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Abstract. Upward planarity testing and Rectilinear pla-
narity testing are central problems in graph drawing. It is known that
they are both NP-complete, but XP when parameterized by treewidth. In
this paper we show that these two problems are W[1]-hard parameterized
by treewidth, which answers open problems posed in two earlier papers.
The key step in our proof is an analysis of the All-or-Nothing Flow
problem, a generalization of which was used as an intermediate step in
the NP-completeness proof for both planarity testing problems. We prove
that the flow problem is W[1]-hard parameterized by treewidth on pla-
nar graphs, and that the existing chain of reductions to the planarity
testing problems can be adapted without blowing up the treewidth. Our
reductions also show that the known nO(tw)-time algorithms cannot be
improved to run in time no(tw) unless ETH fails.
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1 Introduction

A graph is planar if it admits a drawing in the plane where no two edges cross
each other. Testing graph planarity is among the most fundamental problems
in graph algorithms and graph drawing. While several papers proposed efficient
algorithms for this problem (including the celebrated linear-time algorithm of
Hopcroft and Tarjan [27]), notable variants and restrictions have also been in-
vestigated, including clustered planarity (see, e.g. [6,24]), constrained planarity
(see, e.g. [7,33]), and k-planarity (see, e.g. [26,31,38]); refer to [35] for a survey.

(a) Directed graph
#»
G (b) Upward planar drawing (c) Rectilinear drawing

Fig. 1: A directed graph
#»

G, an upward planar drawing of
#»

G, and a rectilinear
planar drawing of its underlying undirected graph G.

This paper investigates two of such classical variants, namely upward pla-
narity testing and rectilinear planarity testing. Given a directed acyclic graph G,
upward planarity testing asks whether G admits a crossing-free drawing where
all edges are monotonically increasing in a common direction, which is conven-
tionally called the upward direction; see Figure 1b. For an undirected graph G,
rectilinear planarity testing asks whether G admits a crossing-free drawing such
that each edge is either a horizontal or a vertical segment; see Figure 1c. Both
upward planarity and rectilinear planarity testing are classical and extensively
investigated topics in graph drawing (see, e.g. [2,30,34,37]).

While apparently different, the two problems have a lot in common. Namely,
both an upward planar drawing of a digraph and a rectilinear planar drawing of
a graph exists provided that the graph has a planar embedding where for every
face f there is some “balancing” of the angles that the edges along the boundary
of the face form in the interior of f . Consider, for simplicity, biconnected graphs.
In a rectilinear planar drawing of a biconnected graph the boundary of every
internal face f is an orthogonal polygon and hence the number of π

2 angles
minus the number of 3π

2 angles must be 4. Similarly, if a biconnected graph is
upward planar it admits an upward planar drawing where for every internal face
the number of angles that are smaller than π

2 always exceeds by two units the
number of angles that are larger than π.

Hence, it is quite natural to see that in the fixed embedding setting (i.e. when
the combinatorial structure of the faces of the graph is given as part of the
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input) classical results solve both upward planarity testing and rectilinear pla-
narity testing in polynomial time by looking for the existence of a feasible flow in
a network where vertices supply angles to faces and faces have a limited capacity
which depends on structure of the graph [3,36]. On the other hand, both prob-
lems are NP-complete in the so-called variable embedding setting, that is when
the testing algorithm must verify whether the input graph has a combinatorial
structure of its faces which allows the balancing of angles described above. Again
unsurprisingly, both proofs of NP-completeness follow the same logic based on a
reduction from a common flow problem on planar graphs [25].

These NP-completeness results have motivated a flourishing literature de-
scribing both polynomial-time solutions for special classes of graphs and pa-
rameterized solutions for general graphs. For example, polynomial-time solu-
tions are known for both problems when the input graph has treewidth at most
two [15,18,19,23,17]; also, rectilinear planarity testing can be solved in linear time
if the maximum degree of the input graph is at most three [20], and upward pla-
narity testing can be solved in linear time if the digraph has only one source
vertex [4,11,28]. Concerning parameterized solutions, upward planarity testing
is fixed-parameter tractable when parameterized by the number of triconnected
components [12], by the treedepth [13], and by the number of sources [13].

The research in this paper is motivated by the fact that both upward pla-
narity and rectilinear planarity testing are known to lie in XP when parameter-
ized by treewidth [13,17]. Determining whether these two parameterized prob-
lems are in FPT are mentioned as open problems in both [13,17]. The main
contribution of this paper is as follows.

Theorem 1. Upward planarity testing and rectilinear planarity testing param-
eterized by treewidth are both W[1]-hard. Moreover, assuming the Exponential
Time Hypothesis, neither problem can be solved in time f(k) ·no(k) for any com-
putable function f , where k is the treewidth of the input graph.

Theorem 1 implies that, under the standard hypothesis FPT ̸= W[1] in pa-
rameterized complexity, there exists no fixed-parameter tractable algorithm for
either problem parameterized by treewidth, hence answering the above men-
tioned open problems. To obtain our results we analyze the auxiliary flow prob-
lem used as a common starting point in the NP-completeness proof of both
planarity problems. It closely resembles the All-or-Nothing Flow problem
(AoNF), which asks for an st-flow of prescribed value in an edge-capacitated
flow network such that each edge is either used fully, or not at all. The AoNF
problem parameterized by treewidth was recently shown to be W[1]-hard (in
fact, even XNLP-complete) on general graphs by Bodlaender et al. [9]. By a
significant adaptation of their construction, we can prove that AoNF param-
eterized by treewidth remains W[1]-hard on planar graphs. By revisiting the
chain of reductions to the planarity testing problems, passing through the Cir-
culating Orientation problem in between, we show they can be carried out
without blowing up the treewidth of the graph and thereby obtain Theorem 1.

The rest of the paper is organized as follows. In Section 2 we formally define
the problems involved in our chain of reductions. Due to space limitations, all
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formal proofs have been deferred to the appendix. In Section 3 we therefore
provide high-level sketches of our proofs. We conclude in Section 4. For space
reasons, results marked with a (clickable) “⋆” are proved in the appendix.

2 Preliminaries

We assume familiarity with the basic notions of graph drawing [2] and of pa-
rameterized complexity [14], including the notions of treewidth and pathwidth
which are commonly used parameters to capture the complexity of a graph G.
The formal definitions, including those for upwards and rectilinear planarity, can
be found in the appendix. Below we define the parameterized problems which
are used in the chain of reductions of our lower bounds. Throughout the paper
we utilize both undirected and directed graphs, which may have parallel edges
but no loops. A graph without parallel arcs or edges is a simple graph. We use
uv to denote a (directed) arc from u to v and {u, v} to denote an (undirected)
edge between u and v. The vertex set of a graph G is denoted by V (G) and
the (multi)set of edges by E(G). Depending on whether the graph is directed or
not, E(G) either contains its undirected edges or its directed arcs. For a vertex
in a directed graph G, we denote by E−

G(v) the (multi)set of arcs leading into v,
and by E+

G(v) the (multi)set of arcs leading out of v.
The starting point of our reductions is the following parameterized version

of the Clique problem, which is well-known to be W[1]-complete [14, Thm.
13.25]. Assuming ETH, it cannot be solved in time f(k)no(k) for any computable
function f [14, Cor. 14.32].

Multicolored Clique
Input: An undirected simple graph G and a partition of its vertex set into k
sets V1, . . . , Vk, each consisting of N vertices.
Parameter: k.
Question: Does G contain a clique C ⊆ V (G) such that |C ∩ Vi| = 1 for
each i ∈ [k]?

Note that the assumption that all sets Vi have the same size is without loss
of generality, since we may pad the input with isolated vertices if needed.

The next problem in our chain of reductions is a variation of Maxi-
mum Flow; we therefore need some terminology regarding flows. A flow
network (G, c, s, t) consists of a directed graph G with a capacity func-
tion c : E(G) → Z+ on the arcs, together with two distinct vertices s, t called
the source and sink. We allow a flow network to have parallel arcs. An st-
flow in the flow network is a function f : E(G) → Z≥0 such that for each
arc e ∈ E(G) we have 0 ≤ f(e) ≤ c(e) (capacity constraints), and for each
vertex v ∈ V (G) \ {s, t}, we have

∑
e∈E−

G (v) f(e) =
∑

e∈E+
G(v) f(e) (flow conser-

vation). The value of the flow is defined as
∑

e∈E+
G(s) f(e)−

∑
e∈E−

G (s) f(e). For
a vertex v in a flow network (G, c, s, t), we denote the total capacity of arcs leav-
ing v by d+G(v) :=

∑
e∈E+

G(v) c(e) and use d−G(v) :=
∑

e∈E+
G(v) c(e) for the total
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capacity of arcs entering v. While a maximum flow can be found in polynomial
time, the following variation is hard.

All or Nothing Flow
Input: A flow network (G, c, s, t) and a positive integer F .
Question: Does there exist an st-flow of value exactly F , such that the flow
through any arc uv ∈ E(G) is either 0 or equal to c(uv)?

We then reduce to the following problem on undirected graphs that mod-
els the combinatorial difficulty encountered in testing upwards or rectilinear
planarity, because it captures the problem of deciding orientations of edges to
balance certain contributions around a vertex (i.e. a face of the dual graph).

Circulating Orientation
Input: An undirected graph G with an edge-capacity function c : E(G) →
Z≥0.
Question: Is it possible to orient the edges of G, such that for each ver-
tex v ∈ V (G) the total capacity of edges oriented into v is equal to the total
capacity of edges oriented out of v? (Such an orientation is called a circulating
orientation.)

Edges are allowed to have capacity 0 in this problem, which allows us to
construct triconnected instances in the hardness reduction by inserting capacity-
0 edges that do not violate planarity and do not blow up the pathwidth. For
an undirected multigraph G, we use EG(v) to denote the (multi)set of edges
incident on a vertex v ∈ V (G). In the context of an edge-capacity function c, we
denote the total capacity of edges incident on v by dG(v) :=

∑
e∈EG(v) c(e).

In the non-planar setting, All or Nothing Flow easily reduces to Circu-
lating Orientation by a polynomial-time transformation that increases the
pathwidth by only a constant: it suffices to add a super-source and super-sink
with properly chosen capacities on their incident edges [9]. Since the addition of a
super-source and super-sink typically violates planarity of the graph, in our hard-
ness construction for the flow problem we take special care to produce instances
that can later be reduced to Circulating Orientation without violating pla-
narity. We point out that Didimo et al. [21] recently proved the NP-completeness
of Circulating Orientation on planar graphs. However, their reduction does
not have any consequences for the complexity of the problem parameterized by
treewidth.

3 Overview

Since space requirements prohibit us from presenting our reductions in detail,
we give an outline that discusses the main technical ideas behind our result and
defer the formal proofs to the appendix.
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x1 x2 x3 xm

y1 y2 y3 ym

V 1
1

V 1
2

V 1
k

V m+1
1

V m+1
2

V m+1
k

2kN

2kN+ 2− 1

2kN + 4

2kN + 6

2kN + 2N

2kN

2kN+ 2N− 1

2

s t

Fig. 2: Illustration for the FPT-reduction from Multicolored Clique
with k = 3,N = 4 to non-planar All or Nothing Flow on a graph of path-
width O(k). Dashed edges have capacity 1, dash-dotted edges (k(N −1) of them
on the bottom) have capacity 2.

