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—— Abstract

Unit square (grid) visibility graphs (USV and USGV, resp.) are described by axis-parallel vis-
ibility between unit squares placed (on integer grid coordinates) in the plane. We investigate
combinatorial properties of these graph classes and the hardness of variants of the recognition
problem, i. e., the problem of representing USGV with fixed visibilities within small area and, for
USV, the general recognition problem.
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1 Introduction

A visibility representation of a graph G is a set R = {R; | 1 <i < n} of geometric objects
(e.g., bars, rectangles, etc.) along with some kind of geometric visibility relation ~ over
R (e.g., axis-parallel visibility), such that G = ({v; | 1 <i < n}, {{vi,v;} | Ri ~ R;}). In
this work, we focus on rectangle visibility graphs, which are represented by axis aligned
rectangles in the plane and vertical and horizontal axis parallel visibility between them. In
particular, we consider the more restricted variant of unit square visibility graphs (see [12]),
and, in addition, we consider the case where the unit squares are placed on an integer grid
(an alternative characterisation of the well-known class of graphs with rectilinear drawings).

The study of visibility representations is of interest, both for applications and for graph

1

classes, and has remained an active research area” mainly because axis-aligned visibilities

give rise to graph and network visualizations that satisfy good readability criteria: straight

* We acknowledge the support of the first author by the Deutsche Forschungsgemeinschaft, grant FE
560/6-1, and the support of the last author by the NSERC Discovery Grant program of Canada.

L The 24th International Symposium on Graph Drawing and Network Visualization (GD 2016) featured
an entire session on visibility representation (see [3, 10, 11, 24]), and the joint workshop day of the
Symposium on Computational Geometry (SoCG) and the ACM Symposium on Theory of Computing
(STOC) included a workshop on geometric representations of graphs in 2016.
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edges, and edges that cross only at right angles. These properties are highly desirable in
the design of layouts of circuits and communication paths. Indeed, the study of graphs
arising from vertical visibilities among disjoint, horizontal line segments (“bars”) in the plane
originated during the 1980’s in the context of VLSI design problems; see [16, 30, 29].

Because bar visibility graphs are necessarily planar, this model has been extended in
various ways in order to represent larger classes of graphs. Such extensions include new
definitions of visibility (e. g., sight lines that may penetrate up to k bars [13] or other geometric
objects [4]), vertex representations by other objects (e. g., rectangles, L-shapes [18], and sets
of up to t bars [23]), extensions to higher dimensional objects (see, e.g., [8] for visibility
representation in 3D by axis aligned horizontal rectangles with vertical visibilities, or [19],
which studies visibility representations by unit squares floating parallel to the z, y-plane and
lines of sight that are parallel to the z axis). The desire for polysemy, that is, the expression
of more than one graph by means of one underlying set of objects, has also provided impetus
in the study of visibility representations (see for example [6] and [28]).

Rectangle visibility graphs have the attractive property, for visualization purposes, that
they yield right angle crossing drawings (RAC graphs (see [15]), whose edges are drawn as
sequences of horizontal and vertical segments forming a polyline with orthogonal bends),
which have seen considerable interest in the graph drawing community. Unit square graphs
form a subfamily of L-visibility graphs (see [18]) and their grid variant a subfamily of RACs
with no bends (note that RAC recognition for 0-bends is NP-hard [2]).

Using visibilities among objects is but one example of the use of binary geometric relations
for this purpose; other geometric relations include intersection relations (e.g., of strings or
straight line segments in the plane, of boxes in arbitrary dimension), proximity relations
(e.g., of points in the plane), and contact relations. In the literature, for the resulting graph
classes, combinatorial aspects, relationships to other graph classes, as well as computational
aspects are studied (see [20] for a survey focusing on contact representations of rectangles).

Finally, we note that visibility properties among sets of objects have been studied in a
number of contexts, including motion planning and computer graphics. In [26] it is proposed
to find shortest paths for mobile robots moving in a cluttered environment by looking for
shortest paths in the visibility graph of the points located at the vertices of polygonal
obstacles. This led to a search for fast algorithms to compute visibility graphs of polygons,
as well as to a search for finding shortest paths without computing the entire visibility graph.

We extend the known combinatorial properties of unit square visibility graphs from [12],
and proof their recognition problem to be NP-hard (this requires a reduction that is highly
non-trivial on a technical level with the main difficulty to identify graph structures that can
be shown to be representable by unit square layouts in a unique way to gain sufficient control
for designing suitable gadgets). With respect to unit square grid visibility graphs, we extend
known combinatorial properties and consider variants of its recognition problem.

Due to space constraints, we only provide proof sketches (details can be found in [9]).

