn, κ, λ′), where κ is
given by the same function is the parameterization of representations, as representations of
concepts are exactly the solutions in the original search problem, and λ′(D) for a distribution
D is the maximum value of λ(L), where L is any set of labeled instances produced by
sampling from D.

It is well-known that, under the assumption that the hypothesis space is not too large,
there is an equivalence between a learning problem being PAC-learnable and the corresponding
consistency checking problem being solvable in randomized polynomial time [20]. Brand,
Ganian and Simonov proved a generalization of this equivalence in the parameterized sense [6],
which we recall next

▶ Theorem 10 (Corollary of Theorem 3.17 [6]). Let Pcons be a parameterized consistency
checking problem, and Plearn = (C, ρ, κ, λ) be its matching parameterized learning problem,
where λ depends only on the support of the distribution.

If Plearn is in FPT-PAC, then Pcons is in FPT.
Similarly, if Plearn is in XP-PAC, then Pcons is in XP.

▶ Theorem 11 (Corollary of Theorem 3.19 [6]). Let Pcons be a parameterized consistency
checking problem, and Plearn = (C, ρ, κ, λ) be its matching parameterized learning problem.
Denote the set of representations of concepts in C ∈ C of arity n with κ(C) = k by Hn,k.

If Pcons is in FPT and log |Hn,k| ∈ fpt(n; k), then L is in FPT-PACtime.
Similarly, if Pcons is in XP and log |Hn,k| ∈ xp(n; k), then L is in XP-PACtime.

The theorems above allow us to automatically transfer parameterized algorithmic upper
and lower bounds for consistency checking into upper and lower bounds for parameterized
learning problems, respectively. If a parameterized consistency checking problem is efficiently
solvable by a parameterized algorithm, by Theorem 11 we get that the parameterized learning
problem is efficiently solvable. Note that in the problems considered in this paper the solution
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t f

x1 x2 x3 xn

t f

x1 x2 x3 xn

t f

x1 x2 x3 xn

Figure 2 For the SAT instance φ = (x1 ∨ x2 ∨ x3 ∨ xn) ∧ (x1 ∨ x2 ∨ xn), n = 4 the correspondent
ConsCheck: 2-Coloring instance I = {V, {(E+, 1), (EC1 , 0), (EC2 , 0)}}, V = {t, f, x1, x2, x3, xn}.

is always a set of vertices/edges, or a partition into such sets, thus log |Hn,k| is always
polynomial.

On the other hand, Theorem 11 tells us that an efficient algorithm for a parameterized
learning problem implies an efficient algorithm for the corresponding paramerized consistency
checking problem. Turning this around, we see that lower bounds on consistency checking
imply lower bounds for learning. That is, if Pcons is W[1]-hard, then Plearn is not in
FPT-PACtime unless FPT = W[1].

3 Partitioning Problems: 2-Coloring and Split Graphs

We begin our investigation by using two basic vertex bipartition problems on graphs to
showcase some of the unexpected complexity-theoretic behavior of consistency checking
problems. Let us first consider 2-Coloring, i.e., the problem of partitioning the vertex
set into two independent sets. There are two natural ways one can formalize 2-Coloring
as a search problem: either one asks for a vertex set X such that both X and the set of
vertices outside of X are independent (i.e., they form a proper 2-coloring), or one asks for
two independent sets X, Y which form a bipartition of the vertex set. Here, we consider the
former variant since it has a slightly smaller hypothesis space4.

ConsCheck: 2-Coloring
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1}.
Output: A set X ⊆ V such that for each i ∈ [t], (X, V \ X) forms
a proper 2-coloring of Gi if and only if λi = 1.

As our first result, we show that ConsCheck: 2-Coloring is NP-hard.

▶ Theorem 12. There is no polynomial-time algorithm that solves ConsCheck: 2-Coloring
unless P = NP.

Proof. We present a reduction that takes an n-variable instance φ of the Satisfability
problem (SAT) and constructs an instance I of ConsCheck: 2-Coloring which admits a
solution if and only if φ is satisfiable. Let C denote the set of clauses of φ.

Construction. First, we set the vertex set V in I to be {f, t, x1, x2, . . . , xn}. For each clause
C ∈ C, we construct an edge set EC as follows. For each i ∈ [n], if a true (false) assignment
of xi satisfies C, then we add the edge txi (fxi) to EC . For each such edge set EC , we set
λC = 0. Finally, we add to I a positive sample (E+, 1) such that E+ = {tf}. An illustration
is provided in Figure 2.

4 In general, the precise definition of the sought-after object can be of great importance in the context
of consistency checking; this is related to the well-known fact that the selection of a hypothesis space
can have a fundamental impact on PAC learnability. However, in our case the proofs provided in this
section can also be used to obtain the same results for the latter variant.
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Correctness. Suppose, given an instance φ of SAT, that the reduction described above
returns I = {V, (Ei, λi)}i∈C∪{+} as an instance of ConsCheck: 2-Coloring.

Assume that φ admits a satisfying assignment A : {xi}i∈[n] → {True, False}. Consider
the colloring χ : V → {blue, red} such that χ(t) = red, χ(f) = blue, and for each i ∈ [n],
χ(xi) = red if and only if A(xi) = True.

First, the sample (E+, 1) of I is consistent with the coloring χ, since its only edge ft was
colored properly. Then, for each C ∈ C, the sample (EC , 0) must be consistent with χ, i.e.,
there exists at least one edge in EC with same colored endpoints. Indeed, there must exist a
variable xi is such that A(xi) satisfies φ.

Then, by the construction of I instance, if xi = True (xi = False) satisfies C then
txi ∈ EC (fxi ∈ EC) and hence both xi and t are red (both xi and f are blue) under the
constructed coloring χ.

For the other direction, suppose that there is a coloring χ : V → {blue, red} that is
consistent with the instance I of ConsCheck: 2-Coloring. Then χ(t) ̸= χ(f) due to the
construction of (E+, 1) ∈ I; without loss of generality, let χ(t) = red, χ(f) = blue. We
retrieve a variable assignment A for φ in the following way. Recall that for each C ∈ C, the
coloring χ is consistent with the sample (EC , 0). Since the edge ft has a proper coloring,
at least one vertex xi has an edge to either t or f such that both its endpoints are colored
the same way. If this edge is xif (xit), then let A(xi) = False (A(xi) = True). If this only
results in a partial assignment, we extend this to a complete assignment of all variables in φ

by assigning the remaining variables arbitrarily.
We conclude by arguing that the resulting assignment A has to satisfy φ. Let us consider

an arbitrary clause C ∈ C and an edge in the corresponding edge set EC with same colored
endpoints, w.l.o.g. xif . Then, by the way we defined the assignment, A(xi) = False. But
by our construction, the edge xif ∈ EC only if xi = False satisfies the clause C. Thus, the
clause C is satisfied by the assignment A. Following the same argument, each clause C ∈ C,
and accordingly the instance φ, is satisfied.

