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Abstract. Local search algorithms perform surprisingly well on the k-
satisfiability (k-SAT) problem. However, few theoretical analyses of the
k-SAT search space exist. In this paper we study the search space of the
k-SAT problem and show that it can be analyzed by a decomposition.
In particular, we prove that the objective function can be represented
as a superposition of exactly k elementary landscapes. We show that
this decomposition allows us to immediately compute the expectation of
the objective function evaluated across neighboring points. We use this
result to prove previously unknown bounds for local maxima and plateau
width in the 3-SAT search space. We compute these bounds numerically
for a number of instances and show that they are non-trivial across a
large set of benchmarks.

1 Introduction

Local search methods for k-satisfiability (k-SAT) problems have received consid-
erable attention in the AI search community. Though these methods are incom-
plete, they are usually able to quickly solve difficult problems that lie beyond
the grasp of conventional complete solvers [I] and have been found to exhibit
superior scaling behavior on soluble problems at the phase transition [2].

The behavior of local search algorithms closely depends on the underlying
structure of the search space. A number of researchers have conducted empir-
ical investigations on certain structural features of the k-SAT problem. Hoos
and Stiitzle [3] introduced several metrics for measuring structure and presented
an empirical examination of the characteristics of plateaus and their influence
on the performance of local search. Clark et al. [4] studied the the relationship
between problem hardness and the expected number of solutions on random
problems. Frank et al. [5] analyzed the topology of the search space and experi-
mentally probed the nature of local optima and plateaus. Yokoo [6] investigated
the dependency of search cost on search space characteristics by studying how
cost for local algorithms is related to the size of certain plateaus.
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In this paper, we take an analytical view of the k-SAT search space by formal-
izing it as a landscape [7] which captures the relationship between the objective
function associated with the problem and a meighborhood operator. We use the
landscape formalism to analyze the search space of the k-SAT problem. We show
that the search landscape can be decomposed into k elementary components. We
prove that this decomposition provides an equation that gives the expectation of
a random variable that models the objective function value of states in a given
neighborhood. This quantity is equal to the average objective function value of
the neighbors of a given state.

Furthermore, we use the decomposition to prove bounds for two prominent
search space features: local maxima and plateaus. We show local maxima do not
exist below a certain objective function value. Plateaus are regions of the search
space consisting of states that are interconnected by a neighborhood operator
and share an objective function value. Hoos and Stiitzle [3] define the width of
a plateau P: the minimal length path between any state in P and one not in
P. For many SAT instances, empirical results suggest that plateaus of width
greater than one do not exist, or are at least very rare [3]. We prove there are
regions of the search space that cannot contain plateaus of width greater than 1
and show empirically that these regions encompass the majority of the range of
the objective function value. To our knowledge, there are no analytical results
on the existence (or non-existence) of plateaus of particular width. Our results
apply to local search on k-SAT and MAX-k-SAT where the count of unsatisfied
clauses is the state evaluation function.

1.1 The Landscape Formalism

Before we specialize the discussion to k-SAT problems, we begin by introducing
the landscape formalism. A combinatorial search problem is characterized as
a finite but very large set X of states (complete candidate solutions) and an
objective function f : X — R that assigns a measure of value f(x) to each state
2. The objective of a search algorithm is to quickly locate a state z* € X that
extremizes f. Since f is a function over a discrete domain, we can characterize
it as a vector f € RIXI,

Local search algorithms perform local perturbations on states to move through
the search space toward more promising regions. The space explored by such
local methods thus requires additional structure by imposing a connectivity on
X that consists of pairs of states that are separated by a move. We can define a
second function on X denoted N : X — 2% where N (z) represents the set of all
possible states that can be derived from x by applying the move operator exactly
once. We refer to this set as the neighborhood of x. The tuple (X, N, f) is called
the landscape of the combinatorial search problem and encompasses both the
objective function values and the connectivity of states via the neighborhood.