2 Preliminaries

A wisibility layout, or simply layout, is a set R = {R; | 1 < i < n} with n € N, where
R; are closed and pairwise disjoint axis-parallel rectangles in the plane; the position of
such a rectangle is the coordinate of its lower left corner. For every R;, R; € R, a closed
non-degenerate axis-parallel rectangle S (i.e., a non-empty closed rectangle that is not a line
segment) is a wvisibility rectangle for R; and R; if one side of S is contained in R; and the
opposite side in R;. We define R; - R; (R; |z R;), if there is a visibility rectangle S for R;
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and Rj, such that the left side (upper side) of S is contained in R;, the right side (lower side)
of S is contained in R; and SN Ry, = 0, for every Ry € R\ {R;, R;}. Let <+ and [ be the
symmetric closures of —x and |z, respectively. Finally, R; ~z R; if R; <> R; or R; iR R;
(~r is the wisibility relation (with respect to R)). If the layout R is clear from the context or
negligible, we drop the subscript R. We denote R; ~ R;, R; <+ R; and R; — R; also as R;
sees R;, R; horizontally sees R; and R; sees R; from the left, respectively, and analogous
terminology applies to vertical visibilities. For S, C R, we use S — T as shorthand form
for Apes per R—or R

A layout R = {R; | 1 < i < n} represents the undirected graph G(R) = ({v; | 1 <i <
n}, {{vi,v;} |1 <4,j <n,R;~R;}), which is then called a visibility graph, and the class of
visibility graphs is denoted by V. A graph is a weak visibility graph, if it can be obtained from
a visibility graph by deleting some edges and the corresponding class of graphs is denoted by
V. As a convention, for a visibility graph G = (V, E) and a layout representing it we denote
by R, the rectangle for v € V and define Ry, = {R, | x € V'} for every V' C V. We call
layouts Ry and Rq isomorphic if G(R;) and G(R2) are isomorphic. Furthermore, we call
Ry and R V-isomorphic if, for some x € {HRN%E} and y € {¢R17~L7_21}7 the relational
structure (Ry, =R, ,x,) i isomorphic to (Rz,z,y) or (Rz,y, ).

Unit square visibility graphs (USV) and unit square grid visibility graphs (USGV) are
represented by unit square layouts, where every R € R is the unit square, and unit square
grid layouts, where additionally the position of every R is from N x N.3 The weak classes
USV,, and USGV,, are defined accordingly.

For a graph G = (V, E), N(v) is the neighbourhood of v € V| E denotes an oriented
version of E, i.e., E = {{u,v} | (u,v) € E}, and f: E — E, (u,v) — {u,v} is a bijection.
Let L,R and D, U be pairs of complementary values (for X € {L,R,D,U}, X denotes its
complement). An LRDU-restriction (for G) is a labeling o: E — {L,R,D, U} and it is valid if,
for every (u,v) € E with o((u,v)) = X and every w € V \ {u, v}, o((u,w)) # X # o((w,v))
and o((v,w)) # X # o((w,u)). Obviously, LRDU-restrictions only exist for graphs with
maximum degree 4. A unit square grid visibility layout satisfies an LRDU-restriction o if
o((u,v)) = L implies R, = Ry, o((u,v)) = R implies R, — R,,, o((u,v)) = D implies R, | R,
and o((u,v)) = U implies R, | R,. An HV-restriction (for G) is a labeling o: E — {H,V}
and it is wvalid if, for every u € V at most two incident edges are labeled H and at most two
incident edges are labeled V. A unit square grid visibility layout satisfies an HV-restriction
o if o({u,v}) = H implies R, +» R, and o({u,v}) =V implies R,  R,,.

For a class & of undirected graphs, the recognition problem for & (denoted by REC(®))

for short) is the problem to decide, for a given undirected graph G, whether or not G € .

In the following, we shall consider the problems REC(USGV) and REC(USV).

We briefly recall some established geometric graph representations relevant to this work.

A rectilinear drawing (see [17, 25]) of a graph G = (V, E) is a pair of mappings z,y: V — Z,

where, for every v € V', z(v) and y(v) represent the z- and y-coordinates of v on the grid

and, for every edge {u,v} € E, (x(u),y(u)) and (z(v),y(v)) are the endpoints of a horizontal

or vertical line segment that does not contain any (z(w), y(w)) with w € V'\ {u,v}. A graph
2

has resolution < if it has a drawing in which the degree of the angle between any two edges

incident to a common vertex is at least %’T. We call such graphs 7‘65011115@'071—277r graphs and
are mainly interested in the case d = 4, see [21]. For planar graphs, resolution—%’r graphs are

2 By <71, we denote the inverse of a binary relation <.
3 Note that in the grid case, if a unit square is positioned at (z,%), then this is the only unit square on
coordinates (2',y"), ' € {x — L,z,z+ 1}, ¢ € {y — L,y,y + 1}.
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just rectilinear graphs, see [7]. A bendless right angle crossing (BRAC) drawing of a graph is
a straight-line drawing in which every crossing of two edges is at right angles.* Note that in
a BRAC-drawing or a msolution—%7r drawing, edges are not necessarily axis-parallel (like it
is the case for visibility layouts and rectilinear drawings). A graph is called rectilinear or
BRAC graph if it has a rectilinear or BRAC-drawing, respectively.

