
A Parameterized Runtime Analysis of Simple

Evolutionary Algorithms for Makespan
Scheduling

Andrew M. Sutton and Frank Neumann

School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia

Abstract. We consider simple multi-start evolutionary algorithms ap-
plied to the classical NP-hard combinatorial optimization problem of
Makespan Scheduling on two machines. We study the dependence of
the runtime of this type of algorithm on three different key hardness pa-
rameters. By doing this, we provide further structural insights into the
behavior of evolutionary algorithms for this classical problem.

1 Introduction

Evolutionary algorithms and other types of bio-inspired computing techniques
have been extensively used for a wide range of combinatorial optimization
problems. Understanding the behavior of evolutionary algorithms on NP-hard
combinatorial optimization problems from a theoretical point of view is still a
challenging task. Results on the runtime of evolutionary algorithms for differ-
ent combinatorial optimization problems have been obtained during the last ten
years. We refer the interested reader to the textbook of Neumann and Witt [10]
for an overview on this area of research. One of the first runtime analyses of
evolutionary algorithms for NP-hard combinatorial optimization problems has
been carried out by Witt [14] by considering the Makespan Scheduling prob-
lem. Witt has studied the approximation and average-case behavior of simple
evolutionary algorithms for this problem. Gunia [7] later extended this work to
the case of multiple machines. Other recent works have studied the multiple ma-
chine case in terms of convergence to solutions corresponding to Nash equilibria
in multiplayer non-cooperative games [4,6].

We consider the analysis of evolutionary algorithms in the context of fixed-
parameter tractability by expressing their runtime as a function of both problem
size and an additional hardness parameter that attempts to isolate the exponen-
tial complexity of the instance. This approach, which is widely used in the classi-
cal analysis of algorithms and problem hardness [3], has recently been introduced
into the analysis of evolutionary algorithms. It facilitates the understanding of
which features in an instance of a given problem makes the problem hard to solve.
Parameterized runtime results have been obtained in the context of evolutionary
computation for the vertex cover problem [9], the computation of maximum leaf
spanning trees [8], the MAX-2-SAT problem [12], and the Euclidean TSP [13].

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 52–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Parameterized Runtime Analysis of Simple EAs for Makespan Scheduling 53

Our goal is to provide further insights into the optimization process of evo-
lutionary algorithms for the Makespan Scheduling problem by carrying out
parameterized runtime analyses. We show that multi-start variants of two sim-
ple evolutionary algorithms are fixed-parameter evolutionary algorithms for a
parameterization of Makespan Scheduling that takes into account the value
of the optimal schedule above its theoretical lower bound. We then study their
runtime in dependence of the critical path size of an optimal schedule. Finally, we
investigate a parameterization that considers the machine load discrepancy in an
optimal schedule. We show that, with a minor modification to the mutation pro-
cedure, the resulting multi-start variant of RLS is a Monte Carlo fixed-parameter
tractable algorithm for Makespan Scheduling. This indicates that instances
with large discrepancies will be easier to solve by randomized local search.

2 Preliminaries

We investigate the classical NP-hard Makespan Scheduling problem on two
identical machines. In this problem, we have a set of n jobs where each job j
requires a nonzero integral processing time pj on either machine. We define the
load of a machine to be the sum of processing times of the jobs that are assigned
to it. The makespan of a schedule is the maximum load over both machines. The
objective is to find an assignment that minimizes the makespan.

An arbitrary schedule can be represented as a binary length-n decision vector
where the j-th component specifies to which machine job j is assigned in a
schedule. For a given instance of Makespan Scheduling, the makespan of a
schedule corresponding to a binary decision vector x ∈ {0, 1}n is captured by
the pseudo-Boolean function

f : {0, 1}n → N := x �→ max

⎧
⎨

⎩

n∑

j=1

xjpj ,

n∑

j=1

(1− xj)pj

⎫
⎬

⎭
.

We will denote P =
∑n

j=1 pj . Thus P/2 ≤ f(x) ≤ P . Without loss of generality,
we will assume that the processing times are sorted in nonincreasing order, i.e.,
p1 ≥ · · · ≥ pn. We denote f∗ = minx∈{0,1}n f(x) as the value of the optimal
makespan for an instance.