We define the |X| x |X| Markov transition matriz T

1 .
T — ) ivw if y € N(z)
zy .
0 otherwise
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This matrix quantifies the transition probabilities between states on a random
walk of the graph of the state space induced by the neighborhood operator. We
can also view T as a linear operator that acts on an arbitrary vector g € RIXI:

NGl 2zeN (o) 9(2)

(Tg) = (1)

1 :
IN(2yx ) 2o2€N (@ x)) 9(7)

where z; is the i*" element of X. Intuitively, Tg¢ is a discrete function where
Tg(x) gives the average value of g evaluated across the neighbors of the state x.
A landscape (X, N, f) is called elementary if the following equation is satisfied

Tf=A+~v (2)

where both A and  are constants [8J7]. In other words, the objective function is
an eigenfunction of the Markov transition matrix (up to an additive constant)
corresponding to eigenvalue .

Several well-studied combinatorial problems along with natural neighborhood
operators have been shown to satisfy the above equation (e.g., traveling sales-
man, graph coloring, not-all-equal satisfiability). Elementary landscapes possess
a number of interesting properties. For example, Grover [§] has shown that no
arbitrarily poor local optima can exist on an elementary landscape and that a
solution with evaluation superior to the mean objective function value can be
computed in polynomial time.

Landscapes that obey Equation (2) are called elementary because they behave
as building blocks of more general combinatorial search landscapes. Provided
that the neighborhood operator satisfies symmetry and regularity conditions,
any arbitrary landscape can be represented as a linear combination of elementary
landscapes [7]. We impose in this paper the following constraints.

1. ye N(z) < z € N(y)
2. [N(2)| = IN(y)| =d; Vo,yeX

Most “natural” operators typically satisfy these constraints. The first constraint
states all neighborhood relationships are symmetric, and the second asserts that
all states have exactly d neighbors. Under these conditions T is a real symmetric
|X| x | X| matrix and thus its |X| eigenvectors {¢;} with corresponding real
eigenvalues \; form an orthonormal basis.

Thus we can represent an arbitrary function f in the eigenbasis {¢;} as a

linear combination.
[X]-1

f= Z a;pi 3)
i=0
Each ¢; is an eigenvector of T. Note that each a;¢; can be considered again as
a function a;¢; : X — R. Each of these component functions satisfy Equation
@) and are thus elementary with respect to the neighborhood operator N.
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In the general case, an arbitrary landscape f is represented by | X| elementary
constituents. Clearly, | X| is exponential in the problem input size for landscapes
of interest in this context. Thus this property is not obviously useful. However,
in some interesting cases, it has been shown that the superposition is composed
of a small number of elementary components. Examples are the asymmetric
traveling salesman problem [J] and the quadratic assignment problem [I0], both
under traditional move operators.

1.2 The Neighborhood Expectation Value

We introduce a random variable that measures the objective function value of
a neighbor selected uniformly at random. Later, we will use the expectation of
this random variable in a simple probabilistic argument to prove the main results
of the paper. Whitley et al. [I1] studied elementary landscapes in the context
of this random variable by connecting Equation (2]) to the first moment of its
distribution. In this section, we show this analysis can be easily extended to
landscapes that are superpositions of elementary components.

Let z € X be an arbitrary state. Let y ~ N(x) be an element drawn uniformly
at random from the neighborhood of z, i.e., y is a random move using the
operator defined by N. We define the random variable Y = f(y) as the objective
value of the neighboring state y.

Since y is selected uniformly at random, the expectation of Y is equivalent to
the average of f evaluated over all of the neighbors of x.

By]= 3 f(2)

zEN(x)

If the objective function can be decomposed into a small number of components,
the decomposition is useful in finding the expectation of Y. For example, suppose
there are only c+1 nonzero coefficients ag, a1, . . ., a. in the decomposition shown
in Equation (@)).

By]= Y 1)

z€EN(x)
=Tf(z) by Eq. (@)

i=0

C

Xiaipi () (4)

=0

Therefore, given the ¢ + 1 elementary components a;¢; and the correspond-
ing eigenvalues \; we can immediately compute E[Y] without computing any
elements of N(z).
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2 Decomposition of k-SAT

We now show that the k-SAT problem (and its optimization variant MAX-k-
SAT) is decomposable into k elementary components. An instance of the k-SAT
problem consists of a set of n Boolean variables {vi,...,v,} and a set of m
clauses {cy, ..., ¢, . Each clause is composed of exactly k literals in disjunction.
The objective is to find a variable assignment that maximizes the number of
satisfied clauses.