3  Unit Square Grid Visibility Graphs

The readability of graph drawings is mainly affected by its angular resolution (angles formed
by consecutive edges incident to a common node) and its crossing resolution (angles formed
at edge crossings); see the discussion in [1]. In this regard, resolution-7 graphs and BRAC

graphs have an angular resolution and crossing resolution of 7, respectively, while rectilinear
s

5

The question arises of how these classes relate to each other and in this regard, we first
note that USGV and rectilinear graphs coincide. More precisely, a unit square grid layout can
be transformed into a rectilinear drawing by replacing every unit square on position (z,y)
by a vertex on position (z,y) and translate the former visibilities into straight-line segments.
Transforming a rectilinear drawing into a unit square grid layout requires scaling it first by
factor 2 and then replacing each vertex on position (x,y) by a unit square on position (z,y)
(without scaling, sides or corners of unit squares may overlap). This only results in a weak
layout, since visibilities may be created that do not correspond to edges in the rectilinear
drawing. However, any weak unit square grid visibility graph can be transformed into a unit
square grid visibility graph (as formally stated below in Theorem 7).

drawings and unit square grid visibility layouts force both resolutions to be

Since all these graphs except the BRAC graphs have maximum degree 4, we only consider
degree-4 BRAC graphs. Obviously, resolution-§ graphs and degree-4 BRAC graphs are both
superclasses of USGV (and rectilinear graphs). Witnessed by K3, the inclusion in degree-4
BRAC graphs is proper, while the analogous question w.r.t. resolution-7 graphs is open.
Moreover, K3 is also an example of a degree-4 BRAC graph that is not a resolution-§ graph;
whether there exist resolution-7 graphs without a BRAC-drawing is open.

Due to the equivalence of USGV and rectilinear graphs, results for the latter graph class
carry over to the former. In this regard, we first mention that the NP-hardness proof of
recognizing resolution-§ graphs from [21] actually produces drawings with axis-aligned edges;
thus, it also applies to rectilinear graphs (a similar reduction (for rectilinear graphs and
presented in more detail) is provided in [17]). As shown in [17], the recognition problem for
rectilinear graphs can be solved in time O(24% - k2 . n), where k is the number of vertices with
degree at least 3. In [25], it is shown that recognition remains NP-hard if we ask whether a
drawing exists that satisfies a given HV-restriction® or a drawing that satisfies a given circular
order of incident edges. However, checking the existence of a rectilinear drawing satisfying a
given LRDU-restriction can be done in time O(|E| - |V]). Consequently, by trying all such
labellings, we can solve the recognition problem for rectilinear graphs in time 20", In this
regard, it is worth noting that the hardness reduction from [17] can be easily modified, such
that it also provides lower complexity bounds subject to the Exponential-Time Hypothesis
(ETH), thereby demonstrating that the 2°(") algorithm is optimal subject to ETH.

4 In the literature (e.g., [15]), the edges of a RAC-drawing are usually allowed to have bends; the
investigated questions are on finding RAC-drawings that minimise the number of bends and crossings.
5 The definition of HV- and LRDU-restriction given above naturally extends to rectilinear drawings.
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Figure 2 Subdivisions of K3 3.

3.1 Combinatorial Properties of USGV

First, we shall see that the class USGV is downward closed w.r.t. the subgraph relation, i. e.,
if G € USGV, then all its subgraphs are in USGV (intuitively speaking, deletion of edges can
be done by moving unit squares, while deletion of a vertex can be realised by deleting the
corresponding unit square and then removing unwanted edges introduced by this operation).
This observation will be a convenient tool for obtaining other combinatorial results.

» Lemma 1. Let G = (V,E) € USGV, letv eV and e € E. Then (V,E\{e}) € USGV and
(V\ {v}, E) € USGV.

It is straightforward to prove the following limitations of USGV.

» Lemma 2. Let G = (V,E) € USGV. Then, (1) the maximum degree of G is 4, (2) for
every u,v € V, IN(u) N N(v)| <2, and, (8) for every {u,v} € E, N(u) N N(v) = 0.