◀

It is worth noting that the graphs constructed by the reduction underlying Theorem 12
are very simple—in fact, even the graph induced by the union of all edges occurring in
the instances of ConsCheck: 2-Coloring produced by the reduction has a vertex cover
number of 2. This essentially rules out tractability via most standard structural graph
parameters. A similar observation can also be made for most other consistency checking
lower bounds obtained within this article.

As an immediate corollary of Theorem 12, we obtain that the corresponding learning
problem is not efficiently PAC-learnable [2]. To provide a concrete example of the formal
transition from consistency checking to the corresponding learning problem described in
Section 2.2, we state the problem: In 2-Coloring Learning, we are given (1) a set V of
vertices, a confidence measure δ and an accuracy measure ε, (2) have access to an oracle
that can be queried to return labeled samples of the form (E, λ) where E is an edge set over
V and λ ∈ {0, 1} according to some hidden distribution, and (3) are asked to return a vertex
subset X ⊆ V , whereas a sample E is evaluated as positive for X if and only if (X, V \ X)
forms a 2-coloring on (V, E).

▶ Corollary 13. 2-Coloring Learning is not efficiently PAC-learnable unless P = NP.

While the intractability of consistency checking for ConsCheck: 2-Coloring might
already be viewed as surprising, let us now consider the related problem of partitioning
the vertex set into one independent set and one clique—i.e., the Split Graph problem.
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As a graph search problem, Split Graph is well-known to be polynomially tractable [13].
Following the same line of reasoning as for 2-Coloring, we formalize the corresponding
search problem below. Let a pair of vertex subsets (X ⊆ V, Y ⊆ V ) be a split in a graph
G = (V, E) if (X, Y ) is a bipartition of V such that X is a clique and Y is an independent
set.

ConsCheck: Split Graph
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1}.
Output: A set X ⊆ V such that for each i ∈ [t], (X, V \ X) is a split in Gi

if and only if λi = 1.

Unlike ConsCheck: 2-Coloring, ConsCheck: Split Graph turns out to be tractable.

▶ Theorem 14. ConsCheck: Split Graph can be solved in time O(|I|3).

Proof. Let us consider an input instance I = {V, (Ei, λi)i∈[t]} of ConsCheck: Split
Graph. The algorithm first checks whether I contains at least one positive sample or
consists of negative samples only; each of these two cases will be handled by a separate
procedure and arguments.

If I contains at least one positive sample, say w.l.o.g. (E1, λ1), then the algorithm
enumerates all possible splits of G1 = (V, E1). Indeed, for each pair (X1, Y1), (X2, Y2) of
splits it holds that (X2, Y2) can be obtained from (X1, Y1) by moving at most one vertex
from the clique part to the independent part, and at most one vertex from the independent
part to the clique part. Hence after computing an arbitrary split in linear time (e.g., from
its degree sequence) [13], the algorithm can enumerate the set of all splits of G1 in at most
quadratic time. The algorithm then checks, for each split of G1, whether it is a solution
for I—in particular, whether it is a split for each positive sample and a non-split for each
negative sample. This check can be done in linear time. For correctness of this case, it
suffices to observe that every solution for I must necessarily be a split of G1.

For the case where each sample in I is negative, we exploit the fact that the set of all
splits in a graph can be enumerated in polynomial time in a different manner. In particular,
for each sample (Ej , 0) in I, we construct the set Qj of all splits of Gj = (V, Ej) in at most
quadratic time; in particular, Qj will be empty if Gj is not a split graph, and otherwise
will contain at most a quadratic number of splits. Let Q =

⋃
j∈[t] Qj , and observe that

|Q| ≤ |V |2 · t. The algorithm then proceeds by enumerating, in brute force and in arbitrary
order, all possible vertex 2-partitions of V , and for each such 2-partition (X, V \ X) it checks
whether (X, V \ X) ∈ Q or not. If (X, V \ X) ∈ Q, then we proceed to the next 2-partition,
while otherwise we output (X, V \ X) as the solution; if every 2-partition turns out to be
in Q then the algorithm outputs that no solution exists. Clearly, this procedure terminates
after at most |Q| + 1 steps. For correctness, it suffices to observe that every 2-partition is a
solution for I if and only if it does not lie in Q—indeed, every 2-partition in Q is a split for
at least one negative sample (and hence cannot be a solution), and every 2-partition that is
not in Q is not a split for any negative sample and hence is a solution.

◀

Naturally, one can formalize the learning problem for ConsCheck: Split Graph in
an analogous way as was done for 2-Coloring Learning. Since the hypothesis bound of
Theorem 11 holds here as well, Theorem 14 implies:

▶ Corollary 15. Split Graph Learning is efficiently PAC-learnable.

Let us now conclude the section by revisiting the polynomial-time intractability of
ConsCheck: 2-Coloring through the lens of parameterized complexity theory. Naturally,
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there are many parameterizations one may consider in the setting—as an exercise that
follows the same exhaustive-branching ideas as those used for Vertex Cover [6, Lemma
6.1], one could for instance attempt to parameterize by the size of the smaller color class
in the sought-after coloring, whereas a fixed-parameter algorithm in this setting (based on
exhaustive branching) would yield a FPT-PACtime algorithm for 2-Coloring Learning in
the corresponding parameterization of the concept. In this article, we instead showcase a less
straightforward fixed-parameter algorithm for the problem when parameterized by the number
of negative samples on the input (which in turn corresponds to a parameterization of the
distribution in the learning setting [6]). It will later turn out that the same parameterization
can be used to achieve fixed-parameter tractability for several other consistency checking
problems as well, albeit the individual techniques used vary from problem to problem.

Let t− = |{(Ei, λi)i∈[t] | λi = 0}| be the number of negative samples in an input instance I.

▶ Theorem 16. ConsCheck: 2-Coloring is fixed-parameter tractable when parameterized
by the number t− of negative samples.