We will carry out parameterized runtime analyses of evolutionary algorithms
for Makespan Scheduling. Let Σ be a finite alphabet. A parameterized prob-
lem over Σ is a pair (L, κ) where L ⊆ Σ∗ is a language over Σ and κ : Σ∗ → N

is a map called a parameterization of Σ. Letting n = |x| and k = κ(x), a pa-
rameterized problem (L, κ) is fixed-parameter tractable if there is an algorithm
that decides x ∈ L in time bounded by g(k) · poly(n) where g is an arbitrary
recursive function that depends only on k. We call such an algorithm an fpt-
algorithm. The class of parameterized problems (L, κ) that can be decided by
an fpt-algorithm is called FPT. A Monte Carlo fpt-algorithm for (L, κ) is a ran-
domized fpt-algorithm with runtime bounded by g(k) · poly(n) that will accept
an input x ∈ Σ∗ with probability at least 1/2 if x ∈ L, otherwise it accepts with

54 A.M. Sutton and F. Neumann

probability zero. An XP-algorithm for a parameterized problem (L, κ) is an algo-
rithm that runs in worst-case time ng(k). We define a Monte Carlo XP-algorithm
analogously.

We consider two classical mutation-only evolutionary algorithms, the (1+1)
EA and RLS. In particular, we will analyze repeating runs of length �(n) =
O(poly(n)) and take the best solution found during any run. A run of length
�(n) for the (1+1) EA and RLS is explicitly defined in Algorithms 1 and 2,
respectively. In each case, we will investigate the probability that a single run
solves the parameterized problem. Observing that each run is an independent
Bernoulli trial, it will be straightforward to bound the failure probability after a
prescribed number of runs. We will make use of the following technical lemma.

Lemma 1. Let h be a positive function. The probability that an arbitrary (but
nonempty) set of k < n bits is never changed during a run of length �(n) = n·h(n)
is bounded by Ω

(
e−k·h(n)) for the (1+1) EA, and Ω

(
e−(k log k)·h(n)) for RLS.

Proof. For the (1+1) EA, the probability that none of the specified k bits are
mutated during a single iteration is (1− 1/n)k. After �(n) iterations, the proba-
bility is (1−1/n)kn·h(n) = Ω(e−k·h(n)). For RLS, the probability that none of the
specified k bits are changed in a single iteration is (1− k/n). Here, we must also
consider the rate k grows as a function of n. If k = o(n), the bound is obviously
the same for the (1+1) EA, otherwise, k = Θ(n). In the case that c1n ≤ k ≤ c2n
for some constants 0 < c1 ≤ c2 < 1, then we have (1−k/n)n ≥ (1−c2)k/c1 = e−kε

where ε is a positive constant. Finally, in the case that k ∼ n, since k is at most
n−1, it must hold that (1−k/n)n ≥ e−n logn and since in this case n = (1+o(1))k,
the asymptotic bound holds. 	

Algorithm 1. A single run of the (1+1) EA

input : A run length �(n)
output: A candidate decision vector x

1 Choose x uniformly at random from {0, 1}n;
2 for i← 1 to �(n) do
3 x′ ← x;
4 Flip each bit of x′ independently with probability 1/n;
5 if f(x′) ≤ f(x) then x← x′

6 end

3 Parameterized Analysis for Optimal Makespan Value

The standard parameterization of a combinatorial optimization problem is (as-
suming minimization), given an instance and a parameter k, is the value of the
optimal solution at most k? Fernau [5] has shown that the standard parame-
terization of Makespan Scheduling1 is fixed-parameter tractable. The proof
relies on the following straightforward kernelization technique. If k < P/2, the

1 Makespan Scheduling is referred to as Minimum Partition in Fernau’s work.

A Parameterized Runtime Analysis of Simple EAs for Makespan Scheduling 55

Algorithm 2. A single run of RLS

input : A run length �(n)
output: A candidate decision vector x

1 Choose x uniformly at random from {0, 1}n;
2 for i← 1 to �(n) do
3 x′ ← x;
4 Choose j uniformly at random from {1, . . . , n};
5 x′

j ← (1− x′
j);

6 if f(x′) ≤ f(x) then x← x′

7 end

answer is always “no” since clearly f is bounded below by P/2. On the other
hand, if k ≥ P/2, it follows that 2k ≥ P ≥ n, the rightmost inequality coming
from the fact that the processing times are positive integers. Hence there are at
most 22k schedules which can be search exhaustively in time bounded by O(4k).