A consequence of Lemma 2 is that no graph from USGV contains K 5, K23 or K3 as a
subgraph, since they violate the first, second and third condition of Lemma 2, respectively.
Obvious examples for graphs from USGV are subgraphs of a grid; as Lemma 1 shows, even
non-induced subgraphs of a grid. In this context, notice that the problem of deciding if a
given graph is such a partial grid graph is equivalent to deciding if it admits a unit-length
VLSI layout, which, even restricted to trees, is an NP-hard problem; see [5] for details. Yet,
USGV contains more, especially non-bipartite graphs, with the smallest example being Cs.

Next, we discuss planarity with a focus on the relationship between the planarity of
graphs from USGV and planarity of their respective layouts (where a layout is called planar
if it does not contain any crossing visibilities). In this regard, we first note that the planarity
of a layout is obviously sufficient for the planarity of the represented graph. Moreover, it is
trivial to construct non-planar layouts that nevertheless represent planar graphs. Figure 1(a)
is an example of a planar unit square grid visibility graph, which can only be represented by
non-planar layouts (e.g., the one of Figure 1(b)):

» Proposition 3. There exists no planar unit square grid layout for the graph of Fig. 1(a).

It is tempting to assume that graphs in USGV are necessarily planar, but, as demonstrated
by Figure 2, USGV contains a subdivision of K3 3. Hence, with Kuratowski’s theorem, we
conclude:

30:5
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» Theorem 4. USGV contains non-planar graphs.

Next, we investigate possibilities to characterise USGV. In this regard, we first observe
that a characterisation by forbidden induced subgraphs is not possible (note that under the
assumption P # NP, this also follows from the hardness of recognition).

» Theorem 5. USGV does not admit a characterisation by a finite number of forbidden
induced subgraphs.

By Lemma 2, the classes of cycles, complete graphs and complete bipartite graphs within
USGV are easily characterised: C; € USGV if and only if i > 4, K; € USGV if and only if
i <2, K;; € USGV (with ¢ < j) if and only if (¢ =1 and j < 4) or (i =2 and j = 2).
Furthermore, the trees in USGV have a simple characterisation as well:

» Theorem 6. A tree T is in USGV if and only if the mazimum degree of T is at most four.

By definition, USGV C USGV,, and every G’ € USGV,, can be obtained from some
G € USGV by deleting some edges. Consequently, by Lemma 1, we conclude the following.

» Theorem 7. USGV = USGV,,.

3.2 Area-Minimisation

The area-minimisation version of the recognition problem is to decide whether a given graph
has a drawing or layout of given width and height. The hardness of recognition for USGV
and also for HV-restricted USGV carries over to the area-minimisation version, since an
n-vertex graph has a layout if and only if it has a (2n — 1) x (2n — 1) layout. On the other
hand, in the LRDU-restricted rectilinear (or unit square grid) case, recognition can be solved
in polynomial time, so the authors of [25] provide a hardness reduction that proves the
area-minimisation recognition problem NP-complete even for LRDU-restricted rectilinear
graphs. However, this construction does not carry over to USGV, since the non-edges of a
rectilinear drawing translate into non-visibilities, which require space as well;® moreover, it
does not even work for the weak case of USGV, due to the necessary scaling by factor 2 to
translate a rectilinear drawing into an equivalent weak unit square grid layout.

Next, we provide a reduction that shows the hardness of the area-minimisation version
of REc(USGV,,), which shall also imply several additional results. The problem 3-Partition
(3Part) is defined as follows: Given B € N and a multi-set A = {aq,as,...,a3n} C N with
% <a; < %, 1 <i<3m,and Zf;"l a; = mB, decide whether A can be partitioned into
m multi-sets Aq,...,A,,, such that ZaeAj a = B, 1 < j < m (note that the restriction
B < a; < £ enforces |A;| = 3,1 < j < m). Given a 3Part instance, we construct a frame
graph (see Figure 3) Gy = (Vy, Ey) with:

Vi ={ui jvij,wit,wio |1 <i<m,0<j<B}U{tm+1,0, Um+1,00 Wn+1,1, Wm+1,2}
By ={{uijuwijri} {vigvig} [1<i<m,0<j<B-1}U
Hui, By wiv1,0}{vi g, vid1,0}b [ 1< <m}PU{{uij,vi}[1<i<m,1<j<B}U
{H{uwi0,vio}, {vio, win}, {wi 1, wiz} |1 <i <m+1} .
Next, we define a graph G4 = (Va,E4) with Vi = {b; j,¢;; | 1 <i <3m,1 < j < a;}

and Ea = {{bij,bij1},{cij,cijr1} [ 1 <i<3m, 1 <j<a;—1}U{{bij,cij}[1<i<
3m,1 < j < a;}. Finally, we let G = (V,E) with V =V;UV,4 and E = E;y U E4.