Proof. Let G+ = (V, E+) be the graph obtained from an input instance I = {V, (Ei, λi)i∈[t]}
of ConsCheck: 2-Coloring by setting E+ :=

⋃
i | λi=1 Ei, i.e., G+ is the (non-disjoint)

union of all yes samples in I. It will be useful to observe that the solution for I must also be
a 2-coloring for G+. Let {C1, . . . , Cℓ} be the set of connected components of G+; for each
connected component Cj , j ∈ ℓ, we check whether Cj is bipartite. If any such component is
not bipartite, we can correctly output that I does not admit a solution; otherwise we assume
that each Cj is bipartitioned into independent sets (Aj , Bj) and proceed with the algorithm.

Let us now consider a negative sample (Ei, 0). We define the signature Si of (Ei, 0) as
the set {{X, Y } | ∃xy ∈ Ei : (x ∈ X) ∧ (y ∈ Y ) ∧ (X, Y ∈ {A1, . . . , Aℓ} ∪ {B1, . . . , Bℓ}}; in
other words, the signature is obtained by abstracting away the individual identies of the
endpoints of Ei and replacing this by information about which part of which component
the endpoints belong to. We remark that the signature is treated as a set of two-element
multisets to accommodate for the (admittedly trivial) case where X = Y .

We now distinguish two cases based on the size of the signature Si of each negative
sample (Ei, 0). If |Si| > 16(t−)2 then we mark Si as large, and otherwise we mark it as small.
Observe that each large signature must contain pairs from more than 2t− components of
G+; indeed, the size of any signature that only contains pairs from 2t− components of G+ is
upper-bounded by (2t−)2 · 4. We then perform exhaustive branching to identify a single pair
(X, Y ) ∈ Si in each small signature. In every branch, we proceed as as follows:
1. For each pair (X, Y ) identified in a small signature, we add a new degree-2 vertex to G+

and make it adjacent to an arbitrary vertex in X and an arbitrary vertex in Y . Observe
that this ensures that a proper 2-coloring of G+ must use the same color for X and Y .
We mark all connected components which have been attached to a new degree-2 vertex
in this way as used.

2. We check if the subgraph of G+ induced on the used connected components admits a
proper 2-coloring ζ. If that is not the case, we proceed to the next branch. Otherwise, we
apply the pigeon-hole principle to identify, for each large signature Sj , a pair {Xj , Yj} ∈ Sj

such that either Xj or Yj are from a component C∗
j which is not marked as used and

mark this component C∗
j as used as well; this can be done via linear-time enumeration of

all connected components since each large signature must contain pairs from more than
2t− components of G+.

3. We now expand the proper 2-coloring ζ to a proper 2-coloring υ of all of G+ as follows.
We drop the coloring of the auxiliary degree-2 vertices constructed in the first step (as
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these are not part of G+). Each connected component of G+ will be properly 2-colored,
but for each pair {Xj , Yj} in a large signature Sj selected in the previous step we ensure
that υ uses the same color for Xj and Yj . this fully determines the two color classes for
all connected components of G+. We check that υ is a solution for I and output it if
that is the case.

This concludes the description of the algorithm. The running time is upper-bounded by
O(216(t−)2 · |I|), since the exhaustive branching preceding the three steps listed above loops
over 216(t−)2 cases and the three steps can be carried out in linear time. For correctness,
observe that every solution provided by the algorithm is a solution for I. On the other hand,
assume that I admits a solution. For each negative sample (Ei, 0) with a small signature,
there must be at least one edge xiyi ∈ Ei such that both xi and yi belong to the same part
in the solution, and let {Xi, Yi} be the corresponding tuple in Si. Consider the branch of
the algorithm which selects {Xi, Yi} ∈ Si. The supergraph of G+ constructed in this branch
now admits a 2-coloring ζ. At that point the algorithm is guaranteed to succeed in finding a
solution for I, as the constructed 2-coloring υ will be proper for all positive samples (as it is
proper for G+), will not be proper for negative samples with a small signature (as ensured
already by ζ), and will not be proper for negative samples with a large signature either (as
guaranteed in the final step when constructing υ). ◀

4 Consistency Checking for Selected Edge Search Problems

In this section, we perform a parameterized analysis of consistency checking for three natural
and extensively studied edge search problems on graphs: Matching, (k-)Path and Edge
Clique Cover. We formalize the parameterized consistency checking formulations of these
three problems below; recall that a set F = {F1, . . . , Fℓ} is an edge clique cover if each Fi,
i ∈ [ℓ] is the edge set of a clique in the graph and each edge in the graph is contained in at
least one Fi, i ∈ [ℓ] [7, Subsection 2.2.3].

ConsCheck: Matching
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆

(
V
2

)
of size k such that for each i ∈ [t], F forms

a matching in Gi if and only if λi = 1.

ConsCheck: (k-)Path
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆

(
V
2

)
of size k such that for each i ∈ [t], F forms

a path in Gi if and only if λi = 1.

ConsCheck: Edge Clique Cover
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆ 2(V

2 ) of size k such that for each i ∈ [t], F forms
an edge clique cover in Gi if and only if λi = 1.
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An observant reader may notice that in the first of the three problems above, we consider
solution size as a parameter even though the corresponding search problem of finding a
maximum matching in a graph is polynomial-time tractable. This is due to the fact that, as
it turns out, Matching in the consistency checking regime is not polynomial-time tractable
unless P = NP. In fact, we show an even stronger (and more surprising) result:

▶ Theorem 17. ConsCheck: Matching does not admit a fixed-parameter algorithm unless
FPT = W[2].

Proof. We present a reduction that given an instance (U , F , k′) of the classical Set Cover
problem [7], constructs an instance I of ConsCheck: Matching which admits a solution
if and only if (U , F , k′) is a yes-instance. An instance (U , F , k′) of Set Cover is a family
F = {F1, . . . , Fm} of m subsets over the n-element universe U = {u1, . . . , un}, and we are
asked whether there exists a k′-element subset of F whose union contains all of U .

