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ABSTRACT

The autocorrelation function and related correlation length
are statistical quantities that capture the ruggedness of the
fitness landscape: a measure that is directly related to the
hardness of a problem for certain heuristic search algorithms.
Typically, these quantities are estimated empirically by sam-
pling along a random walk. In this paper, we show that a
polynomial-time Walsh decomposition of the k-satisfiability
evaluation function allows us to compute the ezact auto-
correlation function and correlation length for any given k-
satisfiability instance. We also use the decomposition to
compute a theoretical expectation for the autocorrelation
function and correlation length over the ensemble of in-
stances generated uniformly at random. We find that this
expectation is invariant to the constrainedness of the prob-
lem as measured by the ratio of clauses to variables. How-
ever, we show that filtered problems, which are typically
used in local search studies, have a bias that causes a sig-
nificant deviation from the expected correlation structure of
unfiltered, uniformly generated problems.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory
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1. INTRODUCTION

The correlation structure of the fitness landscape is an
important measure of how “smooth” or “rugged” the search
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space appears to certain search methods. Stadler and Schn-
abl [17] have conjectured that, under fairly reasonable con-
ditions, the correlation length of the landscape is directly
related to the number of local optima. Several researchers
have also proposed using these ruggedness values to classify
and compare NP-hard optimization problems [7, 1].

The behavior of local methods such as local search and
(1+ X) evolution strategies directly depends on the correla-
tion structure of the search space. An instance with high
correlation between states that are separated by a small
number of steps or mutations will appear in some sense
“smoother” to a search algorithm than one of low correla-
tion. Intuitively, this is because nearby states will tend to
have a more similar fitness. On the other hand, an instance
with low correlation will appear highly rugged with a large
number of local peaks. This information can be captured by
the autocorrelation function r(s) which measures the corre-
lation between points separated by s random steps or muta-
tions. Similarly the correlation length £ is a measure of how
far along a random walk states tend to be correlated.

Hoos et al. [6] have recently studied the local search space
structure and its effect on the performance of local search
algorithms on k-satisfiability, maximum-k-satisfiability, and
weighted maximum-k-satisfiability. The authors measure
the correlation length empirically along a sampled random
walk using a subset of the Hamming neighborhood. This
method was first proposed by Weinberger [18]. Mathemat-
ically, the exact autocorrelation function is well-defined for
the entire landscape [15]; however, for general functions,
computing the exact autocorrelation requires enumerating
the entire search space.

In this paper, we show that the autocorrelation func-
tion (and the correlation length) for the complete Ham-
ming neighborhood can be computed exactly for any given
k-satisfiability instance in polynomial time. We use a well-
known result from Stadler [15] that relates the correlation
structure of a problem instance to the coefficients in a de-
composition of the fitness function. We show that the Walsh
decomposition of a k-satisfiability instance provides these
coefficients (when properly normalized) and use a result by
Rana et al. [12] that every k-satisfiability instance has a
tractable Walsh decomposition.

To study the expected behavior of correlation information
over an entire problem distribution, we present a theoreti-
cal expectation for the autocorrelation function and correla-
tion length over uniformly generated random k-satisfiability
instances with n variables and m clauses. We show that



this expectation is invariant to clause-variable ratio m/n on
randomly generated problems. However, on filtered prob-
lem sets, i.e., ensembles of randomly generated problems
for which unsatisfiable instances are discarded, there is a
significant deviation from this expectation. This result has
important implications since most empirical studies for local
search are performed on filtered sets [3, 21, 11, 13].

This paper is organized as follows. In the next section we
define the correlation structure of problems and how it can
be measured by the autocorrelation function and the corre-
lation length. We show that, on k-satisfiability instances,
the exact versions of these functions can be computed in
polynomial time. In Section 3 we extend this analysis to
classes of problems generated uniformly at random. In Sec-
tion 4 we present numerical results. We conclude the paper
in Section 5.

2. CORRELATION STRUCTURE

In the context of molecular biology, Eigen et al. [4] first
studied correlation functions to measure the local structure
of state-space models of certain molecular configurations.
This idea has since been extended to studying the search
space explored by local methods on combinatorial optimiza-
tion problems [14, 1, 9, 6].