In this case, a state is a complete assignment to the n variables and can be
characterized as a sequence of n bits = (z[1], z[2],...xz[n]) where

0] 1 if and only if vy is true
€T =
0 if and only if v, is false

The state space X is isomorphic to the set of all sequences z € {0,1}".

The objective function f : X — {0,...,m} simply counts the number of
clauses satisfied under the assignment given by x. The most natural neighbor-
hood is the Hamming neighborhood N where N(z) is the set of n states y that
differ from z in exactly one bit.

Since f can be taken as a function over bit strings of length n, a natural
decomposition is given by the Walsh transform. In the general case, an arbitrary
pseudo-Boolean function f : {0,1}"™ — R can be represented as a linear combina-
tion of 2" Walsh functions which we will define shortly. Rana et al. [12] showed
that the k-SAT objective function can be tractably decomposed into a polyno-
mial number of such functions. We will use this result to obtain a decomposition
of the k-SAT objective function into elementary components.

Given two bit strings x and y of length n, we denote the inner product (z,y)
as >, x[bly[b]. We define the i*h Walsh function i € {0,...,2" — 1} as

Yil@) = (~1)0)

Here, the ¢ that appears in the inner product of the exponent is taken to be the
bit string representation of the index 4, that is, the binary sequence of length n
that corresponds to the integer i.

The objective function f can now be written as

Fla) = 3 wit(a) )

where each Walsh coefficient w; is the sum of contributions from each clause.
Wi = g Wi, c;
j=1

where w; ., is the contribution to w; from clause c;. This is defined as follows.
Let v(c;) denote a bitstring of length n where

(c;)b] 1 if variable v, appears in clause c;
v(cj =
/ 0 otherwise
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Similarly, let u(c;) be a bitstring of length n where

1 if variable v, appears negated in clause c;

0 otherwise

ules)[b] = {

If  and y are bitstrings of length n, we say

wCy < (zt] =1 = y[b] = 1)

for b = {1,...,n}. The contribution of clause ¢; to Walsh coefficient wj is
0 if i Z v(cy)
wie, = 4 2t if i =0 (6)

— o ¥i(u(c;))  otherwise

The order of a Walsh coefficient w; is the number of ones in the bitstring rep-
resentation of i. This can be denoted following our notation as (i,). Note that
the order of any nonzero Walsh coefficient is bounded by k: the number of vari-
ables that appear together in a clause. Rana et al. showed it is enough to specify
f(x) by computing the O(2Fm) non-zero Walsh coefficients and computing the
superposition in Equation ({). Since k is typically taken to be O(1), all nonzero
Walsh coefficients can be found in polynomial time.

Lemma 1. The Walsh function ; of order (i,i) = p is an eigenvector of the

Markov transition matriz T with eigenvalue (1 - 2:

Proof. Let x be an arbitrary state.
1
T;(x) = i by Eq.
i) ng%%)WZ) y Eq. (@)

A Hamming neighbor z € N(xz) differs from x in exactly one bit position b. By
definition, ;(z) = (—1){#. Consider i[b], that is, the bit located at position b in
the bitstring representation of 4. If ¢[b] = 0 then (i, z) = (i, z) and ¥;(2z) = ¥; ().
On the other hand, if i[b] = 1 then |(i, 2) — (i,2)| = 1 and 9;(z) = —¢;(z).

Since each Hamming neighbor differs from x in each of the n possible bit
positions, there are p elements z of N(z) that satisfy the second condition and
n — p that satisfy the first. Thus we have

;L > W(Z):i((n—p)wi(ax)—pwi(m))

zEN(x)
(1 - Qf) e

Twi:<1—2p)wi
n

and 1; is an eigenfunction of T. O

Since we chose x arbitrarily,
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We define ¢ as the Walsh span of order p.
P (z) = > withi(x)
i:(i,i)=p

Intuitively, () is an element of the linear space spanned by the Walsh functions
of order p. Now we can write the objective function as a sum over Walsh spans
of each order p (recall p is bounded by k).

k
fl@) =Y oW (x) (7)
p=0
We now show that this is a superposition of elementary components.
Proposition 1. The pt* Walsh span is an elementary landscape.

