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ABSTRACT

Estimation-of-distribution algorithms (EDAs) are randomized search
heuristics that maintain a stochastic model of the solution space.
This model is updated from iteration to iteration based on the
quality of the solutions sampled according to themodel. As previous
works show, this short-term perspective can lead to erratic updates
of the model, in particular, to bit-frequencies approaching a random
boundary value. This can lead to significant performance losses.

In order to overcome this problem, we propose a new EDA that
takes into account a longer history of samples and updates its model
only with respect to information which it classifies as statistically
significant. We prove that this significance-based compact genetic

algorithm (sig-cGA) optimizes the common benchmark functions
OneMax and LeadingOnes both inO(n logn) time, a result shown
for no other EDA or evolutionary algorithm so far. For the recently
proposed scGA – an EDA that tries to prevent erratic model up-
dates by imposing a bias to the uniformly distributed model – we
prove that it optimizes OneMax only in a time exponential in the
hypothetical population size 1/ρ.
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1 INTRODUCTION

Estimation-of-distribution algorithms (EDAs; [22]) are a special class
of evolutionary algorithms (EAs). They optimize a function by evol-
ving a stochastic model of the solution space. In an iterative fashion,
an EDA uses its stochastic model to generate samples and then up-
dates it with respect to observations made from these samples. An
algorithm-specific parameter determines how drastic the changes
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to the model in each iteration are. In order for an EDA to succeed in
optimization, it is important that the stochastic model is changed
over time such that better solutions are sampled more frequently.
However, due to the randomness in sampling, the model should not
be changed too drastically in a single iteration in order to prevent
wrong updates from having a long-lasting impact.

The theory of EDAs has recently gained momentum [3, 11, 12,
15, 16, 23, 25, 26] and is mainly concerned with the aforementioned
trade-off of the convergence speed of an EDA to a near-optimal
model while making sure that the model does not prematurely
converge to suboptimal models. This trade-off is very visible in
the results of Sudholt and Witt [23] and Krejca and Witt [15], who
prove lower bounds of the expected run times of three common
EDAs on the benchmark function OneMax. In simple words, these
bounds show that if the parameter for updating the model is too
large, the model converges too quickly and very likely to a wrong
model; in consequence, it then takes a long time to find the optimum
(usually by first reverting to a better fitting model). On the other
hand, if the parameter is too small, then the model does converge
to the correct model, but it does so slowly.

The problem of how to choose the parameter has also been dis-
cussed by Friedrich et al. [11]. They consider a class of EDAs that all
current theoretical results fall into: n-Bernoulli-λ-EDAs optimizing
functions over bit strings of length n. The stochastic model of such
EDAs uses one variable per bit of a bit string, resulting in a vector
of probabilities τ of length n called the frequency vector. In each
iteration, a bit string x is sampled bit-wise independently and inde-
pendent of any other sample such that bit xi is 1 with probability
(frequency) τi and 0 otherwise. Thus, the stochastic model used by
such EDAs is a Poisson-binomial distribution. Friedrich et al. [11]
consider two different properties of such EDAs: balanced and sta-

ble. Intuitively, in expectation, a balanced EDA does not change
a frequency τi if the fitness function has no bias toward 0s or 1s
at that respective position i . A stable EDA keeps a frequency, in
such a scenario, close to 1/2. Friedrich et al. [11] then prove that
an EDA cannot be both balanced and stable. This means that the
frequencies will always move toward 0 or 1, even if there is no bias
from the objective function (fitness function). They also prove that
all commonly theoretically analyzed EDAs are balanced.

The results of Friedrich et al. [11], Sudholt and Witt [23], and
Krejca and Witt [15] draw the following picture: for a balanced
EDA, there exists some inherent noise in the update. Thus, if the
parameter responsible for the update of the stochastic model is large
and the speed of convergence high, the algorithm only uses a few
samples before it converges. During this time, the noise introduced
by the balanced-property may not be overcome, resulting in the

1The results shown for PBIL are the results of UMDA, since the latter is a special case
of the former. Wu et al. [26] also analyze PBIL but with worse results.

https://doi.org/10.1145/3205455.3205553
https://doi.org/10.1145/3205455.3205553


GECCO ’18, July 15–19, 2018, Kyoto, Japan Benjamin Doerr and Martin S. Krejca

Table 1: Expected run times (number of fitness evaluations) of various algorithms until they first find an optimum for the two

functions OneMax and LeadingOnes (eq. (1)). For optimal parameter settings, many algorithms have a run time of Θ(n logn)
for OneMax and of Θ(n2) for LeadingOnes. We note that the

(
1 + (λ, λ)

)
GA has an o(n logn) run time on OneMax (and even

linear run time with a dynamic parameter choice), but we do not see why it should have a performance better than quadratic

on LeadingOnes. Further, we strongly believe that the CSA has an exponential run time on OneMax.

Algorithm OneMax constraints LeadingOnes constraints
(1 + 1) EA Θ(n logn) [9] none Θ(n2) [9] none
(µ + 1) EA Θ(µn + n logn) [24] µ = O

(
poly(n)

)
Θ(µn logn + n2) [24] µ = O

(
poly(n)

)
(1 + λ) EA Θ

(
n logn + λn log log λ

log λ

)
[6, 14] λ = O(n1−ε ) Θ(n2 + λn) [14] λ = O

(
poly(n)

)(
1 + (λ, λ)

)
GA Θ

(
max

{
n logn

λ ,
nλ log log λ

log λ

})
[5] p = λ

n , c =
1
λ unknown –

CSA unknown – O(n logn) [18] µ ≥ 8 ln
(
(4n + 6)n

)
,

restarts
UMDA/PBIL1 Ω(λ

√
n + n logn) [15] µ = Θ(λ) O(nλ log λ + n2) [3] λ = Ω(logn), µ = Θ(λ)