3.1 Hardness of All-or-Nothing-Flow

The non-planar case. To aid the intuition, we first sketch an FPT-reduction
from Multicolored Clique to non-planar All or Nothing Flow on a
graph of pathwidth O(k), which is inspired by an XNLP-completeness proof due
to Bodlaender et al. [9]. Given an input (G,V1, . . . , Vk, k), which asks whether G
has a clique containing exactly one vertex from each of the size-N sets V1, . . . , Vk,
we construct a flow network G as follows. Number the vertices in each set Vi

as vi,1, . . . , vi,N . Let m = |E(G)|, where E(G) is the set of unordered vertex
pairs which do not form an edge of G. The graph G contains k rows R1, . . . , Rk.
Each row Ri consists of m + 1 vertices V j

i for j ∈ [m + 1]. For each j ∈ [m],
there are N parallel arcs from V j

i to V j+1
i whose capacities are 2kN + 2q for

each q ∈ [N ]. (Below, we will decrease the capacities of some of these arcs
by 1, to model the non-edges of G.) Intuitively, sending flow over an arc with
capacity 2kN + 2q on row Ri corresponds to selecting the q-th vertex of Vi into
the clique. Flow conservation will ensure that the same choice is made for all arcs
on the same row Ri. To feed each row Ri, there is an arc of capacity 2kN from
the source s to the first vertex V 1

i , along with N parallel arcs of capacity 2. This
is sufficient to saturate any single edge on the row, but insufficient to saturate
two edges. The analogous arcs leave from the last vertex V m+1

i to the sink t.
We will set the target value F of the flow problem to k(2kN +2N), which is

effectively the amount that we obtain when selecting the largest index on each
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row. To compensate for the fact that some rows may want to select a smaller
index, corresponding to sending less than 2kN + 2N flow, we additionally add
k(N − 1) parallel capacity-2 arcs directly from s to t. This number is chosen so
that any feasible flow which sends at least value 2kN + 2 through each row can
be augmented to a flow of value exactly k(2kN+2N), while making it impossible
to reach the desired flow value without choosing one index on each row.

The final part of the construction ensures that the choices encoded by the
flow correspond to a multicolored k-clique in G, using a small gadget that cru-
cially exploits the all-or-nothing property of the flow; see Figure 2. For each
pair vi,a, vℓ,b of non-adjacent vertices of G with i ̸= ℓ, we incorporate a gadget
to ensure that we cannot simultaneously choose flow value 2kN + 2a on row Ri

and 2kN + 2b on row Rℓ. We pick a unique index z from [m] for this non-edge
of G, and adapt the construction as follows:

– Among the multiple arcs from V z
i to V z+1

i , we consider the arc whose ca-
pacity was set to 2kN + 2a, which corresponds to choosing vertex vi,a. We
decrease the capacity of this arc by 1.

– Among the multiple arcs from V z
ℓ to V z+1

ℓ , we consider the arc whose ca-
pacity was set to 2kN + 2b, which correspond to choosing vertex vℓ,b. We
decrease the capacity of this arc by 1.

– We introduce two new vertices xz, yz and an arc xzyz of capacity 1. Ver-
tices V z

i , V
z
ℓ both get an arc to xz of capacity 1. Vertices V z+1

i , V z+1
ℓ both

get an arc from yz of capacity 1.

The idea behind the gadget is as follows. It is possible to send a flow of
value 2kN + 2a from V z

i to V z+1
i (by utilizing the arc of capacity 2kN + 2a− 1

to V z+1
i along with a flow of value 1 along the path via xz, yz). Analogously, it

is possible to send a flow of value 2kN +2b from V z
ℓ to V z+1

ℓ . But we cannot do
both simultaneously, due to the capacity-1 bottleneck between xz and yz and
the fact that the capacity of the other arcs on the row is either too large or too
small to be used in an all-or-nothing fashion. Hence we ensure the values a and b
cannot be simultaneously selected on rows i and ℓ.

The construction is completed by inserting such a gadget for each non-edge
of G. The resulting flow network G can be shown to have pathwidth O(k) since
it effectively consists of k paths whose interconnections are confined to vertices
whose index differ by at most one along the path.

Planarizing the instance. It is conceptually not difficult to extend the construc-
tion to prove hardness also for planar instances of the flow problem, since the
all-or-nothing nature of the flow facilitates a simple method to eliminate edge
crossings. Suppose we have a crossing between two arcs uv and xy whose capac-
ities are different. Then we may simply replace the crossing arcs uv, xy by a new
vertex d of degree four along with arcs ud, dv of capacity c(uv) and arcs xd, dy of
capacity c(xy). This transformation preserves the answer to the All or Noth-
ing Flow problem: in one direction, any flow in the original network trivially
yields a flow of the same value in the transformed network. The interesting step is
the converse direction. An all-or-nothing flow in the reduced network either sends
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flow over both halves ud, dv (respectively xd, dy) of an arc, or over neither half of
the arc: flow-conservation ensures that all flow entering d must also exit d, while
the all-or-nothing property of the flow together with the fact that c(uv) ̸= c(xy)
means that flow entering on arc ud (xd) cannot leave on arc dy (dv). (The
same approach for eliminating edge crossings was used previously by Didimo et
al. [21].)

Since the non-planar drawings coming out of the construction above (Fig-
ure 2) have the property that all crossings involve pairs of arcs of different
capacities, we can simply planarize the drawing by inserting degree-four vertices
where needed. It is not difficult to show that the pathwidth increases by only a
constant factor, resulting in the following lemma. Its proof can be found in the
appendix.

Lemma 1 (⋆). There is a polynomial-time algorithm that, given an instance
of Multicolored Clique with parameter k, outputs an equivalent instance
of All or Nothing Flow on a planar graph of pathwidth O(k) whose edge
capacities are bounded by a polynomial in |V (G)|.

The bound on the edge capacities of the instance will later govern the size of
tendril gadgets that will be created for the planarity testing problems.

3.2 Hardness of Circulating Orientation

We continue by describing the relation between All or Nothing Flow and
Circulating Orientation, starting with a special case that will be insightful
to establish some intuition. Suppose we have a flow network (G, s, t, c) in which
we ask for an all-or-nothing flow of value F , satisfying the following conditions:
for each vertex v ∈ V (G) \ {s, t} we have d+G(v) = d−G(v), the source has no
incoming arcs, the sink has no outgoing arcs, and F = d+G(s)/2 = d−G(t)/2.

We argue that this flow instance is equivalent to the instance of Circulat-
ing Orientation on the edge-capacitated undirected graph G′ that is simply
obtained from G by dropping the orientation of the edges. An all-or-nothing
flow f of value F in G leads to a circulating orientation of the undirected
graph G′, as follows: simply start from the orientation of arcs as given by G,
but reverse the orientation for each arc uv ∈ E(G) with f(uv) = 0. For each
vertex v ∈ V (G) \ {s, t}, flow conservation ensures that the total capacity of the
incoming edges that carry flow is equal to the capacity of outgoing edges that
carry flow. By the assumption that d−G(v) = d+G(v), the total capacity of out-arcs
of v which is reversed by the process equals that of the capacity of in-arcs of v
which is reversed. Hence the total capacity of arcs which are oriented outwards
remains unaffected by the reversals and equals d−G(v) = d+G(v) = dG′(v)/2. For
the source s, since the flow has value F = d+(s)/2 by assumption, reversing the
orientation of edges not carrying flow leaves F = d+G(s)/2 of capacity oriented
out of s, which is exactly half of dG′(s) since there are no incoming arcs. The
situation for the sink is analogous. This shows that a solution to the flow prob-
lem yields a solution to Circulating Orientation, and it is not difficult to
show the converse also holds.
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Under the simplifying assumptions above, it is therefore trivial to reduce from
All or Nothing Flow to Circulating Orientation. In the flow network G
we construct above, most vertices v ∈ V (G) \ {s, t} satisfy d−G(v) = d+G(v).
The only exceptions are the xj-vertices, along with the last vertex of each row
(their in-capacity exceeds their out-capacity), and the yj vertices along with the
first vertex of each row (their out-capacity exceeds their in-capacity). In general
graphs, the imbalance can be resolved by adding a super-source S and super-
sink T . Here we can do something similar while preserving planarity, utilizing the
fact that there is a face in the embedding that contains all xj vertices along with
the source s and sink t, and another face that contains all yj-vertices and {s, t}.
We insert a super-source and super-sink into these faces and use them to resolve
the imbalance of the xj and yj vertices. Based on a delicate argument, we show
that the imbalance of the first and last vertices of each row can be resolved via
the standard source and sink, which are already adjacent to them.

For the super-source S and super-sink T to work as desired, we need an edge
between them. This cannot be drawn in a planar fashion. However, we argue that
the effect of the edge {S, T} can be simulated by having a four-cycle (s, S, t, T )
involving the standard source and sink with appropriate capacities, which can
be added in a planar fashion. By carefully setting the capacities, this four-cycle
also resolves the issue caused by the fact that F ̸= d+G(s)/2.

To transform the resulting instances of Circulating Orientation into the
two planarity testing problems, it will be useful for the constructed planar graph
to be triangulated (which implies it is triconnected). We can achieve this property
by a post-processing step based on a result by Biedl. She proved [5] that any
simple planar graph G of pathwidth k can be transformed into a triangulated
planar supergraph G′ on the same vertex set having pathwidth O(k), and such
a triangulation can be computed efficiently. To make our graph simple, we can
start by subdiving all edges which is known to increase the pathwidth by at most
a constant. In the context of the Circulating Orientation problem, in which
we are allowed to have edges of capacity 0 which do not affect the answer to the
problem, we may then compute a triangulation of the simple graph and assign
all newly introduced edges capacity 0, thereby leading to the following lemma.

Lemma 2 (⋆). There is a polynomial-time algorithm that, given an instance
of Multicolored Clique with parameter k, outputs an equivalent instance of
Circulating Orientation on a simple, triconnected, triangulated planar graph
of pathwidth O(k) whose edge capacities are bounded by a polynomial in |V (G)|.

3.3 From Circulating Orientation to planarity testing problems

The main idea behind the reduction from Circulating Orientation to up-
ward/rectilinear planarity testing is largely the same as in the original NP-
hardness proof of Garg and Tamassia [25]. In what follows we explain the ap-
proach and highlight the differences. Since the reductions for both problems are
fairly similar, we mostly focus on Upward Planarity Testing. See also Fig-
ure 3 for illustration.
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(a) P (b) D

(c)
#»
D

s

t

s

t

T3

(d) T3

e1

e2 e3

e4

Tw(e3)

Tw(e4)Tw(e1)

Tw(e2)

(e)
#»
G

Fig. 3: The reduction to Upward Planarity Testing: (a) A triangulated pla-
nar graph P . (b) The dual D of P (based on the depicted planar embedding).
(c) An orientation

#»

D of D which is an st-planar graph. (d) A tendril T3 and
its schematization; the red boundary has negative contribution, while the blue
(dashed) boundary has positive contribution. (e) Construction of

#»

G: replacing
the edges of a face of

#»

D with the corresponding tendrils.
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As per the previous subsection, we start our reduction with an instance (P, c)
of Circulating Orientation, where P is a planar triconnected graph of path-
width O(k). The first step is to consider the dual graph D of P . By known
results [1] about the pathwidth of planar graphs, the pathwidth of D is also
O(k). We also consider the graph D to be weighted by c: the weight w(e) of
an edge e in D is set to be the capacity of its dual edge in P . We obtain the
final digraph

#»

G of the reduction as follows: every edge e ∈ E(D) is replaced by
a tendril Tw(e). The tendrils Tℓ are special gadget graphs designed by Garg and
Tamassia [25]; their properties are: (i) the upward planar embedding is unique;
and (ii) one of the boundary walks has contribution 2ℓ to the adjacent face, and
the other boundary walk has contribution −2ℓ. Here, contribution refers to the
angle assignment characterization of upward planarity: roughly speaking, the
graph admits an upward planar embedding if and only if the angles in a planar
embedding of the graph could be assigned numbers in {−1, 0, 1} according to
certain rules so that the sum of angles on the boundary of every inner face is
−2, and on the boundary of the outer face is 2.

u

Fig. 4: Constructing a circulating orientation of (P, c).

Now, since the “skeleton” graph D is triconnected and the inserted tendrils
are also triconnected, the planar embeddings of G are essentially defined by the
flip of each tendril. Picking the flip of a tendril then directly corresponds to
picking the orientation of the respective edge in P . Specifically, the property
of the target orientation of P is that the sum of the weights of outgoing and
incoming edges of a vertex is zero; this translates to the property that the edges
of D are to be oriented so that for every face, the sum of the weights of the
clockwise edges is equal to the sum of the weights of the counter-clockwise edges.
Finally, the latter translates to the upward planarity condition on the face of

#»

G
that originates from a face of

#»

D: the weights of clockwise and counter-clockwise
edges are balanced if and only if the total contribution of all tendrils to the face
is zero, since the contribution of a tendril is proportional to the weight of the
respective edge, and the sign is picked exactly in accordance with the orientation
of the edge. See Figure 4 that illustrates the correspondence.