Construction. We construct the instance I = {V, (Ei, λi)i∈[t]} of ConsCheck: Matching
as follows, with the parameter set to k = k′. Let the unique positive sample in I be the edge
set E1 such that the graph (V, E1) is a set of k disjoint stars, whereas for each i ∈ [k] the
graph (V, E1) contains a center si adjacent to pendants pi

1, . . . , pi
m. Next, for each element

uj ∈ U , j ∈ [n], we add a negative sample (V, Ej+1) into I which only contains non-edges
between the centers of stars and the leaves (of the same star) corresponding to the sets
containing that element; formally, Ej+1 =

(
V
2
)

\ {sipi
ℓ | i ∈ [k], uj ∈ Fℓ}. This completes the

construction of I (see also Figure 3).

si

pi
1 pi

2 pi
3 pi

m

si

pi
1 pi

2 pi
3 pi

m

Figure 3 Reducing from Set Cover, the ConsCheck: Matching instance has a positive sample
with k (i ∈ [k]) stars as shown on the left; for each uj ∈ U , the correspondent No-instance is a
complete graph but excluding {sipi

ℓ | i ∈ [k], uj ∈ Fℓ}. So, as an example, if m = 4 and uj ∈ Fℓ for
any ℓ ∈ {1, 3, m}, then for all i ∈ [k], the dotted edges are out of the construction.

Correctness. If I admits a solution Q, then Q must be a matching in (V, E1) of size
k and hence can only contain a single edge from each of the k stars. Hence, Q =
{s1pα(1), s2pα(2), . . . , skpα(k)} for some mapping α. Moreover, since Q is not a matching
in (V, Ej+1) for any j ∈ [n], the set {Fα(1), . . . , Fα(k)} is a set cover for (U , F , k). At the
same time, given a set cover {Fβ(1), . . . , Fβ(k)} (for some mapping β), we can construct a
solution for I by taking {s1pβ(1), . . . , skpβ(k)}. This yields a reduction from Set Cover
to the problem of deciding the existence of a solution for ConsCheck: Matching; in
particular, this means that a fixed-parameter algorithm for ConsCheck: Matching would
imply FPT=W[2]. ◀

A similar reduction also allows us to establish the intractability of consistency checking
for Path.

▶ Theorem 18. ConsCheck: (k-)Path does not admit a fixed-parameter algorithm unless
FPT = W[2].
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Proof. We present a reduction that given an instance (U , F , k′) of Set Cover, constructs
an instance I of ConsCheck: (k-)Path which admits a solution if and only if (U , F , k) is a
yes-instance. Recall that an instance (U , F , k) of Set Cover is a family F = {F1, . . . , Fm}
of m subsets over the n-element universe U = {u1, . . . , un}, and we are asked whether there
exists a k-element subset of F whose union contains all of U .

Construction. We construct the instance I = {V, (Ei, λi)i∈[t] of ConsCheck: (k-)Path as
follows, with the parameter k set to 2k′. Let the unique positive sample in I be the edge
set E1 such that the graph (V, E1) is a (2k + 1)-partite graph consisting of independent
sets S1, . . . , S2k+1. For each odd j ∈ [2k + 1], the set Sj contains a single vertex sj . For
each even j ∈ [2k + 1], the set Sj contains one vertex for each set in F , and in particular
Sj := {pj

1, . . . , pj
m}. E1 is then the set of all edges connecting consecutive sets in this

partition of V , i.e., E1 = {s2j−1p2j
ℓ | ℓ ∈ [m], j ∈ [k]} ∪ {p2j

ℓ s2j+1 | ℓ ∈ [m], j ∈ [k]} (see
in Figure 4). Next, for each element uj ∈ U , j ∈ [n], we add a negative sample (V, Ej+1)
into I which only contains non-edges incident to the sets containing that element; formally,
Ei+1 =

(
V
2
)

\ {vp2j
ℓ | j ∈ [k], ui ∈ Fℓ}. This completes the construction of I.

s1

p2
1

p2
2

...

p2
m

s3

p4
1

p4
2

...

p4
m

s5

. . .

s2k−1

p2k
1

p2k
2

...

p2k
m

s2k+1

Figure 4 A unique positive sample for an instance of ConsCheck: (k-)Path.

Correctness. If I admits a solution Q, then Q must be a path in (V, E1) of size 2k and
hence must be a path which consecutively visits vertices (s1, p2

α(1), s3, p4
α(2), . . . , p2k

α(k), s2k+1).
Moreover, since Q is not a path in (V, Ej+1) for any j ∈ [n], the set {Fα(1), . . . , Fα(k)} is a set
cover for (U , F , k). At the same time, given a set cover {Fβ(1), . . . , Fβ(k)} (for some mapping
β), we can construct a solution for I by taking (s1, p2

β(1), s3, p4
β(2), . . . , p2k

β(k), s2k+1). This
yields a reduction from Set Cover to the problem of deciding the existence of a solution
for ConsCheck: (k-)Path; in particular, this means that a fixed-parameter algorithm for
ConsCheck: (k-)Path would imply FPT=W[2]. ◀

However, we show that the third problem under consideration—Edge Clique Cover—
does not become more difficult in the consistency checking regime.

▶ Theorem 19. ConsCheck: Edge Clique Cover admits a fixed-parameter algorithm
which runs in time O(22k · |I|).

Proof. We begin by observing that an edge clique cover F ⊆ 2(V
2 ) for a graph (V, E1) cannot

be an edge clique cover for any graph (V, E2) such that E2 ̸= E1. Indeed, for each edge
e ∈ E2 \ E1 it holds that e cannot be covered by F , while every edge e ∈ E1 \ E2 must be
covered by some clique F ∈ F in (V, E1) and hence F would no longer be a clique in (V, E2).
Hence if an instance I of ConsCheck: Edge Clique Cover contains two distinct positive
samples, the algorithm can correctly output that I has no solution.
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So, let us consider the case where I contains precisely one positive sample, say (E1, 1).
There is a well-known set of simple rules that can reduce the number of vertices of (V, E1)
to 2k [12]; in fact, under the Exponential Time Hypothesis [15] this reduction combined
with a brute-force exhaustive search on the reduced instance produces an essentially optimal
algorithm for Edge Clique Cover [8]. We apply this procedure to either identify, in
22k · |V | time, an edge clique cover F of cardinality k for (E1, 1), or correctly determine that
no such F exists (in which case the algorithm can, as before, correctly output that I has no
solution). The algorithm then simply checks to ensure F is not an edge clique cover for any
of the negative samples, or equivalently, checks that there is no negative sample of the form
(E1, 0). If this check succeeds, the algorithm outputs the solution F .