O(λn) [16, 25] µ = Ω(logn) ∩ O(
√
n), λ = Ω(µ)

or µ = Ω(
√
n logn), µ = Θ(λ) or

µ = Ω(logn) ∩ o(n), µ = Θ(λ)

cGA/2-MMASib Ω
(√

n
ρ + n logn

)
[23] 1

ρ = O
(
poly(n)

)
unknown –

O
(√

n
ρ

)
[23] 1

ρ = Ω(
√
n logn) ∩O

(
poly(n)

)
1-ANT Θ(n logn) [19] ρ = Θ(1) O(n2 · 25/(nρ)) [7] none

2Ω(min{n,1/(nρ)}) [7] none
scGA (Alg. 2) Ω

(
min{2Θ(n), 2c/ρ }

)
[Thm. 4.1]

1/ρ=Ω(logn),a = Θ(ρ),
d = Θ(1), c > 0

O(n logn) [11] 1/ρ = Θ(logn),a =
O(ρ),d = Θ(1)

sig-cGA (Alg. 1) O(n logn) [Thm. 3.6] ε > 12 O(n logn) [Thm. 3.4] ε > 12

stochastic model converging to an incorrect one, as the algorithms
are not stable. Hence, the parameter should be smaller in order to
guarantee convergence to the correct model, resulting in a slower
optimization time.

The core problem in this dilemma lies in what information the
EDAs use in order to perform an update: the current samples and
the current frequency vector – no time-dependent information.
Thus, the algorithms are forced to make an on-the-spot decision
with respect to how to update their frequency vector. This entails
that they will most likely make a change to their model although
this change may be harmful.2 Thus, Friedrich et al. [11] propose
an EDA (called scGA) that is stable (but not balanced) in order to
converge quicker to a correct frequency vector by introducing an
artificial bias into the update process that should counteract the bias
of a balanced EDA. However, this approach fails on the standard
benchmark function OneMax, as we prove in this paper (Thm. 4.1).

We propose a new approach that tries to eliminate the afore-
mentioned problems by introducing a new EDA that is aware of
its history of samples: the significance-based compact genetic algo-

rithm (sig-cGA). For each position, it has access to a part of the
history of bits sampled so far. If it detects that either statistically
significantly more 1s than 0s or vice versa were sampled, it changes
the corresponding frequency, otherwise not. Thus, the sig-cGA
only performs an update when it has proof that it makes sense.
This sets it apart from the other EDAs analyzed so far. We prove
that the sig-cGA is able to optimize OneMax and LeadingOnes
in O(n logn) in expectation and with high probability (Thm. 3.6

2Note that balanced only means that a frequency does not change in expectation.

and 3.4), which has not been proven before for any other EDA or
classical EA (for further details, see Table 1). Further, we prove
that the scGA, which is known to have an expected run time of
O(n logn) on LeadingOnes [11] too, is not able to optimize One-
Max in that time.

Our paper is structured as follows: Section 2 establishes some
notation and the setting we consider. In Section 3, we introduce and
discuss our new algorithm sig-cGA. We also go into detail how the
extra information of the sig-cGA can be efficiently implemented
such that the additional overhead is small. Further, we prove that
the sig-cGA optimizes LeadingOnes and OneMax in O(n logn)
in expectation and with high probability (Thm. 3.4 and 3.6, re-
spectively). In Section 4, we shortly discuss the scGA and prove
that it optimizes OneMax in Ω(2Θ(1/ρ)) (Thm. 4.1), where ρ is an
algorithm-specific parameter. We conclude our paper in Section 5.

2 PRELIMINARIES

In this work, we consider the maximization of pseudo-Boolean
functions f : {0, 1}n → R, where n is a positive integer (fixed for
the remainder of this work). We call f a fitness function, an element
x ∈ {0, 1}n an individual, and, for an i ∈ [n] B [1,n]∩N, we denote
the ith bit of x by xi . When talking about run time, we always mean
the number of fitness function evaluations of an algorithm until an
optimum is sampled for the first time.

In our analysis, we regard the two classic benchmark functions
OneMax and LeadingOnes defined by

OneMax(x) =
∑
i ∈[n]

xi and LeadingOnes(x) =
∑
i ∈[n]

∏
j ∈[i]

x j . (1)
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Algorithm 1: The sig-cGA with parameter ε and signifi-
cance function sig (eq. (2)) optimizing f

1 t ← 0;
2 for i ∈ [n] do τ

(t )
i ←

1
2 and Hi ← ∅ ;

3 repeat

4 x ,y ← offspring sampled with respect to τ (t );
5 x ← winner of x and y with respect to f ;
6 for i ∈ [n] do
7 Hi ← Hi ◦ xi ;
8 if sig(τ (t )i ,Hi ) = up then τ

(t+1)
i ← 1 − 1/n;

9 else if sig(τ (t )i ,Hi ) = down then τ
(t+1)
i ← 1/n;

10 else τ
(t+1)
i ← τ

(t )
i ;

11 if τ
(t+1)
i , τ

(t )
i then Hi ← ∅;

12 t ← t + 1;
13 until termination criterion met;

In other words, OneMax returns the number of 1s of an individual,
whereas LeadingOnes returns the longest sequence of consecutive
1s of an individual, starting from the left. Note that the all-1s bit
string is the unique global optimum for both functions.

We state in Table 1 the asymptotic run times of a few algorithms
on these benchmark functions. We note that (i) the black-box com-
plexity of OneMax is Θ(n/logn), see [2, 10], and (ii) the black-box
complexity of LeadingOnes is Θ(n log logn), see [1], however, all
black-box algorithms witnessing these run times are highly arti-
ficial. Consequently, Θ(n logn) appears to be the best run time to
aim for for these two benchmark problems.

Since random bit strings with independently sampled entries
occur frequently in this work, we shall regularly use the following
well-known variance-based additive Chernoff bounds (see, e.g., the
respective Chernoff bound in [4]).