The concept of correlation structure extends naturally to
combinatorial search methods that operate by perturbing
complete candidate solutions. Local methods select from
elements of a predefined neighborhood given by a mutation or
move operator. Elements of this neighborhood are generated
systematically or at random and then selected based on their
fitness.

The neighborhood relationship among states imposes a
connectivity on the search space. A state y is reachable from
a state x in s steps if there exist exactly s moves or mutations
that can transform z into y. The statistical relationship
between this reachability and the fitness function defines
the correlation structure of the landscape.

This structure can be measured by the autocorrelation
function which captures the strength of the relationship be-
tween fitness and the number of steps from any particular
point, and the correlation length which, informally, measures
the expected range of correlation among states.

These measures define the ruggedness of the fitness land-
scape. A landscape with low correlation will tend to be
rugged and have many local optima. On the other hand, a
landscape with high correlation will tend to be “smoother”
and more amenable to local methods. This phenomenon is
illustrated in Figure 1. The autocorrelation function r(s)
quantifies the strength of the relationship between points
separated by s steps.

2.1 The k-satisfiability landscape

An instance of the k-satisfiability problem consists of a
formula that is the conjunction of m disjunctive clauses con-
taining k literals each

(ll,l\/...\/llﬁk)/\(lziV...\/ngg)A.../\(lm,l\/...Vlm’k)

where [; ; is taken to be one of the n variables or its negation.

In the decision variant (k-satisfiability), the objective is to
determine the existence of an assignment to all n variables
such that the formula evaluates to true. In the optimization
variant (maximum-k-satisfiability), the objective is to find

E] i £ I
© ©
A‘D /-\m
= =
< <
~ ~
o o
e <
- f1 (autocorrelation) = fa (autocorrelation)
]
o
©
o
<3
o
N
=
=
=
N
c
T

Figure 1: Two landscapes: f; [top left] with low cor-
relation structure [bottom left] and f. [top right]
with high correlation structure [bottom right] as
measured by the autocorrelation function.

an assignment to all n variables that maximizes the number
of clauses that evaluate to true.

Incomplete heuristic search algorithms cannot, in princi-
ple, solve the decision variant, e.g., they cannot prove an
instance does not have a satisfying assignment. Thus, most
studies of incomplete algorithms that search the space of
complete candidate assignments by performing local pertur-
bations (moves or mutations) typically view both variants
from the perspective of optimization. Thus the fitness land-
scape for both the decision variant (k-satisfiability) and the
optimization variant (maximum-k-satisfiability) are identi-
cal and our results apply to both.

Let {c1,¢2,...,cm} be the set of m clauses in an instance.
Let {v1,v2,...,v,} denote the set of n variables. Each state
is a complete assignment to all n variables. The set of all
possible assignments, which we denote X, is isomorphic to
the set of binary sequences of length n. In other words, the
complete assignment x corresponds directly to a sequence
(z[1], z[2],...,z[n]) with

2[b] = {(1)

Thus we can express the fitness function in terms of binary
sequences of length n:

£:{0,1}"—{0,1,...,m}

where f(z) counts the number of clauses satisfied in the
complete assignment to all n variables given by the binary
sequence . We denote by N(z) the Hamming neighborhood
of a state x: the set of all binary sequences of x that differ in
exactly one position. The state space X together with the
fitness function f and the neighborhood N, which provides
the connectivity on X give the fitness landscape of the k-
satisfiability problem.

if variable vy is set to true in the assignment
if variable vy is set to false



2.2 Exact correlation structure

We define the 2™ x 2" random walk transition matriz T

as
1
Toy =47
Y 0

Each component of the matrix T, can be viewed as the
unbiased random walk transition probability from state x
to state y. We may also view T as a linear operator over
functions g : X +— R. In particular, since such a function g
is over a discrete domain, we can characterize it as a vector
g € RIXI. The matrix-vector product Tg € RI*! can in turn
be viewed as a function over X. This function evaluated at
state x gives the average of the function g over the Hamming
neighborhood of z:

Ty(x) =~ > 9) (1)

YyEN ()

if y is a Hamming neighbor of =
otherwise

For example, T f(z) gives the average fitness of the Ham-
ming neighbors of z. In general, T°g(z) gives the expecta-
tion of g evaluated at a point s random steps from x.