Finally, for the case where I contains only negative samples, let us consider G =
(V,

⋂
i∈[t] Ei). If |V | ≤ k, we can apply exhaustive branching to check each potential

choice of F , resulting in an algorithm with running time 22k . Otherwise, choose an arbitrary
set of distinct vertices v1, . . . , vk ∈ V . Set F = {F1, . . . , Fk} where F1 = {v1v2, v1v3}, and
for each Fi, 2 ≤ i ≤ k we use Fi = {vivi+1}. ◀

Given the fixed-parameter intractability of ConsCheck: Matching and ConsCheck:
(k-)Path w.r.t. the solution size alone, it is natural to ask whether one could solve these
problems at least when the number of negative samples is small, similarly as was done
in Theorem 16 for 2-Coloring. We conclude this section by answering this question
positively, albeit the algorithmic techniques used here are different from Theorem 16. In fact,
it turns out that an adaptation of the classical color-coding technique suffices in this case [7,
Subsections 5.2 and 5.6]. For both problems, the task essentially boils down to intersecting
all positive samples into one, and then looking for a solution where the set of k edges is not
contained in any negative sample. After assuming that all vertices of the solution receive
distinct colors, we can perform dynamic programming to find a colorful solution, and while
doing so we also store information about which negative samples are already “dealt with”,
i.e., which negative samples do not contain the edges in the partial solution. We provide the
formal proofs of both results below.

▶ Theorem 20. ConsCheck: Matching admits an algorithm which runs in time 2O(k+t−) ·
|I|O(1); in particular, the problem is fixed-parameter tractable when parameterized by k + t−.

Proof. Let (V, k, (E1, λ1), . . . , (Et, λt)), be the input of ConsCheck: Matching; w.l.o.g.
assume that λ1 = . . . = λt− = 0, and λt−+1 = . . . = λt = 1. First, consider the special
case where t− = t. If |V | ≥ 3, return a set F of two vertex pairs that share a vertex, which
ensures that F is not a matching in any sample. If |V | ≤ 2, the problem is trivial.

We now have that t− < t. Clearly, a set F ⊆
(

V
2
)

of size k is a solution if and only if
(1) the pairs in F are vertex-disjoint, (2) for every i ∈ [t− + 1, t], F ⊆ Ei, and (3) for every
i ∈ [t−], F ⊈ Ei. The instance is thus equivalent to (V, k, (E1, 0), . . . , (Et− , 0), (E, 1)), where
E = Et−+1 ∩ · · · ∩ Et, i.e., an instance obtained from the original one by intersecting all
positive samples. A solution is now a matching F of size k in (V, E) such that for every
i ∈ [t−], F ⊈ Ei.

Assume now that the vertex set V is colored in 2k colors with a mapping c : V → [2k],
and we are looking for a colorful solution, i.e., a matching M such that in the set of vertices
of M each color appears exactly once, in addition to the properties of the solution above.
We show how to find such a colorful solution with the help of dynamic programming.

For C ⊆ [2k], I ⊆ [t−] let α(C, I) be 1 if there exists a matching M in (V, E) such that its
vertex set has exactly the colors in C, and such that i ∈ I if and only if M ⊈ Ei; α(C, I) = 0
if there is no such matching. We compute the values α(C, I) in the order of increasing |C|.
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To initialize, we set α(∅, ∅) = 1 and α(∅, I) = 0 for all I ⊆ [t−], I ̸= ∅. This is clearly correct,
as the only matching whose vertex set contains no colors is the empty matching, and the
empty matching is a subset of every set of edges Ei, i ∈ [t−].

Now consider C ⊆ [2k] with |C| > 0, I ⊆ [t−], and assume α(C ′, I ′) is correctly computed
for all |C ′| < |C| and all I ′ ⊆ [t−]. For an edge e ∈ E, denote by β(e) ⊆ [t−] the set of
negative samples that are “dealt with” by e, i.e., β(e) = {i ∈ [t−] : e /∈ Ei}. We set

α(C, I) = max
uv∈E:c(u),c(v)∈C
I′⊆I:I′∪β(uv)=I

α(C \ {c(u), c(v)}, I ′). (1)

We now argue the correctness of the computation above. First, assume α(C, I) = 1, and
consider a corresponding solution M . Let uv ∈ M be an arbitrary edge of the solution,
and let I ′ be the set of negative samples “dealt with” by the remaining edges of M , i.e.,
I ′ =

⋃
e∈M\{uv} β(e). Since M is a colorful matching, the endpoints of edges in M \ {uv}

have colors in C \ {c(u), c(v)}. Therefore, α(C \ {c(u), c(v)}, I ′) = 1 as M \ {uv} is a suitable
solution. Then also α(C, I) = 1 by (1), since uv ∈ E, c(u), c(v) ∈ C and I ′ ∪ β(uv) = I,
which implies that α(C \ {c(u), c(v)}, I ′) appears on the right-hand side of (1).

In the other direction, let α(C, I) = 0, and assume for the sake of contradiction that (1)
assigns 1 to it, i.e., there exists uv ∈ E and I ′ ⊆ I such that c(u), c(v) ∈ C, I ′∪β(uv) = I, and
α(C \{c(u), c(v)}, I ′) = 1. Consider then the matching M ′ certifying α(C \{c(u), c(v)}, I ′) =
1, and let M be M ′ ∪ {uv}. Clearly, M is colorful and is a matching, as the edges in M ′

have their endpoints’ colors in C \ {c(u), c(v)}. Moreover, the set of colors covered by the
edges of M is then exactly C, and the set of “dealt with” negative samples is exactly I, as
I = I ′ ∪β(uv), where the former are satisfied by M ′ and the latter by the edge uv. Therefore,
we reach a contradiction that α(C, I) is 0, which finishes the proof of correctness.

Finally, a standard color-coding argument shows that solving the colorful version of
the problem is sufficient, and this step could also be done in deterministic fashion with
the claimed running time bound [7, Subsections 5.2 and 5.6]. Observe that the dynamic
programming above contains at most 2k · 2t− states α(C, I), and each is computed in time at
most 2t− · nO(1) by (1).

◀

The proof of the next theorem builds on the color-coding algorithm for k-Path, but
otherwise the arguments are fairly similar to those used in the previous theorem.

▶ Theorem 21. ConsCheck: (k-)Path admits an algorithm which runs in time 2O(k+t−) ·
|I|O(1); in particular, the problem is fixed-parameter tractable when parameterized by k + t−.

Proof. Let (V, k, (E1, λ1), . . . , (Et, λt)), be the input of ConsCheck: (k-)Path; w.l.o.g.
assume that λ1 = . . . = λt− = 0, and λt−+1 = . . . = λt = 1. First, assume t− = t. If |V | ≥ 4,
return a set F of two vertex pairs that do not share a vertex; clearly such F is not a path in
any instance and hence is a solution. On the other hand, the case where |V | ≤ 3 is trivial.