Theorem 2.1 (Variance-based Additive Chernoff Bounds).
Let X1, . . . ,Xn be independent random variables such that, for all

i ∈ [n], E[Xi ] − 1 ≤ Xi ≤ E[Xi ] + 1. Further, let X =
∑n
i=1 Xi

and σ 2 =
∑n
i=1 Var[Xi ] = Var[X ]. Then, for all λ ≥ 0, abbreviating

m = min{λ2/σ 2, λ},

Pr[X ≥ E[X ] + λ] ≤ e−
1
3m and Pr[X ≤ E[X ] − λ] ≤ e−

1
3m .

Further, we say that an event A occurs with high probability if
there is a c = Ω(1) such that Pr[A] ≥ (1 − n−c ).

Last, we use the ◦ operator to denote string concatenation. For a
bit string H ∈ {0, 1}∗, let |H | denote its length, ∥H ∥0 its number of
0s, ∥H ∥1 its number of 1s, and, for a k ∈ [|x |], let H [k] denote the
last k bits in H . In addition to that, ∅ denotes the empty string.

3 THE SIGNIFICANCE-BASED COMPACT

GENETIC ALGORITHM

Before presenting our algorithm sig-cGA in detail in Section 3.1,
we provide more information about the compact genetic algorithm

(cGA [13]), which the sig-cGA as well as the scGA are based on.
The cGA is an estimation-of-distribution algorithm (EDA [22]).

That is, it optimizes a fitness function by evolving a stochastic
model of the search space {0, 1}n . The cGA assumes independence
of the bits in the search space, which makes it a univariate EDA.

As such, it keeps a vector of probabilities (τi )i ∈[n], often called
frequency vector. In each iteration, two individuals (offspring) are
sampled in the following way with respect to the frequency vector:
for an individual x ∈ {0, 1}n , we have xi = 1 with probability τi ,
and xi = 0 with probability 1 − τi , independently of any τj with
j , i . Thus, the stochastic model of the cGA is a Poisson-binomial
distribution.

After sampling, the frequency vector is updated with respect to a
fitness-based ranking of the offspring. The process of choosing how
the offspring are ranked is called selection. Let x and y denote both
offspring of the cGA during an iteration. Given a fitness function f ,
we rank x above y if f (x) > f (y) (as we maximize), and we rank y
above x if f (y) > f (x). If f (x) = f (y), we rank them randomly. The
higher-ranked individual is called the winner, the other individual
the loser. Assume that x is the winner. The cGA changes a frequency
τi then with respect to the difference xi −yi by a value of ρ (where
1/ρ is usually referred to as population size). Hence, no update is
performed if the bit values are identical, and the frequency is moved
to the bit value of the winner. In order to prevent a frequency τi
getting stuck at 0 or 1,3 the cGA usually caps its frequency to the
range [1/n, 1 − 1/n], as is common practice. This way, a frequency
can get close to 0 or 1, but it is always possible to sample 0s and 1s.

Consider a position i and any two individuals x and y that are
identical except for position i . Assume that xi > yi . If the proba-
bility that x is the winner of the selection is higher than y being
the winner, we speak of a bias in selection (for 1s) at position i .
Analogously, we speak of a bias for 0s if the probability that y wins
is higher than the probability that x wins. Usually, a fitness function
introduces a bias into the selection and thus into the update.
3.1 Detailed Description of the sig-cGA

Our new algorithm – the significance-based compact genetic algo-

rithm (sig-cGA; Alg. 1) – also samples two offspring each iteration.
However, in contrast to the cGA, it keeps a history of bit values for
each position and only performs an update when a statistical signi-
ficance within a history occurs. This approach far better aligns with
the intuitive reasoning that an update should only be performed if
there is valid evidence for a different frequency being better suited
for sampling good individuals.

In more detail, for each bit position i ∈ [n], the sig-cGA keeps a
history Hi ∈ {0, 1}∗ of all the bits sampled by the winner of each
iteration since the last time τi changed – the last bit denoting the
latest entry. Observe that if there is no bias in selection at position i ,
the bits sampled by τi follow a binomial distribution with a success
probability of τi and |Hi | tries. We call this our hypothesis. Now, if
we happen to find a sequence (starting from the latest entry) in Hi
that significantly deviates from the hypothesis, we update τi with
respect to the bit value that occurred significantly, and we reset the
history. We only use the following three frequency values:
• 1/2: starting value;
• 1/n: significance for 0s was detected;
• 1 − 1/n: significance for 1s was detected.

We formalize significance by defining the threshold for all ε, µ ∈
R+, where µ is the expected value of our hypothesis and ε is an
algorithm-specific parameter. s(ε, µ) = ε max

{√
µ lnn, lnn

}
.

3A frequency τi at one of these two values results in the offspring only having the
same bit value at position i . Thus, the cGA would not change τi anymore.
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We say, for an ε ∈ R+, that a binomially distributed random
variable X deviates significantly from a hypothesis Y ∼ Bin(k,τ ),
where k ∈ N+ and τ ∈ [0, 1], if there exists a c = Ω(1) such that
Pr

[
|X − E[Y ]| ≤ s(ε,E[Y ])

]
≤ n−c .

We now state our significance function sig :
{ 1
n ,

1
2 , 1 −

1
n
}
×

{0, 1}∗ → {up, stay, down}, which scans a history for a signifi-
cance. However, it does not scan the entire history but multiple
subsequences of a history (always starting from the latest entry).
This is done in order to quickly notice a change from an insignifi-
cant history to a significant one. Further, we only check in steps
of powers of 2, as this is faster than checking each subsequence
and we can be off from any length of a subsequence by a constant
factor of at most 2. More formally, for all H ∈ {0, 1}∗, we define,
with ε being a parameter of the sig-cGA. Recall that H [k] denotes
the last k bits of H .

sig
( 1
2 ,H

)
=


up if ∃m ∈ N : ∥H [2m ]∥1 ≥ 2m

2 + s
(
ε, 2

m

2
)
,

down if ∃m ∈ N : ∥H [2m ]∥0 ≥ 2m
2 + s

(
ε, 2

m

2
)
,

stay else.

sig
(
1 − 1

n
,H

)
=

{
down if ∃m ∈ N : ∥H [2m ]∥0 ≥ 2m

n + s
(
ε, 2

m

n
)
,

stay else.

sig
( 1
n
,H

)
= {up if ∃m ∈ N : ∥H [2m ]∥1 ≥ 2m

n + s
(
ε, 2

m

n
)
,

stay else. (2)
We stop at the first (minimum) length 2m that yields a significance.
Thus, we check a history H in each iteration at most log2 |H | times.