5 In general, this space blow-up cannot be avoided, as witnessed by n isolated vertices which have a 1 x n
rectilinear drawing, but a smallest unit square grid layout of size (2n — 1) x (2n — 1)
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Figure 3 Unit square grid layout for the graph Gy.

The idea is that Gy forms m size-B compartments and the graphs on b; ;, ¢; ; represent
the a;. In a layout respecting the size bounds, the way of allocating the graphs on b; j, ¢; ;

to the compartments corresponds to a partition of A that is a solution for the 3Part-instance.

» Lemma 8. (B, A) is a positive 3Part-instance if and only if G has a (7x (2(mB+m+1)—1))
unit square grid layout.

Since the reduction defined above is polynomial in m and B, and 3Part is strongly
NP-complete (see [22, Theorem 4.4]), we can conclude the following:

» Theorem 9. The area-minimisation variant of REC(USGV,,) is NP-complete.

The area minimisation variant implicitly solves the general recognition problem, so the
question arises whether it is also hard to decide if a graph from USGV,, (given as a layout)
can be represented by a layout satisfying given size bounds. Since our reduction always
produces a graph in USGV,, (with an obvious layout), independent of the 3Part-instance, it
shows that the hardness remains if the input graph is given directly as a layout. Moreover,
the problem is still NP-complete for the LRDU-restricted variant (the LRDU-restriction then
simply enforces the structure shown in Figure 3).

The reduction also yields a (substantially simpler) alternative proof for the hardness of
the area-minimisation recognition problem for LRDU-restricted rectilinear graphs [25] (more
precisely, it can be shown that (B, A) is a positive 3Part-instance if and only if G has a
(4 x (mB +m + 1)) rectilinear drawing), and the hardness also carries over to the variant
where the input graph is already given as a rectilinear drawing.

We conclude this section by pointing out that it is open whether the LRDU-restricted
area-minimisation variant of REC(USGV) can be solved in polynomial-time. Intuitively,
reducing the size of a rectilinear drawing is difficult, since space can be saved by placing
non-adjacent vertices on the same line, which is not possible for non-weak unit square grid
layouts. However, computing a size-minimal unit square grid layout includes finding out to
what extend the scaling by 2 is really necessary, which seems difficult as well.

4  Unit Square Visibility Graphs

Obviously, a larger class of graphs can be represented if the unit squares are not restricted
to integer coordinates (see Figure 4 for some examples). In [12], cycles, complete graphs,
complete bipartite graphs and trees in USV are characterised as follows: C; € USV, for every
i €N, K; € USV if and only if ¢ < 4, K; ; € USV with ¢ < j if and only if (1 <7 <2 and
i<j<6)or(i=3and 3 <j<4), and a tree T is in USV if and only if it is the union
of two subdivided caterpillar forests with maximum degree 3 (note that [23] provides an
algorithm that efficiently checks this property).

7 For the more general question of representing bipartite graphs as rectangle visibility graphs, we refer
to [14]. In particular, a linear upper bound on the number of edges, compared to the number of vertices,
is known.
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Figure 4 Visibility layouts for K16, K26, K34, K4 and a K5 with one missing edge.
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Next, we observe that every graph with at most 4 vertices is in USV, while K5 is not (it
is not hard to find layouts for graphs with at most 4 vertices; K5 ¢ USV is shown in [12]).

» Proposition 10. Every graph with at most 4 vertices is in USV.

A crucial difference between USGV and USV is that for the latter, the degree is not
bounded, as witnessed by layouts of the following form: O Hooooog, However, if a unit
square sees at least 7 other unit squares, then these must be placed in such a way that
visibilities or “paths” between some of them are enforced (note that any K, ,, may exist as
induced subgraph, as can be demonstrated by modifying the above example layout such
that between each two consecutive neighbours another “visibility-blocking” unit square is
inserted). In [12], it is formally proven that in graphs from USV any vertex of degree at
least 7 must lie on a cycle. In particular, these observations point out that an analogue of
Lemma 1 is not possible for USV.

For the class of trees within USV, as long as we consider trees with maximum degree
strictly less or larger than 6, a much simpler characterisation (compared to the one mentioned
at the beginning of this section) applies:

» Theorem 11. Let T be a tree with maximum degree k. If k <5, then T' € USV, and if
k> 17, then T ¢ USV.