To provide stronger insights into the difficulty of Makespan Scheduling
as a function of the value of the optimal makespan, we will consider a more
detailed parameterization that captures the difference between the makespan of
an optimal schedule and the theoretical lower bound. In particular, we show that
if the optimal schedule has a makespan much larger than P/2+P/n, the problem
is easier to solve by the (1+1) EA and RLS using a multi-start approach. We
show that the multi-start variants of both the (1+1) EA and RLS are Monte
Carlo fpt-algorithms for Makespan Scheduling by showing they are capable
of simulating a polynomial-time approximation scheme (PTAS).

We will hereafter assume that p1 ≤ P/2, otherwise it is easy to show that RLS
always runs in expected polynomial time simply by collecting all the smaller
jobs onto the other machine. A move could result in an improving solution
if it shifts a job from the fuller machine to the emptier machine. We follow
Witt [14] and define the critical job size s(x) with respect to a decision vector
x as the processing time of the smallest job on the fuller machine. If f(x) >
(P + s(x))/2, then it is possible to construct an improving schedule by moving
at least one job from the fuller machine to the emptier machine. The optimal
solution parameterization is, given an instance of Makespan Scheduling and
an integer k, is f∗ ≤ P/2 + P/k?

Lemma 2 (due to Witt [14]). Let x be the current search point. Suppose the
critical job size is bounded above by s∗ for all following search points of value
greater than L + s∗/2 where L ≥ P/2. Then for any γ > 1 and 0 < δ < 1, both
the (1+1) EA and RLS can compute a decision vector with makespan at most
L+ s∗/2 + δP/2 in at most �en ln(γ/δ)� steps with probability at least 1− γ−1.

Lemma 3. Given some 1 ≤ k ≤ n, let x′ be a decision vector such that the
contribution of jobs 1, . . . , k is minimal. The probability that after a run of length
�en ln(2k)� the (1+1) EA or RLS has discovered a schedule with makespan at
most P/2 + P/k is bounded below by Ω(e−k�e ln(2k)�) for the (1+1) EA, and
Ω(e−(k log k)�e ln(2k)�) for RLS.

56 A.M. Sutton and F. Neumann

Proof. As long as no move involves the first k bits, the critical job size s∗ is
bounded above by pk. Furthermore, since kpk ≤ p1 + · · · + pk ≤ P , it follows
that pk is at most P/k. By Lemma 2, by setting L to P/2, s∗ to P/k, γ = 2,
and δ to 1/k, the probability that we reach a solution x̂ where

f(x̂) ≤ L+ P/(2k) + (1/k)(P/2) = P/2 + P/k

in �en ln(2k)� steps is at least 1/2, as long as none of the first k jobs are moved.
Thus, if q denotes the probability that none of the first k bits are mutated

during a run of length �en ln(2k)�, then the solution is reached with probability
at least q/2. The proof is completed by appealing to Lemma 1 for the lower
bound on q and using the fact that �en ln(2k)� ≤ n�e ln(2k)�.

Theorem 1. The multi-start (1+1) EA (RLS) using runs of length �(n) =
�en ln(2k)� is a Monte Carlo fpt-algorithm for the optimal makespan parame-
terization of Makespan Scheduling.

Proof. Consider an arbitrary instance of Makespan Scheduling. If f∗ > P/2+
P/k the proof is complete since the output of the algorithm in this case is
irrelevant. Thus we suppose that f∗ ≤ P/2 + P/k.
The probability that a random initial solution to any run contains the first k
jobs properly fixed is at least 2−k+1. Given such a solution, let q(n) denote the
probability that, after a run of length �en ln(2k)�, the algorithm has found a
schedule x̂ where f(x̂) ≤ P/2+P/k. The probability that t consecutive runs are
all unsuccessful is at most (1 − q(n)/2k−1)t. Setting t = �2k−1q(n)−1� gives a
failure probability of at most 1/e. Since each run consists of O(n log k) evalua-
tions, the total runtime is O(tn log k). Due to Lemma 3, q(n) is bounded by a
function depending only on k for both the (1+1) EA and RLS. Thus by setting
g(k) = 2k−1q(n)−1, the total runtime is bounded by O(g(k) · n log k) and the
success probability is at least 1− 1/e > 1/2.