As opposed to the original NP-hardness proof [25], our starting point is the
more special Circulating Orientation problem, so we only require the fixed-
contribution tendril gadgets, and not the wiggle gadgets that have variable con-
tribution. We also start the reduction with an arbitrary planar triconnected
graph, instead of the special instance originating from the satisfiability problem;
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all in all this leads to an arguably clearer and more direct NP-hardness proof.
We additionally observe that the reduction performed in this way does not blow
up the pathwidth, which is crucial for our main result.

Finally, there are a few differences in the case of Rectilinear Planarity
Testing. First, it is important that we start with a triangulated graph P and
so the graph D is of maximum degree 3. The edges of the graph D are then
subdivided to obtain the graph F that admits a rectilinear embedding. Finally,
to obtain the target graph G, one edge in every subdivision is replaced by a
rectilinear tendril [25], which play an analogous role to that of tendrils above. In
the same way, faces of G originating from faces of D correspond to vertices in P ,
with the contribution of tendrils to the face being proportional to the capacities
of the respective edges.

Combining these transformations with Lemma 2, we obtain the following.

Lemma 3 (⋆). There is a polynomial-time algorithm that, given an instance
of Multicolored Clique with parameter k, outputs an equivalent instance
of Upward planarity testing (respectively Rectilinear planarity test-
ing) on a graph of pathwidth O(k).

Due to known ETH-based lower bounds for the W[1]-complete Multicol-
ored Clique problem and the well-known fact that the treewidth of a graph is
not larger than its pathwidth, Theorem 1 follows directly from Lemma 3.

4 Conclusion

We proved that Upward planarity and Rectilinear planarity are both
W[1]-hard parameterized by treewidth and that the nO(tw) running times of
the existing algorithms for them are tight assuming ETH. Our reduction also
provides an alternative NP-completeness proof for these problems, which avoids
the use of the so-called wiggle gadgets [25].

The All-or-Nothing Flow problem on general graphs was recently shown
to be XNLP-complete [9] parameterized by treewidth. This complexity class
(which contains W [1]) was recently introduced [10] and captures parameterized
problems solvable in nondeterministic FPT-time and logarithmic space. It would
be interesting to see whether the two planarity testing problems parameterized
by treewidth are also XNLP-complete.

Our results show that the parameter treewidth is too general to allow for
FPT algorithms for the considered problems. An investigation of more restrictive
parameterizations that yield fixed-parameter tractability is left for future work.
Based on preliminary investigations, we believe both Upward planarity and
Rectilinear planarity may be FPT parameterized by the cutwidth of the
dual multigraph. We remark that, since the instances produced by our hardness
reduction have pathwidth O(k) and maximum degree O(1), the cutwidth of the
primal graph is also O(k) ([8, Thm. 49]). Hence our hardness results extend to
the parameterization by the cutwidth of the primal graph.
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A Preliminaries

A.1 Parameterized complexity and ETH

In parameterized complexity [14,22], the complexity of a problem is studied not
only with respect to the input size, but also with respect to some problem param-
eter(s). The core idea behind parameterized complexity is that the combinatorial
explosion resulting from the NP-hardness of a problem can sometimes be con-
fined to certain structural parameters that are small in practical settings. We
now proceed to the formal definitions.

A parameterized problem Π is a subset of Σ∗×N, where Σ is a finite alphabet.
Thus, an instance of Π is a pair (I, k), where I ⊆ Σ∗ and k is a nonnegative inte-
ger called a parameter. A parameterized problem Π is fixed-parameter tractable
(FPT) if it can be solved in f(k) · |I|O(1) time for some computable function f(·).
Parameterized complexity theory also provides tools to refute the existence of an
FPT algorithm for a parameterized problem. The standard way is to show that
the considered problem is hard in the parameterized complexity classes W[1] or
W[2]. We refer to the book [14] for the formal definitions of the parameterized
complexity classes. The basic complexity assumption of the theory is that for
the class FPT, formed by all parameterized fixed-parameter tractable problems,
FPT ⊂ W[1] ⊂ W[2]. The hardness is proved by demonstrating a parameterized
reduction from a problem known to be hard in the considered complexity class. A
parameterized reduction is a many-one reduction that takes an input (I, k) of the
first problem, and in f(k)|I|O(1) time outputs an equivalent instance (I ′, k′) of
the second problem with k′ ≤ g(k), where f(·) and g(·) are computable functions.
Another way to obtain lower bounds is to use the Exponential Time Hypothesis
(ETH) formulated by Impagliazzo, Paturi and Zane [29]. For an integer q ≥ 3,
let δq be the infimum of the real numbers c such that the q-CNF-Satisfiability
problem can be solved in time O(2cn), where n is the number of variables. The
Exponential Time Hypothesis states that δ3 > 0. In particular, ETH implies
that 3-CNF-Satisfiability cannot be solved in time 2o(n)nO(1).

A.2 Treewidth and Pathwidth

A tree decomposition T of a graph G is a pair (T, χ), where T is a tree (whose
vertices we call nodes) rooted at a node r and χ is a function that assigns to
each node t ∈ T a set χ(t) ⊆ V (G) such that the following holds:

– For every {u, v} ∈ E(G) there is a node t such that u, v ∈ χ(t).
– For every vertex v ∈ V (G), the set of nodes t satisfying v ∈ χ(t) forms a

nonempty subtree of T .

The sets χ(t), for t ∈ V (T ), are called bags of the tree decomposition. The
width of a tree decomposition (T, χ) is the size of a largest set χ(t) minus 1, and
the treewidth of the graph G, denoted tw(G), is the minimum width of a tree
decomposition of G.
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The pathwidth is defined similarly in terms of paths. A path decomposition P
of a graph G is a pair (P, χ), where P is a path and χ is a function that assigns
to each node p ∈ P a set χ(p) ⊆ V (G) such that the following holds:

– For every {u, v} ∈ E(G) there is a node p such that u, v ∈ χ(p).
– For every vertex v ∈ V (G), the set of nodes p satisfying v ∈ χ(p) forms a

nonempty subpath of P .

The sets χ(p), for p ∈ V (P ), are called bags of the path decomposition. The
width of a path decomposition (P, χ) is the size of a largest set χ(p) minus 1,
and the pathwidth of the graph G, denoted pw(G), is the minimum width of a
path decomposition of G.

Throughout the paper, whenever we consider the treewidth or pathwidth of
a directed graph, we mean the respective parameter of the underlying graph.

It is known that the pathwidth of the dual graph is bounded in terms of the
pathwidth of the primal.

Theorem 2 (Amini, Huc, and Pérennes [1]). For a triconnected planar
graph G, pw(G∗) ≤ 3 pw(G) + 2, where G∗ is the dual graph of G.

Note that this result is constructive when a path decomposition is given. We
also recall that triangulating the graph increases the pathwidth by at most a
constant factor.

Theorem 3 (Biedl [5]). There is a polynomial-time algorithm that, given a
simple planar graph G of pathwidth k on at least three vertices, outputs a plane
triangulation G′ of G such that pw(G′) ∈ O(k).

In our reductions, we construct the target graph by replacing the edges of
an intermediate graph with certain gadget graphs. For completeness, we prove
in the next lemma the folklore bound on the pathwidth of the resulting graph.

Lemma 4. Let G be a graph and H1, . . . , Ht be a family of graphs, where for
each i ∈ [t], there are two distinct special vertices si, ti ∈ V (Hi). Consider a
graph F obtained from G by replacing every edge {u, v} ∈ E(G) with a copy of
one of the graphs Hi, i ∈ [t], such that u becomes associated with the vertex si
of the copy, and v with ti. Then pw(F ) ≤ pw(G) + maxi∈[t] pw(Hi) + 1.

Proof. Consider the optimal path decomposition (P, χ) of G. For every edge
{u, v} ∈ E(G) perform the following operation on (P, χ): Take an arbitrary
p ∈ V (P ), such that u, v ∈ χ(p). Let Hi be the replacement of {u, v} in F , and
consider the optimal path decomposition of Hi, where the set χ(p) is added to
every bag, and the occurences of si (ti) are removed. Now make a copy of the
bag χ(p), and insert the decomposition of Hi augmented as above between the
two copies. Let (P ′, χ′) be the resulting decomposition, we claim that it is a path
decomposition of F of desired width.

By construction, every bag of the new decomposition is a subset of a union
of a bag of P and a bag in the optimal path decomposition of Hi for some
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i ∈ [t], thus the size of any bag is at most pw(G) + 1 +maxi∈[t] pw(Hi) + 1. For
correctness, first consider an internal vertex of some Hi in F (i.e., a vertex that
is not si or ti in that Hi). Its appearances are exactly as in the optimal path
decomposition of Hi, thus his vertex indeed forms a subpath in (P ′, χ′). Consider
a vertex of F that originates from a vertex of G, its appearances changed from
a subpath of P to a subpath of P ′, since every newly inserted bag contains fully
the bag χ(p) it was based on. Finally, every edge of every inserted Hi is present
in (P ′, χ′) by the inserted augmented decomposition of Hi. ⊓⊔

A.3 Planar drawings and embeddings

A drawing of a graph maps each vertex to a point in the plane and each edge
to a Jordan arc between the end-points of the edge. A drawing is planar if no
two edges intersect, except at common end-points. A planar drawing partitions
the plane into regions, called faces. The bounded faces are called internal, while
the unbounded face is the outer face. Two planar drawings of a graph are equiv-
alent if: (1) they have the same rotation system, that is, for each vertex v, the
clockwise order of the edges incident to v is the same in both drawings; and
(2) their outer faces are delimited by the same walk, that is, the order of the
edges encountered when clockwise traversing the boundary of the outer face is
the same in both drawings. A planar embedding of a graph is an equivalence
class of planar drawings of that graph.

Thus, a planar embedding of a graph consists of a rotation system and a
choice for the walk delimiting the outer face. We often talk about a face of a
planar embedding, meaning a face of any planar drawing that respects the planar
embedding. The flip of a planar embedding is the planar embedding obtained by
reversing the clockwise order of the edges incident to each vertex and by reversing
the order of the edges encountered when clockwise traversing the boundary of
the outer face.

A.4 Upward planar drawings and embeddings

Throughout the paper, we use the term digraph as short for “directed graph”. A
digraph is acyclic if it contains no directed cycle. An acyclic digraph is usually
called DAG, for short. A vertex in a digraph is a source if it is only incident to
outgoing edges and it is a sink if it is only incident to incoming edges. For an
edge uv (oriented from u to v) of a digraph, u is the source of uv and v is the
sink of uv. A vertex in a digraph is a switch if it is a source or a sink, and it
is a non-switch otherwise. The underlying graph of a digraph is the undirected
graph obtained from the digraph by ignoring the edge directions.

A plane digraph is a digraph together with a prescribed planar embedding
for its underlying graph.

A drawing of a digraph is upward if every edge is represented by a Jordan
arc which is monotonically increasing in the y-direction from the source to the
sink of the edge, and it is upward planar if it is both upward and planar. A
digraph is upward planar if it admits an upward planar drawing; we use Upward
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Planarity Testing to denote the problem of determining whether a digraph
is upward planar; w.l.o.g., we assume that the input digraph is connected.

Consider an upward planar drawing Γ of a digraph G. An angle α of a face f
of Γ is a triple (e1, v, e2), where e1 and e2 are two edges of G that are incident to
the vertex v, that are incident to the face f , and that are consecutive in the order
of the edges encountered when clockwise traversing the boundary of f . We say
that α is flat if one between e1 and e2 is incoming v and the other one is outgoing
v, otherwise α is a switch angle. Then Γ defines an angle assignment, which
assigns the value −1, 0, and 1 to each small, flat, and large angle, respectively,
in every face of Γ . The angle assignment, together with the planar embedding of
the underlying graph of G in Γ , constitutes an upward planar embedding of G.

A switch angle at a vertex v is hence delimited by two outgoing or by two
incoming edges for v. Each switch angle is further classified as large or small as
follows. Consider a switch angle α = (e1, v, e2) at a vertex v in a face f delimited
by two outgoing edges (resp. by two incoming edges) and consider a disk D
centered at v, sufficiently small so that its boundary has a single intersection
with every edge incident to v. The edges e1 and e2 divide D into two regions,
one of which contains part of f and contains no portion of any edge incident to
v in its interior; call D′ this region. Then we say that α is large if D′ contains a
suitably short vertical segment that has v as its highest (resp. lowest) end-point,
it is small otherwise.