We now prove that the probability of detecting a significance at
a position when there is no bias in selection (i.e., a false significance)
is small. We use this lemma in our proofs in order to argue that no
false significances are detected with high probability.

Lemma 3.1. For the sig-cGA (Alg. 1), let ε ≥ 1. Consider a position
i ∈ [n] of the sig-cGA and an iteration such that the distribution X
of 1s of Hi follows a binomial distribution with k trials and success

probability τi , i.e., there is no bias in selection at position i . Then the

probability that τi changes in this iteration is at most n−ε/3 log2 k .
Proof. In order for τi to change, the number of 0s or 1s in X

needs to deviate significantly from the hypothesis, which follows
the same distribution as X by assumption. We are going to use
Theorem 2.1 in order to show that, in such a scenario,X will deviate
significantly from its expected value only with a probability of at
most n−ε/3 log2 k for any number of trials at most k .

Let τ ′i = min{τi , 1 − τi }. Note that, in order for τi to change,
a significance of values sampled with probability τ ′i needs to be
sampled. That is, for τi = 1/2, either a significant amount of 1s or 0s
needs to occur; for τi = 1− 1/n, a significant amount of 0s needs to
occur; and, for τi = 1/n, a significant amount of 1s needs to occur.
Further, let X ′ denote the number of values we are looking for a
significance within k ′ ≤ k trials. That is, if τi = 1/2, X ′ is either
the number of 1s or 0s; if τi = 1 − 1/n, X ′ is the number of 0s; and
if τi = 1/n, X ′ is the number of 1s.

Given the definition of τ ′i , we see that E[X ′] = k ′τ ′i and
Var[X ′] = k ′τi (1− τi ) ≤ k ′τ ′i . Since we want to apply Theorem 2.1,
let λ = s(ε,E[X ′]) = s(ε,k ′τ ′i ) and σ

2 = Var[X ′].
First, consider the case that λ = s(ε,k ′τ ′i ) = ε lnn, i.e., that

(k ′τ ′i lnn)
1/2 ≤ lnn, which is equivalent to k ′ ≤ (1/τ ′i ) lnn. Note

that λ2/σ 2 ≥ ε2 lnn ≥ lnn, as ε ≥ 1. Thus, min{λ2/σ 2, λ} ≥ ε lnn.

Now consider the case λ = s(ε,k ′τ ′i ) = ε(k ′τ ′i lnn)
1/2, i.e., that

(k ′τ ′i lnn)
1/2 ≥ lnn, which is equivalent to k ′ ≥ (1/τ ′i ) lnn. We

see that λ ≥ ε lnn and λ2/σ 2 ≥ ε2 lnn. Hence, as before, we get
min{λ2/σ 2, λ} ≥ ε lnn.

Combining both cases and applying Theorem 2.1, we get

Pr[X ′ ≥ k ′τ ′i + s(ε,k
′τ ′i )] = Pr[X ′ ≥ E[X ′] + λ] ≤ e

− 1
3 min

{
λ2
σ 2 ,λ

}
≤ e−

ε
3 lnn = n−

ε
3 .

That is, the probability of detecting a (false) significance during k ′
trials is at most n−ε/3. Since we look for a significance a total of
at most log2 k times during an iteration, we get by a union bound
that the probability of detecting a significance within a history of
length k is at most n−ε/3 log2 k . �

Lemma 3.1 bounds the probability of detecting a false signifi-
cance within a single iteration if there is no bias in selection. The
following corollary trivially bounds the probability of detecting a
false significance within any number of iterations.

Corollary 3.2. Consider the sig-cGA (Alg. 1) with ε ≥ 1 running
for k iterations such that, during each iteration, for each i ∈ [n], a 1
is added to Hi with probability τi . Then the probability that at least

one frequency will change during that time is at most kn1−ε/3 log2 k .

Proof. For any i ∈ [n] during any of the k iterations, by
Lemma 3.1, the probability that τi changes is at most n−ε/3 log2 k .
Via a union bound over all k iterations and all n frequencies, the
statement follows. �

3.2 Efficient Implementation of the sig-cGA

In order to reduce the number of operations performed (computa-
tional cost) of the sig-cGA, we only check significance in historic
data of lengths that are a power of 2. By saving the whole history
but precomputing the number of 1s in the power-of-two intervals,
a significance check can be done in time logarithmic in the history
length; the necessary updates of this data structure can be done
in logarithmic time (per bit-position) as well. With this implemen-
tation, the main loop of the sig-cGA has a computational cost of
O(

∑n
i=1 |Hi |). Since the histories are never longer than the run time

(number of fitness evaluations; twice the number of iterations), we
see that the computational cost is at mostO(nT logT ), when the run
time is T . Since for most EAs working on bit string representations
of length n the computational cost is larger than the run time by
at least a factor of n, we see that our significance approach is not
overly costly in terms of computational cost.