4 Parameterized Analysis for Critical Path Size

In general machine scheduling problems, the critical path of a schedule is a set of
consecutive jobs in which the first job starts at time zero, the completion time of
the last job is the makespan of the schedule, and the completion time of each job
is equal to the starting time of the next [11]. For the two-machine Makespan
Scheduling problem, we define the critical path of a schedule as the set of jobs
scheduled on the fuller machine. Formally, the critical path of a schedule x is
the set C(x) ⊆ [n] such that for all i, j,∈ C(x), xi = xj and

∑
i∈C(x) pi = f(x).

In the ambiguous case (when the machines balance) we define the critical path
as the smallest such set with ties in cardinality broken arbitrarily. We define the
critical path size of a schedule x as |C(x)|. The critical path size parameterization
of Makespan Scheduling is, given an integer k, is there a schedule with critical
path size at most k?

A Parameterized Runtime Analysis of Simple EAs for Makespan Scheduling 57

Lemma 4. Consider an instance of Makespan Scheduling such that there
exists a schedule z with |C(z)| ≤ k. Suppose x′ corresponds to a schedule such
that for all i, j ∈ C(z), x′

i = x′
j . We call a run of the (1+1) EA (RLS) a suc-

cess if it discovers a schedule with critical path size at most k. Then starting
with x′ as the initial decision vector, for any constant c > 1, the success prob-
ability of a run of the (1+1) EA of length �cen (lnn+ ln p1 + 1)� is bounded
by Ω

(
(enp1)

−cek
)
. Moreover, the success probability of a run of RLS of length

�cn (lnn+ 1)� starting from x′ is bounded by Ω
(
(en)−ck log k

)
.

Proof. Without loss of generality, suppose that for all i, j ∈ C(z), x′
i = x′

j = 0.
If, for any � ∈ [n], x′

� = 0 =⇒ � ∈ C(z), then the proof is complete. Otherwise,
machine zero (i.e., the machine that corresponds to a zero bit in the decision
vector) obviously must have the highest load since it contains every job in C(z).
Let S(x) = {i : i /∈ C(z)∧xi = 0} be the set of jobs on machine zero that do not
belong to C(z).
During a run of either the (1+1) EA or RLS, as long as none of the jobs in C(z)
are not moved off machine zero, any move that reduces the number of jobs not
in C(z) on machine zero is accepted. Furthermore, as long as the jobs in C(z)
remain on machine zero, its load is at least the load of machine one. Thus, no
moves which increase the number of jobs on machine zero are accepted.

For the (1+1) EA, let d(x) =
∑

i∈S(x) pi. Suppose that no jobs from C(z) are
moved off machine zero during a run of the (1+1) EA. In this case, any mutation
involving an element of S(x) is accepted and decreases the makespan (and the d
value) by its processing time. Such a move occurs with probability at least 1/(en).
By the multiplicative drift theorem [2], the expected number of steps until the
d value has reached zero conditioned on the event that no bits corresponding to
C(z) are flipped is at most en (1 + ln d(x′)) ≤ en (lnn+ ln p1 + 1) since d(x′) ≤
np1. Consider a run of the (1+1) EA of length t = cen(lnn + ln p1 + 1). By
the Markov inequality, the success probability of such a run conditioned on the
event that no bit in C(z) is flipped is at least 1− 1/c = Ω(1). Hence the bound
on the success probability is Ω

(
(enp1)

−cek
)
by Lemma 1.

For RLS, we set the run length to �(n) = �cn(lnn+1)�. The probability that
RLS takes fewer than �(n) steps to move the remaining |S(x)| jobs conditioned
on the event that no jobs in C(z) are moved is at least 1− (ne)−c+1 = 1− o(1).
This result comes from the classical coupon collector analysis (see Theorem 1.23
in Chapter 1 of [1]). The bound on the success probability of such a run of RLS
then follows directly from Lemma 1. 	