An upward planar drawing hence defines an angle assignment, which is an
assignment of the value −1, 0, and 1 to each small, flat, and large angle, re-
spectively, in every face of Γ . This angle assignment, together with the planar
embedding of the underlying graph of G in Γ , constitutes an upward planar em-
bedding of G. An upward plane digraph is a digraph together with a prescribed
upward planar embedding.

The angle assignments that enhance a planar embedding into an upward
planar embedding have been characterized by Didimo et al. [18], building on the
work by Bertolazzi et al. [3]. Note that, once the planar embedding E of a digraph
G is specified, then so are the angles of the faces of E ; in particular, whether
an angle is flat or switch only depends on E . Consider an angle assignment for
E . If v is a vertex of G, we denote by ni(v) the number of angles at v that are
labeled i, with i ∈ {−1, 0, 1}. If f is a face in E , we denote by ni(f) the number
of angles of f that are labeled i, with i ∈ {−1, 0, 1}. The cited characterization
is as follows.

Theorem 4 ([3,18]). Let G be a digraph, E be a planar embedding of the
underlying graph of G, and λ be an assignment of each angle of each face in E
to a value in {−1, 0, 1}. Then E and λ define an upward planar embedding of G
if and only if the following properties hold:

UP0 If α is a switch angle, then λ(α) ∈ {−1, 1}, and if α is a flat angle, then
λ(α) = 0.

UP1 If v is a switch vertex of G, then n1(v) = 1, n−1(v) = deg(v) − 1,
n0(v) = 0.
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UP2 If v is a non-switch vertex of G, then n1(v) = 0, n−1(v) = deg(v) − 2,
n0(v) = 2.

UP3 If f is a face of G, then n1(f) = n−1(f)− 2 if f is an internal face, and
n1(f) = n−1(f) + 2 if f is the outer face.

Following condition UP3, we say that the contribution of a subpath of the
boundary of a face to this face is the sum of the values assigned to the angles at
internal vertices of the subpath towards the face.

Related to upward planarity is the notion of st-planar graphs. An st-planar
graph is an acyclic orientation of a planar graph such that there is exactly one
source and one sink, and the associated planar embedding where the source and
the sink lie on the outer face. It is known that an acyclic digraph is upward planar
if and only if it is a subgraph of an st-planar graph [16]. Moreover, a triconnected
st-planar graph has a unique upward planar embedding as the planar embedding
together with the choice of the outer face is fixed, and, consequently, the angle
assignments is fixed too.

In our hardness reduction, we use the following gadgets called tendrils, in-
troduced by Garg and Tamassia [25].

Lemma 5 ([25]). For every k ≥ 0, there exists a directed acyclic graph Tk with
two special vertices called poles, such that the following properties hold:

– one of the poles is a source and the other is a sink in Tk,
– after adding the edge connecting the poles, Tk becomes triconnected,
– Tk admits a unique upward planar embeddding,
– under this embedding, the angle contribution of the two boundary paths from

the source pole to the sink pole are 2k and −2k, respectively,
– Tk is of size O(k) and of pathwidth 2.

A.5 Rectilinear planarity

It is also well-known that rectilinear embeddings can be characterized by angle
assignments under a planar embedding. Let G be an undirected graph of degree
at most 4, and let E be its planar embedding. Consider an angle assignment that
maps every angle in E to a value in {1, 2, 3, 4}. For a face f in E , we denote
by ni(f) the number of angles of f that are labeled i, with i ∈ {1, 2, 3, 4}. The
characterization is as follows.

Theorem 5 ([36,39]). Let G be a graph, E be a planar embedding of G, and λ
be an assignment of each angle of each face in E to a value in {1, 2, 3, 4}. Then E
and λ define a rectilinear embedding of G if and only if the following properties
hold:

RE0 For every vertex v ∈ V (G), the sum of the labels of angles around v is 4.
RE1 For every face f in E,

2 · n4(f) + n3(f)− n1(f) =

{
−4 if f is an internal face,
4 if f is the outer face.
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In the light of condition RE1, we say that the contribution of a subpath of
the boundary of a face to this face is twice the number of fours plus the number
of threes minus the number of ones among the values assigned to the angles at
internal vertices of the subpath towards the face. Similarly to upward planarity,
we use the following gadgets called rectilinear tendrils, introduced by Garg and
Tamassia [25].

Lemma 6 ([25]). For every k ≥ 0, there exists an undirected graph Tk with
two special vertices called poles, such that the following properties hold:

– Tk is rectilinear planar,
– the poles have degree one in Tk,
– Tk admits exactly four rectilinear embeddings that all share the same under-

lying planar embedding where the poles are both on the outer face,
– under this embeddings, the angle contribution of the two boundary paths

from the source pole to the sink pole are f and −f , respectively, where
f ∈ {4k, 4k + 1, 4k + 2},

– Tk is of size O(k) and of pathwidth 2.

We say that the tendril Tk has a significant contribution 4k to a face if its
contribution is in {4k, 4k + 1, 4k + 2}, and −4k otherwise.

B From Multicolored Clique to All-or-Nothing-
Flow

In this section, we present an FPT-reduction that given an instance (G, k) of
Multicolored Clique, constructs an equivalent instance of All or Nothing
Flow on a planar graph of pathwidth O(k). We present several useful gadgets,
before describing the construction of the flow instance.

B.1 Reduction to All or Nothing Flow

The vertex set V (G) of a Multicolored Clique instance (G, k) is partitioned
into k sets V1, . . . , Vk. For each i ∈ [k], let Vi = {vi,1, . . . , vi,N}. Then, let E(G) =
{{u, v} | u ∈ Vi, v ∈ Vj , {u, v} ̸∈ E(G)}, i.e. the set of non-edges of G; let
|E(G)| = m and number the edges of E(G) arbitrarily from 1 to m.

Gadgets. Now, to facilitate the presentation, we describe a vertex selection gadget
(VS gadget) for a vertex set Vi = {vi,1, . . . , vi,N} and j ∈ N (VSji , Figure 5).

– First, we introduce a pair of vertices V j
i and V j+1

i , and a vertex set{
vji,q, u

j
i,q, w

j
i,q, g

j
i,q, h

j
i,q

}
q∈[N ]

.

– For each q ∈ [N ], we introduce an oriented path from V j
i to V j+1

i through
the vertices vji,q, u

j
i,q, w

j
i,q, g

j
i,q, h

j
i,q in the specified order, also each arc of such

a path has capacity 2kN + 2q.
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vji,1 uj
i,1 wj

i,1 gji,1 hj
i,1

vji,2 uj
i,2 wj

i,2 gji,2 hj
i,2

vji,q uj
i,q wj

i,q gji,q hj
i,q

vji,N uj
i,N wj

i,N gji,N hj
i,N

V j
i V j+1

i

2kN + 2

2kN + 4

2kN + 2q

2kN + 2N

2kN + 2q 2kN + 2q 2kN + 2q 2kN + 2q

2kN + 2

2kN + 4

2kN + 2q

2kN + 2N

Fig. 5: The VSji gadget.

At this point, we can introduce the checker gadget. The checker gadget is a
specific combination of k suitable VS gadgets. For each j ∈ [m], for the jth non-
edge {vi,avℓ,b} of G (without loss of generality, i ≤ ℓ) we construct its checker
gadget CHj as follows.

– For each i ∈ [k], we introduce a VSji gadget.
– Then, we add a pair of vertices: xj and yj .
– We add an oriented path of capacity 1 going from xj to yj through w-vertices

of all VS gadgets introduced here, as shown in Figure 6.
– We add four more oriented paths of capacity 1, going in the following fashion:

• it starts at V j
i (V j

ℓ ), goes to vji,N (uj
ℓ,N ) and then reaches xj through the

v-vertices (u-vertices) of VS gadgets with a subscript less than or equal
to i (less than or equal to ℓ);

• it starts at yj , goes to the hj
ℓ,1 (gji,1) through the h-vertices (g-vertices)

of VS gadgets with a subscript greater than or equal to ℓ (greater than
or equal to i), and then reaches V j+1

ℓ (V j+1
i ).

– We decrease the capacity of the arcs following the path from V j
i to V j+1

i

(from V j
ℓ to V j+1

ℓ ) through the ath (bth) row of the VSj
i (VSj

ℓ) gadget by
one, i.e. set it to 2kN + 2a− 1 (2kN + 2b− 1).

The final construction of a CHj gadget is shown in Figure 6.

The final reduction. We now present the reduction. Consider an instance (G, k)
of Multicolored Clique. We construct a flow network (G, s, t, c) as follows.
See also Figure 2 for a schematic representation..

– First, we introduce a source vertex s and sink vertex t.
– Then, for each j ∈ [m], we introduce the CHj gadget. Note that, for j ∈

[m− 1], two VS gadgets VSji and VSj+1
i share the common vertex V j+1

i .
– For each i ∈ [k], we add:

• one arc of capacity 2kN and N arcs of capacity 2 from s to V 1
i , and
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vji,2 uj
i,2 wj

i,2 gji,2 hj
i,2

vji,N uj
i,N wj

i,N gji,N hj
i,N

V j
i V j+1

i

vji,1 uj
i,1 wj

i,1 gji,1 hj
i,1

vj1,2 uj
1,2 wj

1,2 gj1,2 hj
1,2

vj1,N uj
1,N wj

1,N gj1,N hj
1,N

V j
1 V j+1

1

vj1,1 uj
1,1 wj

1,1 gj1,1 hj
1,1

vj`,2 uj
`,2 wj

`,2 gj`,2 hj
`,2

vj`,N uj
`,N wj

`,N gj`,N hj
`,N

V j
` V j+1

`

vj`,1 uj
`,1 wj

`,1 gj`,1 hj
`,1

vjk,2 uj
k,2 wj

k,2 gjk,2 hj
k,2

vjk,N uj
k,N wj

k,N gjk,N hj
k,N

V j
k V j+1

k

vjk,1 uj
k,1 wj

k,1 gjk,1 hj
k,1

xj

yj

−1 −1 −1 −1 −1 −1

−1
−1 −1 −1 −1 −1

Fig. 6: The CHj gadget for an non-edge vi,2vℓ,1. All arcs of colored paths have
capacity 1.
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• one arc of capacity 2kN and N arcs of capacity 2 from V m+1
i to t.

– At the end, we add a set A of k(N − 1) arcs from s to t, each of capacity 2.

This concludes the construction of G. The reduction returns (G,F) as an
instance of All or Nothing Flow, where F = k(2kN + 2N).

B.2 Correctness of the Reduction to All or Nothing Flow

Suppose, given an instance (G, k) of Multicolored Clique, that the reduction
from the previous subsection returns (G,F) as an instance of All or Nothing
Flow.

Lemma 7. If (G, k) is a yes-instance of Multicolored Clique, then G ad-
mits an all-or-nothing st-flow with value F .

Proof. Let C be a multicolored k-clique in G. For each i ∈ [k], without loss
of generality, let vi,ai

∈ V (C) for some ai ∈ [N ]. Then, let the flow f in G
use the arc of capacity 2kN and ai arcs of capacity 2 from s to V 1

i . Thus, for
each i ∈ [k], there is an inflow fi = 2kN + 2ai at V 1

i that is an even value in
the interval from 2kN + 2 to 2kN + 2N . Let S =

∑
i∈[k] fi. Notice, inequality

k(2kN+2) ≤ S ≤ k(2kN+2N) holds. Recall that A consists of k(N−1) parallel
st-arcs, each of capacity 2. Since F −S ≤ 2k(N −1), sending the rest of the flow
over a subset of the arcs of A will be enough to achieve the total flow of value
F if, in turn, each of fi reaches t.