What appears unfavorable, though, is the memory usage caused
by storing the full history. For this reason, we now sketch a way to
condense the history so that it only uses space logarithmic in the
length of the full history. This approach will not allow to access
exactly the number of 1s (or 0s) in all power-of-two length histories.
It will allow, however, for each ℓ ∈ [|Hi |], to access the number
of 1s in some interval of length ℓ′ with ℓ ≤ ℓ′ < 2ℓ. For reasons
of readability, we shall in the subsequent analyses nevertheless
regard the original sig-cGA, but it is quite clear that the mildly
different accessibility of the history in the now-proposed condensed
implementation will not change the asymptotic run times shown
in this work.
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For our condensed storage of the history, we have a list of blocks,
each storing the number of 1s in some discrete interval [t1..t2] of
length equal to a power of two (including 1). When a new item
has to be stored, we append a block of size 1 to the list. Then,
traversing the list in backward direction, we check if there are three
consecutive blocks of the same size, and if so, we merge the two
earliest ones into a new block of twice the size. By this, we always
maintain a list of blocks such that, for a certain power 2k , there
are between one and two blocks of length 2j for all j ∈ [0..k]. This
structural property implies both that we only have a logarithmic
number of blocks (as we have k = O(log |Hi |)) and that we can
(in amortized constant time) access all historic intervals consisting
of full blocks, which in particular implies that we can access an
interval with length in [2j , 2j+1 − 1] for all j ∈ [0..k].
3.3 Run Time Results for LeadingOnes and

OneMax

We now prove our main results, that is, upper bounds of O(n logn)
for the expected run time of the sig-cGA on LeadingOnes andOne-
Max. Note that the sig-cGA samples two offspring each iteration.
Thus, up to a constant factor of 2, the expected run time is equal to
the expected number of iterations until an optimum is sampled. In
our proofs, we only consider the number of iterations.

We mention briefly that the sig-cGA is unbiased in the sense of
Lehre and Witt [17], that is, it treats bit values and bit positions
in a symmetric fashion. Consequently, all of our results hold not
only for OneMax and LeadingOnes as defined in eq. (1) but also
any similar function where an xi may be changed to a 1 − xi or
swapped with an x j (with j , i), as the sig-cGA has no bias for 1s
or 0s, nor does it prefer certain positions over other positions. (In
fact, it treats all positions exactly the same.)

In our proofs, we use the following lemma to bound probabilities
split up by the law of total probability.

Lemma 3.3. Let α , β ,x ,y ∈ R such that x ≤ y and α ≤ β . Then
αx + (1 − α)y ≥ βx + (1 − β)y.

We start with the expected run time on LeadingOnes.

Theorem 3.4. Consider the sig-cGA (Alg. 1) with ε > 12 being
a constant. Its run time on LeadingOnes is O(n logn) with high

probability and in expectation.

Proof. We start by showing that the run time isO(n logn) with
high probability. Then we give a proof sketch of the expected run
time. During this proof, we condition on the event that no frequency
decreases during O(n logn) iterations, i.e., no (false) significance of
0s is detected. Note that, for any position i ∈ [n], the probability
of saving a 1 in Hi is at least τi , as the selection with respect to
LeadingOnes has a bias for 1s. Thus, by Corollary 3.2, the probabil-
ity that at least one frequency decreases duringO(n logn) iterations
is at most O(n2−ε/3 log2 n), which is, as ε > 12, in O(n−ε

′

), for an
ε ′ > 2. Thus, with high probability, no frequency decreases during
O(n logn) iterations.

The main idea of this proof is to show that the left-most fre-
quency that is different from 1 − 1/n has a significant surplus of 1s
in its history strong enough so that, after a logarithmic number of
iterations, we change such a frequency from its initial value of 1/2
to 1 − 1/n.

In order to make this idea precise, we now consider an iteration
such that there is a frequency τi = 1/2 such that, for all j < i ,
τj = 1 − 1/n. We lower-bound the probability of saving a 1 in Hi in
order to get an upper bound on the expected time until we detect
the significance necessary to update τi to 1−1/n. When considering
position i , we assume an empty history although it is most likely
not. We can do so, since the sig-cGA checks for a significance in
different sub-histories of Hi (starting from the latest entry). Thus,
we only consider sub-histories that go as far as the point in time
when all indices less than i were at 1 − 1/n.

Let O denote the event that we save a 1 this iteration, and let A
denote the event that at least one of the two offspring during this
iteration has a 0 at a position in [i − 1]. Note that event A means
that the bit at position i of the winning individual is not relevant for
selection. Hence, if A occurs, we save a 1 with probability τi = 1/2.
Otherwise, that is, the bit at position i is relevant for selection,
we save a 1 with probability 1 − (1/2)2 = 3/4 (i.e., if we do not
sample two 0s). Formally, Pr[O] = Pr[A] · 12 + Pr

[
A
]
· 34 , which is a

convex combination of 1/2 and 3/4. Thus, according to Lemma 3.3,
we get a lower bound if we decrease the factor of the larger term,
namely, Pr

[
A
]
. The eventA occurs if and only if both offspring have

only 1s at the positions 1 through i − 1: Pr
[
A
]
= (1 − 1/n)2(i−1), as

we assumed that all frequencies at indices less than i are already
at 1 − 1/n. Note that this term is minimal for i = n. Thus, we get
Pr

[
A
]
≥ e−2 by using the well-known inequality (1−1/n)n−1 ≥ e−1.

Overall, we get Pr[O] ≥ (1 − e−2) · 12 + e
−2 · 34 =

1
2

(
1 + 1

2e
−2

)
.

Let X ∼ Bin
(
k, (1/2)(1 + e−2/2)

)
denote a random variable that

is stochastically dominated by the real process of saving 1s at posi-
tion i . In order to get a bound on the number of iterations k that
we need for detecting a significance of 1s, we bound the probability
of a significance not occurring in a history of length k , i.e., we save
less than k/2 + s(3ε,k/2) 1s:

Pr
[
X <

k

2 + s
(
ε,
k

2

)]
≤ Pr

[
X ≤ E[X ] −

(
k

4 e
−2 − s

(
ε,
k

2

))]
,

where the minuend is positive if ke−2/4 > s(ε,k/2), which is the
case for k > 8e4ε2 lnn > lnn, since we assume that ε > 12. Let c =
8e4ε2. For k ≥ 4c lnn, we get that ke−2/4 − s(ε,k/2) ≥ ke−2/8 C
λ. By applying Theorem 2.1 for any k ≥ 4c lnn and noting that
Var[X ] ≤ k/4 and, thus, λ2/Var[X ] ≤ λ, we get

Pr
[
X <

k

2 + s
(
ε,
k

2

)]
≤ Pr

[
X ≤ E[X ] −

k

8 e
−2

]
≤ e−

1
3 ·

4k2
64k e

−4
= e−

k
48 e
−4
≤ n−

c
12 e
−4
= n−

ε2
3 .