Weinberger [18] showed the correlation information can
be measured using a finite sequence of states (z1, z2,...,Tq)
with z:41 € N(x¢) generated by performing a random walk
on the hypercube induced by the Hamming neighborhood.
We can then measure the lag-s autocorrelation of the “time
series” of evaluations (f(z1), f(z2),..., f(zq)). This empir-
ical lag-s random walk autocorrelation function #(s) has an
expectation of

r(s) = E[f (@) f (wers)] — Ef (20)]?
E[f(z)?] = E[f(z)]?

where E[] is the expectation over all times and initial states.
Intuitively, r(s) is the expected statistical correlation in fit-
ness between two points separated by s steps. Stadler [15]
showed that this expression simplifies.

27T ) — (27" e x f(@)
270 Y x f(@)? = (277 Y, ex (@)

where (-, ) is the standard inner product.

Thus Equation (2) captures the ezact statistical correla-
tion of the entire landscape: the quantity which empirical
random-walk autocorrelation is estimating.

r(s) =

(2)

2.3 Walsh decomposition

The Walsh transform is an analog of the Fourier transform
which decomposes an arbitrary pseudo-Boolean function g :
{0,1}" — R into a superposition of Walsh functions:

2" —1

gl) =Y wai(z)

i=0
where 1); is defined as follows.

DEFINITION 1. The Walsh function ;(x) in its normal-
ized form is defined as

i) = —

V2

Note that the index i is interpreted as the length-n bitstring
representation of ¢ in the definition. The inner product in

SO

the exponent simply counts the number of 1 bits in the in-
tersection of the bitstrings ¢ and z.

In the worst case, a pseudo-Boolean function can be writ-
ten as a superposition of O(2") Walsh functions. However,
Rana et al. [12] have shown that the evaluation function f
of a k-satisfiability problem can be written as a linear com-
bination of O(2Fm) Walsh functions:

f(@) = Y wan(a) )

where w; is the i*" Walsh coefficient. Since k is taken to be
O(1), the complexity is linear in the number of clauses.

For k-satisfiability, Rana et al. showed that each Walsh
coefficient w; is a sum of contributions from each clause:

m
wi =Y wi(ey)
=1

where w;(c;) is the contribution to w; from clause ¢;. This
is defined as follows. Let v(c;) denote a bitstring of length
n where

v(e;)[b] = {

1 if variable v, appears in clause c;
0  otherwise

Similarly, let u(c;) be a bitstring of length n where

1 if variable v, appears negated in clause c;
0  otherwise

u(c;)[b] = {
If z and y are bitstrings of length n, we say
rCy < (zb]=1 = ylb] =1)

for b = {1,...,n}. The contribution of clause ¢; to Walsh
coefficient w; is

0 if i Z v(cy)
wile;) = § V2 ! if i =0 @)
—ﬁgikwi(u(cj)) otherwise

The Walsh coefficient w; is simply a sum of w;(c;) over all
clauses c; in the instance. All remaining Walsh coefficients
are zero.

Intuitively, it should be clear that for ¢ # 0, w;(c;) can be
computed for clause c¢; as follows.

1. If the variables selected by the nonzero bits in the bit-
string representation of i do mot appear together in
clause ¢; (1 Z v(c;)), then w;(c;) = 0.

2. If these variables do appear together in clause c; then
the parity of the count of negations of these particular
variables in clause c; gives & 2"2%

As an illustrative example, suppose n = 4 and i = 5 = 0101.
Then,

m

wo101 = Zw0101(0j)

j=1

Now, wo101(c;) = 0iff 0101 & v(c;), that is, variables ve and
vg are not both in clause ¢;. Otherwise, woi01 contributes
i\/27"2ik depending on the value of (—1)(100:4(¢))  Clearly,
this contribution is positive if variables v and v4 have an odd
number of negations (i.e., only one is negated), otherwise it
is negative.



Summing over all clauses c; gives the i*® Walsh coefficient.
More precisely, w; can be computed by counting the number
of clauses L% where the variables specified by the bitstring
i appear together and are negated an odd number of times,
and the number of clauses L™ where the variables speci-
fied by i appear together and are negated an even number
of times.

wi = VT (L - L) (5)

Clearly, the order of any Walsh coefficient w; (the number
of ones in the bitstring representation of ¢) is bounded by
the number of variables that can appear together in a clause.
Indeed, it is enough to specify f(z) by computing the O(m)
non-zero Walsh coefficients and computing the superposition
in (3).