Theorem 2. For any constant c > 1, a multi-start (1+1) EA procedure us-
ing a run length of �(n) = �cen(lnn + ln p1 + 1)� solves the critical path size
parameterization in at most O

(
2k(enp1)

cek · n(logn+ log p1)
)
evaluations with

probability at least 1/2. Moreover, a multi-start RLS procedure using a run length
of �(n) = �cn (lnn+ 1)� solves the critical path size parameterization in at most
O
(
2k(en)ck log k · n logn

)
evaluations with probability at least 1/2.

58 A.M. Sutton and F. Neumann

Proof. Consider an arbitrary instance of Makespan Scheduling. If there is
no schedule z such that |C(z)| ≤ k, the proof is complete. Otherwise, suppose
there exists such a schedule.
With probability at least 2 · 2−k, the initial schedule x′ of a run of the (1+1)
EA (RLS) has x′

i = x′
j for all i, j ∈ C(z). Let q(n) denote the probability that

a (1+1) EA run of length �cen(lnn + ln p1 + 1)� starting from x′ generates a
schedule with critical path size at most k. By Lemma 4, q(n) = Ω

(
(enp1)

−cek
)
.

The probability that t consecutive runs of the required size of the (1+1)
EA all fail to find such a schedule is at most (1 − q(n)/2k−1)t. Hence, after
2k−1q(n)−1 = O

(
2k(enp1)

cek
)
such runs of the (1+1) EA, the failure probability

is at most 1/e and the parameterization is solved with probability 1−1/e > 1/2.
Since each run of the (1+1) EA costs O(n(log n+ log p1)) evaluations, we have
the claimed runtime. The proof for RLS is analogous. 	

It immediately follows from Theorem 2 that the multi-start RLS is a Monte
Carlo XP-algorithm for the critical path size parameterization of Makespan
Scheduling. We must, however, be slightly more careful in the case of the
multi-start (1+1) EA since p1 can be exponential in n. In this case, it follows
that the multi-start (1+1) EA is a Monte Carlo XP-algorithm for inputs where
all processing times are polynomially bounded in n.

5 A Monte Carlo fpt-Algorithm for Discrepancy

Following the terminology of Witt [14] we define the absolute difference in load
across machines the discrepancy of a schedule, i.e., Δ(x) = 2f(x)−P . Denoting
as Δ∗ = 2f∗ − P the discrepancy of the optimal solution of an instance, we
consider the following parameterized problem (for notational convenience, we
set pn+1 = 0). Given an instance of Makespan Scheduling and an integer k,
is pk ≥ Δ∗ ≥ pk+1?

We will consider two evolutionary algorithms, called k-biased (1+1) EA and k-
biased-RLS which differ from the (1+1) EA and RLS by using a slightly modified
mutation operator. We then consider the efficiency of these variants for solving
the discrepancy parameterization. For the k-biased (1+1) EA, the mutation step
in line 4 of Algorithm 1 is replaced with the following lines of code.

for j ← 1 to k do flip x′
j with probability 1/(kn);

for j ← k + 1 to n do flip x′
j with probability 1/n;

For the k-biased-RLS, the mutation step in lines 4 and 5 of Algorithm 2 are
replaced with the following lines of code.

if r < 1/n then choose j uniformly at random from {1, . . . , k};
else choose j uniformly at random from {k + 1, . . . , n};
x′
j ← (1− x′

j);

A Parameterized Runtime Analysis of Simple EAs for Makespan Scheduling 59

These biased mutation operators have a smaller probability of flipping the
bits on the first k positions compared to the ones presented in Section 2.

Lemma 5. Let h be a positive function. The probability that the k-biased (1+1)
EA (k-biased-RLS) does not change the first k bits during a run of length �(n) =
n · h(n) is bounded by Ω(e−h(n)).

Proof. For the k-biased (1+1) EA, the probability that none of k bits are selected
for mutation in a single step is (1 − 1/(kn))k. After �(n) steps the probability
that none of the first k bits have changed is at least (1 − 1/(kn))kn·h(n). For k-
biased-RLS, the probability that any of the first k bits are selected for mutation
is 1/n. After �(n) steps, the first k bits have not changed with probability at least
(1−1/n)n·h(n). In both cases, the asymptotic bound follows from (1−1/x)x·f(x) =
Ω(e−f(x)). 	