Thus, with probability at least 1−n−ε2/3, the τi will be set to 1−1/n
after 8e4ε2 lnn = O(logn) iterations. Further, via a union bound
over all n frequencies, the probability of any such frequency not
being updated to 1−1/n afterO(logn) iterations is at mostn1−ε2/3 ≤
n−47, as ε > 12. Hence, with high probability, all frequencies will
be set to 1 − 1/n.

Taking together the results of all frequencies being updated to
1 − 1/n, each in time O(logn), and no frequency at 1/2 or 1 − 1/n
decreasing, all with high probability, yields that all frequencies are
at 1−1/n withinO(n logn) iterations. Then the optimum is sampled
with probability (1 − 1/n)n ≥ 1/(2e) = Ω(1), i.e., with constant
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probability. Hence, we have to wait O(logn) additional iterations
in order to sample the optimum with high probability.

As for the expected run time, we are left to bound the expected
time if a frequency decreases in the initial O(n logn) iterations,
which only happens with a probability ofO(n−ε ′). Due to Lemma 3.1
and similar to Corollary 3.2, during t iterations and considering an
interval of length t ′, no frequency decreases with a probability of at
least 1 − t ′n1−ε/3 log2 t . By assuming t ≤ n2n and t ′ = Θ(n2 logn),
with high probability, no frequency decreases during such an in-
terval, as ε > 12. By analogous calculations as done for a leftmost
frequency at 1/2, it can be shown that a leftmost frequency at 1/n
is increased to during Θ(n logn) iterations with high probability.
Thus, with high probability, the sig-cGA finds the optimum dur-
ing an interval of length t ′. If not, we repeat this argument until
t > n2n . Then, the algorithm is expected to have found the optimum
by pessimistically assuming that all frequencies are at 1/n. �

For our next result, wemake use of the following lemma based on
a well-known estimate of binomial coefficients close to the center.
A proof was given by, e.g., Doerr and Winzen [8]. We use it to show
how likely it is that two individuals sampled from the sig-cGA have
the same OneMax value.

Lemma 3.5. For c ∈ Θ(1), ℓ ∈ N+, let k ∈ [ℓ/2 ± c
√
ℓ] and let

X ∼ Bin(1/2, ℓ). Then Pr[X = k] = Ω(1/
√
ℓ).

The next theorem shows that the sig-cGA is also able to optimize
OneMax within the same asymptotic time like many other EAs.

Theorem 3.6. Consider the sig-cGA (Alg. 1) with ε > 12 being a
constant. Its run time on OneMax is O(n logn) with high probability

and in expectation.

Proof. As in the proof of Theorem 3.4, we start by showing that
the run time holds with high probability. For this, we condition on
the event that no frequency decreases during O(n logn) iterations.
This can be argued in the same way as in the aforementioned proof.

The main idea of this proof is to show that, for any frequency at
1/2,O(n logn) iterations are enough in order to detect a significance
in 1s. This happens in parallel for all frequencies. For our argument
to hold, it is only important that all the other frequencies are at 1/2
or 1 − 1/n, which we condition on.

Formally, during any of the O(n logn) iterations, let ℓ ∈ [n]
denote the number of frequencies at 1/2. Then n − ℓ frequencies
are at 1− 1/n. Further, consider a position i ∈ [n] with τi = 1/2. We
show that such a position will sample 1s significantly more often
than the hypothesis by a factor of Θ(1/

√
ℓ). Then τi will be updated

to 1 − 1/n within O(ℓ logn) iterations.
In order to show that 1s are significantly more often saved than

assumed, we proceed as follows: we consider that all bits but bit i
of both offspring during any iteration have been sampled. If the
number of 1s of both offspring differs by more than one, bit i cannot
change the outcome of the selection process – bit i will be 1 with
probability 1/2. However, if the number of 1s differs by at most
one, then the outcome of bit i in both offspring has an influence
on whether a 1 is saved or not, i.e., this introduces a bias toward
saving a significant amount of 1s.

LetO denote the event to save a 1 at position i this iteration, and
let A denote the event that the numbers of 1s (excluding position i)

of both offspring differ by at least two during that iteration. Then
the probability to save a 1, conditioned on A, is 1/2.

In the case of A, we make a case distinction with respect to the
absolute difference of the number of 1s of both offspring, excluding
position i . If the difference is zero, then a 1 will be saved if not
both offspring sample a 0, which happens with probability 1 −
(1/2)2 = 3/4. If the absolute difference is one, then a 1 will be saved
if the winner (with respect to all bits but bit i) samples a 1 (with
probability 1/2) or if it samples a 0, the loser samples a 1, and the
loser is chosen during selection, which happens with probability
(1/2)3 = 1/8. Overall, the probability that a 1 is saved is at least
1/2 + 1/8 = 5/8 in the case of A.

Combining both cases, we see that Pr[O] ≥ Pr[A] · 12 + Pr
[
A
]
· 58 ,

which can be lower-bounded by determining a lower bound for
Pr

[
A
]
, according to Lemma 3.3.