We now have that t− < t. By an analogous arguments as above, we can intersect all
positive samples and arrive at the following equivalent formulation: A solution is a path P

of length k in (V, E) such that for every i ∈ [t−], P ⊈ Ei, i.e., there is an edge in P that is
not present in Ei. Here, E = Et−+1 ∩ · · · ∩ Et.

We again look for a colorful solution: assume that the vertex set V is colored in k + 1
colors with a mapping c : V → [k + 1], and the task is to find a path P such that in the
set of vertices of P each color appears exactly once, in addition to the properties of the
solution above. Next we present a dynamic programming algorithm that finds such a colorful
solution.
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For a vertex v ∈ V , C ⊆ [k + 1], I ⊆ [t−] let α(v, C, I) be 1 if there exists a path P

in (V, E) such that its endpoint is v, its vertex set has exactly the colors in C, and such
that i ∈ I if and only if P ⊈ Ei; α(C, I) = 0 if there is no such path. We compute the
values α(v, C, I) in the order of increasing |C|. To initialize, for every vertex v ∈ V we set
α(v, {c(v)}, ∅) = 1 and α(v, {c(v)}, I) = 0 for all I ⊆ [t−], I ̸= ∅. This is correct since every
path with a single vertex is characterized by this vertex; each such path has an empty set of
edges, and it is a subset of every set of edges Ei, i ∈ [t−].

Now consider v ∈ V , C ⊆ [k + 1] with |C| > 0, I ⊆ [t−], and assume α(v′, C ′, I ′) is
correctly computed for all |C ′| < |C| and all v′ ∈ V , I ′ ⊆ [t−]. For an edge e ∈ E, denote by
β(e) the set of negative samples that are “dealt with” by e, i.e., β(e) = {i ∈ [t−] : e /∈ Ei}.
We set

α(v, C, I) = max
uv∈E:c(u)∈C

I′⊆I:I′∪β(uv)=I

α(u, C \ {c(v)}, I ′), (2)

if c(v) ∈ C; otherwise α(v, C, I) is clearly 0.
Next we show the correctness of the computation above. First, assume α(v, C, I) = 1, and

consider a corresponding solution P . Let uv ∈ P be the final edge of the path, and let I ′ be
the set of negative samples “dealt with” by the remaining edges of P , i.e., I ′ =

⋃
e∈P \{uv} β(e).

Since P is a colorful path, the endpoints of edges in P \ {uv} have colors in C \ {c(v)}.
Therefore, α(u, C \ {c(v)}, I ′) = 1 as P \ {uv} is a suitable solution. Then also α(v, C, I) = 1
by (2), since uv ∈ E, c(u) ∈ C and I ′ ∪ β(uv) = I, which implies that α(u, C \ {c(v)}, I ′)
appears on the right-hand side of (2).

In the other direction, let α(v, C, I) = 0, and assume for the sake of contradiction that (2)
assigns 1 to it, i.e., there exists uv ∈ E and I ′ ⊆ I such that c(u) ∈ C, I ′ ∪ β(uv) = I, and
α(u, C \ {c(v)}, I ′) = 1. Consider then the path P ′ certifying α(u, C \ {c(v)}, I ′) = 1, and let
P be P ′ ∪ {uv}. Clearly, P is colorful and is a path, as the edges in P ′ have their endpoints’
colors in C \ {c(v)}. Moreover, the set of colors covered by the edges of P is exactly C, and
the set of satisfied negative samples is exactly I, as I = I ′ ∪ β(uv). Therefore, we reach a
contradiction that α(v, C, I) is 0, which finishes the proof of correctness.

A standard color-coding argument also shows that solving the colorful version of the
problem is sufficient, and this step could also be done in deterministic fashion in the claimed
running time bound [7, Subsections 5.2 and 5.6]. ◀

5 Consistency Checking for Selected Vertex Search Problems

In the final technical section of this article, we focus our attention on consistency checking
for two prominent vertex search problems in parameterized algorithmics: Independent Set
and Dominating Set. As mentioned in the introduction, both problems are believed to be
fixed-parameter intractable (the former is W[1]-hard while the latter is W[2]-hard), and so
for the purposes of this article we restrict our attention to bounded-degree input graphs—or,
more precisely, we consider the maximum degree as an additional parameter5. We formalize
the consistency checking problems below.

5 We remark that all of the obtained results and proofs carry over also to the case where the maximum
degree is considered to be an arbitrary fixed constant



20 Consistency-Checking Problems: A Gateway to Parameterized Sample Complexity

{1, 2}

{1, 2, 3}

{1, 3}

{2, 3}

{1, 2}

{2, 3}

Figure 5 ConsCheck: Independent Set[degree] instance with G1, G2 and G3; and G for the
reformulation of ConsCheck: Independent Set[degree].

ConsCheck: Independent Set[degree]
Input: Integers k, d, and I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph
of degree at most d and λi ∈ {0, 1}.
Parameter: k + d.
Output: A set X ⊆ V of size k such that for each i ∈ [t], X forms
an independent set in Gi if and only if λi = 1.

ConsCheck: Dominating Set[degree]
Input: Integers k, d, and I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph
of degree at most d and λi ∈ {0, 1}.
Parameter: k + d.
Output: A set X ⊆ V of size k such that for each i ∈ [t], X forms
a dominating set in Gi if and only if λi = 1.

Once again, the complexity-theoretic properties of these problems turn out to be very
different from those of their simpler graph search analogues. In particular, consistency
checking for Independent Set is fundamentally harder than for the other two problems.

▶ Theorem 22. There is no fixed-parameter algorithm for ConsCheck: Independent
Set[degree] unless FPT = W[2].

Proof. We present a reduction that given an instance (U , F , k) of the classical Set Cover
problem [7], constructs an equivalent instance I of ConsCheck: Independent Set[degree].
Recall that an instance (U , F , k) of Set Cover consists of a family F of m subsets over the
n-element universe U = [n], where we are interested in at most k sets from F whose union
covers all of U .

Before proceeding with the reduction, we present a reformulation of ConsCheck: Inde-
pendent Set[degree] for the case where the instance I only consists of negative samples.

Reformulation. Consider an instance I of ConsCheck: Independent Set[degree] that
contains negative samples only, i.e. I = {V, (Ei, 0)i∈[t]} for some t; to avoid overloading k,
let us use k′ to denote the first component of the parameter for I.