At this point, we are left to check whether, for each i ∈ [k], an inflow at V 1
i

can be propagated to t through G. For each i ∈ [k], by construction, there is
a directed path from V 1

i to V m+1
i whose arcs are of capacity either 2kN + 2ai

or 2kN + 2ai − 1. Thus, for each j ∈ [m], we go from column to column and if
there is a path of capacity 2kN+2ai through the VGj

i gadget, we direct the flow
through it. Otherwise, by construction there is a path of capacity 2kN +2ai − 1
through the VGj

i gadget; also, there is a path of capacity 1 that goes through
either the v- or u-vertices up to xj , which reaches yj through the w-vertices and
then reaches V j+1

i through either the g- or h-vertices of the VS gadgets.
To route all these parts of the flow simultaneously, it is crucial that there

is no column j where two rows both need to use the path from xj to yj at the
same time. Suppose the opposite. Then vi,ai

(vℓ,aℓ
) propagates the flow of value

2kN + 2ai − 1 (2kN + 2aℓ − 1) through VSj
i (VSj

ℓ), and the flow of value 1
goes through the path xjyj . By construction, the capacities of only two paths in
CHj were decreased by one, each of them corresponds to an endpoint of the jth

non-edge. So, {vi,aivℓ,aℓ
} ∈ E(G). This contradicts the assumption that C is a

k-clique in G.
Hence, for each i ∈ [k], fi reaches V m+1

i and afterwards goes from V m+1
i to t

through the arc of capacity 2kN and through ai arcs of capacity 2. As outlined
earlier, together with the flows through the arcs of A, the resulting value of the
flow is k(2kN + 2N), i.e. the required F . ⊓⊔

Lemma 8. If G admits an all-or-nothing st-flow with value F , then there is a
multicolored k-clique in G.
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Proof. Suppose that there is an all-or-nothing flow f of value F in the flow
network G. Since d+(s) = F , for each i ∈ [k], the equality 2kN < d−(V j

i ) ≤
2kN + 2N holds. The second part of the inequality is straightforward since
2kN + 2N is the total value of all incoming edges of V 1

i . To prove the first,
assume, by contradiction, that for some i ∈ [k], d−(V 1

i ) < 2kN + 2. There are
two cases, the first is for d−(V 1

i ) > 2. But by the construction of VS gadget,
at least 2kN + 2 inflow is necessary to propagate something further through
one of its horizontal paths. As for the second case, consider the following sum
of inflows, i.e.

∑
ℓ∈[k],ℓ̸=i d

−(V j
ℓ ) ≤ (k − 1)(2kN + 2N). So, we have at least

2kN + 2N units left to reach the flow value F . Except the VS gadgets, f could
propagate the flow through the set A of k(N − 1) arcs of the capacity 2. But
2kN − 2k with even 2-inflow into V 1

i is less than the necessary 2kN + 2N , a
contradiction. Thus, if the all-or-nothing flow f of value F exists, then, for each
j ∈ [k], d−(V 1

i ) is an even value between 2kN +2 and 2kN +2N , depending on
the number of incoming arcs (from s of capacity 2) used by f .

We claim that for each i ∈ [k] and j ∈ [m], d+(V j
i ) is the same as d−(V j+1

i ),
in other words, the flow cannot ’escape’ from the correspondent VS gadget. Let
d−(V j

i ) = F ′. Then the flow of value F ′ or F ′ − 1 is propagated through the
VS gadget itself by construction, and, if necessary for the second case, a flow of
value 1 goes through the vertices of the CH gadget up to xj , but then it can
only go to yj , which in turn goes to V j+1

i . This ensures that the flow propagates
the same value through all VS gadgets on the same row.

To conclude, consider the following set C of vertices in G: for each i ∈ [k],
consider the value on the inflow into V 1

i , let it be d−(V 1
i ) = 2kN +2ai; then we

add vi,ai from Vi to the set C. According to the arguments above, such vertex
is uniquely defined for each Vi, i ∈ [k]. The existence of a pair vi,a, vℓ,b ∈ C such
that {vi,avℓ,b} ̸∈ E(G) contradicts the construction since, for each non-edge of
G, there is a CH-column in G that forbids inflows of values 2kN +2a in V j

i and
2kN +2b in V j

ℓ simultaneously. This completes the proof: Indeed, the vertex set
C is a multicolored clique in G. ⊓⊔

One of the key observations to obtain the result we are aiming for is the
bounded pathwidth of G.

Lemma 9. The pathwidth of G is O(k).

Proof. Without loss of generality, let us fix j ∈ [m] and consider the following
decomposition of a single CHj gadget of graph G. We introduce a path Pj =

P 1
j P

2
j . . . P kN

j and associate the vertex set {xj , yj} ∪ {V j
i , V

j+1
i }i∈[k] with the

bag (node) Pj . Now, for each 1 < ℓ ≤ [kN ], let p = ⌈ℓ/N⌉, q = {ℓ/N}; we add{
vjp,q, u

j
p,q, w

j
p,q, g

j
p,q, h

j
p,q

}
to both P ℓ−1

j and P ℓ
j ; for ℓ = 1, the corresponding set{

vj1,1, u
j
1,1, w

j
1,1, g

j
1,1, h

j
1,1

}
lies in only one bag P 1

j .

Observe that for each v ∈ CHj , there exists a bag of the constructed path
Pj that contains v; in addition to that, each vertex occupies either all or 2
consecutive bags. The last property of a decomposition that is needed to be
a valid path decomposition is, for each edge of the graph, the existence of a
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bag with both its endpoints. For edges that are incident to any of {xj , yj} ∪
{V j

i , V
j+1
i }i∈[k] the property holds, since these vertices are in all bags, thus,

they lie with each other vertex in the same bag at least once. Then, there are
edges of the horizontal paths of VS gadgets. But all edges of each path were
added simultaneously to the same bags. Last step is to check vertical edges of
the capacity 1. Since these edges are between vertices of a consecutive horizontal
paths, there is a bag where we can find both their vertices. Thus, we have a valid
path-decomposition for each CHj , j ∈ [m]. Notice, that each bag of it contains
no more than 2k + 12 vertices.

To construct a valid path-decomposition for the whole graph G, let us con-
sider a path that is a concatenation of {Pj}j∈[m] in increasing order. There are no
edges in-between vertices of different CH gadgets and V -vertices are the only in-
tersection of vertex sets of Pj and Pj+1 for each j ∈ [m−1]. Since {V j

i , V
j+1
i }i∈[k]

are in all bags of Pj , then each V-vertex is in at most two paths with sequential
subscripts. As the last step, to all mkN bags of a current decomposition we add
vertices s, t. It follows that there exists a path-decomposition of G, such that
pw(G) = 2k + 13. ⊓⊔

To complete the line of argumentation for All or Nothing Flow, we
establish that the constructed graph G is planar. We also state an additional
property that will be useful later, to ensure that we can enrich the graph without
violating planarity.

Lemma 10. The graph G has a planar embedding containing two distinct
faces f1, f2, such that:

– all vertices of {xj | j ∈ [m+1]}, the source s, and sink t, are incident to f1,
and

– all vertices of {yj | j ∈ [m+1]}, the source s, and sink t, are incident to f2.

Proof. The overall graph G looks like the drawing of Figure 2; with minor dif-
ferences which are crucial for planarization; see Figure 7. The first difference is
that instead of N arcs between any pair V j

i and V j+1
i , i ∈ [k] and j ∈ [m], we

have a VSji gadget (see Figure 5). The second is that each column of VS gad-
gets with the same superscript form the CH gadget, as was shown in Figure 6.
Thus, the statement of the Lemma we prove becomes obvious. Indeed, as we
see in Figure 2, there exists an embedding for a non-planar instance, such that
on one of the faces there are all vertices of {xj | j ∈ [m + 1]} ∪ {s, t} and on
one of the others there are all vertices of {yj | j ∈ [m + 1]} ∪ {s, t}. But these
two steps we described to obtain a planar instance G do not significantly change
those faces that we care about, see in Figure 7. Thus, the embedding with the
necessary property still exist for the planar instance G as well. ⊓⊔

Since the preceding lemmata guarantee that the constructed instance of All
or Nothing Flow is equivalent to the Multicolored Clique instance we
started from, its pathwidth is O(k), and it is planar, this leads to a proof of
Lemma 1. Observe that the edge capacities created during the construction are
all polynomial in k and N , both of which are bounded by |V (G)|.
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Fig. 7: Illustration for the FPT-reduction from Multicolored Clique
with k = 3, N = 4 to planar All or Nothing Flow on a graph of path-
width O(k). Dashed edges have capacity 1, dash-dotted edges (k(N −1) of them
on the bottom) have capacity 2.

Lemma 1 (⋆). There is a polynomial-time algorithm that, given an instance
of Multicolored Clique with parameter k, outputs an equivalent instance
of All or Nothing Flow on a planar graph of pathwidth O(k) whose edge
capacities are bounded by a polynomial in |V (G)|.

C From All-or-Nothing-Flow to Circulating
Orientation

To facilitate the next step in our chain of reductions, we make the following
observation about the instances constructed by the reduction of Lemma 1. Re-
call that Lemma 1 transforms an instance (G,V1, . . . , Vk, k) of Multicolored
Clique into an instance (G,F) of All or Nothing Flow with source s, sink t,
and capacity function c.

Observation 1. Partition the vertices v ∈ V (G) \ {s, t} into the following three
sets, based on the difference between the overall capacity of outgoing versus in-
coming arcs.

1. V< := {v ∈ V (G) \ {s, t} | d+G (v) < d−G (v)}.
2. V= := {v ∈ V (G) \ {s, t} | d+G (v) = d−G (v)}.
3. V> := {v ∈ V (G) \ {s, t} | d+G (v) > d−G (v)}.
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Then the following holds:

1. V< = {xj | j ∈ [m+ 1]} ∪ {V m+1
i | i ∈ [k]}.

2. V> = {yj | i ∈ [m+ 1]} ∪ {V 1
i | i ∈ [k]}.

Also, E−
G (s) = E+

G (t) = ∅ and d+G (s) = d−G (t) = k(2kN + 2N) + 2k(N − 1).

We use Observation 1 in the proof of the next lemma.

Lemma 11. There is a polynomial-time algorithm that, given an instance of
Multicolored Clique with parameter k, outputs an equivalent instance of
Circulating Orientation on a planar graph of pathwidth O(k) whose edge-
capacities are bounded by a polynomial in |V (G)|.

Proof. Consider an instance (G,V1, . . . , Vk, k) of Multicolored Clique,
where each set Vi has size N . We assume without loss of generality that N ≥ 10k,
which can be achieved by inserting isolated vertices if needed. By applying
the construction of Lemma 1, we transform the instance into an equivalent in-
stance (G,F) of All or Nothing Flow with source s, sink t, and capacity
function c. To transform the latter into an equivalent instance (H, cH) of Cir-
culating Orientation, we proceed as follows.

– Initialize H as the edge-capacitated undirected multigraph obtained from G
by simply forgetting the orientation of all edges, whose capacity function we
denote by cH .
All edges of H originating from this step are called standard edges. The
remaining edges of H, to be introduced below, are called special edges.

– For each i ∈ [k], add an edge {V 1
i , s} of capacity α :=

∑
q∈[N−1] 2kN + 2q.

Note that d−G (V
1
i ) + α = d+G (V

1
i ).

– For each i ∈ [k], add an edge {t, V m+1
i } of capacity α. Note that d−G (V

m+1
i )+

α = d+G (V
m+1
i ).

– Add a super-source S, along with an edge {yj , S} of capacity 1 for each j ∈
[m+ 1].

– Add a super-sink T , along with an edge {T, xj} of capacity 1 for each j ∈
[m+ 1].

– Let β := 2F−d+G (s). Note that this value is non-negative by the construction
of G; see Observation 1. This guarantees that d+G (s)−F + β = F , which we
will use below.

– Let ξ be a sufficiently large value, such as ξ := 100k2N2. Add the following
edges, forming a 4-cycle in the graph H:
• An edge {S, s} of capacity ξ + β +m.
• An edge {s, T} of capacity ξ + k · α+m.
• An edge {T, t} of capacity ξ + k · α.
• An edge {t, S} of capacity ξ + β.

This concludes the description of (H, cH). It is not difficult to see that H is
planar: we obtain it as a copy of a planar graph in Step 1 and then add edges
which are parallel to existing edges in the following two steps. The remaining
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steps consist of inserting two vertices S and T and edges incident on them. By
Lemma 10, there are two distinct faces in the embedding of H into which we
can draw S and T that contain all their prospective neighbors, so that the edges
can be drawn without crossings.

It is also not difficult to see that the pathwidth of H is still O(k): all edges
we create are incident to one of the vertices {s, t, S, T}, so by simply inserting
these four vertices into all bags of a path decomposition of G, we obtain a path
decomposition of H whose pathwidth is larger than the pathwidth O(k) of G
(Lemma 9) by at most four. It remains to prove that the resulting instance
of Circulating Orientation is equivalent to the All or Nothing Flow-
instance on G.