With respect to Pr
[
A
]
, we first note that the probability that the

n − ℓ frequencies at 1 − 1/n will all sample a 1 for both offspring
is (1 − 1/n)2(n−ℓ) ≥ e−2, as n − ℓ ≤ n − 1. Now we only consider
the difference of 1s sampled with respect to ℓ′ B ℓ − 1, for ℓ ≥ 2,
positions with frequencies at 1/2, i.e., all remaining positions but i .
Since all of the respective frequencies are at 1/2, the expected num-
ber of 1s is ℓ′/2. Due to Theorem 2.1 (or, alternatively, Chebyshev’s
inequality), the probability of deviating from this value by more
than

√
ℓ′/2 is at most a constant c < 1. Conditional on sampling

a number of 1s in the range of ℓ′/2 ±
√
ℓ′/2, the probability to

sample k ∈ [ℓ′/2 ±
√
ℓ′/2] 1s is, due to Lemma 3.5, Ω(1/

√
ℓ′), since

all ℓ′ frequencies are at 1/2. Thus, by law of total probability, the
probability that both offspring have the same number of 1s or differ
only by one, i.e., Pr

[
A
]
, is, for a constant d > 0, at least d/

√
ℓ′.

Hence, we get, for a sufficiently small constant d ′ > 0, factoring
in the probability of 1 − c of the number of 1s being concentrated
around ℓ′/2 and the remaining n − ℓ positions only sampling 1s,

Pr[O] ≥
(
1 − e−2(1 − c) d

√
ℓ′

)
·
1
2 + e

−2(1 − c) d
√
ℓ′
·
5
8 ≥

1
2 +

d ′
√
ℓ
.

This means that the sig-cGA expects 1s to occur with probability
1/2, but they occur with a probability of at least 1/2 + d ′/

√
ℓ. Note

that for the case ℓ = 1, i.e., ℓ′ = 0, conditional on the remaining
n − ℓ positions only sampling 1s, Pr

[
A
]
= 1 and hence Pr[O] ≥

(1 − e−2) · 1/2 + e−2 · 5/8. Thus, we use 1/2 + d ′/
√
ℓ as a lower

bound for Pr[O] in all cases for ℓ, for an appropriately chosen d ′.
Analogous to the proof of Theorem 3.4, let X ∼ Bin

(
k, 1/2 +

d ′/
√
ℓ
)
denote a random variable that is stochastically dominated by

the real process of saving 1s at position i . We bound the probability
of not detecting a significance of 1s after k iterations, i.e.,

Pr
[
X <

k

2 + s
(
ε,
k

2

)]
≤ Pr

[
X ≤ E[X ] −

(
kd ′
√
ℓ
− s

(
ε,
k

2

))]
.

Let k ≥ 2(ε2/d ′2)ℓ lnn. Then kd ′/
√
ℓ − s(ε,k/2) ≥ kd ′/(2

√
ℓ) C λ.

By noting that Var[X ] ≤ k/4 and λ2/Var[X ] ≤ λ for d ′ sufficiently
small, we get by applying Theorem 2.1,

Pr
[
X <

k

2 + s
(
ε,
k

2

)]
≤ Pr

[
X ≤ E[X ] −

kd ′

2
√
ℓ

]
≤ e−

1
3 ·

4k2d′2
4ℓk = e−

kd′2
3ℓ ≤ e−

2
3 ε

2 lnn = n−
2
3 ε

2
.
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Thus, with probability at least 1 − n−2ε2/3, τi will be set to 1 − 1/n
after 2(ε2/d ′2)ℓ lnn = O(ℓ logn) iterations. Further, via a union
bound over all n frequencies, the probability of any such frequency
not being updated to 1 − 1/n after O(ℓ logn) iterations is at most
n1−2ε

2/3 ≤ n−95, as ε > 12. Hence, with high probability, all fre-
quencies will be set to 1 − 1/n.

Since our argument for position i was made for an arbitrary i and
independent of the other positions (except that their frequencies
are either 1/2 or 1 − 1/n), and since all n frequencies start at 1/2
(i.e., ℓ = n), we have to wait at most O(n logn) iterations until all
frequencies are set to 1 − 1/n with high probability. Then, with a
probability of at least (1 − 1/n)n ≥ 1/(2e) = Ω(1), the optimum
will be sampled. Hence, after O(logn) additional iterations, the
optimum will be sampled with high probability.

The expected run time can be proven similarly as argued in the
proof of Theorem 3.4. The main difference here is that, assuming
all frequencies are at 1/n, with high probability, all frequencies will
increase during O(n2 logn) iterations (in parallel, not sequentially).
Further, since ε > 12, no frequency will decrease during an interval
of such length with high probability. �

Note that although the expected run time of the sig-cGA is
asymptotically the same on LeadingOnes and OneMax, the reason
is quite different: for LeadingOnes, the sig-cGA sets its frequencies
quickly consecutively to 1−1/n, as it only needsO(logn) iterations
per frequency in expectation. This is due to the bias for saving 1s
being very large (constant, in fact) when all frequencies to the left
are at 1 − 1/n, i.e., when it is very likely that bit i is relevant for
selection. Friedrich et al. [11] exploit this fact in the analysis (and
design) of the scGA heavily, which is why it, too, has an expected
run time of O(n logn) on LeadingOnes. However, when not all
frequencies to the left of a position are at 1− 1/n, the bias is almost
negligible, as it is necessary that bits sampled with frequencies of
at most 1/2 have to sample the same value. Thus, in this case, the
probability of this happening declines exponentially in the number
of frequencies to the left not being at 1 − 1/n.

For OneMax, the situation is different. The bias in selection
only gets strong (i.e., increases by a constant additive term) when a
constant number of frequencies is left at 1/2 and has not reached 1−
1/n. More general, when ℓ frequencies are still at 1/2, the bias only
adds a term of roughly 1/

√
ℓ. Thus, it takes longer in expectation

in order to detect a significance for a position. However, the bias is
constantly there and, even for ℓ = n, very large when compared to
the bias for LeadingOnes for a position whose frequencies to the
left are not all at 1−1/n. Hence, forOneMax, the frequencies can be
increased in parallel. This is the major difference to LeadingOnes,
where the frequencies are increased sequentially.