Let us consider a graph G over the vertex set V and with the edge set E(G) =
⋃t

i=1 E(Gi).
Now, for each edge e ∈ E(G), we assign a label set Le = {i|e ∈ E(Gi)}. In other words, for
each edge e ∈ E(G) we remember the samples e originates from.

Now, our aim is to select a set H ⊆ V (G) of k′ vertices such that the union of all label-sets
of edges between the vertices of H is exactly [t]; formally, we seek a set H of k′ vertices
such that

⋃
v,u∈H

Luv = [t]. Note that such a set H ⊆ V (G) guarantees that, for each i ∈ [t],

there exist u, v ∈ H such that i ∈ Luv; the latter, by the definition of the label-set, means
that uv ∈ Gi. Thus, the set H is not an independent set for any of the graphs Gi = (V, Ei),
i ∈ [t]. Conversely, if for each i ∈ [t] there are u, v ∈ H such that vu ∈ Ei, then uv ∈ Lvu,
and a union of the label-sets for each pair u, v ∈ H then gives [t].
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Construction. Now, let us consider an instance (U, F , k) of Set Cover. We construct
an instance (G, k′) of the reformulated ConsCheck: Independent Set[degree] problem
described above, with t = n being the size of the universe. The graph G is constructed as
follows. For each Fi ∈ F , we introduce two vertices f1

i , f2
i , and add an edge fi with the set

Fi as its label-set Lfi
; k′ = 2k.

Correctness. Suppose, given an instance (U , F , k) of Set Cover, that the reduction returns
(G, k′) as an instance of the reformulated ConsCheck: Independent Set[degree].

Assume that (U , F , k) admits S ⊆ F such that both
⋃

F ∈S

F = U and |S| ≤ k hold. Then,

let us construct a solution H ⊆ V (G) for (G, k′). For each F ∈ S, let us include both f1
i and

f2
i to H. Then, obviously, the condition on the set’s cardinality will hold, i.e., |H| ≤ k′ = 2k.

Also,
⋃

v,u∈H

Luv = [n] since the label-sets are exactly the sets used in the solution S for

(U , F , k) and [n] is the universe.
For the other direction, suppose that we have H ⊆ V (G) such that

⋃
v,u∈H

Luv = [n].

Observe that Luv ̸= ∅ only for pairs of the form f1
i , f2

i for some i ∈ [m]. So, let S ⊆ F be
defined as follows: S = {Fi | {f1

i , f2
i } ⊆ H}. Then, by the above construction, the sets in S

are identical to the label-sets of edges whose both endpoints are in H. And, since the union
of the label-sets of edges whose both enpoints are in H are [n], the selected S is a solution
for the considered instance of Set Cover, i.e.,

⋃
F ∈S

F = U = [n]. ◀

▶ Theorem 23. ConsCheck: Dominating Set[degree] can be solved by a fixed-parameter
algorithm running in time O(2kd) · |I|.

Proof. We show that ConsCheck: Dominating Set[degree] admits a kernel of size k(d+1).
Indeed, each vertex in the solution dominates at most d vertices outside of the solution.

Thus, if |V | > k · (d + 1) and ConsCheck: Dominating Set[degree] contains a positive
sample, we can immediately output that there is no solution, while if if |V | > k · (d + 1) and
ConsCheck: Dominating Set[degree] contains negative samples only, we can correctly
output an arbitrary set of k vertices as a solution.

At this point, it remains to deal with instances of ConsCheck: Dominating Set[degree]
such that |V | ≤ k ·(d+1). To deal with these, it suffices iterate over all subsets of V and check
for each such subset whether it is a solution for ConsCheck: Dominating Set[degree].

Since each such check can be carried out in linear time, in O(2kd) · |I| we either find
a solution for ConsCheck: Dominating Set[degree] or correctly identify that no such
solution exists. ◀

Similarly to Theorems 16, 20 and 21, we turn our attention to whether the lower bound
for ConsCheck: Independent Set[degree] can be overcome if the number of negative
samples is bounded by the parameter. While the W[2]-hardness reduction of Theorem 22
does not hold if we are given a bound on the number of samples, it turns out that—unlike
for 2-Coloring, Matching and (k-)Path—consistency checking for Independent Set
remains fixed-parameter intractable even under this additional restriction.

▶ Theorem 24. There is no fixed-parameter algorithm for ConsCheck: Independent
Set[degree] even when the number t− of negative saimples is assumed to be an additional
parameter, unless FPT = W[1].

Proof. We present a simple reduction that given an instance (G, k′) of the classical Independ-
ent Set decision problems on graphs, constructs an equivalent instance I of ConsCheck:
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Independent Set[degree] where each graph (V, Ei) has maximum degree 1, t− = 0, and
k = k′.

Construction. We construct the instance I = {(V, (Ei, λi)i∈[t]} where V is the set of vertices
in the instance (G, k′) of Independent Set, and for each edge ej in G the set (Ei, λi)
contains a tuple ({ej}, 1). Notice that t is then the number of edges in G.

Correctness. Suppose, given an instance (G, k′) of Independent Set, that the reduction
described above returns I = {V, (Ei, λi)i∈[t]} as an instance of ConsCheck: Independent
Set[degree]. Then every independent set in G is also an independent set for each of the
positive samples in I, and at the same time an independent set on V that is independent for
each of the positive samples in I is also an independent set in G. Hence, the existence of a
fixed-parameter algorithm that solves every instance I obtained in this way parameterized
by k plus the number of negative samples plus the maximum degree of a sample would imply
a fixed-parameter algorithm for Independent Set. ◀

While restricting the number of negative samples alone is insufficient to achieve tractability,
we conclude by showing that restricting the total number of samples allows for a fixed-
parameter algorithm that solves the problem via a combination of multi-step exhaustive
branching and color coding.

▶ Theorem 25. ConsCheck: Independent Set[degree] admits an algorithm which runs
in time (kdt)O(k2) · nO(1); in particular, it is fixed-parameter tractable when parameterized by
k + d + t.

Proof. Consider an input instance I = {V, (Ei, λi)i∈[t]}, k, d of ConsCheck: Independent
Set[degree], and recall that the solution is a vertex set of size k. Let us denote the negative
samples in I as (E−

1 , 0), . . . , (E−
t− , 0), where t− ≤ t is the number of negative samples in the

instance. The algorithm begins by exhaustively branching over all k-vertex graphs and all
possible labelings of the edges of these graphs by subsets of [t−]. We call each such graph
considered in a separate branch in the algorithm a template, and we note that the number
of templates is upper-bounded by 2k2 . We immediately discard templates such that there
exists a label z ∈ [t−] which does not occur on any of its edges.