Claim 1. If G has an all-or-nothing flow f of value F , then (H, cH) has a
circulating orientation.

Proof. Suppose that there is an all-or-nothing flow f of value F in the flow
network G. We use it to obtain a circulating orientation of (H, cH), as follows:

– For the edges e ∈ E(H) which were copied from G in the first step, we orient
them as follows: if f(e) = c(e) then we orient e in the same way as it appears
in G; otherwise (f(e) = 0) we reverse its orientation.

– We orient the edges {V 1
i , s} for i ∈ [k] from V 1

i to s.
– We orient the edges {t, V m+1

i } for i ∈ [k] from t to V 1
i .

– We orient the edges {yj , S} for j ∈ [m+ 1] from yj to S.
– We orient the edges {T, xj} for j ∈ [m+ 1] from T to xj .
– We orient the edges of the final 4-cycle as (S, s), (s, T ), (T, t), (t, S).

Let
#»

H denote the resulting directed graph H. To argue that we have obtained a
circulating orientation, we introduce some additional notation. For a vertex v ∈
V (H) \ {S, T}, which also exists in G, we use d̂+#»

H
(v) (d̂−#»

H
(v)) to denote the total

capacity of the standard edges incident on v which are oriented out of v (into v)
in

#»

H. Hence the special edges do not contribute to these terms.
We argue that for v ∈ V (H)\{S, T, s, t} we have d̂+#»

H
(v) = d−G (v) and d̂−#»

H
(v) =

d+G (v), that is, the contribution of standard edges is independent of the flow f
and is based on the capacity of the edges oriented oppositely in G. To see this,
note that if f does not send any flow through v then all arcs of E+

G (v) are
reversed in

#»

H, and similarly all arcs of E−
G (v) are reversed in

#»

H. For each unit
of flow sent into v, there is a unit of capacity on an incoming arc that retains its
orientation in

#»

H, and by flow conservation, a unit of capacity on an outgoing arc
that retains its orientation in

#»

H. Since each edge that carries flow is utilized to
full capacity, the choices made by f do not influence the contribution of standard
edges to inwards and outwards oriented capacity of v.

Based on this insight, we now prove that
#»

H is a circulating orienta-
tion: d+#»

H
(v) = d−#»

H
(v) for each v ∈ V (H). For this argument, we distinguish several

types of vertices, making use of the partition of V (G)\{s, t} into sets V<, V=, V>

given in Observation 1.
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1. Consider a vertex v ∈ V (H)∩V=, i.e. a vertex of H that was already present
in the flow network G, in which the capacity of its incoming arcs equalled
that of its outgoing arcs. In the construction of H we did not add any edge
incident on v, so that d+#»

H
(v) = d̂+#»

H
(v) and d−#»

H
(v) = d̂−#»

H
(v); all its incident

edges are standard edges. By the argument above, we have

d−#»
H
(v) = d̂−#»

H
(v) = d+G (v) = d−G (v) = d̂+#»

H
(v) = d+#»

H
(v),

where the middle equality comes from the definition of the set V=.
2. Consider a vertex xj for j ∈ [m + 1]. By the argument above we

have d̂+#»
H
(xj) = d−G (x

j) = 2, while d̂−#»
H
(xj) = d+G (x

j) = 1; here we use the
construction of the instance G. Since xj is incident on one special edge of
capacity 1, which is oriented from T to xj , this gives d+#»

H
(xj) = d−#»

H
(xj) = 2.

The argument for yj is symmetric.
3. Consider a vertex V 1

i for i ∈ [k]. By the argument above we have d̂+#»
H
(V 1

i ) =

d−G (V
1
i ), which equals 2kN + 2N by construction of G. We have d̂−#»

H
(V 1

i ) =

d+G (V
1
i ), which equals

∑
q∈[N ] 2kN +2q. The unique special edge {V 1

i , s} in-
cident on V 1

i has capacity α =
∑

q∈[N−1] 2kN+2q and is oriented towards s.
It therefore compensates for the imbalance and implies d+#»

H
(V 1

i ) = d−#»
H
(V 1

i ).
The argument for V m+1

i is symmetric.
4. Consider the super-source S. All its incident edges are oriented inwards,

except for the edge {s, S} which has capacity ξ + β + m. Since the total
capacity of the remaining edges is ξ + β (for the edge {t, S}) plus 1 ·m (for
the m edges {yj , S} of capacity 1), vertex S satisfies the requirements.

5. The argument for T is similar: it has a single edge (s, T ) of capacity ξ + k ·
α+m oriented inwards, while the total capacity of the remaining outwards-
oriented edges is ξ + k · α (for {T, t}) plus 1 ·m (for the m edges {T, xj}).

6. Consider the normal source s of the flow network G. From the standard
edges, the fact that the flow has value F while the source has no outgoing
arcs in G ensures that there is F capacity on the outwards oriented edges,
while the remaining d+G (s)−F capacity is oriented inwards.
From the special edges incident on s, we have ξ + β +m capacity oriented
into s on the edge {S, s} plus k · α capacity on the edges {V 1

i , s} for i ∈ [k].
The only special edge oriented out of s is {s, T} of capacity ξ + k · α +m.
We therefore find:

d−#»
H
(s) = (d+G (s)−F) + (ξ + β +m) + (k · α) Standard plus special edges.

= F + (ξ + k · α+m) As d+G (s)−F + β = F .

= d+#»
H
(s). Standard plus special edges.

7. Finally, consider the normal sink t of G. From the standard edges, there is F
capacity on edges into t and d−G (t) − F = d+G (s) − F capacity on edges out
of t. From the special edges, there is ξ + k · α capacity on the edge (T, t)
entering t, while the capacity of special edges leaving t is k ·α (for V m+1

i for
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each i ∈ [k]) plus ξ + β (for {T, t}), for a total of k · α+ ξ + β. We therefore
find:

d−#»
H
(t) = F + ξ + k · α Standard plus special edges.

= d+G (s)−F + k · α+ ξ + β As d+G (s)−F + β = F .

= d+#»
H
(t). Standard plus special edges.

Observation 1 shows that the treated cases indeed cover all vertices of H. As
each type of vertex has the same capacity oriented inwards and outwards, the
given orientation

#»

H is indeed a circular orientation. This proves the claim. ⊓⊔

We now prove the converse.

Claim 2. If (H, cH) has a circulating orientation, then G has an all-or-nothing
flow f of value F .

Proof. Consider a circulating orientation
#»

H of H. We argue that for each of
the four vertices {s, S, t, T}, exactly one edge of the 4-cycle on these vertices is
oriented inwards and one edge is oriented outwards. This follows from the fact
that all edges on this 4-cycle have capacity at least ξ, and that ξ is larger than
the sum of the capacities of all other edges incident on a common vertex. Hence
if the two edges of capacity at least ξ are both oriented into a vertex, or both
oriented out of a vertex, then the capacity of the remaining edges is not sufficient
to obtain equal values for the inwards- versus outwards-oriented capacity.

The preceding argument shows that the 4-cycle is either oriented
as (S, s), (s, T ), (T, t), (t, S) or (S, s), (s, T ), (T, t), (t, S) (S, t), (t, T ), (T, s), (s, S).
In the latter case, we reverse the orientation of all edges (which preserves a cir-
culating orientation). Hence we may assume from now on that in

#»

H, the 4-cycle
is oriented as (S, s), (s, T ), (T, t), (t, S).

Based on this orientation, we define a flow in G as follows. For each arc e ∈
E(G), if

#»

H orients the corresponding edge of H in the same direction as it appears
in G, then we define f(e) = c(e); otherwise we define f(e) = 0. It remains to show
that f has the flow conservation property and defines a flow of value F . Before
we do so, we establish some consequences of this orientation of the 4-cycle.

1. Each special edge {T, xj} for i ∈ [k] is oriented away from T in
#»

H. To see
this, observe that the capacity ξ+ k ·α+m of the edge (s, T ) on the 4-cycle
which is oriented into T , equals the capacity of all other edges incident on T
combined. Hence, to achieve a circulating orientation the remaining edges
incident to T (including all edges {T, xj}) are oriented out of T .

2. Each special edge {yj , S} for i ∈ [k] is oriented into S in
#»

H. The argument
is similar as in the previous case: the capacity ξ + β +m on the edge (S, s)

of the 4-cycle which is oriented out of S by
#»

H is equal to the total capacity
of the remaining edges incident to S (including {yj , S}), which are therefore
oriented into S.



32 B.M.P. Jansen et al.

3. Each edge {V 1
i , s} for i ∈ [k] is oriented into s. Here the argument is slightly

more delicate, but the idea is similar. Among the edges of the 4-cycle incident
to s, the edge {S, s} of capacity ξ + β + m is oriented into s while the
edge {s, T} of capacity ξ + k · α +m is oriented out of s. It turns out that
the value of α is so large compared to the capacities of the remaining edges
incident to s that, in order to get a circulating orientation, all k edges of
capacity α must be oriented into s. Namely, suppose for a contradiction that
at least one of the k edges of capacity α is oriented away from s. Then the
capacity of edges oriented away from s is at least (ξ + k · α+m) + α, while
the capacity of the remaining edges incident on s is at most ξ + β + m +
k(2kN + 2N) + (k − 1)α+ k(2(N − 1)), which can be verified to be strictly
smaller since α is quadratic in N . (Recall the assumption that N ≥ 10k.)

4. A symmetric argument, again based on the fact that α is quadratic in N ,
ensures that each edge {t, V m+1

i } is oriented out of t.

A sufficient condition for flow conservation. We make the following general
claim, which will help us establish flow conservation. If v ∈ V (G)\{s, t} satisfies
one of the following:

1. v is incident on a unique special edge e∗, that special edge is oriented out
of v in

#»

H, and cH(e∗) + d−G (v) = d+G (v),
2. v is incident on a unique special edge e∗, that special edge is oriented into v

in
#»

H and cH(e∗) + d+G (v) = d−G (v), or
3. v is not incident on any special edge and d+G (v) = d−G(v),

then f satisfies the flow conservation property for vertex v.
We prove this implication as follows. Suppose the first condition holds

for v. Recall that the total capacity of edges incident on v is dH(v), which
equals cH(e∗)+d−G (v)+d+G (v) since e∗ is the unique special edge incident on v. By
the assumption above, we have dH(v)/2 = d+G (v). Consider the subset of E−

G (v)

whose corresponding edges are oriented into v in
#»

H and let their total capac-
ity be D. This means that f sends flow over these edges into v and therefore
the flow into v under f equals D. Since

#»

H is a circular orientation, half of
the capacity incident on v is oriented into v. Since no special edge is oriented
into v, while the edges corresponding to E−

G (v) contribute D to the capacity ori-
ented into v, from the remaining edges (corresponding to E+

G (v)) there is a total
of dH(v)/2−D = d+G (v)−D capacity oriented into v. It follows that the rest of
the edges of E+

G (v) are oriented out of v, which means d+G (v)− (d+G (v)−D) = D

capacity of the edges of E+
G (v) are oriented out of v in

#»

H and therefore have
the same orientation in

#»

H as in G. Consequently, f sends D flow out of v over
these edges, which implies that flow conservation holds for v. This argument
establishes the first condition. The proof of the second condition is symmetric.
The proof for the third condition follows by the same reasoning, for example
by considering a single hypothetical capacity-0 special edge incident on v which
does not affect any argument.
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Flow conservation. Using the implication derived above to establish that f has
the flow conservation property for all v ∈ V (G) \ {s, t}, it suffices to establish
that one of the three cases above holds for v. We distinguish several types of
vertices of V (G) \ {s, t}, based on the partition given in Observation 1.

– For v ∈ V=, by definition we have d+G (v) = d−G (v), so that Condition 3 applies
to guarantee flow conservation for v.

– For each vertex xj for j ∈ [m], by construction of H there is a unique special
edge {T, xj} incident on xj which has capacity 1 and is oriented into xj .
As d+G (x

j) = 1 and x−
G (x

j) = 2, Condition 2 guarantees flow conservation
for xj . The argument for yj is symmetric.

– For each vertex V 1
i for i ∈ [k], by construction of H there is a unique

special edge {V 1
i , s} incident on V 1

i which has capacity α and is oriented
out of V 1

i . As d+G (V
1
i ) = d−G (v

1
i ) + α by choice of α, Condition 1 guarantees

flow conservation for V 1
i . The argument for V m+1

i is symmetric.