Proof. We show that ¢ is an eigenfunction of T. Consider

Te® =T | > wih

i:(i,i)=p

Z w; (1 — 25) W, by Lemma, [T]

4:(%,2)=p

I
N
—
|
s
N———

> wi

i:(i,i)=p

= (1 — 2;0) @
n

thus ¢® is an eigenfunction of T corresponding to eigenvalue (1 — 2;’) O

We can use the decomposition from the previous section to compute the
expectation of Y.

Corollary 1. On any k-SAT instance, the expectation of the random wvariable
Y is a linear combination of the k + 1 Walsh spans evaluated at x.

ay]=Y (1-7) v

p=0

This follows directly from the proposition along with Equations @) and ().

The following two lemmas will be useful in the next section. First, we show
that the Walsh span of order zero is always a constant that is equal to the mean
objective function value over X.
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Lemma 2. Let f be the mean objective value over X,
F= i 3@
= x
‘X| zeX

For all x € X, the zeroth Walsh span is the constant function
(@) =f

Proof. Let x € X. There is only one Walsh function of order zero: io(z) = 1.
We have ¢(©) () = wotbo(x) = wo. Note that for p # 0 we have

x| e =0 (®)

zeX

because of the parity of bitstrings of order p. By some algebraic manipulation,

rzeX
1
x| > 0O
zeX
1 1 b
= 2P0+ DY P () by Eq. ()
|X‘ zeX ‘X| zeX p=1
1 k
— x| Zzw(p)(m)
z€X p=0
1
rzeX

]

Corollary 2. The objective function f for any k-SAT or MAX-k-SAT instance
s a superposition of k elementary landscapes

k
fl@)=F+) oP(x)
p=1

In the next section, we will need to bound the value of () over all states z € X.
We use the absolute values of the Walsh coefficients w; to do so.

Lemma 3. Forallz € X,

S —lwil <P (@) < Y fwil

(i,i)=p (i,i)=p
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Proof. Let x be an arbitrary state in X. By definition we have
P ()= Y wipi(z) = > E|w
(i,i)=p (i,i)=p

since ¢;(z) = £1 and w; = £|w;|. Clearly, the smallest that each term could be
is —|w;| and the largest is |w;|. O

3 Some Bounds for 3-SAT

Two structural search space characteristics that directly affect the performance
of local heuristic search algorithms are local mazima and plateaus. In this section
we will use the results from the previous section to prove some bounds on the
evaluation of states that are local maxima or belong to plateaus of width greater
than 1.

Before we continue we prove the following lemma that provides an identity
for a series expansion that will allow for some algebraic manipulation in the
theorems below.

Lemma 4. On 3-SAT we have the following identity.

3
D P (@) = 2f(x) - 2f — oW (@) + P ()
p=0

Proof. The series is equal to
3
> e (@) = ¢ (@) + 263 (@) + 36 (@)
p=0

We can group the terms on the right hand side as follows
[PV @) + 6P (@) + ¢ @)] + [P (@) + 20 (@)

By the decomposition in Equation (),

[£@) =9 @] + [£@) - ¢ (@) - ¢ D (@) + D (@)

By Lemma [2]

[f@) = ]+ [F@) = T = eW(@) + ¢ (@)]
and simplifying gives the result. O

A state z is said to be a local mazimum if, for all y € N(x), f(y) < f(z).
We point out that this definition is distinct from studies that allow for multi-
state local maxima (e.g., [5]). Our single-state definition coincides with Hoos and
Stiitzle [3]. Furthermore, every global mazimum is also a local maximum.
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Grover [§] showed on elementary landscapes no local maxima (minima) lie
below (above) the mean value of the objective function over X. This will not
necessarily hold for arbitrary functions. However, we show here that the knowl-
edge of the elementary components and their properties also allow us to bound
the evaluation of local maxima on 3-SAT.

Theorem 1. On any 3-SAT instance with n variables and m clauses, there
exists a positive real number T such that for any state x, if f(x) < f — 7, then x
cannot be a local maximum.

Proof. We begin by showing if f(z) < E[Y], it cannot be a local maximum. We
will then use the previous results to bound the inequality. Let x be a state such
that f(x) < E[Y]. There exists some point y in the neighborhood of = that has
an evaluation f(y) > f(x). Thus z cannot be a local maximum. By Corollary [l
we thus have

f(z) <E[Y]
3

<> (1= ) e

3
F) <o @) - 23 pe? @)
p=0

The first term on the right hand side is simply the decomposition of f(z) given
by Equation (7). Thus we can make the following substitution.