We have introduced the Walsh functions in a slightly dif-
ferent way to satisfy the following important properties.

LEMMA 1. The Walsh functions {1;} form an orthonor-
mal basis.

ProOF. The Walsh functions are clearly orthogonal. Fur-
thermore, since we have included the normalization factor
1/4/2" in Definition 1, we have

|

This lemma provides us with the following two corollaries
which will become usefl_l_l shortly. Let § denote the Kronegker
delta function and let T denote the all-ones vector {1}?".

COROLLARY 1. (¢, ;) = 0

COROLLARY 2.

- o ifi#0
<1v¢1>_{\/ﬁ otherwise

Proor. Follows directly from o = ﬁ (f) |

Lemma 1 states that the Walsh functions form an orthonor-
mal basis in which we can represent f. The power of this
approach is revealed in the fact that the Walsh functions
are involved in the eigendecomposition of the random walk
transition matrix.

LEMMA 2. Thei™ Walsh function v; is an eigenvector of
the random walk transition matriz T with eigenvalue \; =

(1 - 2(1‘,1’))

PROOF. Let x be an arbitrary state.

(T @)=+ 3 wily)

yEN (z)

by Eq. (1)

A Hamming neighbor y € N(z) differs from x in exactly one
bit position b. Now, by Definition 1 we have,

1
We denote as i[b] the b™ bit of the bitstring representation
of ¢. If i[b] = 0 then (i,y) = (,z) and ¥i(y) = ¢i(z).
On the other hand, if i[b] = 1 then [{i,y) — (i,z)| = 1 and
Yi(y) = —i().

(_1)(i7y>

Since each Hamming neighbor differs from z in exactly
one of each of the n possible bit positions, there are (i,1%)
elements of N (z) that satisfy the first condition and n— (i, 7)
that satisfy the second. Thus we have

=3 i) = o (0 (00 ¥i(a) — G )i(a)

YyEN (z)

S

~ (0= 20i,)) ()

:O_%%»%u)
= \ivi(2)

Since we chose x arbitrarily,

T, = <1 - LZ”) i = X
[

Lemma 2 means that the Walsh functions are eigenfunctions
of the random walk transition matrix T. We can write ex-
pressions involving both f and T in terms of the component
Walsh functions v; to simplify the expression.

2.4 Expressing r(s) in terms of the
decomposition

Following Stadler [15] we introduce the normalized (Walsh)
amplitudes of order p

W ¥ )l
(i,i)=p J#0
We derive an exact expression for r(s) entirely in terms of

the normalized amplitudes.

ProrosITION 1.
2 S
_ () (1 _ 4P
r(s)=> W (1 n) (6)
p#0

PrOOF. We first simplify Equation (2) using the Walsh
decomposition (3). We replace f(z) by the decomposition
to simplify each term.

D f@) =0 waki(x)

reX zeX 1

= sz > vila)

= Zwi(i Vi)
wo\/QT’
D f@)P=Y" (Zwiwi(m)>

zeX zeX 7

= > wiwy 3w ()

zeX

= Zwiiji,wj)
— 3 u?

by Cor. 2

by Cor. 1
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zeX
= wiw; (i, X)) by Lem. 2
%)
= szwj (i, ;)N
= Zwl A° by Cor. 1

Thus Equation (2) simpliﬁes:
27"y w (27" wov/27)?
2- ”Zl w2 — (2 "woV/27)?

Pulling out the ¢ = 0 terms in the summation and simplify-
ing gives us

r(s) =

- Mg 427" > izo wIA] — 27w
C27mwg + 27 P i Wi~ 27”“’8
D izo Wi W
B Zi;ﬁo w?
St (1-22)°
- Zi;ﬁo w? @)

Equation (7) gives the proposed result. []

For example, the autocorrelation function for the well-
studied 3-satisfiability problem can be expressed as follows.

r(s) =w (1 — E) +w® (1 — é) +w® <1 - §>
n n n

Using a similar derivation, we can express the correlation
length strictly in terms of the nonzero Walsh coefficients.

g:ZLW(p) (8)

p7#0 p

We can thus compute the exact autocorrelation function and
correlation length in polynomial time by first computing the
O(m) nonzero squared Walsh coefficients and then summing
them up and computing each order-p contribution to the
normalized Walsh amplitude W® for p = {1,2,...,k}.