Figure 5(a) shows an example of a tree from USV with maximum degree 6 and Fig-
ure 5(b) its representing layout. It can be easily verified that any node of degree 6 must be
represented V-isomorphically to Figure 4(a) (note that this also holds for nodes A and B
in Figures 5(a) and (b)). Figure 4(a) also demonstrates that not all trees with maximum
degree 6 can be represented: let R denote the square below the central square in the layout,
then it is impossible for R to see 5 additional unit squares that exclusively see R. On the
other hand, USV contains trees with arbitrarily many degree-6 vertices, e.g., trees of the
form depicted in Figure 5(c) (it is straightforward to see that they can be represented as the
union of two forests of caterpillars with maximum degree 3). This reasoning shows that not
all planar graphs are in USV, while it follows from [30] that all planar graphs are (non-unit
square) rectangle visibility graphs (also see [29]).

Finally, we note that USV is a proper subset of USV,, (e.g., K7 7 is a separating example):

» Theorem 12. USV C USV,,.

4.1 The Recognition Problem

The recognition problem for USV consists in checking whether a given graph can be represented
by a unit square layout. We first observe that this problem is in NP (note that this is not
completely trivial, since we cannot naively guess a layout) and the main result of this section
shall be its hardness (see Theorem 20).
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Figure 5 Illustration for trees from USV with maximum degree 6.
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Figure 6 The backbone-gadget.
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» Theorem 13. REc(USV) € NP.

We prove the NP-hardness by a reduction from NAE-3SAT, i.e., the not-all-equal 3-
satisfiability problem [27]. To this end, let F' = {c1,...,cm} be a 3-CNF formula over the
variables x1,...,T,, such that no variable occurs more than once in any clause, and, for the
sake of convenience, let ¢; = {y;1,¥i2,¥i3}, 1 <i<m.

The general idea of the reduction is as follows: We identify graph structures that can be
shown to have a (more or less) unique representation as a unit square layout. With these
main building blocks, we construct a sequence of clause and variable gadgets, called backbone
(see Figure 6), that can only be represented by a layout in a linear way, say horizontally.
Furthermore, every clause gadget is vertically connected to its three literals, two of which
are below and the other one above the backbone, or the other way around. The allocation of
literal vertices to a variable z; is done by a path of all literal vertices corresponding to x;
that is connected to the variable vertex for x;. Such paths must lie either completely above
or below the backbone. Interpreting the situation that a path lies above the backbone as
assigning true to the corresponding literal, yields a not-all-equal satisfying assignment, as it
is not possible that all the paths for a clause lie on the same side of the backbone.

We assume that each clause of F' contains at most one negated variable, which is no
restriction to not-all-equal satisfiability as a clause over literals [y,ls,l3 is not-all-equal
satisfied by an assignment if and only if a clause over literals I, ls, I3 is. Furthermore, we
also assume that every literal occurs at least three times in the formula. We first transform
F into F' ={c1,...,com}, where ¢;qy = ¢; for i =1,...,m. Then, we transform F’ into a
graph G = (V| E) as follows. The set of vertices is defined by V = V. UV, UV},, where

—{cj,cj,cj |0<j <2m—1}U{02m}U{l;,l?,l§’ |1 <j <2m},

={z,al, 2?2 | 1<i<n+1YU{tst; ti, f} }, }, 2 f2|1<z<n}
Vh—{h fl, f3|1§z§n,0§r§4}.

Vertices c¢; and z; represent the corresponding clauses and variables and the vertices

T
cj7 xi7

ning of this section. The corresponding edges are implicitly defined, by requiring, for

T, r € {1,2} are used to enforce the backbone structure as described at the begin-
every 0 < i < 2m — 1 and 1 < i < n, the following groups of 4 vertices to form a Kjy:
{cj,c],c?,cﬁl} {z;, 2}, 4, z+17xl+1} and {com, 21,23, 11}. Also, for every j € {1,2}, the
vertices ¢, ¢}, ..., Chy 1, T, Th, ... ), form a path in this order. Consequently, these
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N 7

Figure 7 Possible placements of literal vertices, possible placements of assignment vertices, and
the clause path for x;.

vertices form the subgraph represented by the layout in Figure 6, which shall be the backbone.

Vertices t;, represent the literal x;, f!