Lemma 6. Let k be such that pk+1 ≤ Δ∗ where pn+1 = 0. Let x′ be a decision
vector such that the contribution of jobs 1, . . . , k to the makespan is minimal. We
call a run of the k-biased (1+1) EA (k-biased-RLS) a success if it discovers an
optimal schedule. Then starting with x′ as the initial decision vector, the success
probability for a run of the k-biased (1+1) EA of length 2en(lnn + ln p1 + 1)
is bounded below by Ω

(
(np1)

−2e
)
. Moreover, the success probability for a run of

k-biased-RLS of length 2n(lnn+ 1) is bounded below by Ω
(
n−2

)
.

Proof. We assume Δ(x′) > Δ∗ ≥ 0 since otherwise x′ is already optimal. In
this case there is a machine with a higher load. Let S = {k + 1, k + 2, . . . , n}.
We first show that as long as x′ is not optimal and there are jobs from S on
the fuller machine, moving any such job to the emptier machine results in a
strictly improving move. Suppose not. Then there is a job j > k on the fuller
machine and Δ(x′) ≤ pj , otherwise moving pj results in an improvement. But
by definition, we have pj ≤ Δ∗ which contradicts the non-optimality of x′. It
follows that if the first k jobs already contribute minimally to the makespan, as
long as no mutation involves the first k bits, the optimal schedule can be found
by moving all jobs from S on to the emptier machine.

For the k-biased (1+1) EA, let d(x) = Δ(x) − Δ∗. The probability that a
mutation removes a job in S from the fuller machine is at least

(1− 1/(kn))
k
(1− 1/n)

n−k−|S| |S|−1 ≥ (1− 1/n)
n−|S| |S|−1 ≥ 1/(en).

The expected time until the d value has reduced to zero conditioned on the event
that no bits of index at most k are flipped follows from the multiplicative drift
theorem of Doerr et al. [2] and is at most t = en (1 + ln d(x′)). By the Markov
inequality, the probability that this occurs after 2t steps (again, conditioned on
the event that no bits with index at most k are flipped) is at least 1/2 = Ω(1).
The bound on the success probability of a run of length 2t follows from Lemma 5.

For k-biased-RLS, suppose there are i jobs from S on the fuller machine. The
probability that k-biased-RLS moves one of these jobs to the emptier machine
is at least

(1− 1/n) · i/(n− k) =
n− 1

n
· i

n− k

60 A.M. Sutton and F. Neumann

for n > 1. The expectation until all jobs from S are moved off the fuller machine
conditioned on the event that no jobs in [n] \ S are moved is at most

n

n− 1
· (n− k)

n−k∑

i=1

1/i ≤ n(lnn+ 1)

since k ≥ 1. By the Markov inequality, the probability that this occurs in a run
of 2n(lnn + 1) steps is at least 1/2 = Ω(1). The final bound on the success
probability comes from Lemma 5. 	

We now prove that the k-biased (1+1) EA (on inputs with polynomially bounded
processing times) and k-biased-RLS (for general processing times) are Monte
Carlo fpt-algorithms for this parameterization. At this point, it might be tempt-
ing to assume that we require instance-specific knowledge in order to choose the
appropriate value for k. Instead, we are interested in the following question. For
a given and fixed k, is there a class of Makespan Scheduling instances for
which k-biased-RLS and the k-biased (1+1) EA are efficient? We now prove that
such a class must include instances where pk ≥ Δ∗ ≥ pk+1.

Theorem 3. A multi-start k-biased-RLS procedure that uses a run length of
�(n) = �2n(lnn+1)� is a Monte Carlo fpt-algorithm for the discrepancy param-
eterization of Makespan Scheduling. In particular, if the instance is a yes
instance (that is, pk ≥ Δ∗ ≥ pk+1), it solves the problem after O(2kn3 logn)
steps with probability 1− 1/e.
Similarly, the multi-start (1+1) EA is a Monte Carlo fpt-algorithm for the dis-
crepancy parameterization for inputs where the processing times are polynomially
bounded in n.