As Observation 1 shows that this covers all vertices of V (G)\{s, t}, we conclude
that f has the flow conservation property.

Value of the flow. As the final step of the argument, we prove that the value of
flow f is F , that is, the capacity of edges leaving s over which f sends (the full
capacity) of flow equals F and the remainder of the edges out of s carries no
flow. To do so, we analyze the orientation of the edges incident on s in

#»

H. Out
of the special edges incident on s, we know that:

– a capacity of ξ+β+m+k ·α is oriented into s (by the edge {s, S} and the k
edges {V 1

i , s}), and
– a capacity of ξ + k · α+m is oriented out of s (by the edge {s, T}).

Since
#»

H is a circulating orientation, the standard edges therefore contribute β
more out-capacity than in-capacity of s in

#»

H. The total capacity of the standard
edges incident on s is d+G (s). Let D be the capacity of the standard edges oriented
outwards, implying that the remaining d+G (s)−D of standard capacity is oriented
inwards. Note that the flow out of s under f is exactly D. Since the standard out-
capacity exceeds the standard in-capacity by β, we have that D = β+(d+G (s)−D),
which means that 2D = β + d+G (s). Since β = 2F − d+G (s), this implies 2D =

2F − d+G (s) + d+G (s), so that D = F and the flow out of the source s indeed
equals F in f . ⊓⊔

Since the preceding two claims show that the constructed instance is equiva-
lent to the input instance, while we already argued for its planarity and bounded
pathwidth earlier, this completes the proof of Lemma 11. ⊓⊔

The proof of the following lemma now easily follows by some post-processing
steps that can be done in a black-box fashion. To obtain an instance with
the stated properties, we have to turn the planar multigraph resulting from
Lemma 11 into a simple graph, make it triconnected, and triangulate it.
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Lemma 2 (⋆). There is a polynomial-time algorithm that, given an instance
of Multicolored Clique with parameter k, outputs an equivalent instance of
Circulating Orientation on a simple, triconnected, triangulated planar graph
of pathwidth O(k) whose edge capacities are bounded by a polynomial in |V (G)|.

Proof. Consider an instance (G,V1, . . . , Vk, k) of Multicolored Clique. By
the construction of Lemma 11 we transform such instance into an equivalent in-
stance (H, cH) of Circulating Orientation on a planar multigraph of path-
width O(k). We then subdivide all edges of H: For each edge e = {u, v} ∈ E(H)
we introduce a new vertex we and replace e by a pair of edges {u,we}, {we, v},
both of capacity cH(e). It is easy to see that this subdivision does not affect the
existence of a circulating orientation, and it is well-known that subdividing all
edges increases the pathwidth by at most one; this also follows from Lemma 4.
Let (H ′, cH′) be the resulting edge-capacitated simple planar graph.

We apply Theorem 3 to the simple graph H ′ to obtain a simple plane tri-
angulation H ′′ such that pw(H ′′) ∈ O(k). We define a capacity function cH′′

for E(H ′′) as follows: we set cH′′(e) = cH′′(e) for all e ∈ E(H ′) ∩ E(H ′′), while
we set cH′′(e) = 0 for e /∈ E(H ′). Hence, all newly created edges obtain a ca-
pacity of 0 so that their presence does not affect whether an orientation of the
remaining edges is circulating or not. The instance (H ′′, cH′′) therefore satisfies
all requirements and is equivalent to the original Multicolored Clique in-
stance. As all steps of the process can be done in polynomial time, the lemma
follows. ⊓⊔

D From Circulating Orientation to Upward
Planarity Testing

Here we provide the formal proof of the reduction from Circulating Orienta-
tion to Upward Planarity Testing, encapsulated in the following lemma.

Lemma 12. There is a polynomial-time reduction from planar triangulated tri-
connected instances of Circulating Orientation of pathwidth k with capac-
ities polynomial in graph size to Upward Planarity Testing instances of
pathwidth O(k).

Proof. Let (P, c) be an instance of Circulating Orientation, where P is
a triconnected planar graph, and c : E(P ) → Z≥0 is the capacity function.
W.l.o.g., we can also assume that every capacity is a multiple of 3, as multiplying
all capacities by the same factor is safe.

Let EP be a planar embedding of P , and let D be the dual graph of P
with respect to EP ; see also Figures 3a and 3b for an illustration. Let ED be
the respective planar embedding of D, and let w : E(D) → Z≥0 be the weight
function on the edges of D defined so that w(e′) = c(e), where e ∈ E(P ),
e′ ∈ E(D), and e′ is the dual edge of e.
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Claim 3. The graph D is a planar triconnected graph of maximum degree 3 and
pathwidth O(k).

Proof. Since D is the dual of the planar triconnected graph P , it is immediately
planar and also triconnected. Since P is triangulated, the maximum degree of
its dual is 3. Pathwidth remains bounded by Theorem 2. ⊓⊔

First, we pick an orientation of D so that the resulting graph is st-planar,
see, for instance, Figure 3c. This will be helpful to restrict possible embeddings
of the target graph of the reduction.

Claim 4. There exists an orientation
#»

D of D such that
#»

D is an st-planar graph
that admits a unique upward planar embedding. Also, its underlying planar em-
bedding is the unique planar embedding of D where s and t lie on the outer
face.

Proof. Pick arbitrarily an adjacent pair of vertices s ̸= t ∈ V (D). Since D is
triconnected, there exists an st-numbering of V (D) [32], and so an orientation
#»

D of D such that
#»

D is acyclic, s is the only source, and t is the only sink.
Moreover, since D is triconnected, its planar embedding is fixed up to the choice
of the outer face. Since s is the only source and t is the only sink, they both have
to be part of the boundary of the outer face. By triconnectivity of D, there is
only one face where both s and t lie on the boundary. ⊓⊔

We now construct the target digraph
#»

G of our reduction. Consider the di-
graph

#»

D, and replace every arc uv ∈ E(
#»

D) with a copy of the tendril Tk, where
k = w(uv), such that u is the source pole of Tk, and v is the sink pole. The
resulting digraph, after this replacement is performed for all the arcs of

#»

D, is
precisely

#»

G. We call the vertices of
#»

G that originate from vertices of
#»

D base
vertices, and denote the respective set by B ⊂ V (G). The other vertices, i.e.,
the inner vertices of the tendrils, are called auxiliary, denoted by A ⊂ V (

#»

G).
For base vertices u, v ∈ B, if uv ∈ E(

#»

D), we denote the set of vertices of the
respective tendril in G by Tuv. Here and next for the sake of readability we
associate base vertices of

#»

G with the respective vertices of
#»

D, slightly abusing
the notation. By definition, it holds that A =

⋃
uv∈E(

#»
D) T

uv \ {u, v}.
By construction, we observe several immediate properties of the digraph

#»

G,
see also Lemma 5.

Claim 5. The digraph
#»

G is acyclic. Its size is polynomial in the size of the
digraph

#»

D and weights w, and its pathwidth is O(k).

We now characterize the planar embeddings of
#»

G where s and t belong to the
outer face. Let

#»

D′ be an arbitrary orientation of D (not necessarily
#»

D). We say
that

#»

D′ defines an embedding E #»
D′ of

#»

G in the following sense. The embedding
of

#»

G is obtained by enhancing the embedding of
#»

D given by Claim 4: every arc
e ∈ E(

#»

D) is replaced with an embedding of the respective tendril Tuv. We pick a
flip of this embedding consistently with the orientation

#»

D′: for an arc e ∈ E(
#»

D′),
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let the left face and the right face be defined with respect to the direction of e,
in the unique upward planar embedding of

#»

D. We pick the embedding of Tc(e)

so that the boundary with positive contribution goes on the right face, while the
negative contribution to the left face. In other words, for a face f that has an arc
e on its boundary walk, the contribution of the respective tendril will be positive
if e is oriented clockwise along the walk, and negative otherwise; see Figures 3d
and 3e for an illustration.

Later, in this way we will model the choice of orienting the edge in P by
the choice of orienting its dual in D, and show that the orientation achieves the
conservation of flow in every vertex if and only if the tendrils flipped according to
the respective

#»

D′ provide the total contribution of zero to every face. Before we
move to the proof of that equivalence, we show that the choice of

#»

D′ essentially
fixes the embedding of

#»

G.

Claim 6. The planar embeddings of
#»

G are precisely the embeddings E #»
D′ for all

possible choices of the orientation
#»

D′ of D, up to a change of the outer face. The
planar embeddings of

#»

G where s and t are on the outer face are precisely E #»
D′ .

Proof. The claim follows immediately from the fact that
#»

G is obtained by re-
placing edges of the triconnected graph

#»

D by triconnected6 tendrils Tk, thus the
planar embedding of

#»

G is predetermined up to a flip of each tendril. The second
part of the statement follows since setting s and t to the boundary of the outer
face defines it uniquely (because

#»

G is triconnected). ⊓⊔

For a planar embedding E #»
D′ of G, we call a face a base face when it originates

from a face of D, and an auxiliary face when it is an inner face of a tendril
#»

G[Tuv]
for some uv ∈ E(D). We call all angles that belong to auxiliary faces or auxiliary
vertices auxiliary angles, and the remaining angles, which are the angles of base
vertices in base faces, base angles. Again, with a slight abuse of notation, we
associate base faces and base angles in G with the respective faces and angles
in D. Next we argue that given a fixed flip of the tendrils, the angle assignment
on

#»

G is completely predetermined by unique upward planar embeddings of the
tendrils and of

#»

D.

Claim 7. Let
#»

G admit an upward planar embedding with the planar embedding E
and the angle assignment λ. Then s and t lie on the outer face in this embedding.
Moreover, on every auxiliary angle, λ coincides with the unique upward planar
embedding of the respective tendril. On every base angle, λ coincides with the
unique upward planar embedding of

#»

D.

Proof. For the angle assignment, let
#»

T =
#»

G[Tuv] be a tendril in
#»

G for some
uv ∈ E(D). The upward planar embedding of

#»

G remains upward planar when
restricted to

#»

T , thus the respective angle assignment has to coincide with the
unique upward planar embedding of

#»

T . This proves the statement for all auxil-
iary angles.
6 accounting also for connectivity through the rest of the graph
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Let v be a base vertex of
#»

G, v ̸= s, t. Then it is a switch vertex in both
#»

D
and

#»

G, and the positions for flat angles are predetermined by changes of edge
directions in the circular order given by the embedding E . These positions match
exactly the flat angles of v in the embedding of

#»

D, as each tendril appears in
the order consecutively by Claim 6, and the edges of a tendril incident to v all
have the same direction as the original edge in

#»

D.
We now show that s and t lie on the outer face. Assume the contrary, then the

outer face is either an auxiliary face or a base face that is inner in the embedding
of

#»

D. The first case is immediately impossible, as an auxiliary face is an inner
face of a tendril, and the tendril admits a unique upward planar embedding.
In the second case, we consider the contributions of angles to the face in the
upward planar embedding of

#»

G. For base angles not from s or t, by the above
the angle assignment coincides with the unique upward planar embedding of

#»

D,
thus every base angle is flat except for the local source and local sink of the face.
Since at most one of them is in {s, t}, at most one of them is large, and so the
total contribution of base angles is either 0 or −2. For the auxiliary angles, their
values are, as above, predetermined by the unique upward planar embedding of
each tendril. It remains to observe that the contribution to the face of auxiliary
angles of a tendril Tw(e) on the boundary of the face is either −6k or 6k for some
k ∈ Z≥0 by Lemma 5 and the assumption that every capacity in the input graph
P is a multiple of 3. On the other hand, by the property UP3 of an upward
planar embedding the total contribution to the outer face must be 2. Since the
base angles contribute 0 or -2 in total, and the auxiliary angles contribute the
total of 6k, for some k ∈ Z, the value of 2 cannot be reached independently of
which tendrils lie on the boundary, and their flips. We arrive at a contradiction,
therefore both s and t must lie on the outer face of the embedding.