3. PROBLEM CLASSES

The above computation allows us to compute the correla-
tion structure of a given problem instance. Stadler and Hap-
pel [16] have also defined the autocorrelation function over
random fields: formalisms of problem distributions in which
parameters are assigned using a statistical model. Many
studies of k-satisfiability are performed on such problem dis-
tributions in which each instance is generated randomly ac-
cording to parameters.

Let ©(n, m, k) be the set of all problems with n variables,
m clauses, and k literals per clause generated as follows.
For each of the m clauses, we select exactly k unique ele-
ments from the set of n variables and negating each with
probability % Thus the 2n possible literals (i.e., variables
unnegated or negated) occur with equal probability in each
clause. Each instance of D (n,m, k) will have its own value
for r(s) and £. In this section, we are interested in the expec-
tation of the autocorrelation function and correlation length
over the entire class of problems generated in this way.

Cheeseman et al. [2] have shown that with this problem
class (and several other classes of NP-Hard problems) there
is associated an “order parameter” that is ultimately linked
to how difficult a problem is for complete search algorithms.
For k-satisfiability, this order parameter is the probability
of an instance being satisfiable. In particular, the class of
problems ©(n,m, k) can be partitioned into two “phases”:
an underconstrained phase consisting of problems that have
low constrainedness and are almost surely satisfiable, and
an overconstrained phase consisting of highly constrained
problems that are almost surely unsatisfiable. The degree
of constrainedness of a k-satisfiability problem instance de-
pends on the relationship between the number of variables
and the number of clauses. Intuitively, an instance with
many variables but relatively few clauses will be undercon-
strained since each variable is likely to appear in only a small
number of clauses. On the other hand, an instance with rel-
atively many clauses will be overconstrained since there are
many more conditions to simultaneously satisfy. Thus the
constrainedness can be described in a compact way by the
clause-to-variable ratio o = 7*. Instances with low « lie in
the underconstrained phase and instances with high « lie in
the overconstrained phase.

There exists a critical value of o that separates the two
phases where the probability of a given instance being sat-
isfiable drops suddenly to zero. Instances from this phase
transition region have been found to be difficult for com-
plete search algorithms [2, 8]. Instances in the under- and
overconstrained phase are “typically” easy whereas instances
in the phase transition region are “typically” hard. This
phenomenon is called an easy-hard-easy pattern. For 3-
satisfiability, the critical value has not been precisely deter-
mined analytically (though upper and lower bounds exist).
Empirical results show that it lies between 4.2 and 4.3 [10,
8]. Finite-size scaling methods show that, as n — oo, the
critical point is near a = 4.26 [5].

A number of researchers have examined if the easy-hard-
easy pattern extends to incomplete local algorithms [3, 21,
11]. However, since incomplete algorithms are, in general,
unable to efficiently prove an instance is unsatisfiable, these
studies are almost always performed on a modified problem
class that is obtained by filtering instances from D (n,m, k)
such that all unsatisfiable instances are removed. On a
filtered distribution, this easy-hard-easy pattern has been
shown to occur for local algorithms as well. For example,
the median search cost (in terms of number of moves until
a solution is found) for the WALKSAT algorithm on a set
of filtered instances is plotted in Figure 2. Note the peak in
search cost in the phase transition region near the critical
point. On unfiltered problems however, the search cost di-
verges (as measured in terms of time to find a solution with
the provably maximal number of satisfied clauses).

3.1 Expectation over random problems

In order to compute the expectation of the autocorrelation
function and correlation length over the uniform random k-
satisfiability problem distribution @ (n,m, k), we character-
ize the squared Walsh coefficients as random variables and
compute their theoretical expectation over @ (n,m, k). We
then apply a mean-field approximation to estimate the ex-
pectation of r(s) and . We denote the expectation of a
random variable V' over the problem distribution D (n,m, k)
as (V).
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Figure 2: Median evaluations for local search (log
scale) as a function of a. This demonstrates the
easy-hard-easy pattern through the phase transition
on filtered instances.

Recall the definition of a Walsh coefficient w; in the fore-
going section. From Equation (5) we have

wi = VI (L3 L) = Va (L)
We now view L™ and L2% as discrete random variables
that count clauses in each instance of D (n, m, k) that contain
the variables selected by bitstring ¢ that have an odd or even
number of negations, respectively. We have also introduced
the random variable L; = L% —L¢"*", We want to compute
the expectation of the squared Walsh coefficients.