3

f@) < @) = 23 peP@)

p=0
By Lemma [4]
f@) < f@) = (20@) =27 — 6D@) + o (2)

Simplifying, we have
f@) <+, (#0@) - oO@) Q

Inequality (@) describes a threshold that depends on ¢ (z) and ¢ (z) such
that if f(x) is less than this threshold, x cannot be locally maximum. We now
give a threshold that holds over the entire search space.

By Lemma [3] we have for any z € X,

(pV@ =D @) = [ 3 —hoil = D fwl
(i,i)=3

(i,i)=1
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and letting

—_

T=, Z lw;| + Z |w;] (10)

(i,1)=1 (4,i)=3
we now have the following bound on the r.h.s. of Inequality ().

For<ft, (¢0@ - o0w)

and thus, for all z € X, if f(z) < f — 7, then = cannot be a local maximum.
The threshold f — 7 is simply computed (in polynomial time) by summing the
absolute Walsh coefficients of order 1 and 3 and holds over the entire search
space. O

In a similar manner, we can bound the function value at which plateaus of width
greater than one can appear. A plateau is a maximal set P of states such that
for all ,y € P there is a path (x = x1,29,...,2¢ = y) of length ¢ > 1 with
f(x) = f(x;) fori=1,2,...,tand,if t > 1, ;41 € N(x;). The level of a plateau
P is the evaluation f(zp),Vz, € P.

We say the neighborhood of a state x is flat if, for all y € N(z), f(y) = f(x),
that is, « has the same value as all the states in its neighborhood. We show that
flat neighborhoods cannot exist at certain levels of the objective function.

Theorem 2. On any 3-SAT instance with n variables and m clauses, there

exists a _positive real number T such that for any state x, if f(z) < f —7 or
f(x) > f+ 7, then x cannot have a flat neighborhood.

Proof. We prove the equivalent contrapositive. Let x be a state with a flat neigh-
borhood. We have

f(z)

|
=

[Y]
Z: ( ) ()
3 @ ZW(”

0

3

p

2
- ZW“’) () by Eq. (@)
p=0

Therefore, at such a point x we must have

3
Zp(p(p) ) =
p=0

2f (z) — 2f — oV () + o (z) =0 by Lemma []
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thus if = has a flat neighborhood, the following must hold.
fa) =+, (#00@) - 0¥ @) (11)
Using Lemma [ we can bound the terms ¢ (z) and () (x) giving the following
for<f@)<ftr
where 7 is given by Equation (I0) in Theorem [ |

Recall the width of a plateau P is the minimal length path between any state
in P and one not in P. We have the following corollary.

Corollary 3. A plateau P with level less than f —T or greater than f+71 cannot
have width greater than 1.

Proof. This follows directly from the fact that no flat neighborhoods exist outside
of the range f — 7 to f + 7. Thus, for these points, every state on a plateau P
must have at least one neighbor outside P and the width of P is at most 1. [

4 Derived Values in Practice

We have shown how the average value of the neighborhood can be obtained
analytically for any particular state and that a region (7 from f) can be defined
outside of which plateaus of width greater than one cannot exist and certain
local optima cannot be found. We illustrate the proved properties in Figure [l
In this section, we show empirically that the expectation value computation is

informative and that the region is non-trivial in benchmark problem instances.

no plateaus of width > 1

+ 7

f

~_ 1/ ]| _/\ Y f
VW f=

no plateaus of width > 1
no local maxima

Fig. 1. An illustration of the proved properties. No plateaus of width strictly greater
than one can lie outside the interval. No local maxima can lie below the interval.
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4.1 Empirical Values of Neighborhood Expectation Value

The neighborhood expectation value computed in Equation () is useful because
it can potentially provide algorithms with higher resolution information about
states than the objective function. For example, given two states x and y with
f(x) = f(y), it is not necessarily the case that the neighborhood expectation
values are equal for both x and y.