Proof. Consider an arbitrary instance of Makespan Scheduling. If it is not
the case that pk ≥ Δ∗ ≥ pk+1, the proof is complete since, in this case, the output
of the algorithm is arbitrary. Thus we can assume the bounds on Δ∗. A single
run of k-biased-RLS starts with the first k jobs contributing minimally to the
makespan with probability at least 2−k+1. Let q(n) denote the probability that
a k-biased-RLS run of length �2n(lnn+1)� is successful. The failure probability
for t consecutive runs is at most (1 − q(n)/2k−1)t. Setting t = �2k−1q(n)−1�
gives a failure probability of at most 1/e. By Lemma 6, q(n) = Ω(n−2). Thus,
the probability that the algorithm solves the discrepancy parameterization of
Makespan Scheduling in t = O(2kn2) runs of length O(n log n) evaluations
each is at least 1− 1/e > 1/2.
The proof for the multi-start k-biased (1+1) EA is identical, except we set
�(n) = �2en(lnn + ln p1 + 1)� and apply Lemma 6 to get q(n) = Ω

(
(np1)

−2e
)
.

Thus after O
(
2k(np1)

2en(logn+ log p1)
)
steps, the algorithm has solved the

discrepancy parameterization with probability at least 1− 1/e.

6 Conclusion

The parameterized analysis of evolutionary algorithms allows for a deeper un-
derstanding of which structural parameters of an instance of a combinatorial

A Parameterized Runtime Analysis of Simple EAs for Makespan Scheduling 61

optimization problem makes it easy or hard to solve. With this paper, we have
contributed to the parameterized runtime analysis of evolutionary algorithms.
We studied the Makespan Scheduling problem previously analyzed by Witt
from a worst case and average case perspective. Our results provide further in-
sights into the behaviour of evolutionary algorithms for this classical problem.
We have shown that multi-start variants of the (1+1) EA and RLS are Monte
Carlo fpt-algorithms for a parameterization which considers the value of the op-
timal solution above its lower bound. We have performed a runtime analysis in
dependence of the critical path size of an optimal solution, and shown that a
multi-start variant of RLS is a Monte Carlo fpt-algorithm for a parameterization
that considers the discrepancy in load across machines.

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific Publishing Company (2011)

2. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Pelikan,
M., Branke, J. (eds.) GECCO, pp. 1449–1456. ACM (2010)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
4. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibrium

in load balancing. ACM Transactions on Algorithms 3(3) (2007)
5. Fernau, H.: Parameterized Algorithmics: A Graph Theoretic Approach. Habilita-

tionsschrift (English), Universität Tübingen (2005)
6. Goldberg, P.W.: Bounds for the convergence rate of randomized local search in a

multiplayer load-balancing game. In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp.
131–140. ACM (2004)

7. Gunia, C.: On the analysis of the approximation capability of simple evolutionary
algorithms for scheduling problems. In: Beyer, H.G., O’Reilly, U.M. (eds.) GECCO,
pp. 571–578. ACM (2005)

8. Kratsch, S., Lehre, P.K., Neumann, F., Oliveto, P.S.: Fixed Parameter Evolution-
ary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutation. In:
Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI, Part I. LNCS,
vol. 6238, pp. 204–213. Springer, Heidelberg (2010)

9. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex
cover problem. In: Rothlauf, F. (ed.) GECCO, pp. 293–300. ACM (2009)

10. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
– Algorithms and Their Computational Complexity. Springer (2010)

11. Pinedo, M.: Scheduling: theory, algorithms, and systems. Springer (2012)
12. Sutton, A.M., Day, J., Neumann, F.: A parameterized runtime analysis of evolu-

tionary algorithms for MAX-2-SAT. In: GECCO. ACM (to appear, 2012)
13. Sutton, A.M., Neumann, F.: A parameterized runtime analysis of evolutionary

algorithms for the Euclidean traveling salesperson problem. In: AAAI. AAAI Press
(to appear, 2012)

14. Witt, C.: Worst-Case and Average-Case Approximations by Simple Randomized
Search Heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 44–56. Springer, Heidelberg (2005)

	A Parameterized Runtime Analysis of Simple
Evolutionary Algorithms for Makespan Scheduling
	Introduction
	Preliminaries
	Parameterized Analysis for Optimal Makespan Value
	Parameterized Analysis for Critical Path Size
	A Monte Carlo fpt-Algorithm for Discrepancy
	Conclusion
	References