() = 2 (12)

Since L; is the difference of clause counts, it is a discrete
random variable over the integral domain in the interval
[-m,m]. Thus we can compute the expectation for L? in
terms of its probability mass function.

m

(L3) = > 22Pr{L; =z}

zZ=—m

Note that L; = z iff Lfdd = z1 and L{’" = 29 and m —
(Lfdd—o—Lf“") = z3 such that z1, 22,23 > 0 and 21 +22+23 =
m and z1 — z2 = z. If we know the probability of any given
clause contributing to the counts represented by z1, z2, and
z3 = m — (21 + z2) (and if these probabilities are indepen-
dent) then we can explicitly compute this probability mass
function as a sum over multinomial distributions

Z m!ﬂ.fl 71_;2#;%*(21‘%22)
z1lzal(m — (21 + 22))!

21,22>0:21 —z0=2

where m; is the probability that a clause contributes to the
L% count, o is the probability that a clause contributes
to the LV count, and 73 is the probability that a clause
contributes to neither counts.

Over D(n,m, k), each clause is generated independently
so these probabilities will be independent. For a bitstring 4,
a single clause contributes to L (L$¥™) if 1) all variables
specified by the bitstring ¢ are selected for the clause in the
generation process and 2) an odd (even) number of them are
negated. For any p = (7,1) variables, the probability that all
p variables specified by 7 occur in a given clause is the num-
ber of valid configurations involving all p variables selected
by the bitstring representation of i: p! (;), divided by the
probability the particular configuration is selected by the
uniform random generation process: p!(Z). The probability
that any p variables appear together in a clause is

ol

Thus, 7 is 7’ times the probability that an odd number of
them are negated. Since variables are negated with prob-
ability % in ®(n,m, k), a clause contributes to L with
probability m1 = %/ Similarly, mo = %/ The probability
that a clause does not contribute to either L% or L™ is
simply the probability that not all variables specified by 1
occur in the clause. Thus we have 73 = 1 — ', This gives
the theoretical expectation for squared Walsh coefficients.

3.2 A mean-field approximation over ®(n,m, k)

Over uniformly generated problems, the expectation value
(L?) only depends on the order of i (the number of one
bits in its bitstring representation) since the probability of
selecting any p = (i,4) variables does not depend on our
specific choice of p variables. Let L™ denote the value of
L; for all (i,7) = p. By linearity of expectation we have

(2.)- ()5 £ o

(i,i)=p z=-m

If we assume that statistical fluctuations are small, then we
can approximate the expectation of a function of random
variables with the function of the expectation of random
variables (called a mean-field approximation in [19]). Under
this assumption, we calculate the following approximation.

WYy = (37 wi/ Y wh) = (D> wi)/ O wi)
(i,i)=p J#0 (i,i)=p j#0

and compute the expectation values for (r(s)) and (£) by
substituting the approximated expectation value <W<p )> into
the following equations. In particular, the expectations of
the autocorrelation function and correlation length over prob-
lems generated uniformly at random are given by

o) = o) (1-2) 9)

n
p#0

- (p)
0 =3 W) (10)

2
p#0 P
where (W®)) is computed using the approximation in (9).

4. NUMERICAL RESULTS

To determine the accuracy of the mean-field approxima-
tion we generated 391 instances uniformly at random from
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Figure 3: ¢ and (¢) over unfiltered distribution.

the distribution ©(100,m, 3) varying m to obtain a clause-
variable ratio a = ™ from 2.00 to 5.90 at steps of 0.01. To
examine the correlation structure on filtered instances, we
repeated the procedure with the modification that, for each
value of «, a problem instance would be accepted if it is
found to be satisfiable using a complete search algorithm.
Thus all instances in the filtered distribution are satisfiable.
For each generated instance we computed the squared Walsh
sums of each order.
The expectation values for order-p squared Walsh sums

> (wi)

(i,i)=p

are related linearly to «, i.e., orders 1 and 2 give a value of
4.6875c and order 3 gives a value of 1.5625c. Since « cancels
in Equation (9), for fixed n, (r(s)) and (¢) are a-invariant
across D (n,m, k). In particular, we calculate (¢) = 34.5238
for ©(100,m, 3) as discussed above.