1 represent the literal 7; in the first m clauses, and f?

represent the literal Z; in the remaining clauses. Vertices l] , ZJ , l;’ represent the literals of
clause ¢;. These roles are reflected with edges {z;,t;}, {z;, fi }, {zs, f2} forall 1 <i<n
and {c;, l;’} forall 1 < j <2mand 1 <r < 3. The connection between literals and variable
assignments is build by turning ;. with y;, = x; into a path connected to ¢;; analogously,
lj.» with y; ,, = T; in the first (the last, respectively) m clauses form a path connected to f}
(f?, respectively). More precisely, for every 1 < j <2m,1<i<nand 1<r <3:

if y;» = @i, there are edges {I7, IZ}, {1, E},

if y;, =77 and 1 < j < m, there are edges {l;,ﬁl}, {5, f } and {1} +m,ff} {5 ff}

there are edges {t;, %;}, {t:,t;} and {tt,hf},{t:,hf} for all 0 < p <4,

there are edges {ff,ff}, {fi,ff} and {ff,hpf},{ﬁ, hpf} forall 0 < p <4, se{1,2},
Moreover, for every ¢, 1 <1 < n,

if N(t;) = {h, B2, 050,02, 00 R 4, b3 b} with ji < jo < ... < jg, then these

1’ jl’ ]27 ) J 9
vertices form a path in this order,
if N(ff) = {hf“ fg,z;;,lg ;%hfg,ff,hfg,h;‘cs} with j1 < j2 < ... < j, and

s € {1,2}, then these vertices form a path in this order,

Next, we assume that the formula F’ is not-all-equal satisfiable and show how a layout
for G can be constructed. First, we represent the backbone as illustrated in Figure 6. If
a variable z; is assigned the value frue, then we place the unit squares Ry, ;. F1.p2} as
illustrated on the left side of Figure 7(b), and otherwise as illustrated on the right side.
The edges for the vertices t;, t_;, E, hi,, 0 <r <4, and all l; with y;, = z; can be realised
as illustrated in Figure 7(c¢) (either placed above or below the backbone, according to the
position of Ry,). An analogous construction applies to the unit squares for l5 with y; ,» = 73,
with the only difference that we have two such paths (one for the first m clauses and one
for the remaining clauses) and that they both lie on the opposite side of the backbone with
respect to R;,. Moreover, in these paths, the er must be horizontally shifted such that they
can see their corresponding R,; from above or “from below, according to whether the path
lies above or below the backbone (as indicated in Figure 7(c)). As long as not all paths for
the three literals of the same clause lie all above or all below the backbone, this is possible
by arranging the unit squares as illustrated in Figure 7(a). However, if for some clause all
paths lie on the same side of the backbone, then the literals of the clause are either all set to
true or all set to false, which is a contradiction to the assumption that the assignment is
not-all-equal satisfiable. Consequently, we can represent G as described.

» Lemma 14. If F' is not-all-equal satisfiable, then G € USV.



K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and S. Whitesides

Figure 8 Re- presenting K.

Proving that a layout for G translates into a satisfying not-all-equal assignment for F', is
much more involved. The general idea is to show that any layout for G must be V-isomorphic
to the layout constructed above. However, this cannot be done separately for the individual
gadgets, e.g., showing that the backbone must be represented as in Figure 6 (in fact, the
structure of the backbone alone does not enforce such a layout) and the literal vertices must
form a path as in Figure 7(c¢) and so on. Instead, the desired structure of the layout is only
enforced by a rather complicated interplay of the different parts of G.

A main building stone is that a K4 can only be represented in 3 different ways (up to
V-isomorphism), which are illustrated in Figure 8. This observation is important, since the
backbone is a sequence of Kjy.

» Lemma 15. Every layout for K, is V-isomorphic to one of the three layouts of Figure 8.

We now assume that G can be represented by some layout R. For every j, 1 < j < m,
we define L; = {I7,13,13}, for every i, 1 <i < n, we define A; = {t;, f{, f?}, and, for every j,
1 <j<m-—1, we define le. = {cj,cj_l,c}fl,cffl}, i = {cj,cj_i_l,c;,c?} and C; = CJI-UC}”.
We shall prove the desired structure of R by first considering the neighbourhood of ¢;;
once we have fixed the layout for this subgraph, the structure of the whole layout can be

concluded inductively. The neighbourhood of ¢; consists of le. and C} (two K4 joined by c¢;)

and L;, where all vertices of the two K4 (except c;) are not connected to any vertex of L.

Intuitively speaking, this independence between L; and the K4 of the backbone will force
the backbone to expand along one dimension, say horizontally (as depicted in Figure 6),

while the visibilities between L; and ¢; must then be vertical (as depicted in Figure 7(a)).

However, formally proving this turns out to be quite complicated.

The general proof idea is to somehow place the unit squares of Ry, in such a way that
they see R., without creating unwanted visibilities. Then, the areas of visibility for the
Ry, are blocked for any unit squares from the backbone-neighbourhood Rg;, since these
are independent of Ry ;. For example, consider the situation depicted in Figure 9. Here,
placing unit squares from R¢; in the grey areas implies that they are within visibility of
some unit squares from Ry .. This leaves only few possibilities to place the unit squares from
Rc; and by applying arguments of this type, it can be concluded, by exhaustively searching
all possibilities and under application of Lemma 15, that the only possible layouts have the
above described form.