Finally, it remains to show that the angle assignment for s and t coincides
with the upward planar embedding of

#»

D, i.e, that the large angle for both s
and t lies on the outer face. Assume v = s and the large angle is assigned to
an inner base face f instead of the outer face. By the above, all the remaining
base angles on f are defined by the upward planar embedding of

#»

D, and thus
exactly one of them is small and the rest are flat. Thus, the balance of the base
angles on f is zero. Again, since the contribution of auxiliary angles to f is a
multiple of 6, the target value of −2 required by the property UP3 of an upward
planar embedding cannot be reached, which is a contradiction. The case v = t
is symmetric. ⊓⊔

With that, we are ready to show that
#»

G admits an upward planar embedding
if and only if there exists a circulating orientation of (P, c).

Fix an upward planar embedding of
#»

G, let E be the respective planar embed-
ding of

#»

G, and λ be the respective angle assignment. By Claim 7, s and t belong
to the outer face in E . Thus by Claim 6, the embedding is given by an orientation
#»

D′ of D, that is, E = E #»
D′ . By Claim 7, the angle assignment λ is fixed. We now

show that the following orientation
#»

P of P constitutes a solution to the instance
(P, c) of Circulating Orientation. For an edge e = uv ∈ E(P ), orient it
away from u if and only if the dual edge e∗ ∈ E(D) is oriented clockwise along
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the boundary of fu in
#»

D′, where fu is the face in D corresponding to the vertex
u ∈ V (P ), see Figure 4 for an example.

Consider a base face f of
#»

G, by the characterization of λ from Claim 7 the
total contribution of auxiliary angles from tendrils to f must be zero as the con-
dition UP3 of Theorem 4 is fulfilled for f in both

#»

D and
#»

G. Consider the vertex
vf in P corresponding to the face f . We get

∑
e∈E+

#»
P
(vf )

c(e) =
∑

e′∈E−
#»
P
(vf )

c(e′)

from the fact that the total contribution of tendrils to the face f is zero, since
an outgoing arc e ∈ E+

#»
P
(vf ) of capacity c(e) corresponds to a tendril with a

contribution of 2c(e) to f , and an incoming arc e′ ∈ E−
#»
P
(vf ) of capacity c(e′)

corresponds to a tendril with a contribution of −2c(e′) to f . Since the above
holds for every base face f of

#»

G and so for every vertex vf of P , the forward
direction of the proof is done.

In the other direction, let
#»

P be the orientation of P such that for every
v ∈ V (

#»

P ),
∑

e∈E+
#»
P
(v) c(e) =

∑
e′∈E−

#»
P
(v) c(e

′). We now argue that this implies an

orientation
#»

D′ of D with the following property: for every face f of D (recall
the planar embedding is fixed by ED), the total sum of the weights of the edges
oriented clockwise along the boundary walk of f is equal to the total sum of
the weights of the edges oriented counter-clockwise along the boundary walk of
f . Specifically, this orientation is obtained by orienting a dual edge e ∈ E(D)

of the arc uv ∈ E(
#»

P ) clockwise in the order defined by the boundary walk of
fu, which is the face in D dual to the vertex u ∈ V (

#»

P ). This also implies that
e is oriented counter-clockwise in the order of the boundary walk of fv, the
dual face of v. Now, for a face fv in D, which corresponds to a vertex v in P ,
the edges oriented clockwise along its boundary walk in

#»

D′ are precisely those
the duals of which are oriented away from v in

#»

P , thus their total weight is∑
e∈E+

#»
P
(v) c(e). Similarly, an edge is oriented counter-clockwise if and only if its

dual is oriented towards v in
#»

P , thus the total weight of counter-clockwise edges
is
∑

e′∈E−
#»
P
(v) c(e

′). Finally, we obtain the desired property by the fact that
#»

P is
a solution so

∑
e∈E+

#»
P
(v) c(e) =

∑
e′∈E−

#»
P
(v) c(e

′) holds.

We now consider an upward planar embedding E #»
D′ given by the orientation

#»

D′ above, from Claim 6 and Claim 4. From Claim 4, it is enough to verify
that the property UP3 for every base face is fulfilled. For a base face f , the
contribution of base angles is the same in

#»

D and
#»

G by Claim 4, thus UP3 is
fulfilled for f if the total contribution of auxiliary angles to f is zero. Let vf be
the corresponding to f vertex in P , by the property above the sum of weights of
edges oriented clockwise along the boundary of f is

∑
e∈E+

#»
P
(vf )

c(e), and counter-

clockwise is
∑

e∈E−
#»
P
(vf )

c(e). By definition of E #»
D′ , every arc e ∈ E(

#»

D′) oriented
clockwise corresponds to a tendril that has a total contribution of 2c(e) to f ,
and every arc e′ ∈ E(

#»

D′) oriented counter-clockwise contributes −2c(e′). Since∑
e∈E+

#»
P
(vf )

c(e) =
∑

e′∈E−
#»
P
(vf )

c(e′), the total contribution of auxiliary angles to
f is thus 2

∑
e∈E+

#»
P
(vf )

c(e) − 2
∑

e′∈E−
#»
P
(vf )

c(e′) = 0. This finishes the proof of
correctness. ⊓⊔
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E From Circulating Orientation to Rectilinear
Planarity Testing

In this section we present the reduction from Circulating Orientation to
Rectilinear Planarity Testing.

Lemma 13. There is a polynomial-time reduction from planar triangulated tri-
connected instances of Circulating Orientation of pathwidth k with capac-
ities polynomial in graph size to Rectilinear Planarity Testing instances
of pathwidth O(k).

Proof. Let (P, c) be an instance of Circulating Orientation, where P is a
triconnected planar triangulated graph, and c : E(P ) → Z≥0 is the capacity
function. Let EP be a planar embedding of P , and let D be the dual graph of
P with respect to EP . Let ED be the respective planar embedding of D, and
let w : E(D) → Z≥0 be the weight function on the edges of D defined so
that w(e′) = c(e), where e ∈ E(P ), e′ ∈ E(D), and e′ is the dual edge of e.
Analogously to the proof of Lemma 12, we have the following.

Claim 8. The graph D is a planar triconnected graph of maximum degree 3 and
pathwidth O(k).

We now construct the graph F from D by subdividing every edge 4 times.
Let rep : E(D) → E(P ) be a mapping that associates every edge in D to the
middle edge of the respective subdivision in P ; we call the edge rep(e) ∈ E(P )
a representative of e ∈ E(D).

Claim 9. The graph F has a unique planar embedding, and it admits a recti-
linear embedding.

Proof. Identical to Lemma 5.1 of [25]. ⊓⊔

We set a large enough parameter θ = |V (F )|+1. We then construct a graph G
from the graph F by replacing every representative edge rep(e) by a rectilinear
tendril Tk, where k = θ · w(e). We call the internal vertices of the tendrils
auxiliary in G, and the other vertices base vertices. Base vertices are associated
with vertices of F in the natural way. Similarly to the proof of Lemma 12, since
D is triconnected and the rectilinear tendrils admit a single planar embedding,
the embeddings of G are determined by the flips of the rectilinear tendrils. The
faces of an embedding of G are thus either internal in the tendrils, or originate
from the faces of D. We call the former auxiliary and the latter base faces of the
respective embedding of G. We also call the angles at auxiliary vertices auxiliary
angles, and the angles at base vertices base angles.

In the same way as in Lemma 12, we establish a correspondence between
planar embedding of G and orientations of D, and between orientations of D
and orientations of P . From an orientation

#»

P of P we construct an orientation
#»

D of D: for an arc uv ∈ E(
#»

P ), we orient the dual edge e clockwise in the order
of the boundary walk of fu, which is the dual face of u in D; here clockwise is
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given by the unique rectilinear embedding of D. Naturally, this transformation
could be reversed, so we obtain a bijection between orientations of P and of
D; under this bijection, the sum of capacities of outgoing (incoming) arcs from
a vertex v in P is equal to the sum of weights of the arcs oriented clockwise
(counter-clockwise) along the boundary of the dual face fv in D.

In the second part of the correspondence, we pick a flip of each tendril in
G in accordance with the orientation

#»

D of D: for a face f in D, if an edge of
the boundary is oriented clockwise, the tendril is flipped so the boundary walk
with the positive contribution is towards f ; so counter-clockwise edges result
in the negative contribution of the respected tendril. In this way, for a base
face f of G, the total significant contribution of the tendrils to f is equal to 4θ
times the difference between the total weight of clockwise edges and the total
weight of counter-clockwise edges. This transformation is also two-way: a planar
embedding of G is defined by picking a flip for each tendril, and orienting the
edges clockwise whenever the respective boundary walk has positive contribution
to the respective face produces the matching orientation of D. In the following,
we denote the embedding of G produced from an orientation of

#»

D of D in the
manner above by E #»

D .

Claim 10. Let f be a base face of a rectilinear embedding of G. Then the total
significant contribution to f of its tendrils is 0.

Proof. There are no vertices of degree 1 in G, thus no angle receives the label 4 in
the rectilinear embedding, otherwise the property RE0 of Theorem 5 is violated.
Thus, the total contribution to f is n3(f) − n1(f). By RE1, n3(f) − n1(f) is
either 4 or −4.

The total contribution n3(f) − n1(f) consists of base angles and auxiliary
angles, where the total contribution of the latter is exactly the total contribution
of the tendrils. Let |f | be the number of base vertices on the boundary of f , which
is equal to the number of vertices on the boundary of f in F and to the number
of tendrils on the boundary of f in G. The total contribution of base angles to f
is then between −|f | and |f |. The difference between the total contribution and
total significant contribution of all tendrils to f is between −2|f | and 2|f |, since
for every tendril the difference lies between −2 and 2. As the total contribution
to f must be 4 in absolute value, the total significant contribution of the tendrils
is at most 3|f |+ 4, since the other parts of the contribution are at most 3|f | in
absolute value in total, as shown above. Assume now that the total significant
contribution of tendrils to f is non-zero, then its absolute value is at least 4θ,
since the significant contribution of every tendril is a multiple of 4θ. However,
4θ = 4(|V (F )|+ 1) > 3|f |+ 4, which is a contradiction. ⊓⊔

It remains to show that P has a circulating orientation if and only if G admits
a rectilinear embedding.

Fix a rectilinear embedding of G, and consider a base face f . By Claim 10,
the total significant contribution of its tendrils is zero. Consider the respective
orientation of D, in it f has the same total weight of clockwise and counter-
clockwise edges. In turn, for the dual vertex vf in P , orienting the dual in P of
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every clockwise edge outwards from vf and the dual of every counter-clockwise
edge towards vf gives that

∑
e∈E+

#»
P
(vf )

c(e) =
∑

e′∈E−
#»
P
(vf )

c(e′). Since this holds
for every vertex v of P , the constructed orientation is a solution to (P, c).

In the other direction, consider an orientation
#»

P of P such that for every
vertex v ∈ V (P ),

∑
e∈E+

#»
P
(v) c(e) =

∑
e′∈E−

#»
P
(v) c(e

′). This gives an orientation
#»

D of D where every face has the same total weight of clockwise and counter-
clockwise edges. Consider the respective embedding E #»

D of G, we claim that it is
rectilinear by showing a suitable angle assignment. Assign angles to the auxiliary
angles as per the rectilinear embedding of the tendril where the contribution
is equal to the significant contribution, and base angles as per the rectilinear
embedding of F . The condition RE0 of Theorem 5 is thus fulfilled automatically.
Now, consider a face f in G. For an auxiliary face, the condition RE1 on the total
contribution is again fulfilled automatically since the angle assignment on the
boundary of the face matches the angle assignment in a rectilinear embedding
of the tendril. For a base face f , its total contribution is equal to the total
contribution in the rectilinear embedding of F , as the total contribution of the
tendrils on its boundary is equal to their total significant contribution which is
equal to zero. Thus the condition RE1 is also fulfilled in this case, therefore
by Theorem 5 the constructed angle assignments gives a rectilinear embedding
of G. ⊓⊔

Finally, we obtain the main lemma, restated below for convenience, as a com-
bination of reduction from Multicolored Clique to Circulating Orienta-
tion given by Lemma 2, and the reductions from Circulating Orientation
to the respective planarity testing problems given by Lemmas 12 and 13.

Lemma 3 (⋆). There is a polynomial-time algorithm that, given an instance
of Multicolored Clique with parameter k, outputs an equivalent instance
of Upward planarity testing (respectively Rectilinear planarity test-
ing) on a graph of pathwidth O(k).


	Upward and Orthogonal Planarity are W[1]-hard Parameterized by Treewidth