Given the squared Walsh sums for each instance, we can
compute the exact correlation length given by Equation (8)
and compare this to (¢). The results are plotted in Fig-
ures 3 and 4. The critical point of a = 4.26 is marked on
the plots. The a-invariance of the mean-field approxima-
tion of Equation (9) is reflected in the steady behavior of (£)
on the unfiltered problems. To quantify the correspondence
between empirical and theoretical expectation we calculate
the absolute deviation between (£) and the empirical mean
of ¢ which we denote u(¢) for the subcritical and super-
critical phases (points below and above the critical point,
respectively). The empirical means u(¢) for each set and
phase along with the absolute deviation of p(¢) from the
theoretical expectation value are reported in Table 1. On
the unfiltered set we see relatively small deviations in both
phases, suggesting the correspondence is tight. On the fil-
tered set, we see a marked divergence from the expectation
value in the supercritical phase. This trend can also be seen
in Figure 4. The results for r(s) are analogous, but omitted
in the interest of brevity.

To examine this trend more carefully, we observe the ex-
pectation values for the sum of squared Walsh coefficients
(where the mean-field approximation is no longer necessary).
For each sum of squared Walsh coefficients of order p, we
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Figure 4: ¢ and ({) over filtered distribution.

compute the deviation from expectation

= 3 (¥ )

(i,i)=p (i,i)=p

We find a divergence from expectation only in the first-order
squared Walsh coefficients for the filtered problems (see Fig-
ure 5). Recall the squared Walsh coefficients expectation has
the following proportionality

() ox (1§ = L7°m)?)

Since each such w; is first-order (that is, (z,i7) = 1), the
random variable L?%? is counting the number of clauses in
which the single particular variable specified by i appears
negated. Similarly, the random variable L{“®" counts the
number of clauses in which the particular variable specified
by i appears unnegated. On the unfiltered distribution, each
variable is negated with a priori probability 1/2.

Thus, the above deviation from expectation on filtered in-
stances suggests that for each variable, the absolute value
of the difference between negated and non-negated appear-
ances of variables is diverging. The implication is that, on
the filtered set, the a posteriori negation probability is no
longer necessarily equal to our assumption of 1/2. In other
words, filtering for satisfiable instances induces a selection
bias toward problems with non-uniform negation probabil-
ity. The bias emerges at the critical point and intensifies in
the overconstrained phase.

Our results also show that very different correlation struc-
ture begins to emerge in problems that have been filtered for
satisfiability. We also conjecture that other selection biases
arise from the filtering process that are ultimately related to
problem hardness. Empirically, problem hardness depends
on this filtering process. For example, Xu et al. [20] have
shown that problem hardness is easier to model if the dis-
tribution is filtered for (un)satisfiability. Furthermore, these
hardness models tend to have vast differences depending on
whether they are trained on models filtered for satisfiability
versus unsatisfiability.

5. CONCLUSION

The contributions of this paper are threefold. First, we
have shown how to exactly compute correlation structure
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Figure 5: Deviation § from expectation of sum of
squared Walsh coefficients on filtered set.

sot phase [ u(0) _ o(0) _[u(h) — ()]
subcritical | 34.402 0.876 0.121

supercritical | 34.495 0.979 0.028
subcritical | 34.498 0.861 0.026

supercritical | 35.614 0.826 1.090

unfiltered

filtered

Table 1: ¢ on ©(100,m,3): mean pu, standard devi-
ation o, and absolute deviation of empirical mean
from theoretical expectation.

as measured by r(s) and ¢ in polynomial time on any k-
satisfiability instance. Second, we can approximate the ez-
pectation of these quantities over the uniform random distri-
bution of problems. Our approximation agrees well numer-
ically on the unfiltered distribution. We have also shown
that, on unfiltered problems, the expectation of £ does not
depend on the clause to variable ratio .. This is an interest-
ing result since local search cost empirically depends on «
[3], suggesting that search cost depends on deeper structural
features than simple correlation structure.

Finally, we have uncovered a selection bias on filtered
problems showing that selecting problems for satisfiability,
as is typically done in local search studies, impels problem
instances toward non-uniform negation probabilities which
is detected by the first-order Walsh coefficients.
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