However, this argument is flawed: it is possible to place a unit square R, within the grey
areas, as long as the forbidden visibilities are blocked by other unit squares. This type of
blocking would require a path between z and c; or some vertex from L, respectively, which
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Figure 9 Possible placement of literal vertices for c;.

does exist as structure in G. Consequently, in order to make the above described argument
applicable, we first have to show that the existence of such visibility-blocking unit squares
leads to a contradiction. This substantially increases the combinatorial depth of the already
technical proof idea described above.

For the next lemma, which is the main tool in proving how the neighbourhood of ¢; is
represented, we need some notation. Let R;, R;, Rj be unit squares. If some (or every)
visibility rectangle for R; and Ry, intersects R;, then R; is strictly between R; and Ry, (or R;
blocks the view between R; and Ry, respectively).

» Lemma 16. Foralll <i <2m andr € {1,2,3} and every z € N(c;)\{I}'} there exists no
visibility rectangle for Rjr and R, that is not intersected by Rc,. In particular, this implies:
R, is not strictly between R., and Rlp Rl; is not strictly between R., and R,, and, if R., is
strictly between Rl: and R, then R., blocks the view between Rl; and R, .

By applying Lemma 16, we can now show that R-: and Rc7 cannot all see R, from the
same side, which can then be used in order to prove that either all Ry, see R, Vertlcally or
all of them see R, horizontally:

» Lemma 17. For every j, 1 < j < 2m —1 and y € C; \ {c¢;}, Re;, = Roj\(y.c;) 15 not
possible.

» Lemma 18. For every j, 1 < j < m, either R, <> R, or R, iRLJ.

We are now able to combine these lemmas in order to prove that a layout for G translates
into a not-all-equal satisfying assignment for the formula F'. To this end, we first note that the
neighbourhood of a variable vertex x; has an identical structure as the neighbourhood of the
clause vertices, which implies that Lemmas 16, 17 and 18 also apply to this part of the graph.
By combining Lemmas 16 and 18, we can show that for each clause c;, either R.; <> R\ (c;}
or R, $RC].\{CJ,}. By Lemma 15, this means that the two corresponding induced K, are
represented as shown in Figure 6, and, furthermore, an inductive application of Lemma 17
forces them to form the shown horizontal or vertical backbone. Due to Lemma 18, the literal
vertices and the assignment vertices corresponding to the same variable must all form a path
on the same side of the backbone. We can now assign x; the value true if and only if R, is
below the backbone. As long as, for the variables occurring in some clause c;, R 1 is on the
opposite side of Ry, clause c; is not-all-equal satisfied, because then literals are set to true
if and only if they are below the backbone and, due to Lemma 16, it is not possible that
they all lie on the same side. However, if Rf} lies on the same side as R;,, which is possible,
then Rff’ again due to Lemma 16, must lie on the opposite side of R, and, by the same
argument, it follows that c;y,,, which is a copy of ¢;, is not-all-equal satisfied (note that
every clause has at most one negated variable).

» Lemma 19. If G € USV, then F is not-all-equal satisfiable.
» Theorem 20. REC(USV) is NP-complete.
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Since in our reduction the size of the graph is linear in the size of the formula, we can
also conclude ETH-lower bounds for REC(USV).

5 Conclusions

The hardness of REC(USV,,) is still open (note that in our reduction, we heavily used the
argument that certain constellations yield forbidden edges, which falls apart in the weak case)
and we conjecture it to be NP-hard as well. Two open problems concerning graph classes
related to USGV are mentioned in Section 3: (1) are USGV and the class of resolution-7§
graphs identical, (2) are there resolution-5 graphs without BRAC-drawing? Note that a
positive answer to (2) gives a negative answer to (1).

From a parameterised complexity point of view, our NP-completeness result shows that
the number of different rectangle shapes (considered as a parameter) has no influence on
the hardness of recognition. Another interesting parameter to explore would be the step
size of the grid, i.e., for k € N, let USGV* be defined like USGV, but for a {£]¢eN}?
grid. We note that these classes form an infinite hierarchy between USGV = USGV' and
usv =, USGV*, and it is hard to define them in terms of extensions of rectilinear graphs.
Another interesting observation is that the hardness reduction for the recognition problem of
rectilinear graphs from [17], if interpreted as reduction for REC(USGV), does not work for
USGV2. The classes USGV* might be practically more relevant, since placing objects in the

plane with discrete distances is more realistic.
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