4 RUN TIME ANALYSIS FOR THE SCGA

Being the closest competitor to the sig-cGA in that it also optimizes
LeadingOnes in O(n logn) in expectation is the stable compact

genetic algorithm (scGA; Alg. 2), which is a variant of the cGA [13]
and was introduced by Friedrich et al. [11] in order to present
an EDA that optimizes LeadingOnes in time O(n logn). It works
very similar to the cGA, however, it introduces a bias toward the
update that favors frequencies moving to 1/2. For this purpose, the
scGA has, next to the parameter ρ of the cGA, another parameter
a ∈ O(ρ), which works in the following way: when a frequency

Algorithm 2: The scGA [11] with parameters ρ, a, and d
optimizing f

1 t ← 0;
2 for i ∈ [n] do τ

(t )
i ←

1
2 ;

3 repeat

4 x ,y ← offspring sampled with respect to τ (t );
5 (x ,y) ← winner/loser of x and y with respect to f ;
6 for i ∈ [n] do
7 if xi > yi then

8 if τ
(t )
i ≤ 1

2 then τ
(t+1)
i ← τ

(t )
i + ρ + a;

9 else if
1
2 < τ

(t )
i < d then τ (t+1) ← τ

(t )
i + ρ;

10 else τ
(t+1)
i ← 1;

11 else if xi < yi then

12 if τ
(t )
i ≥ 1

2 then τ
(t+1)
i ← τ

(t )
i − ρ − a;

13 else if 1 − d < τ
(t )
i < 1

2 then τ
(t+1)
i ← τ

(t )
i − ρ;

14 else τ
(t+1)
i ← 0;

15 else τ
(t+1)
i ← τ

(t )
i ;

16 t ← t + 1;
17 until termination criterion met;

above 1/2 is decreased, it decreases by ρ + a, not only by ρ as in
the case of the cGA. However, a frequency above 1/2 is still only
increased by ρ. For a frequency below 1/2, this is done analogously.

Further, the scGA has a third parameter d ∈ (1/2, 1), which
marks the borders for a frequency that are sufficient in order to set
it to one of its extreme values, i.e., 0 or 1. If a frequency τi is greater
or equal to d , it is updated to 1 and can then never be changed again,
as all bits at position i will be 1s. Symmetrically, if a frequency τi is
less or equal to 1 − d , it is updated to 0. Intuitively, the parameter d
describes a significance value that is sufficient for the algorithm to
fully commit for a bit value.

The intention of the scGA is that each frequency stays around
1/2 as long as there is no strong bias toward either bit value for its
respective position. Once the bias is strong enough, the algorithm
is willing to fix the bits for that position. While this approach
works well when there is a strong bias in a position (i.e., as in
LeadingOnes [11]), it fails when the bias is only weak (i.e., as in
OneMax; Thm. 4.1).

We prove that the scGA is not able to optimize OneMax as fast
as the sig-cGA, as it is not able to detect the comparably small
bias of 1/

√
n for OneMax when compared to the strong bias of

Θ(1) for LeadingOnes for a frequency whose frequencies to the
left are at 1 − 1/n. Note that the assumptions in Theorem 4.1 for
ρ and d are similar to the ones used by Friedrich et al. [11] in
order to prove the expected run time of O(n logn) of the scGA
on LeadingOnes. Our assumption for a is more restrictive, as we
requirea = Θ(ρ), whereas Friedrich et al. [11] only requirea = O(ρ).
However, we allow ρ = O(1/logn), whereas Friedrich et al. [11]
require ρ = Θ(1/logn).

Theorem 4.1. Let α ∈ (0, 1] be a constant. Consider the scGA

(Alg. 2) with ρ = O(1/logn), a = αρ, and 1/2 < d ≤ 5/6 with d =
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Θ(1). Its run time on OneMax is Ω
(
min{2Θ(n), 2c/ρ }

)
in expectation

and with high probability for a constant c > 0.
Proof sketch of Thm. 4.1. We show that within O

(
2c/ρ

)
ite-

rations, all frequencies of the scGA will still stay in the interval
(1 − d,d). That is, each frequency is still a constant away from
either 1 or 0. This means it is exponentially unlikely to sample the
optimum until then. Thus, the expected run time is at least Ω

(
2c/ρ

)
.

Our proof is mostly an application of the negative drift theorem
by Oliveto and Witt [20, 21]. In order to calculate the drift, i.e., the
expected change of a frequency in a single iteration, it is necessary
that all frequencies are still in the interval (1 − d,d). Following a
result by Sudholt and Witt [23], the bias in selection is then only in
the order of O(ρ/

√
n), which is too little compared to the artificial

bias in the update, which is in the order of a = Θ(ρ). Thus, we
get a first-hitting time of a frequency reaching at least d that is
exponential in 1/ρ.

The second bound of 2Θ(n) follows by the constant chance of
sampling the optimum with a probability of at most (5/6)n . �

5 CONCLUSIONS

We introduced a new algorithm (sig-cGA) that is able to optimize
both OneMax and LeadingOnes in timeO(n logn) with high prob-
ability and in expectation, which is the first result of this kind for
an EDA or even an EA. The sig-cGA achieves these run times by
only performing an update to its stochastic model once it notices a
significance in its history of samples. In contrast to that, typical the-
oretically investigated EDAs or EAs do not save the entire history
of samples but only a small part thereof: EAs save some samples in
their population whereas EDAs store information about the history
implicitly in their frequency vector.

Since it is quite memory-consuming to store all samples seen so
far the longer the sig-cGA runs, we proposed a way of efficiently
saving all of the necessary information for the algorithm, which
is the number of 1s or 0s seen so far. Currently, the sig-cGA saves
new information every iteration. However, whenever both offspring
sample the same value, the algorithm does not learn anything. Thus,
an evenmorememory-efficient approachwould be to only save a bit
value if the one of the winning offspring differs from the respective
bit value of the loser. This is how the cGA actually performs an
update. However, since the intention of the sig-cGA is to keep its
frequencies as long as possible at 1/2 until it detects a (hopefully
correct) significance, this approach reduces the memory necessary
only by a constant factor of 2, due to classical Chernoff bounds.

Overall, the sig-cGA trades slightly increased memory (due to
its history) for reduced run times, which is a very good payoff.
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