Stochastic local search algorithms applied to k-SAT problems often must se-
lect a neighboring state from a large set of moves with equal evaluation. This
presents a problem for such algorithms due to the lack of gradient information
in the neighborhood [3]. A collection of states at the same evaluation level are
indistinguishable in terms of objective function value. However, we conjecture
the expectation value can serve as a predictor of the number of improving moves
that exit a particular state.

To illustrate this concept, we sampled 100 states at a particular objective
function level (f(z) = 390) on each of 1000 instances that make up the uf100-430
benchmark set in SATLIB (100 vars, 430 clauses). For each point we calculated
the correspondence between the expectation value given by Equation [#]) and the
actual number of improving moves in the neighborhood of the state. These data
are plotted in Figure Bl A correlation test gives a strong positive correlation
value of 0.51 with p < 2.2 x 107'¢ indicating that better expectation leads
to more potential for improvement. These data are preliminary indicators that
the neighborhood expectation value can provide useful information about the
neighborhoods of points even if they are equal in objective function value.

40

35

30

num improving moves

25

389.0 380.2 380.4 389.6 389.8
E[Y]

Fig. 2. Number of improving moves vs E[Y] at f(x) = 390 for 100 points each on 1000
instances of SATLIB benchmark set uf100-430. Line indicates linear best fit.
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4.2 Empirical Values of 7

To demonstrate the region outside the interval is not trivial, we computed the
values for 7 as a percentage of the objective function range m across 18 bench-
mark distributions from SATLIB and the 2008 SAT competition. In Table [l we
report the mean (i), standard deviation (o), minimum, and maximum of the
value 7/m over all N problems in each distribution.

The mean value of 7 is consistently about 10% of the range m with a relatively
low standard deviation. The maximum value of 7 does not exceed 13% of the
total objective function range over all the problem distributions we tested.

Table 1. Computed statistics for 7/m across several benchmark distributions from
SATLIB and 2008 SAT competition

set setsize o min max
SATLIB
uf20-91 1000 0.10252 0.00707 0.08104 0.12775
uf50-218 1000 0.10467 0.00421 0.08945 0.11984
uf75-325 100 0.10487 0.00358 0.09538 0.11231
uf100-430 1000 0.10483  0.00307  0.0968 0.11483
uf125-538 100 0.10477 0.00241 0.09898 0.11245
uf150-645 100 0.10514  0.00221  0.10039 0.11027
uf175-753 100 0.10533  0.00239  0.0991 0.11155
uf200-860 100 0.10469  0.00203 0.09942 0.11047
uf225-960 100 0.10484 0.00194  0.0987 0.10898
uf250-1065 100 0.10478 0.00167 0.10082  0.10986
uuf50-218 1000 0.10131 0.00406 0.08888 0.1164
2008 SAT competition

v360 10 0.10382  0.00146 0.10046 0.10535
v400 10 0.1037 0.00198 0.10072  0.10651
v450 10 0.10369 0.00162 0.10016 0.10571
v500 10 0.10384  0.00177  0.09947 0.10616
v550 10 0.10366  0.00113 0.10137 0.10494
v600 10 0.10404 0.00107 0.1027 0.10603
v650 10 0.104 0.00108 0.10293 0.10627

5 Conclusion

Studying the structural characteristics of combinatorial search spaces is impor-
tant to understanding the behavior of stochastic search algorithms. These char-
acteristics, along with how algorithms respond to them, define how poorly or
how well the algorithm performs, in some cases determining whether a problem
or problem class is easily solved or not. We have presented analytical tools for
analyzing the search space of k-SAT and MAX-k-SAT.

We have shown that the landscape formalism provides insight into certain
structural relationships. We have shown that the decomposition of the objective
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function into elementary components supplies us with the expectation value
of the objective function of neighboring states. We have also proved that the
objective function of k-SAT can be decomposed into k& computationally efficient
elementary landscape functions. We have applied this result to obtain previously
unknown bounds on the objective function levels for local maxima and plateau
width in the 3-SAT search space.

We have shown empirically on a large number of cases that the region for
which our results hold cover the majority of the objective function range. We also
have demonstrated that neighborhood expectation varies across a set of states of
equal evaluation and that this expectation correlates with improvement. Clearly
the relationship between expectation and improvement needs to be carefully
explored as does the implications of the theoretical results to algorithm design.
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