Intuitively, a template captures the behavior of a hypothetical solution with respect to
the negative samples. Indeed, observe that for every hypothetical k-vertex solution S of I,
we can construct a template TS as follows:

the vertices of TS are mapped to S by an arbitrary bijection;
whenever two vertices s, t ∈ S are not adjacent to each other in any negative sample, we
keep their counterparts non-adjacent in TS ; and
whenever two vertices s, t ∈ S are adjacent to each other in negative samples {Ez | z ∈ Z}
for some Z ⊆ [t−], we place an edge between their counterparts in TS and label that edge
by Z.

Second, in each branch where we have a fixed template T , we apply the color-coding
technique with derandomization [7, Subsections 5.2 and 5.6] to construct a family B of
k-colorings of V such that if there exists a solution S = {s1, . . . , sk}, then there will exist
a coloring B ∈ B such that each si ∈ S will receive the color i. We then branch over all
colorings in B, and the running time required for this branching step is upper-bounded by
(2e)k · kO(k) · nO(1)[7, Subsection 5.6].

In the third step, the algorithm exploits the degree bound d to enumerate all appropriately
colored isomorphic copies of each of the connected components in T which form independent
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sets in the positive instances. More precisely, for each connected component C ∈ T consisting
of vertices sα(1), . . . , sα(ℓ) for some ℓ ≤ k, the algorithm branches over all of the at most
|V | many choices of s′

α(1) ∈ V which received color α(1). It then chooses a new vertex in
C which is adjacent to sα(1), say sα(i), via an edge labeled by some edge-label set Z. To
identify s′

α(i) ∈ V , it chooses an arbitrary label z ∈ Z and then branches over the at most d

many neighbors of s′
α(1) in E−

z ; for each such neighbor v, the algorithm tests whether v is
independent from s′

α(1) in all positive instances and whether v is adjacent to s′
α(1) precisely

in those negative instances whose indices are in Z. This branching procedure requires time at
most n · dℓ−1 ≤ n · dk and allows us to construct the set LC of all ℓ-vertex subsets which are
(1) independent in the positive samples, (2) colored in the same way as C, and (3) correspond
to C in the way described in the second paragraph of the proof.

In the final fourth step of the algorithm, assume we have constructed the sets LC1 , . . . , LCp

for the connected components C1, . . . , Cj of T . For each small set LCj
, j ∈ [p], such that

|LCj
| ≤

∑
i∈[k]

(
kdt·(dt)k

i

)
, we perform exhaustive branching to choose a subset Sj ∈ LCj

and add it to a solution set S′. On the other hand, large sets LCj such that |LCj | >∑
i∈[k]

(
kdt·(dt)k

i

)
are ignored; the justification for this will become clear in the correctness

argument, whereas the intuition is that in this case we are guaranteed to find a vertex subset
in LCj

which will be independent from whichever other vertices are chosen to be part of
the solution. Finally, we check whether the set S′ constructed in this branch is consistent
with all positive samples; in particular, it is necessary to check that vertices originating
from different components of T are independent in all positive samples. If this test fails,
the algorithm proceeds to the next branch. If S′ succeeds with this final test, the algorithm
searches each large set LCj until it finds an arbitrary set Sj ∈ LCj which is independent
from S′ in all positive samples, and adds Sj to S′. It then outputs the constructed set S′.

The running time of the algorithm described above is upper-bounded by nO(1) ·(kdktk)O(k).
For correctness, let us assume the existence of a hypothetical solution S and let TS be a
template which corresponds to S as described in the second paragraph of the proof. Consider
the branch in which the algorithm considers the template TS , and then a branch in which
it selects a color family B ∈ B such that each vertex in S receives a unique color. In the
third step, the algorithm will construct the sets LC1 , . . . , LCp

for each of the p connected
components of TS ; in particular, there exists some S1 ∈ LC1 , . . . , Sp ∈ LCp

such that
S =

⋃
ℓ∈[p] Sℓ. For the final branching step, let us consider the branch in which the algorithm

correctly identifies those subsets Sj , j ∈ [p], such that Sj ⊆ S for each small LCj
.

To complete the proof, it remains to argue that the algorithm will extend the set S0 ⊆ S

constructed so far into some k-vertex solution for I. To this end, notice that since |S0| ≤ k,
there are at most kdt many vertices that are adjacent to at least one vertex in S0 in at least
one positive sample; let us denote this vertex set M . Moreover, there are at most kdt · (dt)k

vertices in the distance-k neighborhood of M in the graph (V,
⋃

u∈[t−] E−
u ) of all negative

samples; let us denote the vertices in this distance-k neighborhood by M+. The total number
of vertex subsets of size at most k in M+ is upper-bounded by

∑
i∈[k]

(
kdt·(dt)k

i

)
. This means

that each large LCj
must contain at least one set, say S∗

j , which is not fully contained in
M+ and in particular contains at least one vertex outside of M+. And since S∗

j is connected
and contains at most k vertices, it must be completely distjoint from M . Hence S∗

j must
be non-adjacent to S0. This guarantees that the algorithm will discover at least one set in
the first large LCj

which can be added to its constructed set S0. Crucially, since the only
property of S0 that was used in this argument was that |S0| ≤ k, it can be repeated in
verbatim for every other large LCj . In summary the algorithm is guaranteed to output a set
S′ ⊇ S0 which is a k-vertex solution for I, as desired.
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◀

6 Concluding Remarks

This article can be seen as a “brief expedition into the forgotten island of consistency
checking”—a place where Split Graph and Edge Clique Cover are tractable but 2-
Coloring and Matching are not, and where on bounded-degree graphs Independent
Set is W[2]-hard while Dominating Set admits a fixed-parameter algorithm.

To conclude on a more serious note, we remark that our understanding of parameterized
consistency checking—and, more broadly, of sample complexity—is still in its infancy. Even
in the setting of PAC learning considered here, we so far know very little about which
learning problems belong to the classes FPT-PAC and XP-PAC. Still, we hope that the results
and techniques presented in this article can contribute to bridging the gap between the
parameterized (time) complexity and the sample complexity research fields. A natural target
for future work in this direction would be to further deepen our understanding of problems
such as learning CNF and DNF formulas [20, 2, 6] or juntas [18].
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